1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * INET		An implementation of the TCP/IP protocol suite for the LINUX
4 *		operating system.  INET is implemented using the  BSD Socket
5 *		interface as the means of communication with the user level.
6 *
7 *		The Internet Protocol (IP) module.
8 *
9 * Authors:	Ross Biro
10 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 *		Donald Becker, <becker@super.org>
12 *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
13 *		Richard Underwood
14 *		Stefan Becker, <stefanb@yello.ping.de>
15 *		Jorge Cwik, <jorge@laser.satlink.net>
16 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
17 *
18 * Fixes:
19 *		Alan Cox	:	Commented a couple of minor bits of surplus code
20 *		Alan Cox	:	Undefining IP_FORWARD doesn't include the code
21 *					(just stops a compiler warning).
22 *		Alan Cox	:	Frames with >=MAX_ROUTE record routes, strict routes or loose routes
23 *					are junked rather than corrupting things.
24 *		Alan Cox	:	Frames to bad broadcast subnets are dumped
25 *					We used to process them non broadcast and
26 *					boy could that cause havoc.
27 *		Alan Cox	:	ip_forward sets the free flag on the
28 *					new frame it queues. Still crap because
29 *					it copies the frame but at least it
30 *					doesn't eat memory too.
31 *		Alan Cox	:	Generic queue code and memory fixes.
32 *		Fred Van Kempen :	IP fragment support (borrowed from NET2E)
33 *		Gerhard Koerting:	Forward fragmented frames correctly.
34 *		Gerhard Koerting: 	Fixes to my fix of the above 8-).
35 *		Gerhard Koerting:	IP interface addressing fix.
36 *		Linus Torvalds	:	More robustness checks
37 *		Alan Cox	:	Even more checks: Still not as robust as it ought to be
38 *		Alan Cox	:	Save IP header pointer for later
39 *		Alan Cox	:	ip option setting
40 *		Alan Cox	:	Use ip_tos/ip_ttl settings
41 *		Alan Cox	:	Fragmentation bogosity removed
42 *					(Thanks to Mark.Bush@prg.ox.ac.uk)
43 *		Dmitry Gorodchanin :	Send of a raw packet crash fix.
44 *		Alan Cox	:	Silly ip bug when an overlength
45 *					fragment turns up. Now frees the
46 *					queue.
47 *		Linus Torvalds/ :	Memory leakage on fragmentation
48 *		Alan Cox	:	handling.
49 *		Gerhard Koerting:	Forwarding uses IP priority hints
50 *		Teemu Rantanen	:	Fragment problems.
51 *		Alan Cox	:	General cleanup, comments and reformat
52 *		Alan Cox	:	SNMP statistics
53 *		Alan Cox	:	BSD address rule semantics. Also see
54 *					UDP as there is a nasty checksum issue
55 *					if you do things the wrong way.
56 *		Alan Cox	:	Always defrag, moved IP_FORWARD to the config.in file
57 *		Alan Cox	: 	IP options adjust sk->priority.
58 *		Pedro Roque	:	Fix mtu/length error in ip_forward.
59 *		Alan Cox	:	Avoid ip_chk_addr when possible.
60 *	Richard Underwood	:	IP multicasting.
61 *		Alan Cox	:	Cleaned up multicast handlers.
62 *		Alan Cox	:	RAW sockets demultiplex in the BSD style.
63 *		Gunther Mayer	:	Fix the SNMP reporting typo
64 *		Alan Cox	:	Always in group 224.0.0.1
65 *	Pauline Middelink	:	Fast ip_checksum update when forwarding
66 *					Masquerading support.
67 *		Alan Cox	:	Multicast loopback error for 224.0.0.1
68 *		Alan Cox	:	IP_MULTICAST_LOOP option.
69 *		Alan Cox	:	Use notifiers.
70 *		Bjorn Ekwall	:	Removed ip_csum (from slhc.c too)
71 *		Bjorn Ekwall	:	Moved ip_fast_csum to ip.h (inline!)
