1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * INET		An implementation of the TCP/IP protocol suite for the LINUX
4 *		operating system.  INET is implemented using the  BSD Socket
5 *		interface as the means of communication with the user level.
6 *
7 *		Ethernet-type device handling.
8 *
9 * Version:	@(#)eth.c	1.0.7	05/25/93
10 *
11 * Authors:	Ross Biro
12 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13 *		Mark Evans, <evansmp@uhura.aston.ac.uk>
14 *		Florian  La Roche, <rzsfl@rz.uni-sb.de>
15 *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16 *
17 * Fixes:
18 *		Mr Linux	: Arp problems
19 *		Alan Cox	: Generic queue tidyup (very tiny here)
20 *		Alan Cox	: eth_header ntohs should be htons
21 *		Alan Cox	: eth_rebuild_header missing an htons and
22 *				  minor other things.
23 *		Tegge		: Arp bug fixes.
24 *		Florian		: Removed many unnecessary functions, code cleanup
25 *				  and changes for new arp and skbuff.
26 *		Alan Cox	: Redid header building to reflect new format.
27 *		Alan Cox	: ARP only when compiled with CONFIG_INET
28 *		Greg Page	: 802.2 and SNAP stuff.
29 *		Alan Cox	: MAC layer pointers/new format.
30 *		Paul Gortmaker	: eth_copy_and_sum shouldn't csum padding.
31 *		Alan Cox	: Protect against forwarding explosions with
32 *				  older network drivers and IFF_ALLMULTI.
33 *	Christer Weinigel	: Better rebuild header message.
34 *             Andrew Morton    : 26Feb01: kill ether_setup() - use netdev_boot_setup().
35 */
36#include <linux/module.h>
37#include <linux/types.h>
38#include <linux/kernel.h>
39#include <linux/string.h>
40#include <linux/mm.h>
41#include <linux/socket.h>
42#include <linux/in.h>
43#include <linux/inet.h>
44#include <linux/ip.h>
45#include <linux/netdevice.h>
46#include <linux/nvmem-consumer.h>
47#include <linux/etherdevice.h>
48#include <linux/skbuff.h>
49#include <linux/errno.h>
50#include <linux/init.h>
51#include <linux/if_ether.h>
52#include <linux/of_net.h>
53#include <linux/pci.h>
54#include <linux/property.h>
55#include <net/dst.h>
56#include <net/arp.h>
57#include <net/sock.h>
58#include <net/ipv6.h>
59#include <net/ip.h>
60#include <net/dsa.h>
61#include <net/flow_dissector.h>
62#include <net/gro.h>
63#include <linux/uaccess.h>
64#include <net/pkt_sched.h>
65
66/**
67 * eth_header - create the Ethernet header
68 * @skb:	buffer to alter
69 * @dev:	source device
70 * @type:	Ethernet type field
71 * @daddr: destination address (NULL leave destination address)
72 * @saddr: source address (NULL use device source address)
73 * @len:   packet length (<= skb->len)
74 *
75 *
76 * Set the protocol type. For a packet of type ETH_P_802_3/2 we put the length
77 * in here instead.
78 */
79int eth_header(struct sk_buff *skb, struct net_device *dev,
80	       unsigned short type,
81	       const void *daddr, const void *saddr, unsigned int len)
82{
83	struct ethhdr *eth = skb_push(skb, ETH_HLEN);
84
85	if (type != ETH_P_802_3 && type != ETH_P_802_2)
86		eth->h_proto = htons(type);
87	else
88		eth->h_proto = htons(len);
89
90	/*
91	 *      Set the source hardware address.
92	 */
93
94	if (!saddr)
95		saddr = dev->dev_addr;
96	memcpy(eth->h_source, saddr, ETH_ALEN);
97
98	if (daddr) {
99		memcpy(eth->h_dest, daddr, ETH_ALEN);
100		return ETH_HLEN;
101	}
102
103	/*
104	 *      Anyway, the loopback-device should never use this function...
105	 */
106
107	if (dev->flags & (IFF_LOOPBACK | IFF_NOARP)) {
108		eth_zero_addr(eth->h_dest);
109		return ETH_HLEN;
110	}
111
112	return -ETH_HLEN;
113}
114EXPORT_SYMBOL(eth_header);
115
116/**
117 * eth_get_headlen - determine the length of header for an ethernet frame
118 * @dev: pointer to network device
119 * @data: pointer to start of frame
120 * @len: total length of frame
121 *
122 * Make a best effort attempt to pull the length for all of the headers for
123 * a given frame in a linear buffer.
