1// SPDX-License-Identifier: GPL-2.0-or-later
2/* linux/net/ipv4/arp.c
3 *
4 * Copyright (C) 1994 by Florian  La Roche
5 *
6 * This module implements the Address Resolution Protocol ARP (RFC 826),
7 * which is used to convert IP addresses (or in the future maybe other
8 * high-level addresses) into a low-level hardware address (like an Ethernet
9 * address).
10 *
11 * Fixes:
12 *		Alan Cox	:	Removed the Ethernet assumptions in
13 *					Florian's code
14 *		Alan Cox	:	Fixed some small errors in the ARP
15 *					logic
16 *		Alan Cox	:	Allow >4K in /proc
17 *		Alan Cox	:	Make ARP add its own protocol entry
18 *		Ross Martin     :       Rewrote arp_rcv() and arp_get_info()
19 *		Stephen Henson	:	Add AX25 support to arp_get_info()
20 *		Alan Cox	:	Drop data when a device is downed.
21 *		Alan Cox	:	Use init_timer().
22 *		Alan Cox	:	Double lock fixes.
23 *		Martin Seine	:	Move the arphdr structure
24 *					to if_arp.h for compatibility.
25 *					with BSD based programs.
26 *		Andrew Tridgell :       Added ARP netmask code and
27 *					re-arranged proxy handling.
28 *		Alan Cox	:	Changed to use notifiers.
29 *		Niibe Yutaka	:	Reply for this device or proxies only.
30 *		Alan Cox	:	Don't proxy across hardware types!
31 *		Jonathan Naylor :	Added support for NET/ROM.
32 *		Mike Shaver     :       RFC1122 checks.
33 *		Jonathan Naylor :	Only lookup the hardware address for
34 *					the correct hardware type.
35 *		Germano Caronni	:	Assorted subtle races.
36 *		Craig Schlenter :	Don't modify permanent entry
37 *					during arp_rcv.
38 *		Russ Nelson	:	Tidied up a few bits.
39 *		Alexey Kuznetsov:	Major changes to caching and behaviour,
40 *					eg intelligent arp probing and
41 *					generation
42 *					of host down events.
43 *		Alan Cox	:	Missing unlock in device events.
44 *		Eckes		:	ARP ioctl control errors.
45 *		Alexey Kuznetsov:	Arp free fix.
46 *		Manuel Rodriguez:	Gratuitous ARP.
47 *              Jonathan Layes  :       Added arpd support through kerneld
48 *                                      message queue (960314)
49 *		Mike Shaver	:	/proc/sys/net/ipv4/arp_* support
50 *		Mike McLagan    :	Routing by source
51 *		Stuart Cheshire	:	Metricom and grat arp fixes
52 *					*** FOR 2.1 clean this up ***
53 *		Lawrence V. Stefani: (08/12/96) Added FDDI support.
54 *		Alan Cox	:	Took the AP1000 nasty FDDI hack and
55 *					folded into the mainstream FDDI code.
56 *					Ack spit, Linus how did you allow that
57 *					one in...
58 *		Jes Sorensen	:	Make FDDI work again in 2.1.x and
59 *					clean up the APFDDI & gen. FDDI bits.
60 *		Alexey Kuznetsov:	new arp state machine;
61 *					now it is in net/core/neighbour.c.
62 *		Krzysztof Halasa:	Added Frame Relay ARP support.
63 *		Arnaldo C. Melo :	convert /proc/net/arp to seq_file
64 *		Shmulik Hen:		Split arp_send to arp_create and
65 *					arp_xmit so intermediate drivers like
66 *					bonding can change the skb before
67 *					sending (e.g. insert 8021q tag).
68 *		Harald Welte	:	convert to make use of jenkins hash
69 *		Jesper D. Brouer:       Proxy ARP PVLAN RFC 3069 support.
70 */
71
72#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
73
74#include <linux/module.h>
75#include <linux/types.h>
76#include <linux/string.h>
77#include <linux/kernel.h>
78#include <linux/capability.h>
79#include <linux/socket.h>
80#include <linux/sockios.h>
81#include <linux/errno.h>
82#include <linux/in.h>
83#include <linux/mm.h>
84#include <linux/inet.h>
85#include <linux/inetdevice.h>
86#include <linux/netdevice.h>
87#include <linux/etherdevice.h>
88#include <linux/fddidevice.h>
89#include <linux/if_arp.h>
90#include <linux/skbuff.h>
91#include <linux/proc_fs.h>
92#include <linux/seq_file.h>
93#include <linux/stat.h>
94#include <linux/init.h>
95#include <linux/net.h>
96#include <linux/rcupdate.h>
97#include <linux/slab.h>
98#ifdef CONFIG_SYSCTL
99#include <linux/sysctl.h>
100#endif
101
102#include <net/net_namespace.h>
103#include <net/ip.h>
104#include <net/icmp.h>
105#include <net/route.h>
106#include <net/protocol.h>
107#include <net/tcp.h>
108#include <net/sock.h>
109#include <net/arp.h>
110#include <net/ax25.h>
111#include <net/netrom.h>
112#include <net/dst_metadata.h>
113#include <net/ip_tunnels.h>
114
115#include <linux/uaccess.h>
116
117#include <linux/netfilter_arp.h>
118
119/*
120 *	Interface to generic neighbour cache.