72 *		Stefan Becker   :       Send out ICMP HOST REDIRECT
73 *	Arnt Gulbrandsen	:	ip_build_xmit
74 *		Alan Cox	:	Per socket routing cache
75 *		Alan Cox	:	Fixed routing cache, added header cache.
76 *		Alan Cox	:	Loopback didn't work right in original ip_build_xmit - fixed it.
77 *		Alan Cox	:	Only send ICMP_REDIRECT if src/dest are the same net.
78 *		Alan Cox	:	Incoming IP option handling.
79 *		Alan Cox	:	Set saddr on raw output frames as per BSD.
80 *		Alan Cox	:	Stopped broadcast source route explosions.
81 *		Alan Cox	:	Can disable source routing
82 *		Takeshi Sone    :	Masquerading didn't work.
83 *	Dave Bonn,Alan Cox	:	Faster IP forwarding whenever possible.
84 *		Alan Cox	:	Memory leaks, tramples, misc debugging.
85 *		Alan Cox	:	Fixed multicast (by popular demand 8))
86 *		Alan Cox	:	Fixed forwarding (by even more popular demand 8))
87 *		Alan Cox	:	Fixed SNMP statistics [I think]
88 *	Gerhard Koerting	:	IP fragmentation forwarding fix
89 *		Alan Cox	:	Device lock against page fault.
90 *		Alan Cox	:	IP_HDRINCL facility.
91 *	Werner Almesberger	:	Zero fragment bug
92 *		Alan Cox	:	RAW IP frame length bug
93 *		Alan Cox	:	Outgoing firewall on build_xmit
94 *		A.N.Kuznetsov	:	IP_OPTIONS support throughout the kernel
95 *		Alan Cox	:	Multicast routing hooks
96 *		Jos Vos		:	Do accounting *before* call_in_firewall
97 *	Willy Konynenberg	:	Transparent proxying support
98 *
99 * To Fix:
100 *		IP fragmentation wants rewriting cleanly. The RFC815 algorithm is much more efficient
101 *		and could be made very efficient with the addition of some virtual memory hacks to permit
102 *		the allocation of a buffer that can then be 'grown' by twiddling page tables.
103 *		Output fragmentation wants updating along with the buffer management to use a single
104 *		interleaved copy algorithm so that fragmenting has a one copy overhead. Actual packet
105 *		output should probably do its own fragmentation at the UDP/RAW layer. TCP shouldn't cause
106 *		fragmentation anyway.
107 */
108
109#define pr_fmt(fmt) "IPv4: " fmt
110
111#include <linux/module.h>
112#include <linux/types.h>
113#include <linux/kernel.h>
114#include <linux/string.h>
115#include <linux/errno.h>
116#include <linux/slab.h>
117
118#include <linux/net.h>
119#include <linux/socket.h>
120#include <linux/sockios.h>
121#include <linux/in.h>
122#include <linux/inet.h>
123#include <linux/inetdevice.h>
124#include <linux/netdevice.h>
125#include <linux/etherdevice.h>
126#include <linux/indirect_call_wrapper.h>
127
128#include <net/snmp.h>
129#include <net/ip.h>
130#include <net/protocol.h>
131#include <net/route.h>
132#include <linux/skbuff.h>
133#include <net/sock.h>
134#include <net/arp.h>
135#include <net/icmp.h>
136#include <net/raw.h>
137#include <net/checksum.h>
138#include <net/inet_ecn.h>
139#include <linux/netfilter_ipv4.h>
140#include <net/xfrm.h>
141#include <linux/mroute.h>
142#include <linux/netlink.h>
143#include <net/dst_metadata.h>
144
145/*
146 *	Process Router Attention IP option (RFC 2113)
147 */
148bool ip_call_ra_chain(struct sk_buff *skb)
149{
150	struct ip_ra_chain *ra;
151	u8 protocol = ip_hdr(skb)->protocol;
152	struct sock *last = NULL;
153	struct net_device *dev = skb->dev;
154	struct net *net = dev_net(dev);
155
156	for (ra = rcu_dereference(net->ipv4.ra_chain); ra; ra = rcu_dereference(ra->next)) {
157		struct sock *sk = ra->sk;
158
159		/* If socket is bound to an interface, only report
160		 * the packet if it came  from that interface.