124 */
125u32 eth_get_headlen(const struct net_device *dev, const void *data, u32 len)
126{
127	const unsigned int flags = FLOW_DISSECTOR_F_PARSE_1ST_FRAG;
128	const struct ethhdr *eth = (const struct ethhdr *)data;
129	struct flow_keys_basic keys;
130
131	/* this should never happen, but better safe than sorry */
132	if (unlikely(len < sizeof(*eth)))
133		return len;
134
135	/* parse any remaining L2/L3 headers, check for L4 */
136	if (!skb_flow_dissect_flow_keys_basic(dev_net(dev), NULL, &keys, data,
137					      eth->h_proto, sizeof(*eth),
138					      len, flags))
139		return max_t(u32, keys.control.thoff, sizeof(*eth));
140
141	/* parse for any L4 headers */
142	return min_t(u32, __skb_get_poff(NULL, data, &keys, len), len);
143}
144EXPORT_SYMBOL(eth_get_headlen);
145
146/**
147 * eth_type_trans - determine the packet's protocol ID.
148 * @skb: received socket data
149 * @dev: receiving network device
150 *
151 * The rule here is that we
152 * assume 802.3 if the type field is short enough to be a length.
153 * This is normal practice and works for any 'now in use' protocol.
154 */
155__be16 eth_type_trans(struct sk_buff *skb, struct net_device *dev)
156{
157	unsigned short _service_access_point;
158	const unsigned short *sap;
159	const struct ethhdr *eth;
160
161	skb->dev = dev;
162	skb_reset_mac_header(skb);
163
164	eth = (struct ethhdr *)skb->data;
165	skb_pull_inline(skb, ETH_HLEN);
166
167	eth_skb_pkt_type(skb, dev);
168
169	/*
170	 * Some variants of DSA tagging don't have an ethertype field
171	 * at all, so we check here whether one of those tagging
172	 * variants has been configured on the receiving interface,
173	 * and if so, set skb->protocol without looking at the packet.
174	 */
175	if (unlikely(netdev_uses_dsa(dev)))
176		return htons(ETH_P_XDSA);
177
178	if (likely(eth_proto_is_802_3(eth->h_proto)))
179		return eth->h_proto;
180
181	/*
182	 *      This is a magic hack to spot IPX packets. Older Novell breaks
183	 *      the protocol design and runs IPX over 802.3 without an 802.2 LLC
184	 *      layer. We look for FFFF which isn't a used 802.2 SSAP/DSAP. This
185	 *      won't work for fault tolerant netware but does for the rest.
186	 */
187	sap = skb_header_pointer(skb, 0, sizeof(*sap), &_service_access_point);
188	if (sap && *sap == 0xFFFF)
189		return htons(ETH_P_802_3);
190
191	/*
192	 *      Real 802.2 LLC
193	 */
194	return htons(ETH_P_802_2);
195}
196EXPORT_SYMBOL(eth_type_trans);
197
198/**
199 * eth_header_parse - extract hardware address from packet
200 * @skb: packet to extract header from
201 * @haddr: destination buffer
202 */
203int eth_header_parse(const struct sk_buff *skb, unsigned char *haddr)
204{
205	const struct ethhdr *eth = eth_hdr(skb);
206	memcpy(haddr, eth->h_source, ETH_ALEN);
207	return ETH_ALEN;
208}
209EXPORT_SYMBOL(eth_header_parse);
210
211/**
212 * eth_header_cache - fill cache entry from neighbour
213 * @neigh: source neighbour
214 * @hh: destination cache entry
215 * @type: Ethernet type field
216 *
217 * Create an Ethernet header template from the neighbour.
218 */
219int eth_header_cache(const struct neighbour *neigh, struct hh_cache *hh, __be16 type)
220{
221	struct ethhdr *eth;
222	const struct net_device *dev = neigh->dev;
223
224	eth = (struct ethhdr *)
225	    (((u8 *) hh->hh_data) + (HH_DATA_OFF(sizeof(*eth))));
226
227	if (type == htons(ETH_P_802_3))
228		return -1;
229
230	eth->h_proto = type;
231	memcpy(eth->h_source, dev->dev_addr, ETH_ALEN);
232	memcpy(eth->h_dest, neigh->ha, ETH_ALEN);
233
234	/* Pairs with READ_ONCE() in neigh_resolve_output(),
235	 * neigh_hh_output() and neigh_update_hhs().
236	 */
237	smp_store_release(&hh->hh_len, ETH_HLEN);
238
239	return 0;
240}
241EXPORT_SYMBOL(eth_header_cache);
242
243/**
244 * eth_header_cache_update - update cache entry
245 * @hh: destination cache entry
246 * @dev: network device
247 * @haddr: new hardware address
248 *
249 * Called by Address Resolution module to notify changes in address.