121 */
122static u32 arp_hash(const void *pkey, const struct net_device *dev, __u32 *hash_rnd);
123static bool arp_key_eq(const struct neighbour *n, const void *pkey);
124static int arp_constructor(struct neighbour *neigh);
125static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb);
126static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb);
127static void parp_redo(struct sk_buff *skb);
128static int arp_is_multicast(const void *pkey);
129
130static const struct neigh_ops arp_generic_ops = {
131	.family =		AF_INET,
132	.solicit =		arp_solicit,
133	.error_report =		arp_error_report,
134	.output =		neigh_resolve_output,
135	.connected_output =	neigh_connected_output,
136};
137
138static const struct neigh_ops arp_hh_ops = {
139	.family =		AF_INET,
140	.solicit =		arp_solicit,
141	.error_report =		arp_error_report,
142	.output =		neigh_resolve_output,
143	.connected_output =	neigh_resolve_output,
144};
145
146static const struct neigh_ops arp_direct_ops = {
147	.family =		AF_INET,
148	.output =		neigh_direct_output,
149	.connected_output =	neigh_direct_output,
150};
151
152struct neigh_table arp_tbl = {
153	.family		= AF_INET,
154	.key_len	= 4,
155	.protocol	= cpu_to_be16(ETH_P_IP),
156	.hash		= arp_hash,
157	.key_eq		= arp_key_eq,
158	.constructor	= arp_constructor,
159	.proxy_redo	= parp_redo,
160	.is_multicast	= arp_is_multicast,
161	.id		= "arp_cache",
162	.parms		= {
163		.tbl			= &arp_tbl,
164		.reachable_time		= 30 * HZ,
165		.data	= {
166			[NEIGH_VAR_MCAST_PROBES] = 3,
167			[NEIGH_VAR_UCAST_PROBES] = 3,
168			[NEIGH_VAR_RETRANS_TIME] = 1 * HZ,
169			[NEIGH_VAR_BASE_REACHABLE_TIME] = 30 * HZ,
170			[NEIGH_VAR_DELAY_PROBE_TIME] = 5 * HZ,
171			[NEIGH_VAR_INTERVAL_PROBE_TIME_MS] = 5 * HZ,
172			[NEIGH_VAR_GC_STALETIME] = 60 * HZ,
173			[NEIGH_VAR_QUEUE_LEN_BYTES] = SK_WMEM_MAX,
174			[NEIGH_VAR_PROXY_QLEN] = 64,
175			[NEIGH_VAR_ANYCAST_DELAY] = 1 * HZ,
176			[NEIGH_VAR_PROXY_DELAY]	= (8 * HZ) / 10,
177			[NEIGH_VAR_LOCKTIME] = 1 * HZ,
178		},
179	},
180	.gc_interval	= 30 * HZ,
181	.gc_thresh1	= 128,
182	.gc_thresh2	= 512,
183	.gc_thresh3	= 1024,
184};
185EXPORT_SYMBOL(arp_tbl);
186
187int arp_mc_map(__be32 addr, u8 *haddr, struct net_device *dev, int dir)
188{
189	switch (dev->type) {
190	case ARPHRD_ETHER:
191	case ARPHRD_FDDI:
192	case ARPHRD_IEEE802:
193		ip_eth_mc_map(addr, haddr);
194		return 0;
195	case ARPHRD_INFINIBAND:
196		ip_ib_mc_map(addr, dev->broadcast, haddr);
197		return 0;
198	case ARPHRD_IPGRE:
199		ip_ipgre_mc_map(addr, dev->broadcast, haddr);
200		return 0;
201	default:
202		if (dir) {
203			memcpy(haddr, dev->broadcast, dev->addr_len);
204			return 0;
205		}
206	}
207	return -EINVAL;
208}
209
210
211static u32 arp_hash(const void *pkey,
212		    const struct net_device *dev,
213		    __u32 *hash_rnd)
214{
215	return arp_hashfn(pkey, dev, hash_rnd);
216}
217
218static bool arp_key_eq(const struct neighbour *neigh, const void *pkey)
219{
220	return neigh_key_eq32(neigh, pkey);
221}
222
223static int arp_constructor(struct neighbour *neigh)
224{
225	__be32 addr;
226	struct net_device *dev = neigh->dev;
227	struct in_device *in_dev;
228	struct neigh_parms *parms;
229	u32 inaddr_any = INADDR_ANY;
230
231	if (dev->flags & (IFF_LOOPBACK | IFF_POINTOPOINT))
232		memcpy(neigh->primary_key, &inaddr_any, arp_tbl.key_len);
233
234	addr = *(__be32 *)neigh->primary_key;
235	rcu_read_lock();
236	in_dev = __in_dev_get_rcu(dev);
237	if (!in_dev) {
238		rcu_read_unlock();
239		return -EINVAL;
240	}
241
242	neigh->type = inet_addr_type_dev_table(dev_net(dev), dev, addr);
243
244	parms = in_dev->arp_parms;
245	__neigh_parms_put(neigh->parms);
246	neigh->parms = neigh_parms_clone(parms);
247	rcu_read_unlock();
248
249	if (!dev->header_ops) {
250		neigh->nud_state = NUD_NOARP;
251		neigh->ops = &arp_direct_ops;
252		neigh->output = neigh_direct_output;
253	} else {
254		/* Good devices (checked by reading texts, but only Ethernet is
255		   tested)
256
257		   ARPHRD_ETHER: (ethernet, apfddi)
258		   ARPHRD_FDDI: (fddi)
259		   ARPHRD_IEEE802: (tr)
260		   ARPHRD_METRICOM: (strip)
261		   ARPHRD_ARCNET:
262		   etc. etc. etc.
263
264		   ARPHRD_IPDDP will also work, if author repairs it.
265		   I did not it, because this driver does not work even
266		   in old paradigm.
267		 */
268
269		if (neigh->type == RTN_MULTICAST) {
270			neigh->nud_state = NUD_NOARP;
271			arp_mc_map(addr, neigh->ha, dev, 1);
272		} else if (dev->flags & (IFF_NOARP | IFF_LOOPBACK)) {
273			neigh->nud_state = NUD_NOARP;
274			memcpy(neigh->ha, dev->dev_addr, dev->addr_len);
275		} else if (neigh->type == RTN_BROADCAST ||
276			   (dev->flags & IFF_POINTOPOINT)) {
277			neigh->nud_state = NUD_NOARP;
278			memcpy(neigh->ha, dev->broadcast, dev->addr_len);
279		}
280
281		if (dev->header_ops->cache)
282			neigh->ops = &arp_hh_ops;
283		else
284			neigh->ops = &arp_generic_ops;
285
286		if (neigh->nud_state & NUD_VALID)
287			neigh->output = neigh->ops->connected_output;
288		else
289			neigh->output = neigh->ops->output;
290	}
291	return 0;
292}
293
294static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb)
295{
296	dst_link_failure(skb);
297	kfree_skb_reason(skb, SKB_DROP_REASON_NEIGH_FAILED);
298}
299
300/* Create and send an arp packet. */
301static void arp_send_dst(int type, int ptype, __be32 dest_ip,
302			 struct net_device *dev, __be32 src_ip,
303			 const unsigned char *dest_hw,
304			 const unsigned char *src_hw,
305			 const unsigned char *target_hw,
306			 struct dst_entry *dst)
307{
308	struct sk_buff *skb;
309
310	/* arp on this interface. */
311	if (dev->flags & IFF_NOARP)
312		return;
313
314	skb = arp_create(type, ptype, dest_ip, dev, src_ip,
315			 dest_hw, src_hw, target_hw);
316	if (!skb)
317		return;
318
319	skb_dst_set(skb, dst_clone(dst));
320	arp_xmit(skb);
321}
322
323void arp_send(int type, int ptype, __be32 dest_ip,
324	      struct net_device *dev, __be32 src_ip,
325	      const unsigned char *dest_hw, const unsigned char *src_hw,
326	      const unsigned char *target_hw)
327{
