1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 *	Routines having to do with the 'struct sk_buff' memory handlers.
4 *
5 *	Authors:	Alan Cox <alan@lxorguk.ukuu.org.uk>
6 *			Florian La Roche <rzsfl@rz.uni-sb.de>
7 *
8 *	Fixes:
9 *		Alan Cox	:	Fixed the worst of the load
10 *					balancer bugs.
11 *		Dave Platt	:	Interrupt stacking fix.
12 *	Richard Kooijman	:	Timestamp fixes.
13 *		Alan Cox	:	Changed buffer format.
14 *		Alan Cox	:	destructor hook for AF_UNIX etc.
15 *		Linus Torvalds	:	Better skb_clone.
16 *		Alan Cox	:	Added skb_copy.
17 *		Alan Cox	:	Added all the changed routines Linus
18 *					only put in the headers
19 *		Ray VanTassle	:	Fixed --skb->lock in free
20 *		Alan Cox	:	skb_copy copy arp field
21 *		Andi Kleen	:	slabified it.
22 *		Robert Olsson	:	Removed skb_head_pool
23 *
24 *	NOTE:
25 *		The __skb_ routines should be called with interrupts
26 *	disabled, or you better be *real* sure that the operation is atomic
27 *	with respect to whatever list is being frobbed (e.g. via lock_sock()
28 *	or via disabling bottom half handlers, etc).
29 */
30
31/*
32 *	The functions in this file will not compile correctly with gcc 2.4.x
33 */
34
35#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36
37#include <linux/module.h>
38#include <linux/types.h>
39#include <linux/kernel.h>
40#include <linux/mm.h>
41#include <linux/interrupt.h>
42#include <linux/in.h>
43#include <linux/inet.h>
44#include <linux/slab.h>
45#include <linux/tcp.h>
46#include <linux/udp.h>
47#include <linux/sctp.h>
48#include <linux/netdevice.h>
49#ifdef CONFIG_NET_CLS_ACT
50#include <net/pkt_sched.h>
51#endif
52#include <linux/string.h>
53#include <linux/skbuff.h>
54#include <linux/splice.h>
55#include <linux/cache.h>
56#include <linux/rtnetlink.h>
57#include <linux/init.h>
58#include <linux/scatterlist.h>
59#include <linux/errqueue.h>
60#include <linux/prefetch.h>
61#include <linux/bitfield.h>
62#include <linux/if_vlan.h>
63#include <linux/mpls.h>
64#include <linux/kcov.h>
65#include <linux/iov_iter.h>
66
67#include <net/protocol.h>
68#include <net/dst.h>
69#include <net/sock.h>
70#include <net/checksum.h>
71#include <net/gso.h>
72#include <net/hotdata.h>
73#include <net/ip6_checksum.h>
74#include <net/xfrm.h>
75#include <net/mpls.h>
76#include <net/mptcp.h>
77#include <net/mctp.h>
78#include <net/page_pool/helpers.h>
79#include <net/dropreason.h>
80
81#include <linux/uaccess.h>
82#include <trace/events/skb.h>
83#include <linux/highmem.h>
84#include <linux/capability.h>
85#include <linux/user_namespace.h>
86#include <linux/indirect_call_wrapper.h>
87#include <linux/textsearch.h>
88
89#include "dev.h"
90#include "sock_destructor.h"
91
92#ifdef CONFIG_SKB_EXTENSIONS
93static struct kmem_cache *skbuff_ext_cache __ro_after_init;
94#endif
95
96#define SKB_SMALL_HEAD_SIZE SKB_HEAD_ALIGN(MAX_TCP_HEADER)
97
98/* We want SKB_SMALL_HEAD_CACHE_SIZE to not be a power of two.
99 * This should ensure that SKB_SMALL_HEAD_HEADROOM is a unique
100 * size, and we can differentiate heads from skb_small_head_cache
101 * vs system slabs by looking at their size (skb_end_offset()).
102 */
103#define SKB_SMALL_HEAD_CACHE_SIZE					\
104	(is_power_of_2(SKB_SMALL_HEAD_SIZE) ?			\
105		(SKB_SMALL_HEAD_SIZE + L1_CACHE_BYTES) :	\
106		SKB_SMALL_HEAD_SIZE)
107
108#define SKB_SMALL_HEAD_HEADROOM						\
109	SKB_WITH_OVERHEAD(SKB_SMALL_HEAD_CACHE_SIZE)
110
111int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
112EXPORT_SYMBOL(sysctl_max_skb_frags);
113
114/* kcm_write_msgs() relies on casting paged frags to bio_vec to use
115 * iov_iter_bvec(). These static asserts ensure the cast is valid is long as the
116 * netmem is a page.
117 */
118static_assert(offsetof(struct bio_vec, bv_page) ==
119	      offsetof(skb_frag_t, netmem));
120static_assert(sizeof_field(struct bio_vec, bv_page) ==
121	      sizeof_field(skb_frag_t, netmem));
122
123static_assert(offsetof(struct bio_vec, bv_len) == offsetof(skb_frag_t, len));
124static_assert(sizeof_field(struct bio_vec, bv_len) ==
125	      sizeof_field(skb_frag_t, len));
126
127static_assert(offsetof(struct bio_vec, bv_offset) ==
128	      offsetof(skb_frag_t, offset));
129static_assert(sizeof_field(struct bio_vec, bv_offset) ==
130	      sizeof_field(skb_frag_t, offset));
131
132#undef FN
133#define FN(reason) [SKB_DROP_REASON_##reason] = #reason,
134static const char * const drop_reasons[] = {
135	[SKB_CONSUMED] = "CONSUMED",
136	DEFINE_DROP_REASON(FN, FN)
137};
138
139static const struct drop_reason_list drop_reasons_core = {
140	.reasons = drop_reasons,
141	.n_reasons = ARRAY_SIZE(drop_reasons),
142};
143
144const struct drop_reason_list __rcu *
145drop_reasons_by_subsys[SKB_DROP_REASON_SUBSYS_NUM] = {
146	[SKB_DROP_REASON_SUBSYS_CORE] = RCU_INITIALIZER(&drop_reasons_core),
147};
148EXPORT_SYMBOL(drop_reasons_by_subsys);
149
150/**
151 * drop_reasons_register_subsys - register another drop reason subsystem
152 * @subsys: the subsystem to register, must not be the core
153 * @list: the list of drop reasons within the subsystem, must point to
154 *	a statically initialized list
155 */
156void drop_reasons_register_subsys(enum skb_drop_reason_subsys subsys,
157				  const struct drop_reason_list *list)
158{
159	if (WARN(subsys <= SKB_DROP_REASON_SUBSYS_CORE ||
160		 subsys >= ARRAY_SIZE(drop_reasons_by_subsys),
161		 "invalid subsystem %d\n", subsys))
162		return;
163
164	/* must point to statically allocated memory, so INIT is OK */
165	RCU_INIT_POINTER(drop_reasons_by_subsys[subsys], list);
166}
167EXPORT_SYMBOL_GPL(drop_reasons_register_subsys);
168
169/**
170 * drop_reasons_unregister_subsys - unregister a drop reason subsystem
171 * @subsys: the subsystem to remove, must not be the core
172 *
173 * Note: This will synchronize_rcu() to ensure no users when it returns.
174 */
175void drop_reasons_unregister_subsys(enum skb_drop_reason_subsys subsys)
176{
177	if (WARN(subsys <= SKB_DROP_REASON_SUBSYS_CORE ||
178		 subsys >= ARRAY_SIZE(drop_reasons_by_subsys),
179		 "invalid subsystem %d\n", subsys))
180		return;
181
182	RCU_INIT_POINTER(drop_reasons_by_subsys[subsys], NULL);
183
184	synchronize_rcu();
185}
186EXPORT_SYMBOL_GPL(drop_reasons_unregister_subsys);
187
188/**
189 *	skb_panic - private function for out-of-line support
190 *	@skb:	buffer
191 *	@sz:	size
192 *	@addr:	address
193 *	@msg:	skb_over_panic or skb_under_panic
194 *
195 *	Out-of-line support for skb_put() and skb_push().
196 *	Called via the wrapper skb_over_panic() or skb_under_panic().
197 *	Keep out of line to prevent kernel bloat.
198 *	__builtin_return_address is not used because it is not always reliable.
199 */
200static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
201		      const char msg[])
202{
203	pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n",
204		 msg, addr, skb->len, sz, skb->head, skb->data,
205		 (unsigned long)skb->tail, (unsigned long)skb->end,
206		 skb->dev ? skb->dev->name : "<NULL>");
207	BUG();
208}
209
210static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
211{
212	skb_panic(skb, sz, addr, __func__);
213}
214
215static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
216{
217	skb_panic(skb, sz, addr, __func__);
218}
219
220#define NAPI_SKB_CACHE_SIZE	64
221#define NAPI_SKB_CACHE_BULK	16
222#define NAPI_SKB_CACHE_HALF	(NAPI_SKB_CACHE_SIZE / 2)
223
224#if PAGE_SIZE == SZ_4K
225
226#define NAPI_HAS_SMALL_PAGE_FRAG	1
227#define NAPI_SMALL_PAGE_PFMEMALLOC(nc)	((nc).pfmemalloc)
228
229/* specialized page frag allocator using a single order 0 page
230 * and slicing it into 1K sized fragment. Constrained to systems
231 * with a very limited amount of 1K fragments fitting a single
232 * page - to avoid excessive truesize underestimation
233 */
234
235struct page_frag_1k {
236	void *va;
237	u16 offset;
238	bool pfmemalloc;
239};
240
241static void *page_frag_alloc_1k(struct page_frag_1k *nc, gfp_t gfp)
242{
243	struct page *page;
244	int offset;
245
246	offset = nc->offset - SZ_1K;
247	if (likely(offset >= 0))
248		goto use_frag;
249
250	page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
251	if (!page)
252		return NULL;
253
254	nc->va = page_address(page);
255	nc->pfmemalloc = page_is_pfmemalloc(page);
256	offset = PAGE_SIZE - SZ_1K;
257	page_ref_add(page, offset / SZ_1K);
258
259use_frag:
260	nc->offset = offset;
261	return nc->va + offset;
262}
263#else
264
265/* the small page is actually unused in this build; add dummy helpers
266 * to please the compiler and avoid later preprocessor's conditionals
267 */
268#define NAPI_HAS_SMALL_PAGE_FRAG	0
269#define NAPI_SMALL_PAGE_PFMEMALLOC(nc)	false
270
271struct page_frag_1k {
272};
273
274static void *page_frag_alloc_1k(struct page_frag_1k *nc, gfp_t gfp_mask)
275{
276	return NULL;
277}
278
279#endif
280
281struct napi_alloc_cache {
282	struct page_frag_cache page;
283	struct page_frag_1k page_small;
284	unsigned int skb_count;
285	void *skb_cache[NAPI_SKB_CACHE_SIZE];
286};
287
288static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
289static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache);
290
291/* Double check that napi_get_frags() allocates skbs with
292 * skb->head being backed by slab, not a page fragment.
293 * This is to make sure bug fixed in 3226b158e67c
294 * ("net: avoid 32 x truesize under-estimation for tiny skbs")
295 * does not accidentally come back.
296 */
297void napi_get_frags_check(struct napi_struct *napi)
298{
299	struct sk_buff *skb;
300
301	local_bh_disable();
302	skb = napi_get_frags(napi);
303	WARN_ON_ONCE(!NAPI_HAS_SMALL_PAGE_FRAG && skb && skb->head_frag);
304	napi_free_frags(napi);
305	local_bh_enable();
306}
307
308void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
309{
310	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
311
312	fragsz = SKB_DATA_ALIGN(fragsz);
313
314	return __page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC,
315				       align_mask);
316}
317EXPORT_SYMBOL(__napi_alloc_frag_align);
318
319void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
320{
321	void *data;
322
323	fragsz = SKB_DATA_ALIGN(fragsz);
324	if (in_hardirq() || irqs_disabled()) {
325		struct page_frag_cache *nc = this_cpu_ptr(&netdev_alloc_cache);
326
327		data = __page_frag_alloc_align(nc, fragsz, GFP_ATOMIC,
328					       align_mask);
329	} else {
330		struct napi_alloc_cache *nc;
331
332		local_bh_disable();
333		nc = this_cpu_ptr(&napi_alloc_cache);
334		data = __page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC,
335					       align_mask);
336		local_bh_enable();
337	}
338	return data;
339}
340EXPORT_SYMBOL(__netdev_alloc_frag_align);
341
342static struct sk_buff *napi_skb_cache_get(void)
343{
344	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
345	struct sk_buff *skb;
346
347	if (unlikely(!nc->skb_count)) {
348		nc->skb_count = kmem_cache_alloc_bulk(net_hotdata.skbuff_cache,
349						      GFP_ATOMIC,
350						      NAPI_SKB_CACHE_BULK,
351						      nc->skb_cache);
352		if (unlikely(!nc->skb_count))
353			return NULL;
354	}
355
356	skb = nc->skb_cache[--nc->skb_count];
357	kasan_mempool_unpoison_object(skb, kmem_cache_size(net_hotdata.skbuff_cache));
358
359	return skb;
360}
361
362static inline void __finalize_skb_around(struct sk_buff *skb, void *data,
363					 unsigned int size)
364{
365	struct skb_shared_info *shinfo;
366
367	size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
368
369	/* Assumes caller memset cleared SKB */
370	skb->truesize = SKB_TRUESIZE(size);
371	refcount_set(&skb->users, 1);
372	skb->head = data;
373	skb->data = data;
374	skb_reset_tail_pointer(skb);
375	skb_set_end_offset(skb, size);
376	skb->mac_header = (typeof(skb->mac_header))~0U;
377	skb->transport_header = (typeof(skb->transport_header))~0U;
378	skb->alloc_cpu = raw_smp_processor_id();
379	/* make sure we initialize shinfo sequentially */
380	shinfo = skb_shinfo(skb);
381	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
382	atomic_set(&shinfo->dataref, 1);
383
384	skb_set_kcov_handle(skb, kcov_common_handle());
385}
386
387static inline void *__slab_build_skb(struct sk_buff *skb, void *data,
388				     unsigned int *size)
389{
390	void *resized;
391
392	/* Must find the allocation size (and grow it to match). */
393	*size = ksize(data);
394	/* krealloc() will immediately return "data" when
395	 * "ksize(data)" is requested: it is the existing upper
396	 * bounds. As a result, GFP_ATOMIC will be ignored. Note
397	 * that this "new" pointer needs to be passed back to the
398	 * caller for use so the __alloc_size hinting will be
399	 * tracked correctly.
400	 */
401	resized = krealloc(data, *size, GFP_ATOMIC);
402	WARN_ON_ONCE(resized != data);
403	return resized;
404}
405
406/* build_skb() variant which can operate on slab buffers.
407 * Note that this should be used sparingly as slab buffers
408 * cannot be combined efficiently by GRO!
409 */
410struct sk_buff *slab_build_skb(void *data)
411{
412	struct sk_buff *skb;
413	unsigned int size;
414
415	skb = kmem_cache_alloc(net_hotdata.skbuff_cache, GFP_ATOMIC);
416	if (unlikely(!skb))
417		return NULL;
418
419	memset(skb, 0, offsetof(struct sk_buff, tail));
420	data = __slab_build_skb(skb, data, &size);
421	__finalize_skb_around(skb, data, size);
422
423	return skb;
424}
425EXPORT_SYMBOL(slab_build_skb);
426
427/* Caller must provide SKB that is memset cleared */
428static void __build_skb_around(struct sk_buff *skb, void *data,
429			       unsigned int frag_size)
430{
431	unsigned int size = frag_size;
432
433	/* frag_size == 0 is considered deprecated now. Callers
434	 * using slab buffer should use slab_build_skb() instead.
435	 */
436	if (WARN_ONCE(size == 0, "Use slab_build_skb() instead"))
437		data = __slab_build_skb(skb, data, &size);
438
439	__finalize_skb_around(skb, data, size);
440}
441
442/**
443 * __build_skb - build a network buffer
444 * @data: data buffer provided by caller
445 * @frag_size: size of data (must not be 0)
446 *
447 * Allocate a new &sk_buff. Caller provides space holding head and
448 * skb_shared_info. @data must have been allocated from the page
449 * allocator or vmalloc(). (A @frag_size of 0 to indicate a kmalloc()
450 * allocation is deprecated, and callers should use slab_build_skb()
451 * instead.)
452 * The return is the new skb buffer.
453 * On a failure the return is %NULL, and @data is not freed.
454 * Notes :
455 *  Before IO, driver allocates only data buffer where NIC put incoming frame
456 *  Driver should add room at head (NET_SKB_PAD) and
457 *  MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
458 *  After IO, driver calls build_skb(), to allocate sk_buff and populate it
459 *  before giving packet to stack.
460 *  RX rings only contains data buffers, not full skbs.
461 */
462struct sk_buff *__build_skb(void *data, unsigned int frag_size)
463{
464	struct sk_buff *skb;
465
466	skb = kmem_cache_alloc(net_hotdata.skbuff_cache, GFP_ATOMIC);
467	if (unlikely(!skb))
468		return NULL;
469
470	memset(skb, 0, offsetof(struct sk_buff, tail));
471	__build_skb_around(skb, data, frag_size);
472
473	return skb;
474}
475
476/* build_skb() is wrapper over __build_skb(), that specifically
477 * takes care of skb->head and skb->pfmemalloc
478 */
479struct sk_buff *build_skb(void *data, unsigned int frag_size)
480{
481	struct sk_buff *skb = __build_skb(data, frag_size);
482
483	if (likely(skb && frag_size)) {
484		skb->head_frag = 1;
485		skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
486	}
487	return skb;
488}
489EXPORT_SYMBOL(build_skb);
490
491/**
492 * build_skb_around - build a network buffer around provided skb
493 * @skb: sk_buff provide by caller, must be memset cleared
494 * @data: data buffer provided by caller
495 * @frag_size: size of data
496 */
497struct sk_buff *build_skb_around(struct sk_buff *skb,
498				 void *data, unsigned int frag_size)
499{
500	if (unlikely(!skb))
501		return NULL;
502
503	__build_skb_around(skb, data, frag_size);
504
505	if (frag_size) {
506		skb->head_frag = 1;
507		skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
508	}
509	return skb;
510}
511EXPORT_SYMBOL(build_skb_around);
512
513/**
514 * __napi_build_skb - build a network buffer
515 * @data: data buffer provided by caller
516 * @frag_size: size of data
517 *
518 * Version of __build_skb() that uses NAPI percpu caches to obtain
519 * skbuff_head instead of inplace allocation.
520 *
521 * Returns a new &sk_buff on success, %NULL on allocation failure.
522 */
523static struct sk_buff *__napi_build_skb(void *data, unsigned int frag_size)
524{
525	struct sk_buff *skb;
526
527	skb = napi_skb_cache_get();
528	if (unlikely(!skb))
529		return NULL;
530
531	memset(skb, 0, offsetof(struct sk_buff, tail));
532	__build_skb_around(skb, data, frag_size);
533
534	return skb;
535}
536
537/**
538 * napi_build_skb - build a network buffer
539 * @data: data buffer provided by caller
540 * @frag_size: size of data
541 *
542 * Version of __napi_build_skb() that takes care of skb->head_frag
543 * and skb->pfmemalloc when the data is a page or page fragment.
544 *
545 * Returns a new &sk_buff on success, %NULL on allocation failure.