250 */
251void eth_header_cache_update(struct hh_cache *hh,
252			     const struct net_device *dev,
253			     const unsigned char *haddr)
254{
255	memcpy(((u8 *) hh->hh_data) + HH_DATA_OFF(sizeof(struct ethhdr)),
256	       haddr, ETH_ALEN);
257}
258EXPORT_SYMBOL(eth_header_cache_update);
259
260/**
261 * eth_header_parse_protocol - extract protocol from L2 header
262 * @skb: packet to extract protocol from
263 */
264__be16 eth_header_parse_protocol(const struct sk_buff *skb)
265{
266	const struct ethhdr *eth = eth_hdr(skb);
267
268	return eth->h_proto;
269}
270EXPORT_SYMBOL(eth_header_parse_protocol);
271
272/**
273 * eth_prepare_mac_addr_change - prepare for mac change
274 * @dev: network device
275 * @p: socket address
276 */
277int eth_prepare_mac_addr_change(struct net_device *dev, void *p)
278{
279	struct sockaddr *addr = p;
280
281	if (!(dev->priv_flags & IFF_LIVE_ADDR_CHANGE) && netif_running(dev))
282		return -EBUSY;
283	if (!is_valid_ether_addr(addr->sa_data))
284		return -EADDRNOTAVAIL;
285	return 0;
286}
287EXPORT_SYMBOL(eth_prepare_mac_addr_change);
288
289/**
290 * eth_commit_mac_addr_change - commit mac change
291 * @dev: network device
292 * @p: socket address
293 */
294void eth_commit_mac_addr_change(struct net_device *dev, void *p)
295{
296	struct sockaddr *addr = p;
297
298	eth_hw_addr_set(dev, addr->sa_data);
299}
300EXPORT_SYMBOL(eth_commit_mac_addr_change);
301
302/**
303 * eth_mac_addr - set new Ethernet hardware address
304 * @dev: network device
305 * @p: socket address
306 *
307 * Change hardware address of device.
308 *
309 * This doesn't change hardware matching, so needs to be overridden
310 * for most real devices.
311 */
312int eth_mac_addr(struct net_device *dev, void *p)
313{
314	int ret;
315
316	ret = eth_prepare_mac_addr_change(dev, p);
317	if (ret < 0)
318		return ret;
319	eth_commit_mac_addr_change(dev, p);
320	return 0;
321}
322EXPORT_SYMBOL(eth_mac_addr);
323
324int eth_validate_addr(struct net_device *dev)
325{
326	if (!is_valid_ether_addr(dev->dev_addr))
327		return -EADDRNOTAVAIL;
328
329	return 0;
330}
331EXPORT_SYMBOL(eth_validate_addr);
332
333const struct header_ops eth_header_ops ____cacheline_aligned = {
334	.create		= eth_header,
335	.parse		= eth_header_parse,
336	.cache		= eth_header_cache,
337	.cache_update	= eth_header_cache_update,
338	.parse_protocol	= eth_header_parse_protocol,
339};
340
341/**
342 * ether_setup - setup Ethernet network device
343 * @dev: network device
344 *
345 * Fill in the fields of the device structure with Ethernet-generic values.
346 */
347void ether_setup(struct net_device *dev)
348{
349	dev->header_ops		= &eth_header_ops;
350	dev->type		= ARPHRD_ETHER;
351	dev->hard_header_len 	= ETH_HLEN;
352	dev->min_header_len	= ETH_HLEN;
353	dev->mtu		= ETH_DATA_LEN;
354	dev->min_mtu		= ETH_MIN_MTU;
355	dev->max_mtu		= ETH_DATA_LEN;
356	dev->addr_len		= ETH_ALEN;
357	dev->tx_queue_len	= DEFAULT_TX_QUEUE_LEN;
358	dev->flags		= IFF_BROADCAST|IFF_MULTICAST;
359	dev->priv_flags		|= IFF_TX_SKB_SHARING;
360
361	eth_broadcast_addr(dev->broadcast);
362
363}
364EXPORT_SYMBOL(ether_setup);
365
366/**
367 * alloc_etherdev_mqs - Allocates and sets up an Ethernet device
368 * @sizeof_priv: Size of additional driver-private structure to be allocated
369 *	for this Ethernet device
370 * @txqs: The number of TX queues this device has.
371 * @rxqs: The number of RX queues this device has.
372 *
373 * Fill in the fields of the device structure with Ethernet-generic
374 * values. Basically does everything except registering the device.