328	arp_send_dst(type, ptype, dest_ip, dev, src_ip, dest_hw, src_hw,
329		     target_hw, NULL);
330}
331EXPORT_SYMBOL(arp_send);
332
333static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb)
334{
335	__be32 saddr = 0;
336	u8 dst_ha[MAX_ADDR_LEN], *dst_hw = NULL;
337	struct net_device *dev = neigh->dev;
338	__be32 target = *(__be32 *)neigh->primary_key;
339	int probes = atomic_read(&neigh->probes);
340	struct in_device *in_dev;
341	struct dst_entry *dst = NULL;
342
343	rcu_read_lock();
344	in_dev = __in_dev_get_rcu(dev);
345	if (!in_dev) {
346		rcu_read_unlock();
347		return;
348	}
349	switch (IN_DEV_ARP_ANNOUNCE(in_dev)) {
350	default:
351	case 0:		/* By default announce any local IP */
352		if (skb && inet_addr_type_dev_table(dev_net(dev), dev,
353					  ip_hdr(skb)->saddr) == RTN_LOCAL)
354			saddr = ip_hdr(skb)->saddr;
355		break;
356	case 1:		/* Restrict announcements of saddr in same subnet */
357		if (!skb)
358			break;
359		saddr = ip_hdr(skb)->saddr;
360		if (inet_addr_type_dev_table(dev_net(dev), dev,
361					     saddr) == RTN_LOCAL) {
362			/* saddr should be known to target */
363			if (inet_addr_onlink(in_dev, target, saddr))
364				break;
365		}
366		saddr = 0;
367		break;
368	case 2:		/* Avoid secondary IPs, get a primary/preferred one */
369		break;
370	}
371	rcu_read_unlock();
372
373	if (!saddr)
374		saddr = inet_select_addr(dev, target, RT_SCOPE_LINK);
375
376	probes -= NEIGH_VAR(neigh->parms, UCAST_PROBES);
377	if (probes < 0) {
378		if (!(READ_ONCE(neigh->nud_state) & NUD_VALID))
379			pr_debug("trying to ucast probe in NUD_INVALID\n");
380		neigh_ha_snapshot(dst_ha, neigh, dev);
381		dst_hw = dst_ha;
382	} else {
383		probes -= NEIGH_VAR(neigh->parms, APP_PROBES);
384		if (probes < 0) {
385			neigh_app_ns(neigh);
386			return;
387		}
388	}
389
390	if (skb && !(dev->priv_flags & IFF_XMIT_DST_RELEASE))
391		dst = skb_dst(skb);
392	arp_send_dst(ARPOP_REQUEST, ETH_P_ARP, target, dev, saddr,
393		     dst_hw, dev->dev_addr, NULL, dst);
394}
395
396static int arp_ignore(struct in_device *in_dev, __be32 sip, __be32 tip)
397{
398	struct net *net = dev_net(in_dev->dev);
399	int scope;
400
401	switch (IN_DEV_ARP_IGNORE(in_dev)) {
402	case 0:	/* Reply, the tip is already validated */
403		return 0;
404	case 1:	/* Reply only if tip is configured on the incoming interface */
405		sip = 0;
406		scope = RT_SCOPE_HOST;
407		break;
408	case 2:	/*
409		 * Reply only if tip is configured on the incoming interface
410		 * and is in same subnet as sip
411		 */
412		scope = RT_SCOPE_HOST;
413		break;
414	case 3:	/* Do not reply for scope host addresses */
415		sip = 0;
416		scope = RT_SCOPE_LINK;
417		in_dev = NULL;
418		break;
419	case 4:	/* Reserved */
420	case 5:
421	case 6:
422	case 7:
423		return 0;
424	case 8:	/* Do not reply */
425		return 1;
426	default:
427		return 0;
428	}
429	return !inet_confirm_addr(net, in_dev, sip, tip, scope);
430}
431
432static int arp_accept(struct in_device *in_dev, __be32 sip)
433{
434	struct net *net = dev_net(in_dev->dev);
435	int scope = RT_SCOPE_LINK;
436
437	switch (IN_DEV_ARP_ACCEPT(in_dev)) {
438	case 0: /* Don't create new entries from garp */
439		return 0;
440	case 1: /* Create new entries from garp */
441		return 1;
442	case 2: /* Create a neighbor in the arp table only if sip
443		 * is in the same subnet as an address configured
444		 * on the interface that received the garp message
445		 */
446		return !!inet_confirm_addr(net, in_dev, sip, 0, scope);
447	default:
448		return 0;
449	}
450}
451
452static int arp_filter(__be32 sip, __be32 tip, struct net_device *dev)
453{
454	struct rtable *rt;
455	int flag = 0;
456	/*unsigned long now; */
457	struct net *net = dev_net(dev);
458
459	rt = ip_route_output(net, sip, tip, 0, l3mdev_master_ifindex_rcu(dev));
460	if (IS_ERR(rt))
461		return 1;
462	if (rt->dst.dev != dev) {
463		__NET_INC_STATS(net, LINUX_MIB_ARPFILTER);
464		flag = 1;
465	}
466	ip_rt_put(rt);
467	return flag;
468}
469
470/*
471 * Check if we can use proxy ARP for this path
472 */
473static inline int arp_fwd_proxy(struct in_device *in_dev,
474				struct net_device *dev,	struct rtable *rt)
475{
476	struct in_device *out_dev;
477	int imi, omi = -1;
478
479	if (rt->dst.dev == dev)
480		return 0;
481
482	if (!IN_DEV_PROXY_ARP(in_dev))
483		return 0;
484	imi = IN_DEV_MEDIUM_ID(in_dev);
485	if (imi == 0)
486		return 1;
487	if (imi == -1)
488		return 0;
489
490	/* place to check for proxy_arp for routes */
491
492	out_dev = __in_dev_get_rcu(rt->dst.dev);
493	if (out_dev)
494		omi = IN_DEV_MEDIUM_ID(out_dev);
495
496	return omi != imi && omi != -1;
497}
498
499/*
500 * Check for RFC3069 proxy arp private VLAN (allow to send back to same dev)
501 *
502 * RFC3069 supports proxy arp replies back to the same interface.  This
503 * is done to support (ethernet) switch features, like RFC 3069, where
504 * the individual ports are not allowed to communicate with each
505 * other, BUT they are allowed to talk to the upstream router.  As
506 * described in RFC 3069, it is possible to allow these hosts to
507 * communicate through the upstream router, by proxy_arp'ing.
508 *
509 * RFC 3069: "VLAN Aggregation for Efficient IP Address Allocation"
510 *
511 *  This technology is known by different names:
512 *    In RFC 3069 it is called VLAN Aggregation.
513 *    Cisco and Allied Telesyn call it Private VLAN.
514 *    Hewlett-Packard call it Source-Port filtering or port-isolation.
515 *    Ericsson call it MAC-Forced Forwarding (RFC Draft).
516 *
517 */
518static inline int arp_fwd_pvlan(struct in_device *in_dev,
519				struct net_device *dev,	struct rtable *rt,
520				__be32 sip, __be32 tip)
521{
522	/* Private VLAN is only concerned about the same ethernet segment */
523	if (rt->dst.dev != dev)
524		return 0;
525
526	/* Don't reply on self probes (often done by windowz boxes)*/
527	if (sip == tip)
528		return 0;
529
530	if (IN_DEV_PROXY_ARP_PVLAN(in_dev))
531		return 1;
532	else
533		return 0;
534}
535
536/*
537 *	Interface to link layer: send routine and receive handler.