161		 */
162		if (sk && inet_sk(sk)->inet_num == protocol &&
163		    (!sk->sk_bound_dev_if ||
164		     sk->sk_bound_dev_if == dev->ifindex)) {
165			if (ip_is_fragment(ip_hdr(skb))) {
166				if (ip_defrag(net, skb, IP_DEFRAG_CALL_RA_CHAIN))
167					return true;
168			}
169			if (last) {
170				struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
171				if (skb2)
172					raw_rcv(last, skb2);
173			}
174			last = sk;
175		}
176	}
177
178	if (last) {
179		raw_rcv(last, skb);
180		return true;
181	}
182	return false;
183}
184
185INDIRECT_CALLABLE_DECLARE(int udp_rcv(struct sk_buff *));
186INDIRECT_CALLABLE_DECLARE(int tcp_v4_rcv(struct sk_buff *));
187void ip_protocol_deliver_rcu(struct net *net, struct sk_buff *skb, int protocol)
188{
189	const struct net_protocol *ipprot;
190	int raw, ret;
191
192resubmit:
193	raw = raw_local_deliver(skb, protocol);
194
195	ipprot = rcu_dereference(inet_protos[protocol]);
196	if (ipprot) {
197		if (!ipprot->no_policy) {
198			if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
199				kfree_skb_reason(skb,
200						 SKB_DROP_REASON_XFRM_POLICY);
201				return;
202			}
203			nf_reset_ct(skb);
204		}
205		ret = INDIRECT_CALL_2(ipprot->handler, tcp_v4_rcv, udp_rcv,
206				      skb);
207		if (ret < 0) {
208			protocol = -ret;
209			goto resubmit;
210		}
211		__IP_INC_STATS(net, IPSTATS_MIB_INDELIVERS);
212	} else {
213		if (!raw) {
214			if (xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
215				__IP_INC_STATS(net, IPSTATS_MIB_INUNKNOWNPROTOS);
216				icmp_send(skb, ICMP_DEST_UNREACH,
217					  ICMP_PROT_UNREACH, 0);
218			}
219			kfree_skb_reason(skb, SKB_DROP_REASON_IP_NOPROTO);
220		} else {
221			__IP_INC_STATS(net, IPSTATS_MIB_INDELIVERS);
222			consume_skb(skb);
223		}
224	}
225}
226
227static int ip_local_deliver_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
228{
229	skb_clear_delivery_time(skb);
230	__skb_pull(skb, skb_network_header_len(skb));
231
232	rcu_read_lock();
233	ip_protocol_deliver_rcu(net, skb, ip_hdr(skb)->protocol);
234	rcu_read_unlock();
235
236	return 0;
237}
238
239/*
240 * 	Deliver IP Packets to the higher protocol layers.
241 */
242int ip_local_deliver(struct sk_buff *skb)
243{
244	/*
245	 *	Reassemble IP fragments.
246	 */
247	struct net *net = dev_net(skb->dev);
248
249	if (ip_is_fragment(ip_hdr(skb))) {
250		if (ip_defrag(net, skb, IP_DEFRAG_LOCAL_DELIVER))
251			return 0;
252	}
253
254	return NF_HOOK(NFPROTO_IPV4, NF_INET_LOCAL_IN,
255		       net, NULL, skb, skb->dev, NULL,
256		       ip_local_deliver_finish);
257}
258EXPORT_SYMBOL(ip_local_deliver);
259
260static inline bool ip_rcv_options(struct sk_buff *skb, struct net_device *dev)
261{
262	struct ip_options *opt;
263	const struct iphdr *iph;
264
265	/* It looks as overkill, because not all
266	   IP options require packet mangling.
267	   But it is the easiest for now, especially taking
268	   into account that combination of IP options
269	   and running sniffer is extremely rare condition.