546 */
547struct sk_buff *napi_build_skb(void *data, unsigned int frag_size)
548{
549	struct sk_buff *skb = __napi_build_skb(data, frag_size);
550
551	if (likely(skb) && frag_size) {
552		skb->head_frag = 1;
553		skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
554	}
555
556	return skb;
557}
558EXPORT_SYMBOL(napi_build_skb);
559
560/*
561 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
562 * the caller if emergency pfmemalloc reserves are being used. If it is and
563 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
564 * may be used. Otherwise, the packet data may be discarded until enough
565 * memory is free
566 */
567static void *kmalloc_reserve(unsigned int *size, gfp_t flags, int node,
568			     bool *pfmemalloc)
569{
570	bool ret_pfmemalloc = false;
571	size_t obj_size;
572	void *obj;
573
574	obj_size = SKB_HEAD_ALIGN(*size);
575	if (obj_size <= SKB_SMALL_HEAD_CACHE_SIZE &&
576	    !(flags & KMALLOC_NOT_NORMAL_BITS)) {
577		obj = kmem_cache_alloc_node(net_hotdata.skb_small_head_cache,
578				flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
579				node);
580		*size = SKB_SMALL_HEAD_CACHE_SIZE;
581		if (obj || !(gfp_pfmemalloc_allowed(flags)))
582			goto out;
583		/* Try again but now we are using pfmemalloc reserves */
584		ret_pfmemalloc = true;
585		obj = kmem_cache_alloc_node(net_hotdata.skb_small_head_cache, flags, node);
586		goto out;
587	}
588
589	obj_size = kmalloc_size_roundup(obj_size);
590	/* The following cast might truncate high-order bits of obj_size, this
591	 * is harmless because kmalloc(obj_size >= 2^32) will fail anyway.
592	 */
593	*size = (unsigned int)obj_size;
594
595	/*
596	 * Try a regular allocation, when that fails and we're not entitled
597	 * to the reserves, fail.
598	 */
599	obj = kmalloc_node_track_caller(obj_size,
600					flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
601					node);
602	if (obj || !(gfp_pfmemalloc_allowed(flags)))
603		goto out;
604
605	/* Try again but now we are using pfmemalloc reserves */
606	ret_pfmemalloc = true;
607	obj = kmalloc_node_track_caller(obj_size, flags, node);
608
609out:
610	if (pfmemalloc)
611		*pfmemalloc = ret_pfmemalloc;
612
613	return obj;
614}
615
616/* 	Allocate a new skbuff. We do this ourselves so we can fill in a few
617 *	'private' fields and also do memory statistics to find all the
618 *	[BEEP] leaks.
619 *
620 */
621
622/**
623 *	__alloc_skb	-	allocate a network buffer
624 *	@size: size to allocate
625 *	@gfp_mask: allocation mask
626 *	@flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
627 *		instead of head cache and allocate a cloned (child) skb.
628 *		If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
629 *		allocations in case the data is required for writeback
630 *	@node: numa node to allocate memory on
631 *
632 *	Allocate a new &sk_buff. The returned buffer has no headroom and a
633 *	tail room of at least size bytes. The object has a reference count
634 *	of one. The return is the buffer. On a failure the return is %NULL.
635 *
636 *	Buffers may only be allocated from interrupts using a @gfp_mask of
637 *	%GFP_ATOMIC.
638 */
639struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
640			    int flags, int node)
641{
642	struct kmem_cache *cache;
643	struct sk_buff *skb;
644	bool pfmemalloc;
645	u8 *data;
646
647	cache = (flags & SKB_ALLOC_FCLONE)
648		? net_hotdata.skbuff_fclone_cache : net_hotdata.skbuff_cache;
649
650	if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
651		gfp_mask |= __GFP_MEMALLOC;
652
653	/* Get the HEAD */
654	if ((flags & (SKB_ALLOC_FCLONE | SKB_ALLOC_NAPI)) == SKB_ALLOC_NAPI &&
655	    likely(node == NUMA_NO_NODE || node == numa_mem_id()))
656		skb = napi_skb_cache_get();
657	else
658		skb = kmem_cache_alloc_node(cache, gfp_mask & ~GFP_DMA, node);
659	if (unlikely(!skb))
660		return NULL;
661	prefetchw(skb);
662
663	/* We do our best to align skb_shared_info on a separate cache
664	 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
665	 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
666	 * Both skb->head and skb_shared_info are cache line aligned.
667	 */
668	data = kmalloc_reserve(&size, gfp_mask, node, &pfmemalloc);
669	if (unlikely(!data))
670		goto nodata;
671	/* kmalloc_size_roundup() might give us more room than requested.
672	 * Put skb_shared_info exactly at the end of allocated zone,
673	 * to allow max possible filling before reallocation.
674	 */
675	prefetchw(data + SKB_WITH_OVERHEAD(size));
676
677	/*
678	 * Only clear those fields we need to clear, not those that we will
679	 * actually initialise below. Hence, don't put any more fields after
680	 * the tail pointer in struct sk_buff!
681	 */
682	memset(skb, 0, offsetof(struct sk_buff, tail));
683	__build_skb_around(skb, data, size);
684	skb->pfmemalloc = pfmemalloc;
685
686	if (flags & SKB_ALLOC_FCLONE) {
687		struct sk_buff_fclones *fclones;
688
689		fclones = container_of(skb, struct sk_buff_fclones, skb1);
690
691		skb->fclone = SKB_FCLONE_ORIG;
692		refcount_set(&fclones->fclone_ref, 1);
693	}
694
695	return skb;
696
697nodata:
698	kmem_cache_free(cache, skb);
699	return NULL;
700}
701EXPORT_SYMBOL(__alloc_skb);
702
703/**
704 *	__netdev_alloc_skb - allocate an skbuff for rx on a specific device
705 *	@dev: network device to receive on
706 *	@len: length to allocate
707 *	@gfp_mask: get_free_pages mask, passed to alloc_skb
708 *
709 *	Allocate a new &sk_buff and assign it a usage count of one. The
710 *	buffer has NET_SKB_PAD headroom built in. Users should allocate
711 *	the headroom they think they need without accounting for the
712 *	built in space. The built in space is used for optimisations.
713 *
714 *	%NULL is returned if there is no free memory.
715 */
716struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
717				   gfp_t gfp_mask)
718{
719	struct page_frag_cache *nc;
720	struct sk_buff *skb;
721	bool pfmemalloc;
722	void *data;
723
724	len += NET_SKB_PAD;
725
726	/* If requested length is either too small or too big,
727	 * we use kmalloc() for skb->head allocation.
728	 */
729	if (len <= SKB_WITH_OVERHEAD(1024) ||
730	    len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
731	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
732		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
733		if (!skb)
734			goto skb_fail;
735		goto skb_success;
736	}
737
738	len = SKB_HEAD_ALIGN(len);
739
740	if (sk_memalloc_socks())
741		gfp_mask |= __GFP_MEMALLOC;
742
743	if (in_hardirq() || irqs_disabled()) {
744		nc = this_cpu_ptr(&netdev_alloc_cache);
745		data = page_frag_alloc(nc, len, gfp_mask);
746		pfmemalloc = nc->pfmemalloc;
747	} else {
748		local_bh_disable();
749		nc = this_cpu_ptr(&napi_alloc_cache.page);
750		data = page_frag_alloc(nc, len, gfp_mask);
751		pfmemalloc = nc->pfmemalloc;
752		local_bh_enable();
753	}
754
755	if (unlikely(!data))
756		return NULL;
757
758	skb = __build_skb(data, len);
759	if (unlikely(!skb)) {
760		skb_free_frag(data);
761		return NULL;
762	}
763
764	if (pfmemalloc)
765		skb->pfmemalloc = 1;
766	skb->head_frag = 1;
767
768skb_success:
769	skb_reserve(skb, NET_SKB_PAD);
770	skb->dev = dev;
771
772skb_fail:
773	return skb;
774}
775EXPORT_SYMBOL(__netdev_alloc_skb);
776
777/**
778 *	__napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
779 *	@napi: napi instance this buffer was allocated for
780 *	@len: length to allocate
781 *	@gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
782 *
783 *	Allocate a new sk_buff for use in NAPI receive.  This buffer will
784 *	attempt to allocate the head from a special reserved region used
785 *	only for NAPI Rx allocation.  By doing this we can save several
786 *	CPU cycles by avoiding having to disable and re-enable IRQs.
787 *
788 *	%NULL is returned if there is no free memory.
789 */
790struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len,
791				 gfp_t gfp_mask)
792{
793	struct napi_alloc_cache *nc;
794	struct sk_buff *skb;
795	bool pfmemalloc;
796	void *data;
797
798	DEBUG_NET_WARN_ON_ONCE(!in_softirq());
799	len += NET_SKB_PAD + NET_IP_ALIGN;
800
801	/* If requested length is either too small or too big,
802	 * we use kmalloc() for skb->head allocation.
803	 * When the small frag allocator is available, prefer it over kmalloc
804	 * for small fragments
805	 */
806	if ((!NAPI_HAS_SMALL_PAGE_FRAG && len <= SKB_WITH_OVERHEAD(1024)) ||
807	    len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
808	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
809		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX | SKB_ALLOC_NAPI,
810				  NUMA_NO_NODE);
811		if (!skb)
812			goto skb_fail;
813		goto skb_success;
814	}
815
816	nc = this_cpu_ptr(&napi_alloc_cache);
817
818	if (sk_memalloc_socks())
819		gfp_mask |= __GFP_MEMALLOC;
820
821	if (NAPI_HAS_SMALL_PAGE_FRAG && len <= SKB_WITH_OVERHEAD(1024)) {
822		/* we are artificially inflating the allocation size, but
823		 * that is not as bad as it may look like, as:
824		 * - 'len' less than GRO_MAX_HEAD makes little sense
825		 * - On most systems, larger 'len' values lead to fragment
826		 *   size above 512 bytes
827		 * - kmalloc would use the kmalloc-1k slab for such values
828		 * - Builds with smaller GRO_MAX_HEAD will very likely do
829		 *   little networking, as that implies no WiFi and no
830		 *   tunnels support, and 32 bits arches.
831		 */
832		len = SZ_1K;
833
834		data = page_frag_alloc_1k(&nc->page_small, gfp_mask);
835		pfmemalloc = NAPI_SMALL_PAGE_PFMEMALLOC(nc->page_small);
836	} else {
837		len = SKB_HEAD_ALIGN(len);
838
839		data = page_frag_alloc(&nc->page, len, gfp_mask);
840		pfmemalloc = nc->page.pfmemalloc;
841	}
842
843	if (unlikely(!data))
844		return NULL;
845
846	skb = __napi_build_skb(data, len);
847	if (unlikely(!skb)) {
848		skb_free_frag(data);
849		return NULL;
850	}
851
852	if (pfmemalloc)
853		skb->pfmemalloc = 1;
854	skb->head_frag = 1;
855
856skb_success:
857	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
858	skb->dev = napi->dev;
859
860skb_fail:
861	return skb;
862}
863EXPORT_SYMBOL(__napi_alloc_skb);
864
865void skb_add_rx_frag_netmem(struct sk_buff *skb, int i, netmem_ref netmem,
866			    int off, int size, unsigned int truesize)
867{
868	DEBUG_NET_WARN_ON_ONCE(size > truesize);
869
870	skb_fill_netmem_desc(skb, i, netmem, off, size);
871	skb->len += size;
872	skb->data_len += size;
873	skb->truesize += truesize;
874}
875EXPORT_SYMBOL(skb_add_rx_frag_netmem);
876
877void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
878			  unsigned int truesize)
879{
880	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
881
882	DEBUG_NET_WARN_ON_ONCE(size > truesize);
883
884	skb_frag_size_add(frag, size);
885	skb->len += size;
886	skb->data_len += size;
887	skb->truesize += truesize;
888}
889EXPORT_SYMBOL(skb_coalesce_rx_frag);
890
891static void skb_drop_list(struct sk_buff **listp)
892{
893	kfree_skb_list(*listp);
894	*listp = NULL;
895}
896
897static inline void skb_drop_fraglist(struct sk_buff *skb)
898{
899	skb_drop_list(&skb_shinfo(skb)->frag_list);
900}
901
902static void skb_clone_fraglist(struct sk_buff *skb)
903{
904	struct sk_buff *list;
905
906	skb_walk_frags(skb, list)
907		skb_get(list);
908}
909
910static bool is_pp_page(struct page *page)
911{
912	return (page->pp_magic & ~0x3UL) == PP_SIGNATURE;
913}
914
915int skb_pp_cow_data(struct page_pool *pool, struct sk_buff **pskb,
916		    unsigned int headroom)
917{
918#if IS_ENABLED(CONFIG_PAGE_POOL)
919	u32 size, truesize, len, max_head_size, off;
920	struct sk_buff *skb = *pskb, *nskb;
921	int err, i, head_off;
922	void *data;
923
924	/* XDP does not support fraglist so we need to linearize
925	 * the skb.
926	 */
927	if (skb_has_frag_list(skb))
928		return -EOPNOTSUPP;
929
930	max_head_size = SKB_WITH_OVERHEAD(PAGE_SIZE - headroom);
931	if (skb->len > max_head_size + MAX_SKB_FRAGS * PAGE_SIZE)
932		return -ENOMEM;
933
934	size = min_t(u32, skb->len, max_head_size);
935	truesize = SKB_HEAD_ALIGN(size) + headroom;
936	data = page_pool_dev_alloc_va(pool, &truesize);
937	if (!data)
938		return -ENOMEM;
939
940	nskb = napi_build_skb(data, truesize);
941	if (!nskb) {
942		page_pool_free_va(pool, data, true);
943		return -ENOMEM;
944	}
945
946	skb_reserve(nskb, headroom);
947	skb_copy_header(nskb, skb);
948	skb_mark_for_recycle(nskb);
949
950	err = skb_copy_bits(skb, 0, nskb->data, size);
951	if (err) {
952		consume_skb(nskb);
953		return err;
954	}
955	skb_put(nskb, size);
956
957	head_off = skb_headroom(nskb) - skb_headroom(skb);
958	skb_headers_offset_update(nskb, head_off);
959
960	off = size;
961	len = skb->len - off;
962	for (i = 0; i < MAX_SKB_FRAGS && off < skb->len; i++) {
963		struct page *page;
964		u32 page_off;
965
966		size = min_t(u32, len, PAGE_SIZE);
967		truesize = size;
968
969		page = page_pool_dev_alloc(pool, &page_off, &truesize);
970		if (!page) {
971			consume_skb(nskb);
972			return -ENOMEM;
973		}
974
975		skb_add_rx_frag(nskb, i, page, page_off, size, truesize);
976		err = skb_copy_bits(skb, off, page_address(page) + page_off,
977				    size);
978		if (err) {
979			consume_skb(nskb);
980			return err;
981		}
982
983		len -= size;
984		off += size;
985	}
986
987	consume_skb(skb);
988	*pskb = nskb;
989
990	return 0;
991#else
992	return -EOPNOTSUPP;
993#endif
994}
995EXPORT_SYMBOL(skb_pp_cow_data);
996
997int skb_cow_data_for_xdp(struct page_pool *pool, struct sk_buff **pskb,
998			 struct bpf_prog *prog)
999{
1000	if (!prog->aux->xdp_has_frags)
1001		return -EINVAL;
1002
1003	return skb_pp_cow_data(pool, pskb, XDP_PACKET_HEADROOM);
1004}
1005EXPORT_SYMBOL(skb_cow_data_for_xdp);
1006
1007#if IS_ENABLED(CONFIG_PAGE_POOL)
1008bool napi_pp_put_page(struct page *page, bool napi_safe)
1009{
1010	bool allow_direct = false;
1011	struct page_pool *pp;
1012
1013	page = compound_head(page);
1014
1015	/* page->pp_magic is OR'ed with PP_SIGNATURE after the allocation
1016	 * in order to preserve any existing bits, such as bit 0 for the
1017	 * head page of compound page and bit 1 for pfmemalloc page, so
1018	 * mask those bits for freeing side when doing below checking,
1019	 * and page_is_pfmemalloc() is checked in __page_pool_put_page()
1020	 * to avoid recycling the pfmemalloc page.
1021	 */
1022	if (unlikely(!is_pp_page(page)))
1023		return false;
1024
1025	pp = page->pp;
1026
1027	/* Allow direct recycle if we have reasons to believe that we are
1028	 * in the same context as the consumer would run, so there's
1029	 * no possible race.
1030	 * __page_pool_put_page() makes sure we're not in hardirq context
1031	 * and interrupts are enabled prior to accessing the cache.
1032	 */
1033	if (napi_safe || in_softirq()) {
1034		const struct napi_struct *napi = READ_ONCE(pp->p.napi);
1035		unsigned int cpuid = smp_processor_id();
1036
1037		allow_direct = napi && READ_ONCE(napi->list_owner) == cpuid;
1038		allow_direct |= READ_ONCE(pp->cpuid) == cpuid;
1039	}
1040
1041	/* Driver set this to memory recycling info. Reset it on recycle.
1042	 * This will *not* work for NIC using a split-page memory model.
1043	 * The page will be returned to the pool here regardless of the
1044	 * 'flipped' fragment being in use or not.
1045	 */
1046	page_pool_put_full_page(pp, page, allow_direct);
1047
1048	return true;
1049}
1050EXPORT_SYMBOL(napi_pp_put_page);
1051#endif
1052
1053static bool skb_pp_recycle(struct sk_buff *skb, void *data, bool napi_safe)
1054{
1055	if (!IS_ENABLED(CONFIG_PAGE_POOL) || !skb->pp_recycle)
1056		return false;
1057	return napi_pp_put_page(virt_to_page(data), napi_safe);
1058}
1059
1060/**
1061 * skb_pp_frag_ref() - Increase fragment references of a page pool aware skb
1062 * @skb:	page pool aware skb
1063 *
1064 * Increase the fragment reference count (pp_ref_count) of a skb. This is
1065 * intended to gain fragment references only for page pool aware skbs,
1066 * i.e. when skb->pp_recycle is true, and not for fragments in a
1067 * non-pp-recycling skb. It has a fallback to increase references on normal
1068 * pages, as page pool aware skbs may also have normal page fragments.
1069 */
1070static int skb_pp_frag_ref(struct sk_buff *skb)
1071{
1072	struct skb_shared_info *shinfo;
1073	struct page *head_page;
1074	int i;
1075
1076	if (!skb->pp_recycle)
1077		return -EINVAL;
1078
1079	shinfo = skb_shinfo(skb);
1080
1081	for (i = 0; i < shinfo->nr_frags; i++) {
1082		head_page = compound_head(skb_frag_page(&shinfo->frags[i]));
1083		if (likely(is_pp_page(head_page)))
1084			page_pool_ref_page(head_page);
1085		else
1086			page_ref_inc(head_page);
1087	}
1088	return 0;
1089}
1090
1091static void skb_kfree_head(void *head, unsigned int end_offset)
1092{
1093	if (end_offset == SKB_SMALL_HEAD_HEADROOM)
1094		kmem_cache_free(net_hotdata.skb_small_head_cache, head);
1095	else
1096		kfree(head);
1097}
1098
1099static void skb_free_head(struct sk_buff *skb, bool napi_safe)
1100{
1101	unsigned char *head = skb->head;
1102
1103	if (skb->head_frag) {
1104		if (skb_pp_recycle(skb, head, napi_safe))
1105			return;
1106		skb_free_frag(head);
1107	} else {
1108		skb_kfree_head(head, skb_end_offset(skb));
1109	}
1110}
1111
1112static void skb_release_data(struct sk_buff *skb, enum skb_drop_reason reason,
1113			     bool napi_safe)
1114{
1115	struct skb_shared_info *shinfo = skb_shinfo(skb);
1116	int i;
1117
1118	if (!skb_data_unref(skb, shinfo))
1119		goto exit;
1120
1121	if (skb_zcopy(skb)) {
1122		bool skip_unref = shinfo->flags & SKBFL_MANAGED_FRAG_REFS;
1123
1124		skb_zcopy_clear(skb, true);
1125		if (skip_unref)
1126			goto free_head;
1127	}
1128
1129	for (i = 0; i < shinfo->nr_frags; i++)
1130		napi_frag_unref(&shinfo->frags[i], skb->pp_recycle, napi_safe);
1131
1132free_head:
1133	if (shinfo->frag_list)
1134		kfree_skb_list_reason(shinfo->frag_list, reason);
1135
1136	skb_free_head(skb, napi_safe);
1137exit:
1138	/* When we clone an SKB we copy the reycling bit. The pp_recycle
1139	 * bit is only set on the head though, so in order to avoid races
1140	 * while trying to recycle fragments on __skb_frag_unref() we need
1141	 * to make one SKB responsible for triggering the recycle path.