375 *
376 * Constructs a new net device, complete with a private data area of
377 * size (sizeof_priv).  A 32-byte (not bit) alignment is enforced for
378 * this private data area.
379 */
380
381struct net_device *alloc_etherdev_mqs(int sizeof_priv, unsigned int txqs,
382				      unsigned int rxqs)
383{
384	return alloc_netdev_mqs(sizeof_priv, "eth%d", NET_NAME_ENUM,
385				ether_setup, txqs, rxqs);
386}
387EXPORT_SYMBOL(alloc_etherdev_mqs);
388
389ssize_t sysfs_format_mac(char *buf, const unsigned char *addr, int len)
390{
391	return sysfs_emit(buf, "%*phC\n", len, addr);
392}
393EXPORT_SYMBOL(sysfs_format_mac);
394
395struct sk_buff *eth_gro_receive(struct list_head *head, struct sk_buff *skb)
396{
397	const struct packet_offload *ptype;
398	unsigned int hlen, off_eth;
399	struct sk_buff *pp = NULL;
400	struct ethhdr *eh, *eh2;
401	struct sk_buff *p;
402	__be16 type;
403	int flush = 1;
404
405	off_eth = skb_gro_offset(skb);
406	hlen = off_eth + sizeof(*eh);
407	eh = skb_gro_header(skb, hlen, off_eth);
408	if (unlikely(!eh))
409		goto out;
410
411	flush = 0;
412
413	list_for_each_entry(p, head, list) {
414		if (!NAPI_GRO_CB(p)->same_flow)
415			continue;
416
417		eh2 = (struct ethhdr *)(p->data + off_eth);
418		if (compare_ether_header(eh, eh2)) {
419			NAPI_GRO_CB(p)->same_flow = 0;
420			continue;
421		}
422	}
423
424	type = eh->h_proto;
425
426	ptype = gro_find_receive_by_type(type);
427	if (ptype == NULL) {
428		flush = 1;
429		goto out;
430	}
431
432	skb_gro_pull(skb, sizeof(*eh));
433	skb_gro_postpull_rcsum(skb, eh, sizeof(*eh));
434
435	pp = indirect_call_gro_receive_inet(ptype->callbacks.gro_receive,
436					    ipv6_gro_receive, inet_gro_receive,
437					    head, skb);
438
439out:
440	skb_gro_flush_final(skb, pp, flush);
441
442	return pp;
443}
444EXPORT_SYMBOL(eth_gro_receive);
445
446int eth_gro_complete(struct sk_buff *skb, int nhoff)
447{
448	struct ethhdr *eh = (struct ethhdr *)(skb->data + nhoff);
449	__be16 type = eh->h_proto;
450	struct packet_offload *ptype;
451	int err = -ENOSYS;
452
453	if (skb->encapsulation)
454		skb_set_inner_mac_header(skb, nhoff);
455
456	ptype = gro_find_complete_by_type(type);
457	if (ptype != NULL)
458		err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
459					 ipv6_gro_complete, inet_gro_complete,
460					 skb, nhoff + sizeof(*eh));
461
462	return err;
463}
464EXPORT_SYMBOL(eth_gro_complete);
465
466static struct packet_offload eth_packet_offload __read_mostly = {
467	.type = cpu_to_be16(ETH_P_TEB),
468	.priority = 10,
469	.callbacks = {
470		.gro_receive = eth_gro_receive,
471		.gro_complete = eth_gro_complete,
472	},
473};
474
475static int __init eth_offload_init(void)
476{
477	dev_add_offload(&eth_packet_offload);
478
479	return 0;
480}
481
482fs_initcall(eth_offload_init);
483
484unsigned char * __weak arch_get_platform_mac_address(void)
485{
486	return NULL;
487}
488
489int eth_platform_get_mac_address(struct device *dev, u8 *mac_addr)
490{
491	unsigned char *addr;
492	int ret;
493
494	ret = of_get_mac_address(dev->of_node, mac_addr);
495	if (!ret)
496		return 0;
497
498	addr = arch_get_platform_mac_address();
499	if (!addr)
500		return -ENODEV;
501
502	ether_addr_copy(mac_addr, addr);
503
504	return 0;
505}
506EXPORT_SYMBOL(eth_platform_get_mac_address);
507
508/**
509 * platform_get_ethdev_address - Set netdev's MAC address from a given device
510 * @dev:	Pointer to the device
511 * @netdev:	Pointer to netdev to write the address to
512 *
513 * Wrapper around eth_platform_get_mac_address() which writes the address
514 * directly to netdev->dev_addr.