538 */
539
540/*
541 *	Create an arp packet. If dest_hw is not set, we create a broadcast
542 *	message.
543 */
544struct sk_buff *arp_create(int type, int ptype, __be32 dest_ip,
545			   struct net_device *dev, __be32 src_ip,
546			   const unsigned char *dest_hw,
547			   const unsigned char *src_hw,
548			   const unsigned char *target_hw)
549{
550	struct sk_buff *skb;
551	struct arphdr *arp;
552	unsigned char *arp_ptr;
553	int hlen = LL_RESERVED_SPACE(dev);
554	int tlen = dev->needed_tailroom;
555
556	/*
557	 *	Allocate a buffer
558	 */
559
560	skb = alloc_skb(arp_hdr_len(dev) + hlen + tlen, GFP_ATOMIC);
561	if (!skb)
562		return NULL;
563
564	skb_reserve(skb, hlen);
565	skb_reset_network_header(skb);
566	arp = skb_put(skb, arp_hdr_len(dev));
567	skb->dev = dev;
568	skb->protocol = htons(ETH_P_ARP);
569	if (!src_hw)
570		src_hw = dev->dev_addr;
571	if (!dest_hw)
572		dest_hw = dev->broadcast;
573
574	/*
575	 *	Fill the device header for the ARP frame
576	 */
577	if (dev_hard_header(skb, dev, ptype, dest_hw, src_hw, skb->len) < 0)
578		goto out;
579
580	/*
581	 * Fill out the arp protocol part.
582	 *
583	 * The arp hardware type should match the device type, except for FDDI,
584	 * which (according to RFC 1390) should always equal 1 (Ethernet).
585	 */
586	/*
587	 *	Exceptions everywhere. AX.25 uses the AX.25 PID value not the
588	 *	DIX code for the protocol. Make these device structure fields.
589	 */
590	switch (dev->type) {
591	default:
592		arp->ar_hrd = htons(dev->type);
593		arp->ar_pro = htons(ETH_P_IP);
594		break;
595
596#if IS_ENABLED(CONFIG_AX25)
597	case ARPHRD_AX25:
598		arp->ar_hrd = htons(ARPHRD_AX25);
599		arp->ar_pro = htons(AX25_P_IP);
600		break;
601
602#if IS_ENABLED(CONFIG_NETROM)
603	case ARPHRD_NETROM:
604		arp->ar_hrd = htons(ARPHRD_NETROM);
605		arp->ar_pro = htons(AX25_P_IP);
606		break;
607#endif
608#endif
609
610#if IS_ENABLED(CONFIG_FDDI)
611	case ARPHRD_FDDI:
612		arp->ar_hrd = htons(ARPHRD_ETHER);
613		arp->ar_pro = htons(ETH_P_IP);
614		break;
615#endif
616	}
617
618	arp->ar_hln = dev->addr_len;
619	arp->ar_pln = 4;
620	arp->ar_op = htons(type);
621
622	arp_ptr = (unsigned char *)(arp + 1);
623
624	memcpy(arp_ptr, src_hw, dev->addr_len);
625	arp_ptr += dev->addr_len;
626	memcpy(arp_ptr, &src_ip, 4);
627	arp_ptr += 4;
628
629	switch (dev->type) {
630#if IS_ENABLED(CONFIG_FIREWIRE_NET)
631	case ARPHRD_IEEE1394:
632		break;
633#endif
634	default:
635		if (target_hw)
636			memcpy(arp_ptr, target_hw, dev->addr_len);
637		else
638			memset(arp_ptr, 0, dev->addr_len);
639		arp_ptr += dev->addr_len;
640	}
641	memcpy(arp_ptr, &dest_ip, 4);
642
643	return skb;
644
645out:
646	kfree_skb(skb);
647	return NULL;
648}
649EXPORT_SYMBOL(arp_create);
650
651static int arp_xmit_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
652{
653	return dev_queue_xmit(skb);
654}
655
656/*
657 *	Send an arp packet.
658 */
659void arp_xmit(struct sk_buff *skb)
660{
661	/* Send it off, maybe filter it using firewalling first.  */
662	NF_HOOK(NFPROTO_ARP, NF_ARP_OUT,
663		dev_net(skb->dev), NULL, skb, NULL, skb->dev,
664		arp_xmit_finish);
665}
666EXPORT_SYMBOL(arp_xmit);
667
668static bool arp_is_garp(struct net *net, struct net_device *dev,
669			int *addr_type, __be16 ar_op,
670			__be32 sip, __be32 tip,
671			unsigned char *sha, unsigned char *tha)
672{
673	bool is_garp = tip == sip;
674
675	/* Gratuitous ARP _replies_ also require target hwaddr to be
676	 * the same as source.
677	 */
678	if (is_garp && ar_op == htons(ARPOP_REPLY))
679		is_garp =
680			/* IPv4 over IEEE 1394 doesn't provide target
681			 * hardware address field in its ARP payload.
682			 */
683			tha &&
684			!memcmp(tha, sha, dev->addr_len);
685
686	if (is_garp) {
687		*addr_type = inet_addr_type_dev_table(net, dev, sip);
688		if (*addr_type != RTN_UNICAST)
689			is_garp = false;
690	}
691	return is_garp;
692}
693
694/*
695 *	Process an arp request.
696 */
697
698static int arp_process(struct net *net, struct sock *sk, struct sk_buff *skb)
699{
700	struct net_device *dev = skb->dev;
701	struct in_device *in_dev = __in_dev_get_rcu(dev);
702	struct arphdr *arp;
703	unsigned char *arp_ptr;
704	struct rtable *rt;
705	unsigned char *sha;
706	unsigned char *tha = NULL;
707	__be32 sip, tip;
708	u16 dev_type = dev->type;
709	int addr_type;
710	struct neighbour *n;
711	struct dst_entry *reply_dst = NULL;
712	bool is_garp = false;
713
714	/* arp_rcv below verifies the ARP header and verifies the device
715	 * is ARP'able.
716	 */
717
718	if (!in_dev)
719		goto out_free_skb;
720
721	arp = arp_hdr(skb);
722
723	switch (dev_type) {
724	default:
725		if (arp->ar_pro != htons(ETH_P_IP) ||
726		    htons(dev_type) != arp->ar_hrd)
727			goto out_free_skb;
728		break;
729	case ARPHRD_ETHER:
730	case ARPHRD_FDDI:
731	case ARPHRD_IEEE802:
732		/*
733		 * ETHERNET, and Fibre Channel (which are IEEE 802
734		 * devices, according to RFC 2625) devices will accept ARP
735		 * hardware types of either 1 (Ethernet) or 6 (IEEE 802.2).