1142	 * So disable the recycling bit if an SKB is cloned and we have
1143	 * additional references to the fragmented part of the SKB.
1144	 * Eventually the last SKB will have the recycling bit set and it's
1145	 * dataref set to 0, which will trigger the recycling
1146	 */
1147	skb->pp_recycle = 0;
1148}
1149
1150/*
1151 *	Free an skbuff by memory without cleaning the state.
1152 */
1153static void kfree_skbmem(struct sk_buff *skb)
1154{
1155	struct sk_buff_fclones *fclones;
1156
1157	switch (skb->fclone) {
1158	case SKB_FCLONE_UNAVAILABLE:
1159		kmem_cache_free(net_hotdata.skbuff_cache, skb);
1160		return;
1161
1162	case SKB_FCLONE_ORIG:
1163		fclones = container_of(skb, struct sk_buff_fclones, skb1);
1164
1165		/* We usually free the clone (TX completion) before original skb
1166		 * This test would have no chance to be true for the clone,
1167		 * while here, branch prediction will be good.
1168		 */
1169		if (refcount_read(&fclones->fclone_ref) == 1)
1170			goto fastpath;
1171		break;
1172
1173	default: /* SKB_FCLONE_CLONE */
1174		fclones = container_of(skb, struct sk_buff_fclones, skb2);
1175		break;
1176	}
1177	if (!refcount_dec_and_test(&fclones->fclone_ref))
1178		return;
1179fastpath:
1180	kmem_cache_free(net_hotdata.skbuff_fclone_cache, fclones);
1181}
1182
1183void skb_release_head_state(struct sk_buff *skb)
1184{
1185	skb_dst_drop(skb);
1186	if (skb->destructor) {
1187		DEBUG_NET_WARN_ON_ONCE(in_hardirq());
1188		skb->destructor(skb);
1189	}
1190#if IS_ENABLED(CONFIG_NF_CONNTRACK)
1191	nf_conntrack_put(skb_nfct(skb));
1192#endif
1193	skb_ext_put(skb);
1194}
1195
1196/* Free everything but the sk_buff shell. */
1197static void skb_release_all(struct sk_buff *skb, enum skb_drop_reason reason,
1198			    bool napi_safe)
1199{
1200	skb_release_head_state(skb);
1201	if (likely(skb->head))
1202		skb_release_data(skb, reason, napi_safe);
1203}
1204
1205/**
1206 *	__kfree_skb - private function
1207 *	@skb: buffer
1208 *
1209 *	Free an sk_buff. Release anything attached to the buffer.
1210 *	Clean the state. This is an internal helper function. Users should
1211 *	always call kfree_skb
1212 */
1213
1214void __kfree_skb(struct sk_buff *skb)
1215{
1216	skb_release_all(skb, SKB_DROP_REASON_NOT_SPECIFIED, false);
1217	kfree_skbmem(skb);
1218}
1219EXPORT_SYMBOL(__kfree_skb);
1220
1221static __always_inline
1222bool __kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason)
1223{
1224	if (unlikely(!skb_unref(skb)))
1225		return false;
1226
1227	DEBUG_NET_WARN_ON_ONCE(reason == SKB_NOT_DROPPED_YET ||
1228			       u32_get_bits(reason,
1229					    SKB_DROP_REASON_SUBSYS_MASK) >=
1230				SKB_DROP_REASON_SUBSYS_NUM);
1231
1232	if (reason == SKB_CONSUMED)
1233		trace_consume_skb(skb, __builtin_return_address(0));
1234	else
1235		trace_kfree_skb(skb, __builtin_return_address(0), reason);
1236	return true;
1237}
1238
1239/**
1240 *	kfree_skb_reason - free an sk_buff with special reason
1241 *	@skb: buffer to free
1242 *	@reason: reason why this skb is dropped
1243 *
1244 *	Drop a reference to the buffer and free it if the usage count has
1245 *	hit zero. Meanwhile, pass the drop reason to 'kfree_skb'
1246 *	tracepoint.
1247 */
1248void __fix_address
1249kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason)
1250{
1251	if (__kfree_skb_reason(skb, reason))
1252		__kfree_skb(skb);
1253}
1254EXPORT_SYMBOL(kfree_skb_reason);
1255
1256#define KFREE_SKB_BULK_SIZE	16
1257
1258struct skb_free_array {
1259	unsigned int skb_count;
1260	void *skb_array[KFREE_SKB_BULK_SIZE];
1261};
1262
1263static void kfree_skb_add_bulk(struct sk_buff *skb,
1264			       struct skb_free_array *sa,
1265			       enum skb_drop_reason reason)
1266{
1267	/* if SKB is a clone, don't handle this case */
1268	if (unlikely(skb->fclone != SKB_FCLONE_UNAVAILABLE)) {
1269		__kfree_skb(skb);
1270		return;
1271	}
1272
1273	skb_release_all(skb, reason, false);
1274	sa->skb_array[sa->skb_count++] = skb;
1275
1276	if (unlikely(sa->skb_count == KFREE_SKB_BULK_SIZE)) {
1277		kmem_cache_free_bulk(net_hotdata.skbuff_cache, KFREE_SKB_BULK_SIZE,
1278				     sa->skb_array);
1279		sa->skb_count = 0;
1280	}
1281}
1282
1283void __fix_address
1284kfree_skb_list_reason(struct sk_buff *segs, enum skb_drop_reason reason)
1285{
1286	struct skb_free_array sa;
1287
1288	sa.skb_count = 0;
1289
1290	while (segs) {
1291		struct sk_buff *next = segs->next;
1292
1293		if (__kfree_skb_reason(segs, reason)) {
1294			skb_poison_list(segs);
1295			kfree_skb_add_bulk(segs, &sa, reason);
1296		}
1297
1298		segs = next;
1299	}
1300
1301	if (sa.skb_count)
1302		kmem_cache_free_bulk(net_hotdata.skbuff_cache, sa.skb_count, sa.skb_array);
1303}
1304EXPORT_SYMBOL(kfree_skb_list_reason);
1305
1306/* Dump skb information and contents.
1307 *
1308 * Must only be called from net_ratelimit()-ed paths.
1309 *
1310 * Dumps whole packets if full_pkt, only headers otherwise.
1311 */
1312void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt)
1313{
1314	struct skb_shared_info *sh = skb_shinfo(skb);
1315	struct net_device *dev = skb->dev;
1316	struct sock *sk = skb->sk;
1317	struct sk_buff *list_skb;
1318	bool has_mac, has_trans;
1319	int headroom, tailroom;
1320	int i, len, seg_len;
1321
1322	if (full_pkt)
1323		len = skb->len;
1324	else
1325		len = min_t(int, skb->len, MAX_HEADER + 128);
1326
1327	headroom = skb_headroom(skb);
1328	tailroom = skb_tailroom(skb);
1329
1330	has_mac = skb_mac_header_was_set(skb);
1331	has_trans = skb_transport_header_was_set(skb);
1332
1333	printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n"
1334	       "mac=(%d,%d) net=(%d,%d) trans=%d\n"
1335	       "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n"
1336	       "csum(0x%x ip_summed=%u complete_sw=%u valid=%u level=%u)\n"
1337	       "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n",
1338	       level, skb->len, headroom, skb_headlen(skb), tailroom,
1339	       has_mac ? skb->mac_header : -1,
1340	       has_mac ? skb_mac_header_len(skb) : -1,
1341	       skb->network_header,
1342	       has_trans ? skb_network_header_len(skb) : -1,
1343	       has_trans ? skb->transport_header : -1,
1344	       sh->tx_flags, sh->nr_frags,
1345	       sh->gso_size, sh->gso_type, sh->gso_segs,
1346	       skb->csum, skb->ip_summed, skb->csum_complete_sw,
1347	       skb->csum_valid, skb->csum_level,
1348	       skb->hash, skb->sw_hash, skb->l4_hash,
1349	       ntohs(skb->protocol), skb->pkt_type, skb->skb_iif);
1350
1351	if (dev)
1352		printk("%sdev name=%s feat=%pNF\n",
1353		       level, dev->name, &dev->features);
1354	if (sk)
1355		printk("%ssk family=%hu type=%u proto=%u\n",
1356		       level, sk->sk_family, sk->sk_type, sk->sk_protocol);
1357
1358	if (full_pkt && headroom)
1359		print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET,
1360			       16, 1, skb->head, headroom, false);
1361
1362	seg_len = min_t(int, skb_headlen(skb), len);
1363	if (seg_len)
1364		print_hex_dump(level, "skb linear:   ", DUMP_PREFIX_OFFSET,
1365			       16, 1, skb->data, seg_len, false);
1366	len -= seg_len;
1367
1368	if (full_pkt && tailroom)
1369		print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET,
1370			       16, 1, skb_tail_pointer(skb), tailroom, false);
1371
1372	for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) {
1373		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1374		u32 p_off, p_len, copied;
1375		struct page *p;
1376		u8 *vaddr;
1377
1378		skb_frag_foreach_page(frag, skb_frag_off(frag),
1379				      skb_frag_size(frag), p, p_off, p_len,
1380				      copied) {
1381			seg_len = min_t(int, p_len, len);
1382			vaddr = kmap_atomic(p);
1383			print_hex_dump(level, "skb frag:     ",
1384				       DUMP_PREFIX_OFFSET,
1385				       16, 1, vaddr + p_off, seg_len, false);
1386			kunmap_atomic(vaddr);
1387			len -= seg_len;
1388			if (!len)
1389				break;
1390		}
1391	}
1392
1393	if (full_pkt && skb_has_frag_list(skb)) {
1394		printk("skb fraglist:\n");
1395		skb_walk_frags(skb, list_skb)
1396			skb_dump(level, list_skb, true);
1397	}
1398}
1399EXPORT_SYMBOL(skb_dump);
1400
1401/**
1402 *	skb_tx_error - report an sk_buff xmit error
1403 *	@skb: buffer that triggered an error
1404 *
1405 *	Report xmit error if a device callback is tracking this skb.
1406 *	skb must be freed afterwards.
1407 */
1408void skb_tx_error(struct sk_buff *skb)
1409{
1410	if (skb) {
1411		skb_zcopy_downgrade_managed(skb);
1412		skb_zcopy_clear(skb, true);
1413	}
1414}
1415EXPORT_SYMBOL(skb_tx_error);
1416
1417#ifdef CONFIG_TRACEPOINTS
1418/**
1419 *	consume_skb - free an skbuff
1420 *	@skb: buffer to free
1421 *
1422 *	Drop a ref to the buffer and free it if the usage count has hit zero
1423 *	Functions identically to kfree_skb, but kfree_skb assumes that the frame
1424 *	is being dropped after a failure and notes that
1425 */
1426void consume_skb(struct sk_buff *skb)
1427{
1428	if (!skb_unref(skb))
1429		return;
1430
1431	trace_consume_skb(skb, __builtin_return_address(0));
1432	__kfree_skb(skb);
1433}
1434EXPORT_SYMBOL(consume_skb);
1435#endif
1436
1437/**
1438 *	__consume_stateless_skb - free an skbuff, assuming it is stateless
1439 *	@skb: buffer to free
1440 *
1441 *	Alike consume_skb(), but this variant assumes that this is the last
1442 *	skb reference and all the head states have been already dropped
1443 */
1444void __consume_stateless_skb(struct sk_buff *skb)
1445{
1446	trace_consume_skb(skb, __builtin_return_address(0));
1447	skb_release_data(skb, SKB_CONSUMED, false);
1448	kfree_skbmem(skb);
1449}
1450
1451static void napi_skb_cache_put(struct sk_buff *skb)
1452{
1453	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
1454	u32 i;
1455
1456	if (!kasan_mempool_poison_object(skb))
1457		return;
1458
1459	nc->skb_cache[nc->skb_count++] = skb;
1460
1461	if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
1462		for (i = NAPI_SKB_CACHE_HALF; i < NAPI_SKB_CACHE_SIZE; i++)
1463			kasan_mempool_unpoison_object(nc->skb_cache[i],
1464						kmem_cache_size(net_hotdata.skbuff_cache));
1465
1466		kmem_cache_free_bulk(net_hotdata.skbuff_cache, NAPI_SKB_CACHE_HALF,
1467				     nc->skb_cache + NAPI_SKB_CACHE_HALF);
1468		nc->skb_count = NAPI_SKB_CACHE_HALF;
1469	}
1470}
1471
1472void __napi_kfree_skb(struct sk_buff *skb, enum skb_drop_reason reason)
1473{
1474	skb_release_all(skb, reason, true);
1475	napi_skb_cache_put(skb);
1476}
1477
1478void napi_skb_free_stolen_head(struct sk_buff *skb)
1479{
1480	if (unlikely(skb->slow_gro)) {
1481		nf_reset_ct(skb);
1482		skb_dst_drop(skb);
1483		skb_ext_put(skb);
1484		skb_orphan(skb);
1485		skb->slow_gro = 0;
1486	}
1487	napi_skb_cache_put(skb);
1488}
1489
1490void napi_consume_skb(struct sk_buff *skb, int budget)
1491{
1492	/* Zero budget indicate non-NAPI context called us, like netpoll */
1493	if (unlikely(!budget)) {
1494		dev_consume_skb_any(skb);
1495		return;
1496	}
1497
1498	DEBUG_NET_WARN_ON_ONCE(!in_softirq());
1499
1500	if (!skb_unref(skb))
1501		return;
1502
1503	/* if reaching here SKB is ready to free */
1504	trace_consume_skb(skb, __builtin_return_address(0));
1505
1506	/* if SKB is a clone, don't handle this case */
1507	if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
1508		__kfree_skb(skb);
1509		return;
1510	}
1511
1512	skb_release_all(skb, SKB_CONSUMED, !!budget);
1513	napi_skb_cache_put(skb);
1514}
1515EXPORT_SYMBOL(napi_consume_skb);
1516
1517/* Make sure a field is contained by headers group */
1518#define CHECK_SKB_FIELD(field) \
1519	BUILD_BUG_ON(offsetof(struct sk_buff, field) !=		\
1520		     offsetof(struct sk_buff, headers.field));	\
1521
1522static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
1523{
1524	new->tstamp		= old->tstamp;
1525	/* We do not copy old->sk */
1526	new->dev		= old->dev;
1527	memcpy(new->cb, old->cb, sizeof(old->cb));
1528	skb_dst_copy(new, old);
1529	__skb_ext_copy(new, old);
1530	__nf_copy(new, old, false);
1531
1532	/* Note : this field could be in the headers group.
1533	 * It is not yet because we do not want to have a 16 bit hole
1534	 */
1535	new->queue_mapping = old->queue_mapping;
1536
1537	memcpy(&new->headers, &old->headers, sizeof(new->headers));
1538	CHECK_SKB_FIELD(protocol);
1539	CHECK_SKB_FIELD(csum);
1540	CHECK_SKB_FIELD(hash);
1541	CHECK_SKB_FIELD(priority);
1542	CHECK_SKB_FIELD(skb_iif);
1543	CHECK_SKB_FIELD(vlan_proto);
1544	CHECK_SKB_FIELD(vlan_tci);
1545	CHECK_SKB_FIELD(transport_header);
1546	CHECK_SKB_FIELD(network_header);
1547	CHECK_SKB_FIELD(mac_header);
1548	CHECK_SKB_FIELD(inner_protocol);
1549	CHECK_SKB_FIELD(inner_transport_header);
1550	CHECK_SKB_FIELD(inner_network_header);
1551	CHECK_SKB_FIELD(inner_mac_header);
1552	CHECK_SKB_FIELD(mark);
1553#ifdef CONFIG_NETWORK_SECMARK
1554	CHECK_SKB_FIELD(secmark);
1555#endif
1556#ifdef CONFIG_NET_RX_BUSY_POLL
1557	CHECK_SKB_FIELD(napi_id);
1558#endif
1559	CHECK_SKB_FIELD(alloc_cpu);
1560#ifdef CONFIG_XPS
1561	CHECK_SKB_FIELD(sender_cpu);
1562#endif
1563#ifdef CONFIG_NET_SCHED
1564	CHECK_SKB_FIELD(tc_index);
1565#endif
1566
1567}
1568
1569/*
1570 * You should not add any new code to this function.  Add it to
1571 * __copy_skb_header above instead.
1572 */
1573static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
1574{
1575#define C(x) n->x = skb->x
1576
1577	n->next = n->prev = NULL;
1578	n->sk = NULL;
1579	__copy_skb_header(n, skb);
1580
1581	C(len);
1582	C(data_len);
1583	C(mac_len);
1584	n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
1585	n->cloned = 1;
1586	n->nohdr = 0;
1587	n->peeked = 0;
1588	C(pfmemalloc);
1589	C(pp_recycle);
1590	n->destructor = NULL;
1591	C(tail);
1592	C(end);
1593	C(head);
1594	C(head_frag);
1595	C(data);
1596	C(truesize);
1597	refcount_set(&n->users, 1);
1598
1599	atomic_inc(&(skb_shinfo(skb)->dataref));
1600	skb->cloned = 1;
1601
1602	return n;
1603#undef C
1604}
1605
1606/**
1607 * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg
1608 * @first: first sk_buff of the msg
1609 */
1610struct sk_buff *alloc_skb_for_msg(struct sk_buff *first)
1611{
1612	struct sk_buff *n;
1613
1614	n = alloc_skb(0, GFP_ATOMIC);
1615	if (!n)
1616		return NULL;
1617
1618	n->len = first->len;
1619	n->data_len = first->len;
1620	n->truesize = first->truesize;
1621
1622	skb_shinfo(n)->frag_list = first;
1623
1624	__copy_skb_header(n, first);
1625	n->destructor = NULL;
1626
1627	return n;
1628}
1629EXPORT_SYMBOL_GPL(alloc_skb_for_msg);
1630
1631/**
1632 *	skb_morph	-	morph one skb into another
1633 *	@dst: the skb to receive the contents
1634 *	@src: the skb to supply the contents
1635 *
1636 *	This is identical to skb_clone except that the target skb is
1637 *	supplied by the user.
1638 *
1639 *	The target skb is returned upon exit.