515 */
516int platform_get_ethdev_address(struct device *dev, struct net_device *netdev)
517{
518	u8 addr[ETH_ALEN] __aligned(2);
519	int ret;
520
521	ret = eth_platform_get_mac_address(dev, addr);
522	if (!ret)
523		eth_hw_addr_set(netdev, addr);
524	return ret;
525}
526EXPORT_SYMBOL(platform_get_ethdev_address);
527
528/**
529 * nvmem_get_mac_address - Obtain the MAC address from an nvmem cell named
530 * 'mac-address' associated with given device.
531 *
532 * @dev:	Device with which the mac-address cell is associated.
533 * @addrbuf:	Buffer to which the MAC address will be copied on success.
534 *
535 * Returns 0 on success or a negative error number on failure.
536 */
537int nvmem_get_mac_address(struct device *dev, void *addrbuf)
538{
539	struct nvmem_cell *cell;
540	const void *mac;
541	size_t len;
542
543	cell = nvmem_cell_get(dev, "mac-address");
544	if (IS_ERR(cell))
545		return PTR_ERR(cell);
546
547	mac = nvmem_cell_read(cell, &len);
548	nvmem_cell_put(cell);
549
550	if (IS_ERR(mac))
551		return PTR_ERR(mac);
552
553	if (len != ETH_ALEN || !is_valid_ether_addr(mac)) {
554		kfree(mac);
555		return -EINVAL;
556	}
557
558	ether_addr_copy(addrbuf, mac);
559	kfree(mac);
560
561	return 0;
562}
563
564static int fwnode_get_mac_addr(struct fwnode_handle *fwnode,
565			       const char *name, char *addr)
566{
567	int ret;
568
569	ret = fwnode_property_read_u8_array(fwnode, name, addr, ETH_ALEN);
570	if (ret)
571		return ret;
572
573	if (!is_valid_ether_addr(addr))
574		return -EINVAL;
575	return 0;
576}
577
578/**
579 * fwnode_get_mac_address - Get the MAC from the firmware node
580 * @fwnode:	Pointer to the firmware node
581 * @addr:	Address of buffer to store the MAC in
582 *
583 * Search the firmware node for the best MAC address to use.  'mac-address' is
584 * checked first, because that is supposed to contain to "most recent" MAC
585 * address. If that isn't set, then 'local-mac-address' is checked next,
586 * because that is the default address.  If that isn't set, then the obsolete
587 * 'address' is checked, just in case we're using an old device tree.
588 *
589 * Note that the 'address' property is supposed to contain a virtual address of
590 * the register set, but some DTS files have redefined that property to be the
591 * MAC address.
592 *
593 * All-zero MAC addresses are rejected, because those could be properties that
594 * exist in the firmware tables, but were not updated by the firmware.  For
595 * example, the DTS could define 'mac-address' and 'local-mac-address', with
596 * zero MAC addresses.  Some older U-Boots only initialized 'local-mac-address'.
597 * In this case, the real MAC is in 'local-mac-address', and 'mac-address'
598 * exists but is all zeros.
599 */
600int fwnode_get_mac_address(struct fwnode_handle *fwnode, char *addr)
601{
602	if (!fwnode_get_mac_addr(fwnode, "mac-address", addr) ||
603	    !fwnode_get_mac_addr(fwnode, "local-mac-address", addr) ||
604	    !fwnode_get_mac_addr(fwnode, "address", addr))
605		return 0;
606
607	return -ENOENT;
608}
609EXPORT_SYMBOL(fwnode_get_mac_address);
610
611/**
612 * device_get_mac_address - Get the MAC for a given device
613 * @dev:	Pointer to the device
614 * @addr:	Address of buffer to store the MAC in
615 */
616int device_get_mac_address(struct device *dev, char *addr)
617{
618	return fwnode_get_mac_address(dev_fwnode(dev), addr);
619}
620EXPORT_SYMBOL(device_get_mac_address);
621
622/**
623 * device_get_ethdev_address - Set netdev's MAC address from a given device
624 * @dev:	Pointer to the device
625 * @netdev:	Pointer to netdev to write the address to
626 *
627 * Wrapper around device_get_mac_address() which writes the address
628 * directly to netdev->dev_addr.
629 */
630int device_get_ethdev_address(struct device *dev, struct net_device *netdev)
631{
632	u8 addr[ETH_ALEN];
633	int ret;
634
635	ret = device_get_mac_address(dev, addr);
636	if (!ret)
637		eth_hw_addr_set(netdev, addr);
638	return ret;
639}
640EXPORT_SYMBOL(device_get_ethdev_address);
641