270					      --ANK (980813)
271	*/
272	if (skb_cow(skb, skb_headroom(skb))) {
273		__IP_INC_STATS(dev_net(dev), IPSTATS_MIB_INDISCARDS);
274		goto drop;
275	}
276
277	iph = ip_hdr(skb);
278	opt = &(IPCB(skb)->opt);
279	opt->optlen = iph->ihl*4 - sizeof(struct iphdr);
280
281	if (ip_options_compile(dev_net(dev), opt, skb)) {
282		__IP_INC_STATS(dev_net(dev), IPSTATS_MIB_INHDRERRORS);
283		goto drop;
284	}
285
286	if (unlikely(opt->srr)) {
287		struct in_device *in_dev = __in_dev_get_rcu(dev);
288
289		if (in_dev) {
290			if (!IN_DEV_SOURCE_ROUTE(in_dev)) {
291				if (IN_DEV_LOG_MARTIANS(in_dev))
292					net_info_ratelimited("source route option %pI4 -> %pI4\n",
293							     &iph->saddr,
294							     &iph->daddr);
295				goto drop;
296			}
297		}
298
299		if (ip_options_rcv_srr(skb, dev))
300			goto drop;
301	}
302
303	return false;
304drop:
305	return true;
306}
307
308static bool ip_can_use_hint(const struct sk_buff *skb, const struct iphdr *iph,
309			    const struct sk_buff *hint)
310{
311	return hint && !skb_dst(skb) && ip_hdr(hint)->daddr == iph->daddr &&
312	       ip_hdr(hint)->tos == iph->tos;
313}
314
315int tcp_v4_early_demux(struct sk_buff *skb);
316int udp_v4_early_demux(struct sk_buff *skb);
317static int ip_rcv_finish_core(struct net *net, struct sock *sk,
318			      struct sk_buff *skb, struct net_device *dev,
319			      const struct sk_buff *hint)
320{
321	const struct iphdr *iph = ip_hdr(skb);
322	int err, drop_reason;
323	struct rtable *rt;
324
325	drop_reason = SKB_DROP_REASON_NOT_SPECIFIED;
326
327	if (ip_can_use_hint(skb, iph, hint)) {
328		err = ip_route_use_hint(skb, iph->daddr, iph->saddr, iph->tos,
329					dev, hint);
330		if (unlikely(err))
331			goto drop_error;
332	}
333
334	if (READ_ONCE(net->ipv4.sysctl_ip_early_demux) &&
335	    !skb_dst(skb) &&
336	    !skb->sk &&
337	    !ip_is_fragment(iph)) {
338		switch (iph->protocol) {
339		case IPPROTO_TCP:
340			if (READ_ONCE(net->ipv4.sysctl_tcp_early_demux)) {
341				tcp_v4_early_demux(skb);
342
343				/* must reload iph, skb->head might have changed */
344				iph = ip_hdr(skb);
345			}
346			break;
347		case IPPROTO_UDP:
348			if (READ_ONCE(net->ipv4.sysctl_udp_early_demux)) {
349				err = udp_v4_early_demux(skb);
350				if (unlikely(err))
351					goto drop_error;
352
353				/* must reload iph, skb->head might have changed */
354				iph = ip_hdr(skb);
355			}
356			break;
357		}
358	}
359
360	/*
361	 *	Initialise the virtual path cache for the packet. It describes
362	 *	how the packet travels inside Linux networking.