1640 */
1641struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
1642{
1643	skb_release_all(dst, SKB_CONSUMED, false);
1644	return __skb_clone(dst, src);
1645}
1646EXPORT_SYMBOL_GPL(skb_morph);
1647
1648int mm_account_pinned_pages(struct mmpin *mmp, size_t size)
1649{
1650	unsigned long max_pg, num_pg, new_pg, old_pg, rlim;
1651	struct user_struct *user;
1652
1653	if (capable(CAP_IPC_LOCK) || !size)
1654		return 0;
1655
1656	rlim = rlimit(RLIMIT_MEMLOCK);
1657	if (rlim == RLIM_INFINITY)
1658		return 0;
1659
1660	num_pg = (size >> PAGE_SHIFT) + 2;	/* worst case */
1661	max_pg = rlim >> PAGE_SHIFT;
1662	user = mmp->user ? : current_user();
1663
1664	old_pg = atomic_long_read(&user->locked_vm);
1665	do {
1666		new_pg = old_pg + num_pg;
1667		if (new_pg > max_pg)
1668			return -ENOBUFS;
1669	} while (!atomic_long_try_cmpxchg(&user->locked_vm, &old_pg, new_pg));
1670
1671	if (!mmp->user) {
1672		mmp->user = get_uid(user);
1673		mmp->num_pg = num_pg;
1674	} else {
1675		mmp->num_pg += num_pg;
1676	}
1677
1678	return 0;
1679}
1680EXPORT_SYMBOL_GPL(mm_account_pinned_pages);
1681
1682void mm_unaccount_pinned_pages(struct mmpin *mmp)
1683{
1684	if (mmp->user) {
1685		atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm);
1686		free_uid(mmp->user);
1687	}
1688}
1689EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages);
1690
1691static struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size)
1692{
1693	struct ubuf_info_msgzc *uarg;
1694	struct sk_buff *skb;
1695
1696	WARN_ON_ONCE(!in_task());
1697
1698	skb = sock_omalloc(sk, 0, GFP_KERNEL);
1699	if (!skb)
1700		return NULL;
1701
1702	BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb));
1703	uarg = (void *)skb->cb;
1704	uarg->mmp.user = NULL;
1705
1706	if (mm_account_pinned_pages(&uarg->mmp, size)) {
1707		kfree_skb(skb);
1708		return NULL;
1709	}
1710
1711	uarg->ubuf.callback = msg_zerocopy_callback;
1712	uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1;
1713	uarg->len = 1;
1714	uarg->bytelen = size;
1715	uarg->zerocopy = 1;
1716	uarg->ubuf.flags = SKBFL_ZEROCOPY_FRAG | SKBFL_DONT_ORPHAN;
1717	refcount_set(&uarg->ubuf.refcnt, 1);
1718	sock_hold(sk);
1719
1720	return &uarg->ubuf;
1721}
1722
1723static inline struct sk_buff *skb_from_uarg(struct ubuf_info_msgzc *uarg)
1724{
1725	return container_of((void *)uarg, struct sk_buff, cb);
1726}
1727
1728struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
1729				       struct ubuf_info *uarg)
1730{
1731	if (uarg) {
1732		struct ubuf_info_msgzc *uarg_zc;
1733		const u32 byte_limit = 1 << 19;		/* limit to a few TSO */
1734		u32 bytelen, next;
1735
1736		/* there might be non MSG_ZEROCOPY users */
1737		if (uarg->callback != msg_zerocopy_callback)
1738			return NULL;
1739
1740		/* realloc only when socket is locked (TCP, UDP cork),
1741		 * so uarg->len and sk_zckey access is serialized
1742		 */
1743		if (!sock_owned_by_user(sk)) {
1744			WARN_ON_ONCE(1);
1745			return NULL;
1746		}
1747
1748		uarg_zc = uarg_to_msgzc(uarg);
1749		bytelen = uarg_zc->bytelen + size;
1750		if (uarg_zc->len == USHRT_MAX - 1 || bytelen > byte_limit) {
1751			/* TCP can create new skb to attach new uarg */
1752			if (sk->sk_type == SOCK_STREAM)
1753				goto new_alloc;
1754			return NULL;
1755		}
1756
1757		next = (u32)atomic_read(&sk->sk_zckey);
1758		if ((u32)(uarg_zc->id + uarg_zc->len) == next) {
1759			if (mm_account_pinned_pages(&uarg_zc->mmp, size))
1760				return NULL;
1761			uarg_zc->len++;
1762			uarg_zc->bytelen = bytelen;
1763			atomic_set(&sk->sk_zckey, ++next);
1764
1765			/* no extra ref when appending to datagram (MSG_MORE) */
1766			if (sk->sk_type == SOCK_STREAM)
1767				net_zcopy_get(uarg);
1768
1769			return uarg;
1770		}
1771	}
1772
1773new_alloc:
1774	return msg_zerocopy_alloc(sk, size);
1775}
1776EXPORT_SYMBOL_GPL(msg_zerocopy_realloc);
1777
1778static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len)
1779{
1780	struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
1781	u32 old_lo, old_hi;
1782	u64 sum_len;
1783
1784	old_lo = serr->ee.ee_info;
1785	old_hi = serr->ee.ee_data;
1786	sum_len = old_hi - old_lo + 1ULL + len;
1787
1788	if (sum_len >= (1ULL << 32))
1789		return false;
1790
1791	if (lo != old_hi + 1)
1792		return false;
1793
1794	serr->ee.ee_data += len;
1795	return true;
1796}
1797
1798static void __msg_zerocopy_callback(struct ubuf_info_msgzc *uarg)
1799{
1800	struct sk_buff *tail, *skb = skb_from_uarg(uarg);
1801	struct sock_exterr_skb *serr;
1802	struct sock *sk = skb->sk;
1803	struct sk_buff_head *q;
1804	unsigned long flags;
1805	bool is_zerocopy;
1806	u32 lo, hi;
1807	u16 len;
1808
1809	mm_unaccount_pinned_pages(&uarg->mmp);
1810
1811	/* if !len, there was only 1 call, and it was aborted
1812	 * so do not queue a completion notification
1813	 */
1814	if (!uarg->len || sock_flag(sk, SOCK_DEAD))
1815		goto release;
1816
1817	len = uarg->len;
1818	lo = uarg->id;
1819	hi = uarg->id + len - 1;
1820	is_zerocopy = uarg->zerocopy;
1821
1822	serr = SKB_EXT_ERR(skb);
1823	memset(serr, 0, sizeof(*serr));
1824	serr->ee.ee_errno = 0;
1825	serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY;
1826	serr->ee.ee_data = hi;
1827	serr->ee.ee_info = lo;
1828	if (!is_zerocopy)
1829		serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED;
1830
1831	q = &sk->sk_error_queue;
1832	spin_lock_irqsave(&q->lock, flags);
1833	tail = skb_peek_tail(q);
1834	if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY ||
1835	    !skb_zerocopy_notify_extend(tail, lo, len)) {
1836		__skb_queue_tail(q, skb);
1837		skb = NULL;
1838	}
1839	spin_unlock_irqrestore(&q->lock, flags);
1840
1841	sk_error_report(sk);
1842
1843release:
1844	consume_skb(skb);
1845	sock_put(sk);
1846}
1847
1848void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg,
1849			   bool success)
1850{
1851	struct ubuf_info_msgzc *uarg_zc = uarg_to_msgzc(uarg);
1852
1853	uarg_zc->zerocopy = uarg_zc->zerocopy & success;
1854
1855	if (refcount_dec_and_test(&uarg->refcnt))
1856		__msg_zerocopy_callback(uarg_zc);
1857}
1858EXPORT_SYMBOL_GPL(msg_zerocopy_callback);
1859
1860void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1861{
1862	struct sock *sk = skb_from_uarg(uarg_to_msgzc(uarg))->sk;
1863
1864	atomic_dec(&sk->sk_zckey);
1865	uarg_to_msgzc(uarg)->len--;
1866
1867	if (have_uref)
1868		msg_zerocopy_callback(NULL, uarg, true);
1869}
1870EXPORT_SYMBOL_GPL(msg_zerocopy_put_abort);
1871
1872int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1873			     struct msghdr *msg, int len,
1874			     struct ubuf_info *uarg)
1875{
1876	struct ubuf_info *orig_uarg = skb_zcopy(skb);
1877	int err, orig_len = skb->len;
1878
1879	/* An skb can only point to one uarg. This edge case happens when
1880	 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc.
1881	 */
1882	if (orig_uarg && uarg != orig_uarg)
1883		return -EEXIST;
1884
1885	err = __zerocopy_sg_from_iter(msg, sk, skb, &msg->msg_iter, len);
1886	if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) {
1887		struct sock *save_sk = skb->sk;
1888
1889		/* Streams do not free skb on error. Reset to prev state. */
1890		iov_iter_revert(&msg->msg_iter, skb->len - orig_len);
1891		skb->sk = sk;
1892		___pskb_trim(skb, orig_len);
1893		skb->sk = save_sk;
1894		return err;
1895	}
1896
1897	skb_zcopy_set(skb, uarg, NULL);
1898	return skb->len - orig_len;
1899}
1900EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream);
1901
1902void __skb_zcopy_downgrade_managed(struct sk_buff *skb)
1903{
1904	int i;
1905
1906	skb_shinfo(skb)->flags &= ~SKBFL_MANAGED_FRAG_REFS;
1907	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1908		skb_frag_ref(skb, i);
1909}
1910EXPORT_SYMBOL_GPL(__skb_zcopy_downgrade_managed);
1911
1912static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig,
1913			      gfp_t gfp_mask)
1914{
1915	if (skb_zcopy(orig)) {
1916		if (skb_zcopy(nskb)) {
1917			/* !gfp_mask callers are verified to !skb_zcopy(nskb) */
1918			if (!gfp_mask) {
1919				WARN_ON_ONCE(1);
1920				return -ENOMEM;
1921			}
1922			if (skb_uarg(nskb) == skb_uarg(orig))
1923				return 0;
1924			if (skb_copy_ubufs(nskb, GFP_ATOMIC))
1925				return -EIO;
1926		}
1927		skb_zcopy_set(nskb, skb_uarg(orig), NULL);
1928	}
1929	return 0;
1930}
1931
1932/**
1933 *	skb_copy_ubufs	-	copy userspace skb frags buffers to kernel
1934 *	@skb: the skb to modify
1935 *	@gfp_mask: allocation priority
1936 *
1937 *	This must be called on skb with SKBFL_ZEROCOPY_ENABLE.
1938 *	It will copy all frags into kernel and drop the reference
1939 *	to userspace pages.
1940 *
1941 *	If this function is called from an interrupt gfp_mask() must be
1942 *	%GFP_ATOMIC.
1943 *
1944 *	Returns 0 on success or a negative error code on failure
1945 *	to allocate kernel memory to copy to.
1946 */
1947int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
1948{
1949	int num_frags = skb_shinfo(skb)->nr_frags;
1950	struct page *page, *head = NULL;
1951	int i, order, psize, new_frags;
1952	u32 d_off;
1953
1954	if (skb_shared(skb) || skb_unclone(skb, gfp_mask))
1955		return -EINVAL;
1956
1957	if (!num_frags)
1958		goto release;
1959
1960	/* We might have to allocate high order pages, so compute what minimum
1961	 * page order is needed.
1962	 */
1963	order = 0;
1964	while ((PAGE_SIZE << order) * MAX_SKB_FRAGS < __skb_pagelen(skb))
1965		order++;
1966	psize = (PAGE_SIZE << order);
1967
1968	new_frags = (__skb_pagelen(skb) + psize - 1) >> (PAGE_SHIFT + order);
1969	for (i = 0; i < new_frags; i++) {
1970		page = alloc_pages(gfp_mask | __GFP_COMP, order);
1971		if (!page) {
1972			while (head) {
1973				struct page *next = (struct page *)page_private(head);
1974				put_page(head);
1975				head = next;
1976			}
1977			return -ENOMEM;
1978		}
1979		set_page_private(page, (unsigned long)head);
1980		head = page;
1981	}
1982
1983	page = head;
1984	d_off = 0;
1985	for (i = 0; i < num_frags; i++) {
1986		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1987		u32 p_off, p_len, copied;
1988		struct page *p;
1989		u8 *vaddr;
1990
1991		skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f),
1992				      p, p_off, p_len, copied) {
1993			u32 copy, done = 0;
1994			vaddr = kmap_atomic(p);
1995
1996			while (done < p_len) {
1997				if (d_off == psize) {
1998					d_off = 0;
1999					page = (struct page *)page_private(page);
2000				}
2001				copy = min_t(u32, psize - d_off, p_len - done);
2002				memcpy(page_address(page) + d_off,
2003				       vaddr + p_off + done, copy);
2004				done += copy;
2005				d_off += copy;
2006			}
2007			kunmap_atomic(vaddr);
2008		}
2009	}
2010
2011	/* skb frags release userspace buffers */
2012	for (i = 0; i < num_frags; i++)
2013		skb_frag_unref(skb, i);
2014
2015	/* skb frags point to kernel buffers */
2016	for (i = 0; i < new_frags - 1; i++) {
2017		__skb_fill_netmem_desc(skb, i, page_to_netmem(head), 0, psize);
2018		head = (struct page *)page_private(head);
2019	}
2020	__skb_fill_netmem_desc(skb, new_frags - 1, page_to_netmem(head), 0,
2021			       d_off);
2022	skb_shinfo(skb)->nr_frags = new_frags;
2023
2024release:
2025	skb_zcopy_clear(skb, false);
2026	return 0;
2027}
2028EXPORT_SYMBOL_GPL(skb_copy_ubufs);
2029
2030/**
2031 *	skb_clone	-	duplicate an sk_buff
2032 *	@skb: buffer to clone
2033 *	@gfp_mask: allocation priority
2034 *
2035 *	Duplicate an &sk_buff. The new one is not owned by a socket. Both
2036 *	copies share the same packet data but not structure. The new
2037 *	buffer has a reference count of 1. If the allocation fails the
2038 *	function returns %NULL otherwise the new buffer is returned.
2039 *
2040 *	If this function is called from an interrupt gfp_mask() must be
2041 *	%GFP_ATOMIC.
2042 */
2043
2044struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
2045{
2046	struct sk_buff_fclones *fclones = container_of(skb,
2047						       struct sk_buff_fclones,
2048						       skb1);
2049	struct sk_buff *n;
2050
2051	if (skb_orphan_frags(skb, gfp_mask))
2052		return NULL;
2053
2054	if (skb->fclone == SKB_FCLONE_ORIG &&
2055	    refcount_read(&fclones->fclone_ref) == 1) {
2056		n = &fclones->skb2;
2057		refcount_set(&fclones->fclone_ref, 2);
2058		n->fclone = SKB_FCLONE_CLONE;
2059	} else {
2060		if (skb_pfmemalloc(skb))
2061			gfp_mask |= __GFP_MEMALLOC;
2062
2063		n = kmem_cache_alloc(net_hotdata.skbuff_cache, gfp_mask);
2064		if (!n)
2065			return NULL;
2066
2067		n->fclone = SKB_FCLONE_UNAVAILABLE;
2068	}
2069
2070	return __skb_clone(n, skb);
2071}
2072EXPORT_SYMBOL(skb_clone);
2073
2074void skb_headers_offset_update(struct sk_buff *skb, int off)
2075{
2076	/* Only adjust this if it actually is csum_start rather than csum */
2077	if (skb->ip_summed == CHECKSUM_PARTIAL)
2078		skb->csum_start += off;
2079	/* {transport,network,mac}_header and tail are relative to skb->head */
2080	skb->transport_header += off;
2081	skb->network_header   += off;
2082	if (skb_mac_header_was_set(skb))
2083		skb->mac_header += off;
2084	skb->inner_transport_header += off;
2085	skb->inner_network_header += off;
2086	skb->inner_mac_header += off;
2087}
2088EXPORT_SYMBOL(skb_headers_offset_update);
2089
2090void skb_copy_header(struct sk_buff *new, const struct sk_buff *old)
2091{
2092	__copy_skb_header(new, old);
2093
2094	skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
2095	skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
2096	skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
2097}
2098EXPORT_SYMBOL(skb_copy_header);
2099
2100static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
2101{
2102	if (skb_pfmemalloc(skb))
2103		return SKB_ALLOC_RX;
2104	return 0;
2105}
2106
2107/**
2108 *	skb_copy	-	create private copy of an sk_buff
2109 *	@skb: buffer to copy
2110 *	@gfp_mask: allocation priority
2111 *
2112 *	Make a copy of both an &sk_buff and its data. This is used when the
2113 *	caller wishes to modify the data and needs a private copy of the
2114 *	data to alter. Returns %NULL on failure or the pointer to the buffer
2115 *	on success. The returned buffer has a reference count of 1.
2116 *
2117 *	As by-product this function converts non-linear &sk_buff to linear
2118 *	one, so that &sk_buff becomes completely private and caller is allowed
2119 *	to modify all the data of returned buffer. This means that this
2120 *	function is not recommended for use in circumstances when only
2121 *	header is going to be modified. Use pskb_copy() instead.
2122 */
2123
2124struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
2125{
2126	int headerlen = skb_headroom(skb);
2127	unsigned int size = skb_end_offset(skb) + skb->data_len;
2128	struct sk_buff *n = __alloc_skb(size, gfp_mask,
2129					skb_alloc_rx_flag(skb), NUMA_NO_NODE);
2130
2131	if (!n)
2132		return NULL;
2133
2134	/* Set the data pointer */
2135	skb_reserve(n, headerlen);
2136	/* Set the tail pointer and length */
2137	skb_put(n, skb->len);
2138
2139	BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len));
2140
2141	skb_copy_header(n, skb);
2142	return n;
2143}
2144EXPORT_SYMBOL(skb_copy);
2145
2146/**
2147 *	__pskb_copy_fclone	-  create copy of an sk_buff with private head.
2148 *	@skb: buffer to copy
2149 *	@headroom: headroom of new skb
2150 *	@gfp_mask: allocation priority
2151 *	@fclone: if true allocate the copy of the skb from the fclone
2152 *	cache instead of the head cache; it is recommended to set this
2153 *	to true for the cases where the copy will likely be cloned
2154 *
2155 *	Make a copy of both an &sk_buff and part of its data, located
2156 *	in header. Fragmented data remain shared. This is used when
2157 *	the caller wishes to modify only header of &sk_buff and needs
2158 *	private copy of the header to alter. Returns %NULL on failure
2159 *	or the pointer to the buffer on success.
2160 *	The returned buffer has a reference count of 1.
2161 */
2162
2163struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
2164				   gfp_t gfp_mask, bool fclone)
2165{
2166	unsigned int size = skb_headlen(skb) + headroom;
2167	int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
2168	struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
2169
2170	if (!n)
2171		goto out;
2172
2173	/* Set the data pointer */
2174	skb_reserve(n, headroom);
2175	/* Set the tail pointer and length */
2176	skb_put(n, skb_headlen(skb));
2177	/* Copy the bytes */
2178	skb_copy_from_linear_data(skb, n->data, n->len);
2179
2180	n->truesize += skb->data_len;
2181	n->data_len  = skb->data_len;
2182	n->len	     = skb->len;
2183
2184	if (skb_shinfo(skb)->nr_frags) {
2185		int i;
2186
2187		if (skb_orphan_frags(skb, gfp_mask) ||
2188		    skb_zerocopy_clone(n, skb, gfp_mask)) {
2189			kfree_skb(n);
2190			n = NULL;
2191			goto out;
2192		}
2193		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2194			skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
2195			skb_frag_ref(skb, i);
2196		}
2197		skb_shinfo(n)->nr_frags = i;
2198	}
2199
2200	if (skb_has_frag_list(skb)) {
2201		skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
2202		skb_clone_fraglist(n);
2203	}
2204
2205	skb_copy_header(n, skb);
2206out:
2207	return n;
2208}
2209EXPORT_SYMBOL(__pskb_copy_fclone);
2210
2211/**
2212 *	pskb_expand_head - reallocate header of &sk_buff
2213 *	@skb: buffer to reallocate
2214 *	@nhead: room to add at head
2215 *	@ntail: room to add at tail
2216 *	@gfp_mask: allocation priority
2217 *
2218 *	Expands (or creates identical copy, if @nhead and @ntail are zero)
2219 *	header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
2220 *	reference count of 1. Returns zero in the case of success or error,
2221 *	if expansion failed. In the last case, &sk_buff is not changed.