736		 * This is the case also of FDDI, where the RFC 1390 says that
737		 * FDDI devices should accept ARP hardware of (1) Ethernet,
738		 * however, to be more robust, we'll accept both 1 (Ethernet)
739		 * or 6 (IEEE 802.2)
740		 */
741		if ((arp->ar_hrd != htons(ARPHRD_ETHER) &&
742		     arp->ar_hrd != htons(ARPHRD_IEEE802)) ||
743		    arp->ar_pro != htons(ETH_P_IP))
744			goto out_free_skb;
745		break;
746	case ARPHRD_AX25:
747		if (arp->ar_pro != htons(AX25_P_IP) ||
748		    arp->ar_hrd != htons(ARPHRD_AX25))
749			goto out_free_skb;
750		break;
751	case ARPHRD_NETROM:
752		if (arp->ar_pro != htons(AX25_P_IP) ||
753		    arp->ar_hrd != htons(ARPHRD_NETROM))
754			goto out_free_skb;
755		break;
756	}
757
758	/* Understand only these message types */
759
760	if (arp->ar_op != htons(ARPOP_REPLY) &&
761	    arp->ar_op != htons(ARPOP_REQUEST))
762		goto out_free_skb;
763
764/*
765 *	Extract fields
766 */
767	arp_ptr = (unsigned char *)(arp + 1);
768	sha	= arp_ptr;
769	arp_ptr += dev->addr_len;
770	memcpy(&sip, arp_ptr, 4);
771	arp_ptr += 4;
772	switch (dev_type) {
773#if IS_ENABLED(CONFIG_FIREWIRE_NET)
774	case ARPHRD_IEEE1394:
775		break;
776#endif
777	default:
778		tha = arp_ptr;
779		arp_ptr += dev->addr_len;
780	}
781	memcpy(&tip, arp_ptr, 4);
782/*
783 *	Check for bad requests for 127.x.x.x and requests for multicast
784 *	addresses.  If this is one such, delete it.
785 */
786	if (ipv4_is_multicast(tip) ||
787	    (!IN_DEV_ROUTE_LOCALNET(in_dev) && ipv4_is_loopback(tip)))
788		goto out_free_skb;
789
790 /*
791  *	For some 802.11 wireless deployments (and possibly other networks),
792  *	there will be an ARP proxy and gratuitous ARP frames are attacks
793  *	and thus should not be accepted.
794  */
795	if (sip == tip && IN_DEV_ORCONF(in_dev, DROP_GRATUITOUS_ARP))
796		goto out_free_skb;
797
798/*
799 *     Special case: We must set Frame Relay source Q.922 address
800 */
801	if (dev_type == ARPHRD_DLCI)
802		sha = dev->broadcast;
803
804/*
805 *  Process entry.  The idea here is we want to send a reply if it is a
806 *  request for us or if it is a request for someone else that we hold
807 *  a proxy for.  We want to add an entry to our cache if it is a reply
808 *  to us or if it is a request for our address.
809 *  (The assumption for this last is that if someone is requesting our
810 *  address, they are probably intending to talk to us, so it saves time
811 *  if we cache their address.  Their address is also probably not in
812 *  our cache, since ours is not in their cache.)
813 *
814 *  Putting this another way, we only care about replies if they are to
815 *  us, in which case we add them to the cache.  For requests, we care
816 *  about those for us and those for our proxies.  We reply to both,
817 *  and in the case of requests for us we add the requester to the arp
818 *  cache.
819 */
820
821	if (arp->ar_op == htons(ARPOP_REQUEST) && skb_metadata_dst(skb))
822		reply_dst = (struct dst_entry *)
823			    iptunnel_metadata_reply(skb_metadata_dst(skb),
824						    GFP_ATOMIC);
825
826	/* Special case: IPv4 duplicate address detection packet (RFC2131) */
827	if (sip == 0) {
828		if (arp->ar_op == htons(ARPOP_REQUEST) &&
829		    inet_addr_type_dev_table(net, dev, tip) == RTN_LOCAL &&
830		    !arp_ignore(in_dev, sip, tip))
831			arp_send_dst(ARPOP_REPLY, ETH_P_ARP, sip, dev, tip,
832				     sha, dev->dev_addr, sha, reply_dst);
833		goto out_consume_skb;
834	}
835
836	if (arp->ar_op == htons(ARPOP_REQUEST) &&
837	    ip_route_input_noref(skb, tip, sip, 0, dev) == 0) {
838
839		rt = skb_rtable(skb);
840		addr_type = rt->rt_type;
841
842		if (addr_type == RTN_LOCAL) {
843			int dont_send;
844
845			dont_send = arp_ignore(in_dev, sip, tip);
846			if (!dont_send && IN_DEV_ARPFILTER(in_dev))
847				dont_send = arp_filter(sip, tip, dev);
848			if (!dont_send) {
849				n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
850				if (n) {
851					arp_send_dst(ARPOP_REPLY, ETH_P_ARP,
852						     sip, dev, tip, sha,
853						     dev->dev_addr, sha,
854						     reply_dst);
855					neigh_release(n);
856				}
857			}
858			goto out_consume_skb;
859		} else if (IN_DEV_FORWARD(in_dev)) {
860			if (addr_type == RTN_UNICAST  &&
861			    (arp_fwd_proxy(in_dev, dev, rt) ||
862			     arp_fwd_pvlan(in_dev, dev, rt, sip, tip) ||
863			     (rt->dst.dev != dev &&
864			      pneigh_lookup(&arp_tbl, net, &tip, dev, 0)))) {
865				n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
866				if (n)
867					neigh_release(n);
868
869				if (NEIGH_CB(skb)->flags & LOCALLY_ENQUEUED ||
870				    skb->pkt_type == PACKET_HOST ||
871				    NEIGH_VAR(in_dev->arp_parms, PROXY_DELAY) == 0) {
872					arp_send_dst(ARPOP_REPLY, ETH_P_ARP,
873						     sip, dev, tip, sha,
874						     dev->dev_addr, sha,
875						     reply_dst);
876				} else {
877					pneigh_enqueue(&arp_tbl,
878						       in_dev->arp_parms, skb);
879					goto out_free_dst;
880				}
881				goto out_consume_skb;
882			}
883		}
884	}
885
886	/* Update our ARP tables */
887
888	n = __neigh_lookup(&arp_tbl, &sip, dev, 0);
889
890	addr_type = -1;
891	if (n || arp_accept(in_dev, sip)) {
892		is_garp = arp_is_garp(net, dev, &addr_type, arp->ar_op,
893				      sip, tip, sha, tha);
894	}
895
896	if (arp_accept(in_dev, sip)) {
897		/* Unsolicited ARP is not accepted by default.