363	 */
364	if (!skb_valid_dst(skb)) {
365		err = ip_route_input_noref(skb, iph->daddr, iph->saddr,
366					   iph->tos, dev);
367		if (unlikely(err))
368			goto drop_error;
369	} else {
370		struct in_device *in_dev = __in_dev_get_rcu(dev);
371
372		if (in_dev && IN_DEV_ORCONF(in_dev, NOPOLICY))
373			IPCB(skb)->flags |= IPSKB_NOPOLICY;
374	}
375
376#ifdef CONFIG_IP_ROUTE_CLASSID
377	if (unlikely(skb_dst(skb)->tclassid)) {
378		struct ip_rt_acct *st = this_cpu_ptr(ip_rt_acct);
379		u32 idx = skb_dst(skb)->tclassid;
380		st[idx&0xFF].o_packets++;
381		st[idx&0xFF].o_bytes += skb->len;
382		st[(idx>>16)&0xFF].i_packets++;
383		st[(idx>>16)&0xFF].i_bytes += skb->len;
384	}
385#endif
386
387	if (iph->ihl > 5 && ip_rcv_options(skb, dev))
388		goto drop;
389
390	rt = skb_rtable(skb);
391	if (rt->rt_type == RTN_MULTICAST) {
392		__IP_UPD_PO_STATS(net, IPSTATS_MIB_INMCAST, skb->len);
393	} else if (rt->rt_type == RTN_BROADCAST) {
394		__IP_UPD_PO_STATS(net, IPSTATS_MIB_INBCAST, skb->len);
395	} else if (skb->pkt_type == PACKET_BROADCAST ||
396		   skb->pkt_type == PACKET_MULTICAST) {
397		struct in_device *in_dev = __in_dev_get_rcu(dev);
398
399		/* RFC 1122 3.3.6:
400		 *
401		 *   When a host sends a datagram to a link-layer broadcast
402		 *   address, the IP destination address MUST be a legal IP
403		 *   broadcast or IP multicast address.
404		 *
405		 *   A host SHOULD silently discard a datagram that is received
406		 *   via a link-layer broadcast (see Section 2.4) but does not
407		 *   specify an IP multicast or broadcast destination address.
408		 *
409		 * This doesn't explicitly say L2 *broadcast*, but broadcast is
410		 * in a way a form of multicast and the most common use case for
411		 * this is 802.11 protecting against cross-station spoofing (the
412		 * so-called "hole-196" attack) so do it for both.
413		 */
414		if (in_dev &&
415		    IN_DEV_ORCONF(in_dev, DROP_UNICAST_IN_L2_MULTICAST)) {
416			drop_reason = SKB_DROP_REASON_UNICAST_IN_L2_MULTICAST;
417			goto drop;
418		}
419	}
420
421	return NET_RX_SUCCESS;
422
423drop:
424	kfree_skb_reason(skb, drop_reason);
425	return NET_RX_DROP;
426
427drop_error:
428	if (err == -EXDEV) {
429		drop_reason = SKB_DROP_REASON_IP_RPFILTER;
430		__NET_INC_STATS(net, LINUX_MIB_IPRPFILTER);
431	}
432	goto drop;
433}
434
435static int ip_rcv_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
436{
437	struct net_device *dev = skb->dev;
438	int ret;
439
440	/* if ingress device is enslaved to an L3 master device pass the
441	 * skb to its handler for processing
442	 */
443	skb = l3mdev_ip_rcv(skb);
444	if (!skb)
445		return NET_RX_SUCCESS;
446
447	ret = ip_rcv_finish_core(net, sk, skb, dev, NULL);
448	if (ret != NET_RX_DROP)
449		ret = dst_input(skb);
450	return ret;
451}
452
453/*
454 * 	Main IP Receive routine.
455 */
456static struct sk_buff *ip_rcv_core(struct sk_buff *skb, struct net *net)
457{
458	const struct iphdr *iph;
459	int drop_reason;
460	u32 len;
461
462	/* When the interface is in promisc. mode, drop all the crap
463	 * that it receives, do not try to analyse it.