2222 *
2223 *	All the pointers pointing into skb header may change and must be
2224 *	reloaded after call to this function.
2225 */
2226
2227int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
2228		     gfp_t gfp_mask)
2229{
2230	unsigned int osize = skb_end_offset(skb);
2231	unsigned int size = osize + nhead + ntail;
2232	long off;
2233	u8 *data;
2234	int i;
2235
2236	BUG_ON(nhead < 0);
2237
2238	BUG_ON(skb_shared(skb));
2239
2240	skb_zcopy_downgrade_managed(skb);
2241
2242	if (skb_pfmemalloc(skb))
2243		gfp_mask |= __GFP_MEMALLOC;
2244
2245	data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL);
2246	if (!data)
2247		goto nodata;
2248	size = SKB_WITH_OVERHEAD(size);
2249
2250	/* Copy only real data... and, alas, header. This should be
2251	 * optimized for the cases when header is void.
2252	 */
2253	memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
2254
2255	memcpy((struct skb_shared_info *)(data + size),
2256	       skb_shinfo(skb),
2257	       offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
2258
2259	/*
2260	 * if shinfo is shared we must drop the old head gracefully, but if it
2261	 * is not we can just drop the old head and let the existing refcount
2262	 * be since all we did is relocate the values
2263	 */
2264	if (skb_cloned(skb)) {
2265		if (skb_orphan_frags(skb, gfp_mask))
2266			goto nofrags;
2267		if (skb_zcopy(skb))
2268			refcount_inc(&skb_uarg(skb)->refcnt);
2269		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2270			skb_frag_ref(skb, i);
2271
2272		if (skb_has_frag_list(skb))
2273			skb_clone_fraglist(skb);
2274
2275		skb_release_data(skb, SKB_CONSUMED, false);
2276	} else {
2277		skb_free_head(skb, false);
2278	}
2279	off = (data + nhead) - skb->head;
2280
2281	skb->head     = data;
2282	skb->head_frag = 0;
2283	skb->data    += off;
2284
2285	skb_set_end_offset(skb, size);
2286#ifdef NET_SKBUFF_DATA_USES_OFFSET
2287	off           = nhead;
2288#endif
2289	skb->tail	      += off;
2290	skb_headers_offset_update(skb, nhead);
2291	skb->cloned   = 0;
2292	skb->hdr_len  = 0;
2293	skb->nohdr    = 0;
2294	atomic_set(&skb_shinfo(skb)->dataref, 1);
2295
2296	skb_metadata_clear(skb);
2297
2298	/* It is not generally safe to change skb->truesize.
2299	 * For the moment, we really care of rx path, or
2300	 * when skb is orphaned (not attached to a socket).
2301	 */
2302	if (!skb->sk || skb->destructor == sock_edemux)
2303		skb->truesize += size - osize;
2304
2305	return 0;
2306
2307nofrags:
2308	skb_kfree_head(data, size);
2309nodata:
2310	return -ENOMEM;
2311}
2312EXPORT_SYMBOL(pskb_expand_head);
2313
2314/* Make private copy of skb with writable head and some headroom */
2315
2316struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
2317{
2318	struct sk_buff *skb2;
2319	int delta = headroom - skb_headroom(skb);
2320
2321	if (delta <= 0)
2322		skb2 = pskb_copy(skb, GFP_ATOMIC);
2323	else {
2324		skb2 = skb_clone(skb, GFP_ATOMIC);
2325		if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
2326					     GFP_ATOMIC)) {
2327			kfree_skb(skb2);
2328			skb2 = NULL;
2329		}
2330	}
2331	return skb2;
2332}
2333EXPORT_SYMBOL(skb_realloc_headroom);
2334
2335/* Note: We plan to rework this in linux-6.4 */
2336int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri)
2337{
2338	unsigned int saved_end_offset, saved_truesize;
2339	struct skb_shared_info *shinfo;
2340	int res;
2341
2342	saved_end_offset = skb_end_offset(skb);
2343	saved_truesize = skb->truesize;
2344
2345	res = pskb_expand_head(skb, 0, 0, pri);
2346	if (res)
2347		return res;
2348
2349	skb->truesize = saved_truesize;
2350
2351	if (likely(skb_end_offset(skb) == saved_end_offset))
2352		return 0;
2353
2354	/* We can not change skb->end if the original or new value
2355	 * is SKB_SMALL_HEAD_HEADROOM, as it might break skb_kfree_head().
2356	 */
2357	if (saved_end_offset == SKB_SMALL_HEAD_HEADROOM ||
2358	    skb_end_offset(skb) == SKB_SMALL_HEAD_HEADROOM) {
2359		/* We think this path should not be taken.
2360		 * Add a temporary trace to warn us just in case.
2361		 */
2362		pr_err_once("__skb_unclone_keeptruesize() skb_end_offset() %u -> %u\n",
2363			    saved_end_offset, skb_end_offset(skb));
2364		WARN_ON_ONCE(1);
2365		return 0;
2366	}
2367
2368	shinfo = skb_shinfo(skb);
2369
2370	/* We are about to change back skb->end,
2371	 * we need to move skb_shinfo() to its new location.
2372	 */
2373	memmove(skb->head + saved_end_offset,
2374		shinfo,
2375		offsetof(struct skb_shared_info, frags[shinfo->nr_frags]));
2376
2377	skb_set_end_offset(skb, saved_end_offset);
2378
2379	return 0;
2380}
2381
2382/**
2383 *	skb_expand_head - reallocate header of &sk_buff
2384 *	@skb: buffer to reallocate
2385 *	@headroom: needed headroom
2386 *
2387 *	Unlike skb_realloc_headroom, this one does not allocate a new skb
2388 *	if possible; copies skb->sk to new skb as needed
2389 *	and frees original skb in case of failures.
2390 *
2391 *	It expect increased headroom and generates warning otherwise.
2392 */
2393
2394struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom)
2395{
2396	int delta = headroom - skb_headroom(skb);
2397	int osize = skb_end_offset(skb);
2398	struct sock *sk = skb->sk;
2399
2400	if (WARN_ONCE(delta <= 0,
2401		      "%s is expecting an increase in the headroom", __func__))
2402		return skb;
2403
2404	delta = SKB_DATA_ALIGN(delta);
2405	/* pskb_expand_head() might crash, if skb is shared. */
2406	if (skb_shared(skb) || !is_skb_wmem(skb)) {
2407		struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC);
2408
2409		if (unlikely(!nskb))
2410			goto fail;
2411
2412		if (sk)
2413			skb_set_owner_w(nskb, sk);
2414		consume_skb(skb);
2415		skb = nskb;
2416	}
2417	if (pskb_expand_head(skb, delta, 0, GFP_ATOMIC))
2418		goto fail;
2419
2420	if (sk && is_skb_wmem(skb)) {
2421		delta = skb_end_offset(skb) - osize;
2422		refcount_add(delta, &sk->sk_wmem_alloc);
2423		skb->truesize += delta;
2424	}
2425	return skb;
2426
2427fail:
2428	kfree_skb(skb);
2429	return NULL;
2430}
2431EXPORT_SYMBOL(skb_expand_head);
2432
2433/**
2434 *	skb_copy_expand	-	copy and expand sk_buff
2435 *	@skb: buffer to copy
2436 *	@newheadroom: new free bytes at head
2437 *	@newtailroom: new free bytes at tail
2438 *	@gfp_mask: allocation priority
2439 *
2440 *	Make a copy of both an &sk_buff and its data and while doing so
2441 *	allocate additional space.
2442 *
2443 *	This is used when the caller wishes to modify the data and needs a
2444 *	private copy of the data to alter as well as more space for new fields.
2445 *	Returns %NULL on failure or the pointer to the buffer
2446 *	on success. The returned buffer has a reference count of 1.
2447 *
2448 *	You must pass %GFP_ATOMIC as the allocation priority if this function
2449 *	is called from an interrupt.
2450 */
2451struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
2452				int newheadroom, int newtailroom,
2453				gfp_t gfp_mask)
2454{
2455	/*
2456	 *	Allocate the copy buffer
2457	 */
2458	struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
2459					gfp_mask, skb_alloc_rx_flag(skb),
2460					NUMA_NO_NODE);
2461	int oldheadroom = skb_headroom(skb);
2462	int head_copy_len, head_copy_off;
2463
2464	if (!n)
2465		return NULL;
2466
2467	skb_reserve(n, newheadroom);
2468
2469	/* Set the tail pointer and length */
2470	skb_put(n, skb->len);
2471
2472	head_copy_len = oldheadroom;
2473	head_copy_off = 0;
2474	if (newheadroom <= head_copy_len)
2475		head_copy_len = newheadroom;
2476	else
2477		head_copy_off = newheadroom - head_copy_len;
2478
2479	/* Copy the linear header and data. */
2480	BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
2481			     skb->len + head_copy_len));
2482
2483	skb_copy_header(n, skb);
2484
2485	skb_headers_offset_update(n, newheadroom - oldheadroom);
2486
2487	return n;
2488}
2489EXPORT_SYMBOL(skb_copy_expand);
2490
2491/**
2492 *	__skb_pad		-	zero pad the tail of an skb
2493 *	@skb: buffer to pad
2494 *	@pad: space to pad
2495 *	@free_on_error: free buffer on error
2496 *
2497 *	Ensure that a buffer is followed by a padding area that is zero
2498 *	filled. Used by network drivers which may DMA or transfer data
2499 *	beyond the buffer end onto the wire.
2500 *
2501 *	May return error in out of memory cases. The skb is freed on error
2502 *	if @free_on_error is true.
2503 */
2504
2505int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error)
2506{
2507	int err;
2508	int ntail;
2509
2510	/* If the skbuff is non linear tailroom is always zero.. */
2511	if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
2512		memset(skb->data+skb->len, 0, pad);
2513		return 0;
2514	}
2515
2516	ntail = skb->data_len + pad - (skb->end - skb->tail);
2517	if (likely(skb_cloned(skb) || ntail > 0)) {
2518		err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
2519		if (unlikely(err))
2520			goto free_skb;
2521	}
2522
2523	/* FIXME: The use of this function with non-linear skb's really needs
2524	 * to be audited.
2525	 */
2526	err = skb_linearize(skb);
2527	if (unlikely(err))
2528		goto free_skb;
2529
2530	memset(skb->data + skb->len, 0, pad);
2531	return 0;
2532
2533free_skb:
2534	if (free_on_error)
2535		kfree_skb(skb);
2536	return err;
2537}
2538EXPORT_SYMBOL(__skb_pad);
2539
2540/**
2541 *	pskb_put - add data to the tail of a potentially fragmented buffer
2542 *	@skb: start of the buffer to use
2543 *	@tail: tail fragment of the buffer to use
2544 *	@len: amount of data to add
2545 *
2546 *	This function extends the used data area of the potentially
2547 *	fragmented buffer. @tail must be the last fragment of @skb -- or
2548 *	@skb itself. If this would exceed the total buffer size the kernel
2549 *	will panic. A pointer to the first byte of the extra data is
2550 *	returned.
2551 */
2552
2553void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
2554{
2555	if (tail != skb) {
2556		skb->data_len += len;
2557		skb->len += len;
2558	}
2559	return skb_put(tail, len);
2560}
2561EXPORT_SYMBOL_GPL(pskb_put);
2562
2563/**
2564 *	skb_put - add data to a buffer
2565 *	@skb: buffer to use
2566 *	@len: amount of data to add
2567 *
2568 *	This function extends the used data area of the buffer. If this would
2569 *	exceed the total buffer size the kernel will panic. A pointer to the
2570 *	first byte of the extra data is returned.
2571 */
2572void *skb_put(struct sk_buff *skb, unsigned int len)
2573{
2574	void *tmp = skb_tail_pointer(skb);
2575	SKB_LINEAR_ASSERT(skb);
2576	skb->tail += len;
2577	skb->len  += len;
2578	if (unlikely(skb->tail > skb->end))
2579		skb_over_panic(skb, len, __builtin_return_address(0));
2580	return tmp;
2581}
2582EXPORT_SYMBOL(skb_put);
2583
2584/**
2585 *	skb_push - add data to the start of a buffer
2586 *	@skb: buffer to use
2587 *	@len: amount of data to add
2588 *
2589 *	This function extends the used data area of the buffer at the buffer
2590 *	start. If this would exceed the total buffer headroom the kernel will
2591 *	panic. A pointer to the first byte of the extra data is returned.
2592 */
2593void *skb_push(struct sk_buff *skb, unsigned int len)
2594{
2595	skb->data -= len;
2596	skb->len  += len;
2597	if (unlikely(skb->data < skb->head))
2598		skb_under_panic(skb, len, __builtin_return_address(0));
2599	return skb->data;
2600}
2601EXPORT_SYMBOL(skb_push);
2602
2603/**
2604 *	skb_pull - remove data from the start of a buffer
2605 *	@skb: buffer to use
2606 *	@len: amount of data to remove
2607 *
2608 *	This function removes data from the start of a buffer, returning
2609 *	the memory to the headroom. A pointer to the next data in the buffer
2610 *	is returned. Once the data has been pulled future pushes will overwrite
2611 *	the old data.
2612 */
2613void *skb_pull(struct sk_buff *skb, unsigned int len)
2614{
2615	return skb_pull_inline(skb, len);
2616}
2617EXPORT_SYMBOL(skb_pull);
2618
2619/**
2620 *	skb_pull_data - remove data from the start of a buffer returning its
2621 *	original position.
2622 *	@skb: buffer to use
2623 *	@len: amount of data to remove
2624 *
2625 *	This function removes data from the start of a buffer, returning
2626 *	the memory to the headroom. A pointer to the original data in the buffer
2627 *	is returned after checking if there is enough data to pull. Once the
2628 *	data has been pulled future pushes will overwrite the old data.
2629 */
2630void *skb_pull_data(struct sk_buff *skb, size_t len)
2631{
2632	void *data = skb->data;
2633
2634	if (skb->len < len)
2635		return NULL;
2636
2637	skb_pull(skb, len);
2638
2639	return data;
2640}
2641EXPORT_SYMBOL(skb_pull_data);
2642
2643/**
2644 *	skb_trim - remove end from a buffer
2645 *	@skb: buffer to alter
2646 *	@len: new length
2647 *
2648 *	Cut the length of a buffer down by removing data from the tail. If
2649 *	the buffer is already under the length specified it is not modified.
2650 *	The skb must be linear.
2651 */
2652void skb_trim(struct sk_buff *skb, unsigned int len)
2653{
2654	if (skb->len > len)
2655		__skb_trim(skb, len);
2656}
2657EXPORT_SYMBOL(skb_trim);
2658
2659/* Trims skb to length len. It can change skb pointers.
2660 */
2661
2662int ___pskb_trim(struct sk_buff *skb, unsigned int len)
2663{
2664	struct sk_buff **fragp;
2665	struct sk_buff *frag;
2666	int offset = skb_headlen(skb);
2667	int nfrags = skb_shinfo(skb)->nr_frags;
2668	int i;
2669	int err;
2670
2671	if (skb_cloned(skb) &&
2672	    unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
2673		return err;
2674
2675	i = 0;
2676	if (offset >= len)
2677		goto drop_pages;
2678
2679	for (; i < nfrags; i++) {
2680		int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2681
2682		if (end < len) {
2683			offset = end;
2684			continue;
2685		}
2686
2687		skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
2688
2689drop_pages:
2690		skb_shinfo(skb)->nr_frags = i;
2691
2692		for (; i < nfrags; i++)
2693			skb_frag_unref(skb, i);
2694
2695		if (skb_has_frag_list(skb))
2696			skb_drop_fraglist(skb);
2697		goto done;
2698	}
2699
2700	for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
2701	     fragp = &frag->next) {
2702		int end = offset + frag->len;
2703
2704		if (skb_shared(frag)) {
2705			struct sk_buff *nfrag;
2706
2707			nfrag = skb_clone(frag, GFP_ATOMIC);
2708			if (unlikely(!nfrag))
2709				return -ENOMEM;
2710
2711			nfrag->next = frag->next;
2712			consume_skb(frag);
2713			frag = nfrag;
2714			*fragp = frag;
2715		}
2716
2717		if (end < len) {
2718			offset = end;
2719			continue;
2720		}
2721
2722		if (end > len &&
2723		    unlikely((err = pskb_trim(frag, len - offset))))
2724			return err;
2725
2726		if (frag->next)
2727			skb_drop_list(&frag->next);
2728		break;
2729	}
2730
2731done:
2732	if (len > skb_headlen(skb)) {
2733		skb->data_len -= skb->len - len;
2734		skb->len       = len;
2735	} else {
2736		skb->len       = len;
2737		skb->data_len  = 0;
2738		skb_set_tail_pointer(skb, len);
2739	}
2740
2741	if (!skb->sk || skb->destructor == sock_edemux)
2742		skb_condense(skb);
2743	return 0;
2744}
2745EXPORT_SYMBOL(___pskb_trim);
2746
2747/* Note : use pskb_trim_rcsum() instead of calling this directly
2748 */
2749int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len)
2750{
2751	if (skb->ip_summed == CHECKSUM_COMPLETE) {
2752		int delta = skb->len - len;
2753
2754		skb->csum = csum_block_sub(skb->csum,
2755					   skb_checksum(skb, len, delta, 0),
2756					   len);
2757	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
2758		int hdlen = (len > skb_headlen(skb)) ? skb_headlen(skb) : len;
2759		int offset = skb_checksum_start_offset(skb) + skb->csum_offset;
2760
2761		if (offset + sizeof(__sum16) > hdlen)
2762			return -EINVAL;
2763	}
2764	return __pskb_trim(skb, len);
2765}
2766EXPORT_SYMBOL(pskb_trim_rcsum_slow);
2767
2768/**
2769 *	__pskb_pull_tail - advance tail of skb header
2770 *	@skb: buffer to reallocate
2771 *	@delta: number of bytes to advance tail
2772 *
2773 *	The function makes a sense only on a fragmented &sk_buff,
2774 *	it expands header moving its tail forward and copying necessary
2775 *	data from fragmented part.
2776 *
2777 *	&sk_buff MUST have reference count of 1.
2778 *
2779 *	Returns %NULL (and &sk_buff does not change) if pull failed
2780 *	or value of new tail of skb in the case of success.
2781 *
2782 *	All the pointers pointing into skb header may change and must be
2783 *	reloaded after call to this function.
2784 */
2785
2786/* Moves tail of skb head forward, copying data from fragmented part,
2787 * when it is necessary.
2788 * 1. It may fail due to malloc failure.
2789 * 2. It may change skb pointers.
2790 *
2791 * It is pretty complicated. Luckily, it is called only in exceptional cases.
2792 */
2793void *__pskb_pull_tail(struct sk_buff *skb, int delta)
2794{
2795	/* If skb has not enough free space at tail, get new one
2796	 * plus 128 bytes for future expansions. If we have enough
2797	 * room at tail, reallocate without expansion only if skb is cloned.
2798	 */
2799	int i, k, eat = (skb->tail + delta) - skb->end;
2800
2801	if (eat > 0 || skb_cloned(skb)) {
2802		if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
2803				     GFP_ATOMIC))
2804			return NULL;
2805	}
2806
2807	BUG_ON(skb_copy_bits(skb, skb_headlen(skb),
2808			     skb_tail_pointer(skb), delta));
2809
2810	/* Optimization: no fragments, no reasons to preestimate
2811	 * size of pulled pages. Superb.