898		   It is possible, that this option should be enabled for some
899		   devices (strip is candidate)
900		 */
901		if (!n &&
902		    (is_garp ||
903		     (arp->ar_op == htons(ARPOP_REPLY) &&
904		      (addr_type == RTN_UNICAST ||
905		       (addr_type < 0 &&
906			/* postpone calculation to as late as possible */
907			inet_addr_type_dev_table(net, dev, sip) ==
908				RTN_UNICAST)))))
909			n = __neigh_lookup(&arp_tbl, &sip, dev, 1);
910	}
911
912	if (n) {
913		int state = NUD_REACHABLE;
914		int override;
915
916		/* If several different ARP replies follows back-to-back,
917		   use the FIRST one. It is possible, if several proxy
918		   agents are active. Taking the first reply prevents
919		   arp trashing and chooses the fastest router.
920		 */
921		override = time_after(jiffies,
922				      n->updated +
923				      NEIGH_VAR(n->parms, LOCKTIME)) ||
924			   is_garp;
925
926		/* Broadcast replies and request packets
927		   do not assert neighbour reachability.
928		 */
929		if (arp->ar_op != htons(ARPOP_REPLY) ||
930		    skb->pkt_type != PACKET_HOST)
931			state = NUD_STALE;
932		neigh_update(n, sha, state,
933			     override ? NEIGH_UPDATE_F_OVERRIDE : 0, 0);
934		neigh_release(n);
935	}
936
937out_consume_skb:
938	consume_skb(skb);
939
940out_free_dst:
941	dst_release(reply_dst);
942	return NET_RX_SUCCESS;
943
944out_free_skb:
945	kfree_skb(skb);
946	return NET_RX_DROP;
947}
948
949static void parp_redo(struct sk_buff *skb)
950{
951	arp_process(dev_net(skb->dev), NULL, skb);
952}
953
954static int arp_is_multicast(const void *pkey)
955{
956	return ipv4_is_multicast(*((__be32 *)pkey));
957}
958
959/*
960 *	Receive an arp request from the device layer.
961 */
962
963static int arp_rcv(struct sk_buff *skb, struct net_device *dev,
964		   struct packet_type *pt, struct net_device *orig_dev)
965{
966	const struct arphdr *arp;
967
968	/* do not tweak dropwatch on an ARP we will ignore */
969	if (dev->flags & IFF_NOARP ||
970	    skb->pkt_type == PACKET_OTHERHOST ||
971	    skb->pkt_type == PACKET_LOOPBACK)
972		goto consumeskb;
973
974	skb = skb_share_check(skb, GFP_ATOMIC);
975	if (!skb)
976		goto out_of_mem;
977
978	/* ARP header, plus 2 device addresses, plus 2 IP addresses.  */
979	if (!pskb_may_pull(skb, arp_hdr_len(dev)))
980		goto freeskb;
981
982	arp = arp_hdr(skb);
983	if (arp->ar_hln != dev->addr_len || arp->ar_pln != 4)
984		goto freeskb;
985
986	memset(NEIGH_CB(skb), 0, sizeof(struct neighbour_cb));
987
988	return NF_HOOK(NFPROTO_ARP, NF_ARP_IN,
989		       dev_net(dev), NULL, skb, dev, NULL,
990		       arp_process);
991
992consumeskb:
993	consume_skb(skb);
994	return NET_RX_SUCCESS;
995freeskb:
996	kfree_skb(skb);
997out_of_mem:
998	return NET_RX_DROP;
999}
1000
1001/*
1002 *	User level interface (ioctl)
1003 */
1004
1005/*
1006 *	Set (create) an ARP cache entry.
1007 */
1008
1009static int arp_req_set_proxy(struct net *net, struct net_device *dev, int on)
1010{
1011	if (!dev) {
1012		IPV4_DEVCONF_ALL(net, PROXY_ARP) = on;
1013		return 0;
1014	}
1015	if (__in_dev_get_rtnl(dev)) {
1016		IN_DEV_CONF_SET(__in_dev_get_rtnl(dev), PROXY_ARP, on);
1017		return 0;
1018	}
1019	return -ENXIO;
1020}
1021
1022static int arp_req_set_public(struct net *net, struct arpreq *r,
1023		struct net_device *dev)
1024{
1025	__be32 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1026	__be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
1027
1028	if (mask && mask != htonl(0xFFFFFFFF))
1029		return -EINVAL;
1030	if (!dev && (r->arp_flags & ATF_COM)) {
1031		dev = dev_getbyhwaddr_rcu(net, r->arp_ha.sa_family,
1032				      r->arp_ha.sa_data);
1033		if (!dev)
1034			return -ENODEV;
1035	}
1036	if (mask) {
1037		if (!pneigh_lookup(&arp_tbl, net, &ip, dev, 1))
1038			return -ENOBUFS;
1039		return 0;
1040	}
1041
1042	return arp_req_set_proxy(net, dev, 1);
1043}
1044
1045static int arp_req_set(struct net *net, struct arpreq *r,
1046		       struct net_device *dev)
1047{
1048	__be32 ip;
1049	struct neighbour *neigh;
1050	int err;
1051
1052	if (r->arp_flags & ATF_PUBL)
1053		return arp_req_set_public(net, r, dev);
1054
1055	ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1056	if (r->arp_flags & ATF_PERM)
1057		r->arp_flags |= ATF_COM;
1058	if (!dev) {
1059		struct rtable *rt = ip_route_output(net, ip, 0, RTO_ONLINK, 0);
1060
1061		if (IS_ERR(rt))
1062			return PTR_ERR(rt);
1063		dev = rt->dst.dev;
1064		ip_rt_put(rt);
1065		if (!dev)
1066			return -EINVAL;
1067	}
1068	switch (dev->type) {
1069#if IS_ENABLED(CONFIG_FDDI)
1070	case ARPHRD_FDDI:
1071		/*
1072		 * According to RFC 1390, FDDI devices should accept ARP
1073		 * hardware types of 1 (Ethernet).  However, to be more
1074		 * robust, we'll accept hardware types of either 1 (Ethernet)
1075		 * or 6 (IEEE 802.2).
1076		 */
1077		if (r->arp_ha.sa_family != ARPHRD_FDDI &&
1078		    r->arp_ha.sa_family != ARPHRD_ETHER &&
1079		    r->arp_ha.sa_family != ARPHRD_IEEE802)
1080			return -EINVAL;
1081		break;
1082#endif
1083	default:
1084		if (r->arp_ha.sa_family != dev->type)
1085			return -EINVAL;
1086		break;
1087	}
1088
1089	neigh = __neigh_lookup_errno(&arp_tbl, &ip, dev);
1090	err = PTR_ERR(neigh);
1091	if (!IS_ERR(neigh)) {
1092		unsigned int state = NUD_STALE;
1093		if (r->arp_flags & ATF_PERM)
1094			state = NUD_PERMANENT;
1095		err = neigh_update(neigh, (r->arp_flags & ATF_COM) ?