464	 */
465	if (skb->pkt_type == PACKET_OTHERHOST) {
466		dev_core_stats_rx_otherhost_dropped_inc(skb->dev);
467		drop_reason = SKB_DROP_REASON_OTHERHOST;
468		goto drop;
469	}
470
471	__IP_UPD_PO_STATS(net, IPSTATS_MIB_IN, skb->len);
472
473	skb = skb_share_check(skb, GFP_ATOMIC);
474	if (!skb) {
475		__IP_INC_STATS(net, IPSTATS_MIB_INDISCARDS);
476		goto out;
477	}
478
479	drop_reason = SKB_DROP_REASON_NOT_SPECIFIED;
480	if (!pskb_may_pull(skb, sizeof(struct iphdr)))
481		goto inhdr_error;
482
483	iph = ip_hdr(skb);
484
485	/*
486	 *	RFC1122: 3.2.1.2 MUST silently discard any IP frame that fails the checksum.
487	 *
488	 *	Is the datagram acceptable?
489	 *
490	 *	1.	Length at least the size of an ip header
491	 *	2.	Version of 4
492	 *	3.	Checksums correctly. [Speed optimisation for later, skip loopback checksums]
493	 *	4.	Doesn't have a bogus length
494	 */
495
496	if (iph->ihl < 5 || iph->version != 4)
497		goto inhdr_error;
498
499	BUILD_BUG_ON(IPSTATS_MIB_ECT1PKTS != IPSTATS_MIB_NOECTPKTS + INET_ECN_ECT_1);
500	BUILD_BUG_ON(IPSTATS_MIB_ECT0PKTS != IPSTATS_MIB_NOECTPKTS + INET_ECN_ECT_0);
501	BUILD_BUG_ON(IPSTATS_MIB_CEPKTS != IPSTATS_MIB_NOECTPKTS + INET_ECN_CE);
502	__IP_ADD_STATS(net,
503		       IPSTATS_MIB_NOECTPKTS + (iph->tos & INET_ECN_MASK),
504		       max_t(unsigned short, 1, skb_shinfo(skb)->gso_segs));
505
506	if (!pskb_may_pull(skb, iph->ihl*4))
507		goto inhdr_error;
508
509	iph = ip_hdr(skb);
510
511	if (unlikely(ip_fast_csum((u8 *)iph, iph->ihl)))
512		goto csum_error;
513
514	len = iph_totlen(skb, iph);
515	if (skb->len < len) {
516		drop_reason = SKB_DROP_REASON_PKT_TOO_SMALL;
517		__IP_INC_STATS(net, IPSTATS_MIB_INTRUNCATEDPKTS);
518		goto drop;
519	} else if (len < (iph->ihl*4))
520		goto inhdr_error;
521
522	/* Our transport medium may have padded the buffer out. Now we know it
523	 * is IP we can trim to the true length of the frame.
524	 * Note this now means skb->len holds ntohs(iph->tot_len).
525	 */
526	if (pskb_trim_rcsum(skb, len)) {
527		__IP_INC_STATS(net, IPSTATS_MIB_INDISCARDS);
528		goto drop;
529	}
530
531	iph = ip_hdr(skb);
532	skb->transport_header = skb->network_header + iph->ihl*4;
533
534	/* Remove any debris in the socket control block */
535	memset(IPCB(skb), 0, sizeof(struct inet_skb_parm));
536	IPCB(skb)->iif = skb->skb_iif;
537
538	/* Must drop socket now because of tproxy. */
539	if (!skb_sk_is_prefetched(skb))
540		skb_orphan(skb);
541
542	return skb;
543
544csum_error:
545	drop_reason = SKB_DROP_REASON_IP_CSUM;
546	__IP_INC_STATS(net, IPSTATS_MIB_CSUMERRORS);
547inhdr_error:
548	if (drop_reason == SKB_DROP_REASON_NOT_SPECIFIED)
549		drop_reason = SKB_DROP_REASON_IP_INHDR;
550	__IP_INC_STATS(net, IPSTATS_MIB_INHDRERRORS);
551drop:
552	kfree_skb_reason(skb, drop_reason);
553out:
554	return NULL;
555}
556
557/*
558 * IP receive entry point
559 */
560int ip_rcv(struct sk_buff *skb, struct net_device *dev, struct packet_type *pt,
561	   struct net_device *orig_dev)
562{
563	struct net *net = dev_net(dev);
564
565	skb = ip_rcv_core(skb, net);
566	if (skb == NULL)