2812	 */
2813	if (!skb_has_frag_list(skb))
2814		goto pull_pages;
2815
2816	/* Estimate size of pulled pages. */
2817	eat = delta;
2818	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2819		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2820
2821		if (size >= eat)
2822			goto pull_pages;
2823		eat -= size;
2824	}
2825
2826	/* If we need update frag list, we are in troubles.
2827	 * Certainly, it is possible to add an offset to skb data,
2828	 * but taking into account that pulling is expected to
2829	 * be very rare operation, it is worth to fight against
2830	 * further bloating skb head and crucify ourselves here instead.
2831	 * Pure masohism, indeed. 8)8)
2832	 */
2833	if (eat) {
2834		struct sk_buff *list = skb_shinfo(skb)->frag_list;
2835		struct sk_buff *clone = NULL;
2836		struct sk_buff *insp = NULL;
2837
2838		do {
2839			if (list->len <= eat) {
2840				/* Eaten as whole. */
2841				eat -= list->len;
2842				list = list->next;
2843				insp = list;
2844			} else {
2845				/* Eaten partially. */
2846				if (skb_is_gso(skb) && !list->head_frag &&
2847				    skb_headlen(list))
2848					skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY;
2849
2850				if (skb_shared(list)) {
2851					/* Sucks! We need to fork list. :-( */
2852					clone = skb_clone(list, GFP_ATOMIC);
2853					if (!clone)
2854						return NULL;
2855					insp = list->next;
2856					list = clone;
2857				} else {
2858					/* This may be pulled without
2859					 * problems. */
2860					insp = list;
2861				}
2862				if (!pskb_pull(list, eat)) {
2863					kfree_skb(clone);
2864					return NULL;
2865				}
2866				break;
2867			}
2868		} while (eat);
2869
2870		/* Free pulled out fragments. */
2871		while ((list = skb_shinfo(skb)->frag_list) != insp) {
2872			skb_shinfo(skb)->frag_list = list->next;
2873			consume_skb(list);
2874		}
2875		/* And insert new clone at head. */
2876		if (clone) {
2877			clone->next = list;
2878			skb_shinfo(skb)->frag_list = clone;
2879		}
2880	}
2881	/* Success! Now we may commit changes to skb data. */
2882
2883pull_pages:
2884	eat = delta;
2885	k = 0;
2886	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2887		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2888
2889		if (size <= eat) {
2890			skb_frag_unref(skb, i);
2891			eat -= size;
2892		} else {
2893			skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2894
2895			*frag = skb_shinfo(skb)->frags[i];
2896			if (eat) {
2897				skb_frag_off_add(frag, eat);
2898				skb_frag_size_sub(frag, eat);
2899				if (!i)
2900					goto end;
2901				eat = 0;
2902			}
2903			k++;
2904		}
2905	}
2906	skb_shinfo(skb)->nr_frags = k;
2907
2908end:
2909	skb->tail     += delta;
2910	skb->data_len -= delta;
2911
2912	if (!skb->data_len)
2913		skb_zcopy_clear(skb, false);
2914
2915	return skb_tail_pointer(skb);
2916}
2917EXPORT_SYMBOL(__pskb_pull_tail);
2918
2919/**
2920 *	skb_copy_bits - copy bits from skb to kernel buffer
2921 *	@skb: source skb
2922 *	@offset: offset in source
2923 *	@to: destination buffer
2924 *	@len: number of bytes to copy
2925 *
2926 *	Copy the specified number of bytes from the source skb to the
2927 *	destination buffer.
2928 *
2929 *	CAUTION ! :
2930 *		If its prototype is ever changed,
2931 *		check arch/{*}/net/{*}.S files,
2932 *		since it is called from BPF assembly code.
2933 */
2934int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
2935{
2936	int start = skb_headlen(skb);
2937	struct sk_buff *frag_iter;
2938	int i, copy;
2939
2940	if (offset > (int)skb->len - len)
2941		goto fault;
2942
2943	/* Copy header. */
2944	if ((copy = start - offset) > 0) {
2945		if (copy > len)
2946			copy = len;
2947		skb_copy_from_linear_data_offset(skb, offset, to, copy);
2948		if ((len -= copy) == 0)
2949			return 0;
2950		offset += copy;
2951		to     += copy;
2952	}
2953
2954	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2955		int end;
2956		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
2957
2958		WARN_ON(start > offset + len);
2959
2960		end = start + skb_frag_size(f);
2961		if ((copy = end - offset) > 0) {
2962			u32 p_off, p_len, copied;
2963			struct page *p;
2964			u8 *vaddr;
2965
2966			if (copy > len)
2967				copy = len;
2968
2969			skb_frag_foreach_page(f,
2970					      skb_frag_off(f) + offset - start,
2971					      copy, p, p_off, p_len, copied) {
2972				vaddr = kmap_atomic(p);
2973				memcpy(to + copied, vaddr + p_off, p_len);
2974				kunmap_atomic(vaddr);
2975			}
2976
2977			if ((len -= copy) == 0)
2978				return 0;
2979			offset += copy;
2980			to     += copy;
2981		}
2982		start = end;
2983	}
2984
2985	skb_walk_frags(skb, frag_iter) {
2986		int end;
2987
2988		WARN_ON(start > offset + len);
2989
2990		end = start + frag_iter->len;
2991		if ((copy = end - offset) > 0) {
2992			if (copy > len)
2993				copy = len;
2994			if (skb_copy_bits(frag_iter, offset - start, to, copy))
2995				goto fault;
2996			if ((len -= copy) == 0)
2997				return 0;
2998			offset += copy;
2999			to     += copy;
3000		}
3001		start = end;
3002	}
3003
3004	if (!len)
3005		return 0;
3006
3007fault:
3008	return -EFAULT;
3009}
3010EXPORT_SYMBOL(skb_copy_bits);
3011
3012/*
3013 * Callback from splice_to_pipe(), if we need to release some pages
3014 * at the end of the spd in case we error'ed out in filling the pipe.
3015 */
3016static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
3017{
3018	put_page(spd->pages[i]);
3019}
3020
3021static struct page *linear_to_page(struct page *page, unsigned int *len,
3022				   unsigned int *offset,
3023				   struct sock *sk)
3024{
3025	struct page_frag *pfrag = sk_page_frag(sk);
3026
3027	if (!sk_page_frag_refill(sk, pfrag))
3028		return NULL;
3029
3030	*len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
3031
3032	memcpy(page_address(pfrag->page) + pfrag->offset,
3033	       page_address(page) + *offset, *len);
3034	*offset = pfrag->offset;
3035	pfrag->offset += *len;
3036
3037	return pfrag->page;
3038}
3039
3040static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
3041			     struct page *page,
3042			     unsigned int offset)
3043{
3044	return	spd->nr_pages &&
3045		spd->pages[spd->nr_pages - 1] == page &&
3046		(spd->partial[spd->nr_pages - 1].offset +
3047		 spd->partial[spd->nr_pages - 1].len == offset);
3048}
3049
3050/*
3051 * Fill page/offset/length into spd, if it can hold more pages.
3052 */
3053static bool spd_fill_page(struct splice_pipe_desc *spd,
3054			  struct pipe_inode_info *pipe, struct page *page,
3055			  unsigned int *len, unsigned int offset,
3056			  bool linear,
3057			  struct sock *sk)
3058{
3059	if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
3060		return true;
3061
3062	if (linear) {
3063		page = linear_to_page(page, len, &offset, sk);
3064		if (!page)
3065			return true;
3066	}
3067	if (spd_can_coalesce(spd, page, offset)) {
3068		spd->partial[spd->nr_pages - 1].len += *len;
3069		return false;
3070	}
3071	get_page(page);
3072	spd->pages[spd->nr_pages] = page;
3073	spd->partial[spd->nr_pages].len = *len;
3074	spd->partial[spd->nr_pages].offset = offset;
3075	spd->nr_pages++;
3076
3077	return false;
3078}
3079
3080static bool __splice_segment(struct page *page, unsigned int poff,
3081			     unsigned int plen, unsigned int *off,
3082			     unsigned int *len,
3083			     struct splice_pipe_desc *spd, bool linear,
3084			     struct sock *sk,
3085			     struct pipe_inode_info *pipe)
3086{
3087	if (!*len)
3088		return true;
3089
3090	/* skip this segment if already processed */
3091	if (*off >= plen) {
3092		*off -= plen;
3093		return false;
3094	}
3095
3096	/* ignore any bits we already processed */
3097	poff += *off;
3098	plen -= *off;
3099	*off = 0;
3100
3101	do {
3102		unsigned int flen = min(*len, plen);
3103
3104		if (spd_fill_page(spd, pipe, page, &flen, poff,
3105				  linear, sk))
3106			return true;
3107		poff += flen;
3108		plen -= flen;
3109		*len -= flen;
3110	} while (*len && plen);
3111
3112	return false;
3113}
3114
3115/*
3116 * Map linear and fragment data from the skb to spd. It reports true if the
3117 * pipe is full or if we already spliced the requested length.
3118 */
3119static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
3120			      unsigned int *offset, unsigned int *len,
3121			      struct splice_pipe_desc *spd, struct sock *sk)
3122{
3123	int seg;
3124	struct sk_buff *iter;
3125
3126	/* map the linear part :
3127	 * If skb->head_frag is set, this 'linear' part is backed by a
3128	 * fragment, and if the head is not shared with any clones then
3129	 * we can avoid a copy since we own the head portion of this page.
3130	 */
3131	if (__splice_segment(virt_to_page(skb->data),
3132			     (unsigned long) skb->data & (PAGE_SIZE - 1),
3133			     skb_headlen(skb),
3134			     offset, len, spd,
3135			     skb_head_is_locked(skb),
3136			     sk, pipe))
3137		return true;
3138
3139	/*
3140	 * then map the fragments
3141	 */
3142	for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
3143		const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
3144
3145		if (__splice_segment(skb_frag_page(f),
3146				     skb_frag_off(f), skb_frag_size(f),
3147				     offset, len, spd, false, sk, pipe))
3148			return true;
3149	}
3150
3151	skb_walk_frags(skb, iter) {
3152		if (*offset >= iter->len) {
3153			*offset -= iter->len;
3154			continue;
3155		}
3156		/* __skb_splice_bits() only fails if the output has no room
3157		 * left, so no point in going over the frag_list for the error
3158		 * case.
3159		 */
3160		if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
3161			return true;
3162	}
3163
3164	return false;
3165}
3166
3167/*
3168 * Map data from the skb to a pipe. Should handle both the linear part,
3169 * the fragments, and the frag list.
3170 */
3171int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3172		    struct pipe_inode_info *pipe, unsigned int tlen,
3173		    unsigned int flags)
3174{
3175	struct partial_page partial[MAX_SKB_FRAGS];
3176	struct page *pages[MAX_SKB_FRAGS];
3177	struct splice_pipe_desc spd = {
3178		.pages = pages,
3179		.partial = partial,
3180		.nr_pages_max = MAX_SKB_FRAGS,
3181		.ops = &nosteal_pipe_buf_ops,
3182		.spd_release = sock_spd_release,
3183	};
3184	int ret = 0;
3185
3186	__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
3187
3188	if (spd.nr_pages)
3189		ret = splice_to_pipe(pipe, &spd);
3190
3191	return ret;
3192}
3193EXPORT_SYMBOL_GPL(skb_splice_bits);
3194
3195static int sendmsg_locked(struct sock *sk, struct msghdr *msg)
3196{
3197	struct socket *sock = sk->sk_socket;
3198	size_t size = msg_data_left(msg);
3199
3200	if (!sock)
3201		return -EINVAL;
3202
3203	if (!sock->ops->sendmsg_locked)
3204		return sock_no_sendmsg_locked(sk, msg, size);
3205
3206	return sock->ops->sendmsg_locked(sk, msg, size);
3207}
3208
3209static int sendmsg_unlocked(struct sock *sk, struct msghdr *msg)
3210{
3211	struct socket *sock = sk->sk_socket;
3212
3213	if (!sock)
3214		return -EINVAL;
3215	return sock_sendmsg(sock, msg);
3216}
3217
3218typedef int (*sendmsg_func)(struct sock *sk, struct msghdr *msg);
3219static int __skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset,
3220			   int len, sendmsg_func sendmsg)
3221{
3222	unsigned int orig_len = len;
3223	struct sk_buff *head = skb;
3224	unsigned short fragidx;
3225	int slen, ret;
3226
3227do_frag_list:
3228
3229	/* Deal with head data */
3230	while (offset < skb_headlen(skb) && len) {
3231		struct kvec kv;
3232		struct msghdr msg;
3233
3234		slen = min_t(int, len, skb_headlen(skb) - offset);
3235		kv.iov_base = skb->data + offset;
3236		kv.iov_len = slen;
3237		memset(&msg, 0, sizeof(msg));
3238		msg.msg_flags = MSG_DONTWAIT;
3239
3240		iov_iter_kvec(&msg.msg_iter, ITER_SOURCE, &kv, 1, slen);
3241		ret = INDIRECT_CALL_2(sendmsg, sendmsg_locked,
3242				      sendmsg_unlocked, sk, &msg);
3243		if (ret <= 0)
3244			goto error;
3245
3246		offset += ret;
3247		len -= ret;
3248	}
3249
3250	/* All the data was skb head? */
3251	if (!len)
3252		goto out;
3253
3254	/* Make offset relative to start of frags */
3255	offset -= skb_headlen(skb);
3256
3257	/* Find where we are in frag list */
3258	for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
3259		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
3260
3261		if (offset < skb_frag_size(frag))
3262			break;
3263
3264		offset -= skb_frag_size(frag);
3265	}
3266
3267	for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
3268		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
3269
3270		slen = min_t(size_t, len, skb_frag_size(frag) - offset);
3271
3272		while (slen) {
3273			struct bio_vec bvec;
3274			struct msghdr msg = {
3275				.msg_flags = MSG_SPLICE_PAGES | MSG_DONTWAIT,
3276			};
3277
3278			bvec_set_page(&bvec, skb_frag_page(frag), slen,
3279				      skb_frag_off(frag) + offset);
3280			iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1,
3281				      slen);
3282
3283			ret = INDIRECT_CALL_2(sendmsg, sendmsg_locked,
3284					      sendmsg_unlocked, sk, &msg);
3285			if (ret <= 0)
3286				goto error;
3287
3288			len -= ret;
3289			offset += ret;
3290			slen -= ret;
3291		}
3292
3293		offset = 0;
3294	}
3295
3296	if (len) {
3297		/* Process any frag lists */
3298
3299		if (skb == head) {
3300			if (skb_has_frag_list(skb)) {
3301				skb = skb_shinfo(skb)->frag_list;
3302				goto do_frag_list;
3303			}
3304		} else if (skb->next) {
3305			skb = skb->next;
3306			goto do_frag_list;
3307		}
3308	}
3309
3310out:
3311	return orig_len - len;
3312
3313error:
3314	return orig_len == len ? ret : orig_len - len;
3315}
3316
3317/* Send skb data on a socket. Socket must be locked. */
3318int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3319			 int len)
3320{
3321	return __skb_send_sock(sk, skb, offset, len, sendmsg_locked);
3322}
3323EXPORT_SYMBOL_GPL(skb_send_sock_locked);
3324
3325/* Send skb data on a socket. Socket must be unlocked. */
3326int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len)
3327{
3328	return __skb_send_sock(sk, skb, offset, len, sendmsg_unlocked);
3329}
3330
3331/**
3332 *	skb_store_bits - store bits from kernel buffer to skb
3333 *	@skb: destination buffer
3334 *	@offset: offset in destination
3335 *	@from: source buffer
3336 *	@len: number of bytes to copy
3337 *
3338 *	Copy the specified number of bytes from the source buffer to the
3339 *	destination skb.  This function handles all the messy bits of
3340 *	traversing fragment lists and such.