1096				   r->arp_ha.sa_data : NULL, state,
1097				   NEIGH_UPDATE_F_OVERRIDE |
1098				   NEIGH_UPDATE_F_ADMIN, 0);
1099		neigh_release(neigh);
1100	}
1101	return err;
1102}
1103
1104static unsigned int arp_state_to_flags(struct neighbour *neigh)
1105{
1106	if (neigh->nud_state&NUD_PERMANENT)
1107		return ATF_PERM | ATF_COM;
1108	else if (neigh->nud_state&NUD_VALID)
1109		return ATF_COM;
1110	else
1111		return 0;
1112}
1113
1114/*
1115 *	Get an ARP cache entry.
1116 */
1117
1118static int arp_req_get(struct arpreq *r, struct net_device *dev)
1119{
1120	__be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1121	struct neighbour *neigh;
1122	int err = -ENXIO;
1123
1124	neigh = neigh_lookup(&arp_tbl, &ip, dev);
1125	if (neigh) {
1126		if (!(READ_ONCE(neigh->nud_state) & NUD_NOARP)) {
1127			read_lock_bh(&neigh->lock);
1128			memcpy(r->arp_ha.sa_data, neigh->ha,
1129			       min(dev->addr_len, sizeof(r->arp_ha.sa_data_min)));
1130			r->arp_flags = arp_state_to_flags(neigh);
1131			read_unlock_bh(&neigh->lock);
1132			r->arp_ha.sa_family = dev->type;
1133			strscpy(r->arp_dev, dev->name, sizeof(r->arp_dev));
1134			err = 0;
1135		}
1136		neigh_release(neigh);
1137	}
1138	return err;
1139}
1140
1141int arp_invalidate(struct net_device *dev, __be32 ip, bool force)
1142{
1143	struct neighbour *neigh = neigh_lookup(&arp_tbl, &ip, dev);
1144	int err = -ENXIO;
1145	struct neigh_table *tbl = &arp_tbl;
1146
1147	if (neigh) {
1148		if ((READ_ONCE(neigh->nud_state) & NUD_VALID) && !force) {
1149			neigh_release(neigh);
1150			return 0;
1151		}
1152
1153		if (READ_ONCE(neigh->nud_state) & ~NUD_NOARP)
1154			err = neigh_update(neigh, NULL, NUD_FAILED,
1155					   NEIGH_UPDATE_F_OVERRIDE|
1156					   NEIGH_UPDATE_F_ADMIN, 0);
1157		write_lock_bh(&tbl->lock);
1158		neigh_release(neigh);
1159		neigh_remove_one(neigh, tbl);
1160		write_unlock_bh(&tbl->lock);
1161	}
1162
1163	return err;
1164}
1165
1166static int arp_req_delete_public(struct net *net, struct arpreq *r,
1167		struct net_device *dev)
1168{
1169	__be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1170	__be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
1171
1172	if (mask == htonl(0xFFFFFFFF))
1173		return pneigh_delete(&arp_tbl, net, &ip, dev);
1174
1175	if (mask)
1176		return -EINVAL;
1177
1178	return arp_req_set_proxy(net, dev, 0);
1179}
1180
1181static int arp_req_delete(struct net *net, struct arpreq *r,
1182			  struct net_device *dev)
1183{
1184	__be32 ip;
1185
1186	if (r->arp_flags & ATF_PUBL)
1187		return arp_req_delete_public(net, r, dev);
1188
1189	ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1190	if (!dev) {
1191		struct rtable *rt = ip_route_output(net, ip, 0, RTO_ONLINK, 0);
1192		if (IS_ERR(rt))
1193			return PTR_ERR(rt);
1194		dev = rt->dst.dev;
1195		ip_rt_put(rt);
1196		if (!dev)
1197			return -EINVAL;
1198	}
1199	return arp_invalidate(dev, ip, true);
1200}
1201
1202/*
1203 *	Handle an ARP layer I/O control request.
1204 */
1205
1206int arp_ioctl(struct net *net, unsigned int cmd, void __user *arg)
1207{
1208	int err;
1209	struct arpreq r;
1210	struct net_device *dev = NULL;
1211
1212	switch (cmd) {
1213	case SIOCDARP:
1214	case SIOCSARP:
1215		if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1216			return -EPERM;
1217		fallthrough;
1218	case SIOCGARP:
1219		err = copy_from_user(&r, arg, sizeof(struct arpreq));
1220		if (err)
1221			return -EFAULT;
1222		break;
1223	default:
1224		return -EINVAL;
1225	}
1226
1227	if (r.arp_pa.sa_family != AF_INET)
1228		return -EPFNOSUPPORT;
1229
1230	if (!(r.arp_flags & ATF_PUBL) &&
1231	    (r.arp_flags & (ATF_NETMASK | ATF_DONTPUB)))
1232		return -EINVAL;
1233	if (!(r.arp_flags & ATF_NETMASK))
1234		((struct sockaddr_in *)&r.arp_netmask)->sin_addr.s_addr =
1235							   htonl(0xFFFFFFFFUL);
1236	rtnl_lock();
1237	if (r.arp_dev[0]) {
1238		err = -ENODEV;
1239		dev = __dev_get_by_name(net, r.arp_dev);
1240		if (!dev)
1241			goto out;
1242
1243		/* Mmmm... It is wrong... ARPHRD_NETROM==0 */
1244		if (!r.arp_ha.sa_family)
1245			r.arp_ha.sa_family = dev->type;
1246		err = -EINVAL;
1247		if ((r.arp_flags & ATF_COM) && r.arp_ha.sa_family != dev->type)
1248			goto out;
1249	} else if (cmd == SIOCGARP) {
1250		err = -ENODEV;
1251		goto out;
1252	}
1253
1254	switch (cmd) {
1255	case SIOCDARP:
1256		err = arp_req_delete(net, &r, dev);
1257		break;
1258	case SIOCSARP:
1259		err = arp_req_set(net, &r, dev);
1260		break;
1261	case SIOCGARP:
1262		err = arp_req_get(&r, dev);
1263		break;
1264	}
1265out:
1266	rtnl_unlock();
1267	if (cmd == SIOCGARP && !err && copy_to_user(arg, &r, sizeof(r)))
1268		err = -EFAULT;
1269	return err;
1270}
1271
1272static int arp_netdev_event(struct notifier_block *this, unsigned long event,
1273			    void *ptr)
1274{
1275	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1276	struct netdev_notifier_change_info *change_info;
1277	struct in_device *in_dev;
1278	bool evict_nocarrier;
1279
1280	switch (event) {
1281	case NETDEV_CHANGEADDR:
1282		neigh_changeaddr(&arp_tbl, dev);
1283		rt_cache_flush(dev_net(dev));
1284		break;
1285	case NETDEV_CHANGE:
1286		change_info = ptr;
1287		if (change_info->flags_changed & IFF_NOARP)
1288			neigh_changeaddr(&arp_tbl, dev);
1289
1290		in_dev = __in_dev_get_rtnl(dev);
1291		if (!in_dev)
1292			evict_nocarrier = true;
1293		else
1294			evict_nocarrier = IN_DEV_ARP_EVICT_NOCARRIER(in_dev);
1295
1296		if (evict_nocarrier && !netif_carrier_ok(dev))
1297			neigh_carrier_down(&arp_tbl, dev);
1298		break;
1299	default:
1300		break;
1301	}
1302
1303	return NOTIFY_DONE;
1304}
1305
1306static struct notifier_block arp_netdev_notifier = {
1307	.notifier_call = arp_netdev_event,
1308};
1309
1310/* Note, that it is not on notifier chain.