567		return NET_RX_DROP;
568
569	return NF_HOOK(NFPROTO_IPV4, NF_INET_PRE_ROUTING,
570		       net, NULL, skb, dev, NULL,
571		       ip_rcv_finish);
572}
573
574static void ip_sublist_rcv_finish(struct list_head *head)
575{
576	struct sk_buff *skb, *next;
577
578	list_for_each_entry_safe(skb, next, head, list) {
579		skb_list_del_init(skb);
580		dst_input(skb);
581	}
582}
583
584static struct sk_buff *ip_extract_route_hint(const struct net *net,
585					     struct sk_buff *skb, int rt_type)
586{
587	if (fib4_has_custom_rules(net) || rt_type == RTN_BROADCAST ||
588	    IPCB(skb)->flags & IPSKB_MULTIPATH)
589		return NULL;
590
591	return skb;
592}
593
594static void ip_list_rcv_finish(struct net *net, struct sock *sk,
595			       struct list_head *head)
596{
597	struct sk_buff *skb, *next, *hint = NULL;
598	struct dst_entry *curr_dst = NULL;
599	struct list_head sublist;
600
601	INIT_LIST_HEAD(&sublist);
602	list_for_each_entry_safe(skb, next, head, list) {
603		struct net_device *dev = skb->dev;
604		struct dst_entry *dst;
605
606		skb_list_del_init(skb);
607		/* if ingress device is enslaved to an L3 master device pass the
608		 * skb to its handler for processing
609		 */
610		skb = l3mdev_ip_rcv(skb);
611		if (!skb)
612			continue;
613		if (ip_rcv_finish_core(net, sk, skb, dev, hint) == NET_RX_DROP)
614			continue;
615
616		dst = skb_dst(skb);
617		if (curr_dst != dst) {
618			hint = ip_extract_route_hint(net, skb,
619					       ((struct rtable *)dst)->rt_type);
620
621			/* dispatch old sublist */
622			if (!list_empty(&sublist))
623				ip_sublist_rcv_finish(&sublist);
624			/* start new sublist */
625			INIT_LIST_HEAD(&sublist);
626			curr_dst = dst;
627		}
628		list_add_tail(&skb->list, &sublist);
629	}
630	/* dispatch final sublist */
631	ip_sublist_rcv_finish(&sublist);
632}
633
634static void ip_sublist_rcv(struct list_head *head, struct net_device *dev,
635			   struct net *net)
636{
637	NF_HOOK_LIST(NFPROTO_IPV4, NF_INET_PRE_ROUTING, net, NULL,
638		     head, dev, NULL, ip_rcv_finish);
639	ip_list_rcv_finish(net, NULL, head);
640}
641
642/* Receive a list of IP packets */
643void ip_list_rcv(struct list_head *head, struct packet_type *pt,
644		 struct net_device *orig_dev)
645{
646	struct net_device *curr_dev = NULL;
647	struct net *curr_net = NULL;
648	struct sk_buff *skb, *next;
649	struct list_head sublist;
650
651	INIT_LIST_HEAD(&sublist);
652	list_for_each_entry_safe(skb, next, head, list) {
653		struct net_device *dev = skb->dev;
654		struct net *net = dev_net(dev);
655
656		skb_list_del_init(skb);
657		skb = ip_rcv_core(skb, net);
658		if (skb == NULL)
659			continue;
660
661		if (curr_dev != dev || curr_net != net) {
662			/* dispatch old sublist */
663			if (!list_empty(&sublist))
664				ip_sublist_rcv(&sublist, curr_dev, curr_net);
665			/* start new sublist */
666			INIT_LIST_HEAD(&sublist);
667			curr_dev = dev;
668			curr_net = net;
669		}
670		list_add_tail(&skb->list, &sublist);
671	}
672	/* dispatch final sublist */
673	if (!list_empty(&sublist))
674		ip_sublist_rcv(&sublist, curr_dev, curr_net);
675}
676