3341 */
3342
3343int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
3344{
3345	int start = skb_headlen(skb);
3346	struct sk_buff *frag_iter;
3347	int i, copy;
3348
3349	if (offset > (int)skb->len - len)
3350		goto fault;
3351
3352	if ((copy = start - offset) > 0) {
3353		if (copy > len)
3354			copy = len;
3355		skb_copy_to_linear_data_offset(skb, offset, from, copy);
3356		if ((len -= copy) == 0)
3357			return 0;
3358		offset += copy;
3359		from += copy;
3360	}
3361
3362	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3363		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3364		int end;
3365
3366		WARN_ON(start > offset + len);
3367
3368		end = start + skb_frag_size(frag);
3369		if ((copy = end - offset) > 0) {
3370			u32 p_off, p_len, copied;
3371			struct page *p;
3372			u8 *vaddr;
3373
3374			if (copy > len)
3375				copy = len;
3376
3377			skb_frag_foreach_page(frag,
3378					      skb_frag_off(frag) + offset - start,
3379					      copy, p, p_off, p_len, copied) {
3380				vaddr = kmap_atomic(p);
3381				memcpy(vaddr + p_off, from + copied, p_len);
3382				kunmap_atomic(vaddr);
3383			}
3384
3385			if ((len -= copy) == 0)
3386				return 0;
3387			offset += copy;
3388			from += copy;
3389		}
3390		start = end;
3391	}
3392
3393	skb_walk_frags(skb, frag_iter) {
3394		int end;
3395
3396		WARN_ON(start > offset + len);
3397
3398		end = start + frag_iter->len;
3399		if ((copy = end - offset) > 0) {
3400			if (copy > len)
3401				copy = len;
3402			if (skb_store_bits(frag_iter, offset - start,
3403					   from, copy))
3404				goto fault;
3405			if ((len -= copy) == 0)
3406				return 0;
3407			offset += copy;
3408			from += copy;
3409		}
3410		start = end;
3411	}
3412	if (!len)
3413		return 0;
3414
3415fault:
3416	return -EFAULT;
3417}
3418EXPORT_SYMBOL(skb_store_bits);
3419
3420/* Checksum skb data. */
3421__wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3422		      __wsum csum, const struct skb_checksum_ops *ops)
3423{
3424	int start = skb_headlen(skb);
3425	int i, copy = start - offset;
3426	struct sk_buff *frag_iter;
3427	int pos = 0;
3428
3429	/* Checksum header. */
3430	if (copy > 0) {
3431		if (copy > len)
3432			copy = len;
3433		csum = INDIRECT_CALL_1(ops->update, csum_partial_ext,
3434				       skb->data + offset, copy, csum);
3435		if ((len -= copy) == 0)
3436			return csum;
3437		offset += copy;
3438		pos	= copy;
3439	}
3440
3441	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3442		int end;
3443		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3444
3445		WARN_ON(start > offset + len);
3446
3447		end = start + skb_frag_size(frag);
3448		if ((copy = end - offset) > 0) {
3449			u32 p_off, p_len, copied;
3450			struct page *p;
3451			__wsum csum2;
3452			u8 *vaddr;
3453
3454			if (copy > len)
3455				copy = len;
3456
3457			skb_frag_foreach_page(frag,
3458					      skb_frag_off(frag) + offset - start,
3459					      copy, p, p_off, p_len, copied) {
3460				vaddr = kmap_atomic(p);
3461				csum2 = INDIRECT_CALL_1(ops->update,
3462							csum_partial_ext,
3463							vaddr + p_off, p_len, 0);
3464				kunmap_atomic(vaddr);
3465				csum = INDIRECT_CALL_1(ops->combine,
3466						       csum_block_add_ext, csum,
3467						       csum2, pos, p_len);
3468				pos += p_len;
3469			}
3470
3471			if (!(len -= copy))
3472				return csum;
3473			offset += copy;
3474		}
3475		start = end;
3476	}
3477
3478	skb_walk_frags(skb, frag_iter) {
3479		int end;
3480
3481		WARN_ON(start > offset + len);
3482
3483		end = start + frag_iter->len;
3484		if ((copy = end - offset) > 0) {
3485			__wsum csum2;
3486			if (copy > len)
3487				copy = len;
3488			csum2 = __skb_checksum(frag_iter, offset - start,
3489					       copy, 0, ops);
3490			csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext,
3491					       csum, csum2, pos, copy);
3492			if ((len -= copy) == 0)
3493				return csum;
3494			offset += copy;
3495			pos    += copy;
3496		}
3497		start = end;
3498	}
3499	BUG_ON(len);
3500
3501	return csum;
3502}
3503EXPORT_SYMBOL(__skb_checksum);
3504
3505__wsum skb_checksum(const struct sk_buff *skb, int offset,
3506		    int len, __wsum csum)
3507{
3508	const struct skb_checksum_ops ops = {
3509		.update  = csum_partial_ext,
3510		.combine = csum_block_add_ext,
3511	};
3512
3513	return __skb_checksum(skb, offset, len, csum, &ops);
3514}
3515EXPORT_SYMBOL(skb_checksum);
3516
3517/* Both of above in one bottle. */
3518
3519__wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
3520				    u8 *to, int len)
3521{
3522	int start = skb_headlen(skb);
3523	int i, copy = start - offset;
3524	struct sk_buff *frag_iter;
3525	int pos = 0;
3526	__wsum csum = 0;
3527
3528	/* Copy header. */
3529	if (copy > 0) {
3530		if (copy > len)
3531			copy = len;
3532		csum = csum_partial_copy_nocheck(skb->data + offset, to,
3533						 copy);
3534		if ((len -= copy) == 0)
3535			return csum;
3536		offset += copy;
3537		to     += copy;
3538		pos	= copy;
3539	}
3540
3541	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3542		int end;
3543
3544		WARN_ON(start > offset + len);
3545
3546		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3547		if ((copy = end - offset) > 0) {
3548			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3549			u32 p_off, p_len, copied;
3550			struct page *p;
3551			__wsum csum2;
3552			u8 *vaddr;
3553
3554			if (copy > len)
3555				copy = len;
3556
3557			skb_frag_foreach_page(frag,
3558					      skb_frag_off(frag) + offset - start,
3559					      copy, p, p_off, p_len, copied) {
3560				vaddr = kmap_atomic(p);
3561				csum2 = csum_partial_copy_nocheck(vaddr + p_off,
3562								  to + copied,
3563								  p_len);
3564				kunmap_atomic(vaddr);
3565				csum = csum_block_add(csum, csum2, pos);
3566				pos += p_len;
3567			}
3568
3569			if (!(len -= copy))
3570				return csum;
3571			offset += copy;
3572			to     += copy;
3573		}
3574		start = end;
3575	}
3576
3577	skb_walk_frags(skb, frag_iter) {
3578		__wsum csum2;
3579		int end;
3580
3581		WARN_ON(start > offset + len);
3582
3583		end = start + frag_iter->len;
3584		if ((copy = end - offset) > 0) {
3585			if (copy > len)
3586				copy = len;
3587			csum2 = skb_copy_and_csum_bits(frag_iter,
3588						       offset - start,
3589						       to, copy);
3590			csum = csum_block_add(csum, csum2, pos);
3591			if ((len -= copy) == 0)
3592				return csum;
3593			offset += copy;
3594			to     += copy;
3595			pos    += copy;
3596		}
3597		start = end;
3598	}
3599	BUG_ON(len);
3600	return csum;
3601}
3602EXPORT_SYMBOL(skb_copy_and_csum_bits);
3603
3604__sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len)
3605{
3606	__sum16 sum;
3607
3608	sum = csum_fold(skb_checksum(skb, 0, len, skb->csum));
3609	/* See comments in __skb_checksum_complete(). */
3610	if (likely(!sum)) {
3611		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
3612		    !skb->csum_complete_sw)
3613			netdev_rx_csum_fault(skb->dev, skb);
3614	}
3615	if (!skb_shared(skb))
3616		skb->csum_valid = !sum;
3617	return sum;
3618}
3619EXPORT_SYMBOL(__skb_checksum_complete_head);
3620
3621/* This function assumes skb->csum already holds pseudo header's checksum,
3622 * which has been changed from the hardware checksum, for example, by
3623 * __skb_checksum_validate_complete(). And, the original skb->csum must
3624 * have been validated unsuccessfully for CHECKSUM_COMPLETE case.
3625 *
3626 * It returns non-zero if the recomputed checksum is still invalid, otherwise
3627 * zero. The new checksum is stored back into skb->csum unless the skb is
3628 * shared.
3629 */
3630__sum16 __skb_checksum_complete(struct sk_buff *skb)
3631{
3632	__wsum csum;
3633	__sum16 sum;
3634
3635	csum = skb_checksum(skb, 0, skb->len, 0);
3636
3637	sum = csum_fold(csum_add(skb->csum, csum));
3638	/* This check is inverted, because we already knew the hardware
3639	 * checksum is invalid before calling this function. So, if the
3640	 * re-computed checksum is valid instead, then we have a mismatch
3641	 * between the original skb->csum and skb_checksum(). This means either
3642	 * the original hardware checksum is incorrect or we screw up skb->csum
3643	 * when moving skb->data around.
3644	 */
3645	if (likely(!sum)) {
3646		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
3647		    !skb->csum_complete_sw)
3648			netdev_rx_csum_fault(skb->dev, skb);
3649	}
3650
3651	if (!skb_shared(skb)) {
3652		/* Save full packet checksum */
3653		skb->csum = csum;
3654		skb->ip_summed = CHECKSUM_COMPLETE;
3655		skb->csum_complete_sw = 1;
3656		skb->csum_valid = !sum;
3657	}
3658
3659	return sum;
3660}
3661EXPORT_SYMBOL(__skb_checksum_complete);
3662
3663static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum)
3664{
3665	net_warn_ratelimited(
3666		"%s: attempt to compute crc32c without libcrc32c.ko\n",
3667		__func__);
3668	return 0;
3669}
3670
3671static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2,
3672				       int offset, int len)
3673{
3674	net_warn_ratelimited(
3675		"%s: attempt to compute crc32c without libcrc32c.ko\n",
3676		__func__);
3677	return 0;
3678}
3679
3680static const struct skb_checksum_ops default_crc32c_ops = {
3681	.update  = warn_crc32c_csum_update,
3682	.combine = warn_crc32c_csum_combine,
3683};
3684
3685const struct skb_checksum_ops *crc32c_csum_stub __read_mostly =
3686	&default_crc32c_ops;
3687EXPORT_SYMBOL(crc32c_csum_stub);
3688
3689 /**
3690 *	skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
3691 *	@from: source buffer
3692 *
3693 *	Calculates the amount of linear headroom needed in the 'to' skb passed
3694 *	into skb_zerocopy().
3695 */
3696unsigned int
3697skb_zerocopy_headlen(const struct sk_buff *from)
3698{
3699	unsigned int hlen = 0;
3700
3701	if (!from->head_frag ||
3702	    skb_headlen(from) < L1_CACHE_BYTES ||
3703	    skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) {
3704		hlen = skb_headlen(from);
3705		if (!hlen)
3706			hlen = from->len;
3707	}
3708
3709	if (skb_has_frag_list(from))
3710		hlen = from->len;
3711
3712	return hlen;
3713}
3714EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
3715
3716/**
3717 *	skb_zerocopy - Zero copy skb to skb
3718 *	@to: destination buffer
3719 *	@from: source buffer
3720 *	@len: number of bytes to copy from source buffer
3721 *	@hlen: size of linear headroom in destination buffer
3722 *
3723 *	Copies up to `len` bytes from `from` to `to` by creating references
3724 *	to the frags in the source buffer.
3725 *
3726 *	The `hlen` as calculated by skb_zerocopy_headlen() specifies the
3727 *	headroom in the `to` buffer.
3728 *
3729 *	Return value:
3730 *	0: everything is OK
3731 *	-ENOMEM: couldn't orphan frags of @from due to lack of memory
3732 *	-EFAULT: skb_copy_bits() found some problem with skb geometry
3733 */
3734int
3735skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
3736{
3737	int i, j = 0;
3738	int plen = 0; /* length of skb->head fragment */
3739	int ret;
3740	struct page *page;
3741	unsigned int offset;
3742
3743	BUG_ON(!from->head_frag && !hlen);
3744
3745	/* dont bother with small payloads */
3746	if (len <= skb_tailroom(to))
3747		return skb_copy_bits(from, 0, skb_put(to, len), len);
3748
3749	if (hlen) {
3750		ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
3751		if (unlikely(ret))
3752			return ret;
3753		len -= hlen;
3754	} else {
3755		plen = min_t(int, skb_headlen(from), len);
3756		if (plen) {
3757			page = virt_to_head_page(from->head);
3758			offset = from->data - (unsigned char *)page_address(page);
3759			__skb_fill_netmem_desc(to, 0, page_to_netmem(page),
3760					       offset, plen);
3761			get_page(page);
3762			j = 1;
3763			len -= plen;
3764		}
3765	}
3766
3767	skb_len_add(to, len + plen);
3768
3769	if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
3770		skb_tx_error(from);
3771		return -ENOMEM;
3772	}
3773	skb_zerocopy_clone(to, from, GFP_ATOMIC);
3774
3775	for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
3776		int size;
3777
3778		if (!len)
3779			break;
3780		skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
3781		size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]),
3782					len);
3783		skb_frag_size_set(&skb_shinfo(to)->frags[j], size);
3784		len -= size;
3785		skb_frag_ref(to, j);
3786		j++;
3787	}
3788	skb_shinfo(to)->nr_frags = j;
3789
3790	return 0;
3791}
3792EXPORT_SYMBOL_GPL(skb_zerocopy);
3793
3794void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
3795{
3796	__wsum csum;
3797	long csstart;
3798
3799	if (skb->ip_summed == CHECKSUM_PARTIAL)
3800		csstart = skb_checksum_start_offset(skb);
3801	else
3802		csstart = skb_headlen(skb);
3803
3804	BUG_ON(csstart > skb_headlen(skb));
3805
3806	skb_copy_from_linear_data(skb, to, csstart);
3807
3808	csum = 0;
3809	if (csstart != skb->len)
3810		csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
3811					      skb->len - csstart);
3812
3813	if (skb->ip_summed == CHECKSUM_PARTIAL) {
3814		long csstuff = csstart + skb->csum_offset;
3815
3816		*((__sum16 *)(to + csstuff)) = csum_fold(csum);
3817	}
3818}
3819EXPORT_SYMBOL(skb_copy_and_csum_dev);
3820
3821/**
3822 *	skb_dequeue - remove from the head of the queue
3823 *	@list: list to dequeue from
3824 *
3825 *	Remove the head of the list. The list lock is taken so the function
3826 *	may be used safely with other locking list functions. The head item is
3827 *	returned or %NULL if the list is empty.
3828 */
3829
3830struct sk_buff *skb_dequeue(struct sk_buff_head *list)
3831{
3832	unsigned long flags;
3833	struct sk_buff *result;
3834
3835	spin_lock_irqsave(&list->lock, flags);
3836	result = __skb_dequeue(list);
3837	spin_unlock_irqrestore(&list->lock, flags);
3838	return result;
3839}
3840EXPORT_SYMBOL(skb_dequeue);
3841
3842/**
3843 *	skb_dequeue_tail - remove from the tail of the queue
3844 *	@list: list to dequeue from
3845 *
3846 *	Remove the tail of the list. The list lock is taken so the function
3847 *	may be used safely with other locking list functions. The tail item is
3848 *	returned or %NULL if the list is empty.
3849 */
3850struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
3851{
3852	unsigned long flags;
3853	struct sk_buff *result;
3854
3855	spin_lock_irqsave(&list->lock, flags);
3856	result = __skb_dequeue_tail(list);
3857	spin_unlock_irqrestore(&list->lock, flags);
3858	return result;
3859}
3860EXPORT_SYMBOL(skb_dequeue_tail);
3861
3862/**
3863 *	skb_queue_purge_reason - empty a list
3864 *	@list: list to empty
3865 *	@reason: drop reason
3866 *
3867 *	Delete all buffers on an &sk_buff list. Each buffer is removed from
3868 *	the list and one reference dropped. This function takes the list
3869 *	lock and is atomic with respect to other list locking functions.
3870 */
3871void skb_queue_purge_reason(struct sk_buff_head *list,
3872			    enum skb_drop_reason reason)
3873{
3874	struct sk_buff_head tmp;
3875	unsigned long flags;
3876
3877	if (skb_queue_empty_lockless(list))
3878		return;
3879
3880	__skb_queue_head_init(&tmp);
3881
3882	spin_lock_irqsave(&list->lock, flags);
3883	skb_queue_splice_init(list, &tmp);
3884	spin_unlock_irqrestore(&list->lock, flags);
3885
3886	__skb_queue_purge_reason(&tmp, reason);
3887}
3888EXPORT_SYMBOL(skb_queue_purge_reason);
3889
3890/**
3891 *	skb_rbtree_purge - empty a skb rbtree
3892 *	@root: root of the rbtree to empty
3893 *	Return value: the sum of truesizes of all purged skbs.
3894 *
3895 *	Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
3896 *	the list and one reference dropped. This function does not take
3897 *	any lock. Synchronization should be handled by the caller (e.g., TCP
3898 *	out-of-order queue is protected by the socket lock).
3899 */
3900unsigned int skb_rbtree_purge(struct rb_root *root)
3901{
3902	struct rb_node *p = rb_first(root);
3903	unsigned int sum = 0;
3904
3905	while (p) {
3906		struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
3907
3908		p = rb_next(p);
3909		rb_erase(&skb->rbnode, root);
3910		sum += skb->truesize;
3911		kfree_skb(skb);
3912	}
3913	return sum;
3914}
3915
3916void skb_errqueue_purge(struct sk_buff_head *list)
3917{
3918	struct sk_buff *skb, *next;
3919	struct sk_buff_head kill;
3920	unsigned long flags;
3921
3922	__skb_queue_head_init(&kill);
3923
3924	spin_lock_irqsave(&list->lock, flags);
3925	skb_queue_walk_safe(list, skb, next) {
3926		if (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ZEROCOPY ||
3927		    SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_TIMESTAMPING)
3928			continue;
3929		__skb_unlink(skb, list);
3930		__skb_queue_tail(&kill, skb);
3931	}
3932	spin_unlock_irqrestore(&list->lock, flags);
3933	__skb_queue_purge(&kill);
3934}
3935EXPORT_SYMBOL(skb_errqueue_purge);
3936
3937/**
3938 *	skb_queue_head - queue a buffer at the list head
3939 *	@list: list to use
3940 *	@newsk: buffer to queue
3941 *
3942 *	Queue a buffer at the start of the list. This function takes the
3943 *	list lock and can be used safely with other locking &sk_buff functions
3944 *	safely.
3945 *
3946 *	A buffer cannot be placed on two lists at the same time.
3947 */
3948void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
3949{
3950	unsigned long flags;
3951
3952	spin_lock_irqsave(&list->lock, flags);
3953	__skb_queue_head(list, newsk);
3954	spin_unlock_irqrestore(&list->lock, flags);
3955}
3956EXPORT_SYMBOL(skb_queue_head);
3957
3958/**
3959 *	skb_queue_tail - queue a buffer at the list tail
3960 *	@list: list to use
3961 *	@newsk: buffer to queue
3962 *
3963 *	Queue a buffer at the tail of the list. This function takes the
3964 *	list lock and can be used safely with other locking &sk_buff functions
3965 *	safely.
3966 *
3967 *	A buffer cannot be placed on two lists at the same time.
3968 */
3969void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
3970{
3971	unsigned long flags;
3972
3973	spin_lock_irqsave(&list->lock, flags);
3974	__skb_queue_tail(list, newsk);
3975	spin_unlock_irqrestore(&list->lock, flags);
3976}
3977EXPORT_SYMBOL(skb_queue_tail);
3978
3979/**
3980 *	skb_unlink	-	remove a buffer from a list
3981 *	@skb: buffer to remove
3982 *	@list: list to use
3983 *
3984 *	Remove a packet from a list. The list locks are taken and this
3985 *	function is atomic with respect to other list locked calls
3986 *
3987 *	You must know what list the SKB is on.
3988 */
3989void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
3990{
3991	unsigned long flags;
3992
3993	spin_lock_irqsave(&list->lock, flags);
3994	__skb_unlink(skb, list);
3995	spin_unlock_irqrestore(&list->lock, flags);
3996}
3997EXPORT_SYMBOL(skb_unlink);
3998
3999/**
4000 *	skb_append	-	append a buffer
4001 *	@old: buffer to insert after
4002 *	@newsk: buffer to insert
4003 *	@list: list to use
4004 *
4005 *	Place a packet after a given packet in a list. The list locks are taken
4006 *	and this function is atomic with respect to other list locked calls.
4007 *	A buffer cannot be placed on two lists at the same time.
4008 */
4009void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
4010{
4011	unsigned long flags;
4012
4013	spin_lock_irqsave(&list->lock, flags);
4014	__skb_queue_after(list, old, newsk);
4015	spin_unlock_irqrestore(&list->lock, flags);
4016}
4017EXPORT_SYMBOL(skb_append);
4018
4019static inline void skb_split_inside_header(struct sk_buff *skb,
4020					   struct sk_buff* skb1,
4021					   const u32 len, const int pos)
4022{
4023	int i;
4024
4025	skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
4026					 pos - len);
4027	/* And move data appendix as is. */
4028	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
4029		skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
4030
4031	skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
4032	skb_shinfo(skb)->nr_frags  = 0;
4033	skb1->data_len		   = skb->data_len;
4034	skb1->len		   += skb1->data_len;
4035	skb->data_len		   = 0;
4036	skb->len		   = len;
4037	skb_set_tail_pointer(skb, len);
4038}
4039
4040static inline void skb_split_no_header(struct sk_buff *skb,
4041				       struct sk_buff* skb1,
4042				       const u32 len, int pos)
4043{
4044	int i, k = 0;
4045	const int nfrags = skb_shinfo(skb)->nr_frags;
4046
4047	skb_shinfo(skb)->nr_frags = 0;
4048	skb1->len		  = skb1->data_len = skb->len - len;
4049	skb->len		  = len;
4050	skb->data_len		  = len - pos;
4051
4052	for (i = 0; i < nfrags; i++) {
4053		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
4054
4055		if (pos + size > len) {
4056			skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
4057
4058			if (pos < len) {
4059				/* Split frag.
4060				 * We have two variants in this case:
4061				 * 1. Move all the frag to the second
4062				 *    part, if it is possible. F.e.
4063				 *    this approach is mandatory for TUX,
4064				 *    where splitting is expensive.
4065				 * 2. Split is accurately. We make this.
4066				 */
4067				skb_frag_ref(skb, i);
4068				skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos);
4069				skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
4070				skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
4071				skb_shinfo(skb)->nr_frags++;
4072			}
4073			k++;
4074		} else
4075			skb_shinfo(skb)->nr_frags++;
4076		pos += size;
4077	}
4078	skb_shinfo(skb1)->nr_frags = k;
4079}
4080
4081/**
4082 * skb_split - Split fragmented skb to two parts at length len.