1311   It is necessary, that this routine was called after route cache will be
1312   flushed.
1313 */
1314void arp_ifdown(struct net_device *dev)
1315{
1316	neigh_ifdown(&arp_tbl, dev);
1317}
1318
1319
1320/*
1321 *	Called once on startup.
1322 */
1323
1324static struct packet_type arp_packet_type __read_mostly = {
1325	.type =	cpu_to_be16(ETH_P_ARP),
1326	.func =	arp_rcv,
1327};
1328
1329#ifdef CONFIG_PROC_FS
1330#if IS_ENABLED(CONFIG_AX25)
1331
1332/*
1333 *	ax25 -> ASCII conversion
1334 */
1335static void ax2asc2(ax25_address *a, char *buf)
1336{
1337	char c, *s;
1338	int n;
1339
1340	for (n = 0, s = buf; n < 6; n++) {
1341		c = (a->ax25_call[n] >> 1) & 0x7F;
1342
1343		if (c != ' ')
1344			*s++ = c;
1345	}
1346
1347	*s++ = '-';
1348	n = (a->ax25_call[6] >> 1) & 0x0F;
1349	if (n > 9) {
1350		*s++ = '1';
1351		n -= 10;
1352	}
1353
1354	*s++ = n + '0';
1355	*s++ = '\0';
1356
1357	if (*buf == '\0' || *buf == '-') {
1358		buf[0] = '*';
1359		buf[1] = '\0';
1360	}
1361}
1362#endif /* CONFIG_AX25 */
1363
1364#define HBUFFERLEN 30
1365
1366static void arp_format_neigh_entry(struct seq_file *seq,
1367				   struct neighbour *n)
1368{
1369	char hbuffer[HBUFFERLEN];
1370	int k, j;
1371	char tbuf[16];
1372	struct net_device *dev = n->dev;
1373	int hatype = dev->type;
1374
1375	read_lock(&n->lock);
1376	/* Convert hardware address to XX:XX:XX:XX ... form. */
1377#if IS_ENABLED(CONFIG_AX25)
1378	if (hatype == ARPHRD_AX25 || hatype == ARPHRD_NETROM)
1379		ax2asc2((ax25_address *)n->ha, hbuffer);
1380	else {
1381#endif
1382	for (k = 0, j = 0; k < HBUFFERLEN - 3 && j < dev->addr_len; j++) {
1383		hbuffer[k++] = hex_asc_hi(n->ha[j]);
1384		hbuffer[k++] = hex_asc_lo(n->ha[j]);
1385		hbuffer[k++] = ':';
1386	}
1387	if (k != 0)
1388		--k;
1389	hbuffer[k] = 0;
1390#if IS_ENABLED(CONFIG_AX25)
1391	}
1392#endif
1393	sprintf(tbuf, "%pI4", n->primary_key);
1394	seq_printf(seq, "%-16s 0x%-10x0x%-10x%-17s     *        %s\n",
1395		   tbuf, hatype, arp_state_to_flags(n), hbuffer, dev->name);
1396	read_unlock(&n->lock);
1397}
1398
1399static void arp_format_pneigh_entry(struct seq_file *seq,
1400				    struct pneigh_entry *n)
1401{
1402	struct net_device *dev = n->dev;
1403	int hatype = dev ? dev->type : 0;
1404	char tbuf[16];
1405
1406	sprintf(tbuf, "%pI4", n->key);
1407	seq_printf(seq, "%-16s 0x%-10x0x%-10x%s     *        %s\n",
1408		   tbuf, hatype, ATF_PUBL | ATF_PERM, "00:00:00:00:00:00",
1409		   dev ? dev->name : "*");
1410}
1411
1412static int arp_seq_show(struct seq_file *seq, void *v)
1413{
1414	if (v == SEQ_START_TOKEN) {
1415		seq_puts(seq, "IP address       HW type     Flags       "
1416			      "HW address            Mask     Device\n");
1417	} else {
1418		struct neigh_seq_state *state = seq->private;
1419
1420		if (state->flags & NEIGH_SEQ_IS_PNEIGH)
1421			arp_format_pneigh_entry(seq, v);
1422		else
1423			arp_format_neigh_entry(seq, v);
1424	}
1425
1426	return 0;
1427}
1428
1429static void *arp_seq_start(struct seq_file *seq, loff_t *pos)
1430{
1431	/* Don't want to confuse "arp -a" w/ magic entries,
1432	 * so we tell the generic iterator to skip NUD_NOARP.
1433	 */
1434	return neigh_seq_start(seq, pos, &arp_tbl, NEIGH_SEQ_SKIP_NOARP);
1435}
1436
1437static const struct seq_operations arp_seq_ops = {
1438	.start	= arp_seq_start,
1439	.next	= neigh_seq_next,
1440	.stop	= neigh_seq_stop,
1441	.show	= arp_seq_show,
1442};
1443#endif /* CONFIG_PROC_FS */
1444
1445static int __net_init arp_net_init(struct net *net)
1446{
1447	if (!proc_create_net("arp", 0444, net->proc_net, &arp_seq_ops,
1448			sizeof(struct neigh_seq_state)))
1449		return -ENOMEM;
1450	return 0;
1451}
1452
1453static void __net_exit arp_net_exit(struct net *net)
1454{
1455	remove_proc_entry("arp", net->proc_net);
1456}
1457
1458static struct pernet_operations arp_net_ops = {
1459	.init = arp_net_init,
1460	.exit = arp_net_exit,
1461};
1462
1463void __init arp_init(void)
1464{
1465	neigh_table_init(NEIGH_ARP_TABLE, &arp_tbl);
1466
1467	dev_add_pack(&arp_packet_type);
1468	register_pernet_subsys(&arp_net_ops);
1469#ifdef CONFIG_SYSCTL
1470	neigh_sysctl_register(NULL, &arp_tbl.parms, NULL);
1471#endif
1472	register_netdevice_notifier(&arp_netdev_notifier);
1473}
1474