4083 * @skb: the buffer to split
4084 * @skb1: the buffer to receive the second part
4085 * @len: new length for skb
4086 */
4087void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
4088{
4089	int pos = skb_headlen(skb);
4090	const int zc_flags = SKBFL_SHARED_FRAG | SKBFL_PURE_ZEROCOPY;
4091
4092	skb_zcopy_downgrade_managed(skb);
4093
4094	skb_shinfo(skb1)->flags |= skb_shinfo(skb)->flags & zc_flags;
4095	skb_zerocopy_clone(skb1, skb, 0);
4096	if (len < pos)	/* Split line is inside header. */
4097		skb_split_inside_header(skb, skb1, len, pos);
4098	else		/* Second chunk has no header, nothing to copy. */
4099		skb_split_no_header(skb, skb1, len, pos);
4100}
4101EXPORT_SYMBOL(skb_split);
4102
4103/* Shifting from/to a cloned skb is a no-go.
4104 *
4105 * Caller cannot keep skb_shinfo related pointers past calling here!
4106 */
4107static int skb_prepare_for_shift(struct sk_buff *skb)
4108{
4109	return skb_unclone_keeptruesize(skb, GFP_ATOMIC);
4110}
4111
4112/**
4113 * skb_shift - Shifts paged data partially from skb to another
4114 * @tgt: buffer into which tail data gets added
4115 * @skb: buffer from which the paged data comes from
4116 * @shiftlen: shift up to this many bytes
4117 *
4118 * Attempts to shift up to shiftlen worth of bytes, which may be less than
4119 * the length of the skb, from skb to tgt. Returns number bytes shifted.
4120 * It's up to caller to free skb if everything was shifted.
4121 *
4122 * If @tgt runs out of frags, the whole operation is aborted.
4123 *
4124 * Skb cannot include anything else but paged data while tgt is allowed
4125 * to have non-paged data as well.
4126 *
4127 * TODO: full sized shift could be optimized but that would need
4128 * specialized skb free'er to handle frags without up-to-date nr_frags.
4129 */
4130int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
4131{
4132	int from, to, merge, todo;
4133	skb_frag_t *fragfrom, *fragto;
4134
4135	BUG_ON(shiftlen > skb->len);
4136
4137	if (skb_headlen(skb))
4138		return 0;
4139	if (skb_zcopy(tgt) || skb_zcopy(skb))
4140		return 0;
4141
4142	todo = shiftlen;
4143	from = 0;
4144	to = skb_shinfo(tgt)->nr_frags;
4145	fragfrom = &skb_shinfo(skb)->frags[from];
4146
4147	/* Actual merge is delayed until the point when we know we can
4148	 * commit all, so that we don't have to undo partial changes
4149	 */
4150	if (!to ||
4151	    !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
4152			      skb_frag_off(fragfrom))) {
4153		merge = -1;
4154	} else {
4155		merge = to - 1;
4156
4157		todo -= skb_frag_size(fragfrom);
4158		if (todo < 0) {
4159			if (skb_prepare_for_shift(skb) ||
4160			    skb_prepare_for_shift(tgt))
4161				return 0;
4162
4163			/* All previous frag pointers might be stale! */
4164			fragfrom = &skb_shinfo(skb)->frags[from];
4165			fragto = &skb_shinfo(tgt)->frags[merge];
4166
4167			skb_frag_size_add(fragto, shiftlen);
4168			skb_frag_size_sub(fragfrom, shiftlen);
4169			skb_frag_off_add(fragfrom, shiftlen);
4170
4171			goto onlymerged;
4172		}
4173
4174		from++;
4175	}
4176
4177	/* Skip full, not-fitting skb to avoid expensive operations */
4178	if ((shiftlen == skb->len) &&
4179	    (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
4180		return 0;
4181
4182	if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
4183		return 0;
4184
4185	while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
4186		if (to == MAX_SKB_FRAGS)
4187			return 0;
4188
4189		fragfrom = &skb_shinfo(skb)->frags[from];
4190		fragto = &skb_shinfo(tgt)->frags[to];
4191
4192		if (todo >= skb_frag_size(fragfrom)) {
4193			*fragto = *fragfrom;
4194			todo -= skb_frag_size(fragfrom);
4195			from++;
4196			to++;
4197
4198		} else {
4199			__skb_frag_ref(fragfrom);
4200			skb_frag_page_copy(fragto, fragfrom);
4201			skb_frag_off_copy(fragto, fragfrom);
4202			skb_frag_size_set(fragto, todo);
4203
4204			skb_frag_off_add(fragfrom, todo);
4205			skb_frag_size_sub(fragfrom, todo);
4206			todo = 0;
4207
4208			to++;
4209			break;
4210		}
4211	}
4212
4213	/* Ready to "commit" this state change to tgt */
4214	skb_shinfo(tgt)->nr_frags = to;
4215
4216	if (merge >= 0) {
4217		fragfrom = &skb_shinfo(skb)->frags[0];
4218		fragto = &skb_shinfo(tgt)->frags[merge];
4219
4220		skb_frag_size_add(fragto, skb_frag_size(fragfrom));
4221		__skb_frag_unref(fragfrom, skb->pp_recycle);
4222	}
4223
4224	/* Reposition in the original skb */
4225	to = 0;
4226	while (from < skb_shinfo(skb)->nr_frags)
4227		skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
4228	skb_shinfo(skb)->nr_frags = to;
4229
4230	BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
4231
4232onlymerged:
4233	/* Most likely the tgt won't ever need its checksum anymore, skb on
4234	 * the other hand might need it if it needs to be resent
4235	 */
4236	tgt->ip_summed = CHECKSUM_PARTIAL;
4237	skb->ip_summed = CHECKSUM_PARTIAL;
4238
4239	skb_len_add(skb, -shiftlen);
4240	skb_len_add(tgt, shiftlen);
4241
4242	return shiftlen;
4243}
4244
4245/**
4246 * skb_prepare_seq_read - Prepare a sequential read of skb data
4247 * @skb: the buffer to read
4248 * @from: lower offset of data to be read
4249 * @to: upper offset of data to be read
4250 * @st: state variable
4251 *
4252 * Initializes the specified state variable. Must be called before
4253 * invoking skb_seq_read() for the first time.
4254 */
4255void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
4256			  unsigned int to, struct skb_seq_state *st)
4257{
4258	st->lower_offset = from;
4259	st->upper_offset = to;
4260	st->root_skb = st->cur_skb = skb;
4261	st->frag_idx = st->stepped_offset = 0;
4262	st->frag_data = NULL;
4263	st->frag_off = 0;
4264}
4265EXPORT_SYMBOL(skb_prepare_seq_read);
4266
4267/**
4268 * skb_seq_read - Sequentially read skb data
4269 * @consumed: number of bytes consumed by the caller so far
4270 * @data: destination pointer for data to be returned
4271 * @st: state variable
4272 *
4273 * Reads a block of skb data at @consumed relative to the
4274 * lower offset specified to skb_prepare_seq_read(). Assigns
4275 * the head of the data block to @data and returns the length
4276 * of the block or 0 if the end of the skb data or the upper
4277 * offset has been reached.
4278 *
4279 * The caller is not required to consume all of the data
4280 * returned, i.e. @consumed is typically set to the number
4281 * of bytes already consumed and the next call to
4282 * skb_seq_read() will return the remaining part of the block.
4283 *
4284 * Note 1: The size of each block of data returned can be arbitrary,
4285 *       this limitation is the cost for zerocopy sequential
4286 *       reads of potentially non linear data.
4287 *
4288 * Note 2: Fragment lists within fragments are not implemented
4289 *       at the moment, state->root_skb could be replaced with
4290 *       a stack for this purpose.
4291 */
4292unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
4293			  struct skb_seq_state *st)
4294{
4295	unsigned int block_limit, abs_offset = consumed + st->lower_offset;
4296	skb_frag_t *frag;
4297
4298	if (unlikely(abs_offset >= st->upper_offset)) {
4299		if (st->frag_data) {
4300			kunmap_atomic(st->frag_data);
4301			st->frag_data = NULL;
4302		}
4303		return 0;
4304	}
4305
4306next_skb:
4307	block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
4308
4309	if (abs_offset < block_limit && !st->frag_data) {
4310		*data = st->cur_skb->data + (abs_offset - st->stepped_offset);
4311		return block_limit - abs_offset;
4312	}
4313
4314	if (st->frag_idx == 0 && !st->frag_data)
4315		st->stepped_offset += skb_headlen(st->cur_skb);
4316
4317	while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
4318		unsigned int pg_idx, pg_off, pg_sz;
4319
4320		frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
4321
4322		pg_idx = 0;
4323		pg_off = skb_frag_off(frag);
4324		pg_sz = skb_frag_size(frag);
4325
4326		if (skb_frag_must_loop(skb_frag_page(frag))) {
4327			pg_idx = (pg_off + st->frag_off) >> PAGE_SHIFT;
4328			pg_off = offset_in_page(pg_off + st->frag_off);
4329			pg_sz = min_t(unsigned int, pg_sz - st->frag_off,
4330						    PAGE_SIZE - pg_off);
4331		}
4332
4333		block_limit = pg_sz + st->stepped_offset;
4334		if (abs_offset < block_limit) {
4335			if (!st->frag_data)
4336				st->frag_data = kmap_atomic(skb_frag_page(frag) + pg_idx);
4337
4338			*data = (u8 *)st->frag_data + pg_off +
4339				(abs_offset - st->stepped_offset);
4340
4341			return block_limit - abs_offset;
4342		}
4343
4344		if (st->frag_data) {
4345			kunmap_atomic(st->frag_data);
4346			st->frag_data = NULL;
4347		}
4348
4349		st->stepped_offset += pg_sz;
4350		st->frag_off += pg_sz;
4351		if (st->frag_off == skb_frag_size(frag)) {
4352			st->frag_off = 0;
4353			st->frag_idx++;
4354		}
4355	}
4356
4357	if (st->frag_data) {
4358		kunmap_atomic(st->frag_data);
4359		st->frag_data = NULL;
4360	}
4361
4362	if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
4363		st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
4364		st->frag_idx = 0;
4365		goto next_skb;
4366	} else if (st->cur_skb->next) {
4367		st->cur_skb = st->cur_skb->next;
4368		st->frag_idx = 0;
4369		goto next_skb;
4370	}
4371
4372	return 0;
4373}
4374EXPORT_SYMBOL(skb_seq_read);
4375
4376/**
4377 * skb_abort_seq_read - Abort a sequential read of skb data
4378 * @st: state variable
4379 *
4380 * Must be called if skb_seq_read() was not called until it
4381 * returned 0.
4382 */
4383void skb_abort_seq_read(struct skb_seq_state *st)
4384{
4385	if (st->frag_data)
4386		kunmap_atomic(st->frag_data);
4387}
4388EXPORT_SYMBOL(skb_abort_seq_read);
4389
4390#define TS_SKB_CB(state)	((struct skb_seq_state *) &((state)->cb))
4391
4392static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
4393					  struct ts_config *conf,
4394					  struct ts_state *state)
4395{
4396	return skb_seq_read(offset, text, TS_SKB_CB(state));
4397}
4398
4399static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
4400{
4401	skb_abort_seq_read(TS_SKB_CB(state));
4402}
4403
4404/**
4405 * skb_find_text - Find a text pattern in skb data
4406 * @skb: the buffer to look in
4407 * @from: search offset
4408 * @to: search limit
4409 * @config: textsearch configuration
4410 *
4411 * Finds a pattern in the skb data according to the specified
4412 * textsearch configuration. Use textsearch_next() to retrieve
4413 * subsequent occurrences of the pattern. Returns the offset
4414 * to the first occurrence or UINT_MAX if no match was found.
4415 */
4416unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
4417			   unsigned int to, struct ts_config *config)
4418{
4419	unsigned int patlen = config->ops->get_pattern_len(config);
4420	struct ts_state state;
4421	unsigned int ret;
4422
4423	BUILD_BUG_ON(sizeof(struct skb_seq_state) > sizeof(state.cb));
4424
4425	config->get_next_block = skb_ts_get_next_block;
4426	config->finish = skb_ts_finish;
4427
4428	skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
4429
4430	ret = textsearch_find(config, &state);
4431	return (ret + patlen <= to - from ? ret : UINT_MAX);
4432}
4433EXPORT_SYMBOL(skb_find_text);
4434
4435int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
4436			 int offset, size_t size, size_t max_frags)
4437{
4438	int i = skb_shinfo(skb)->nr_frags;
4439
4440	if (skb_can_coalesce(skb, i, page, offset)) {
4441		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
4442	} else if (i < max_frags) {
4443		skb_zcopy_downgrade_managed(skb);
4444		get_page(page);
4445		skb_fill_page_desc_noacc(skb, i, page, offset, size);
4446	} else {
4447		return -EMSGSIZE;
4448	}
4449
4450	return 0;
4451}
4452EXPORT_SYMBOL_GPL(skb_append_pagefrags);
4453
4454/**
4455 *	skb_pull_rcsum - pull skb and update receive checksum
4456 *	@skb: buffer to update
4457 *	@len: length of data pulled
4458 *
4459 *	This function performs an skb_pull on the packet and updates
4460 *	the CHECKSUM_COMPLETE checksum.  It should be used on
4461 *	receive path processing instead of skb_pull unless you know
4462 *	that the checksum difference is zero (e.g., a valid IP header)
4463 *	or you are setting ip_summed to CHECKSUM_NONE.
4464 */
4465void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
4466{
4467	unsigned char *data = skb->data;
4468
4469	BUG_ON(len > skb->len);
4470	__skb_pull(skb, len);
4471	skb_postpull_rcsum(skb, data, len);
4472	return skb->data;
4473}
4474EXPORT_SYMBOL_GPL(skb_pull_rcsum);
4475
4476static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb)
4477{
4478	skb_frag_t head_frag;
4479	struct page *page;
4480
4481	page = virt_to_head_page(frag_skb->head);
4482	skb_frag_fill_page_desc(&head_frag, page, frag_skb->data -
4483				(unsigned char *)page_address(page),
4484				skb_headlen(frag_skb));
4485	return head_frag;
4486}
4487
4488struct sk_buff *skb_segment_list(struct sk_buff *skb,
4489				 netdev_features_t features,
4490				 unsigned int offset)
4491{
4492	struct sk_buff *list_skb = skb_shinfo(skb)->frag_list;
4493	unsigned int tnl_hlen = skb_tnl_header_len(skb);
4494	unsigned int delta_truesize = 0;
4495	unsigned int delta_len = 0;
4496	struct sk_buff *tail = NULL;
4497	struct sk_buff *nskb, *tmp;
4498	int len_diff, err;
4499
4500	skb_push(skb, -skb_network_offset(skb) + offset);
4501
4502	/* Ensure the head is writeable before touching the shared info */
4503	err = skb_unclone(skb, GFP_ATOMIC);
4504	if (err)
4505		goto err_linearize;
4506
4507	skb_shinfo(skb)->frag_list = NULL;
4508
4509	while (list_skb) {
4510		nskb = list_skb;
4511		list_skb = list_skb->next;
4512
4513		err = 0;
4514		delta_truesize += nskb->truesize;
4515		if (skb_shared(nskb)) {
4516			tmp = skb_clone(nskb, GFP_ATOMIC);
4517			if (tmp) {
4518				consume_skb(nskb);
4519				nskb = tmp;
4520				err = skb_unclone(nskb, GFP_ATOMIC);
4521			} else {
4522				err = -ENOMEM;
4523			}
4524		}
4525
4526		if (!tail)
4527			skb->next = nskb;
4528		else
4529			tail->next = nskb;
4530
4531		if (unlikely(err)) {
4532			nskb->next = list_skb;
4533			goto err_linearize;
4534		}
4535
4536		tail = nskb;
4537
4538		delta_len += nskb->len;
4539
4540		skb_push(nskb, -skb_network_offset(nskb) + offset);
4541
4542		skb_release_head_state(nskb);
4543		len_diff = skb_network_header_len(nskb) - skb_network_header_len(skb);
4544		__copy_skb_header(nskb, skb);
4545
4546		skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb));
4547		nskb->transport_header += len_diff;
4548		skb_copy_from_linear_data_offset(skb, -tnl_hlen,
4549						 nskb->data - tnl_hlen,
4550						 offset + tnl_hlen);
4551
4552		if (skb_needs_linearize(nskb, features) &&
4553		    __skb_linearize(nskb))
4554			goto err_linearize;
4555	}
4556
4557	skb->truesize = skb->truesize - delta_truesize;
4558	skb->data_len = skb->data_len - delta_len;
4559	skb->len = skb->len - delta_len;
4560
4561	skb_gso_reset(skb);
4562
4563	skb->prev = tail;
4564
4565	if (skb_needs_linearize(skb, features) &&
4566	    __skb_linearize(skb))
4567		goto err_linearize;
4568
4569	skb_get(skb);
4570
4571	return skb;
4572
4573err_linearize:
4574	kfree_skb_list(skb->next);
4575	skb->next = NULL;
4576	return ERR_PTR(-ENOMEM);
4577}
4578EXPORT_SYMBOL_GPL(skb_segment_list);
4579
4580/**
4581 *	skb_segment - Perform protocol segmentation on skb.
4582 *	@head_skb: buffer to segment
4583 *	@features: features for the output path (see dev->features)
4584 *
4585 *	This function performs segmentation on the given skb.  It returns
4586 *	a pointer to the first in a list of new skbs for the segments.
4587 *	In case of error it returns ERR_PTR(err).
4588 */
4589struct sk_buff *skb_segment(struct sk_buff *head_skb,
4590			    netdev_features_t features)
4591{
4592	struct sk_buff *segs = NULL;
4593	struct sk_buff *tail = NULL;
4594	struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
4595	unsigned int mss = skb_shinfo(head_skb)->gso_size;
4596	unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
4597	unsigned int offset = doffset;
4598	unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
4599	unsigned int partial_segs = 0;
4600	unsigned int headroom;
4601	unsigned int len = head_skb->len;
4602	struct sk_buff *frag_skb;
4603	skb_frag_t *frag;
4604	__be16 proto;
4605	bool csum, sg;
4606	int err = -ENOMEM;
4607	int i = 0;
4608	int nfrags, pos;
4609
4610	if ((skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY) &&
4611	    mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb)) {
4612		struct sk_buff *check_skb;
4613
4614		for (check_skb = list_skb; check_skb; check_skb = check_skb->next) {
4615			if (skb_headlen(check_skb) && !check_skb->head_frag) {
4616				/* gso_size is untrusted, and we have a frag_list with
4617				 * a linear non head_frag item.
4618				 *
4619				 * If head_skb's headlen does not fit requested gso_size,
4620				 * it means that the frag_list members do NOT terminate
4621				 * on exact gso_size boundaries. Hence we cannot perform
4622				 * skb_frag_t page sharing. Therefore we must fallback to
4623				 * copying the frag_list skbs; we do so by disabling SG.
4624				 */
4625				features &= ~NETIF_F_SG;
4626				break;
4627			}
4628		}
4629	}
4630
4631	__skb_push(head_skb, doffset);
4632	proto = skb_network_protocol(head_skb, NULL);
4633	if (unlikely(!proto))
4634		return ERR_PTR(-EINVAL);
4635
4636	sg = !!(features & NETIF_F_SG);
4637	csum = !!can_checksum_protocol(features, proto);
4638
4639	if (sg && csum && (mss != GSO_BY_FRAGS))  {
4640		if (!(features & NETIF_F_GSO_PARTIAL)) {
4641			struct sk_buff *iter;
4642			unsigned int frag_len;
4643
4644			if (!list_skb ||
4645			    !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
4646				goto normal;
4647
4648			/* If we get here then all the required
4649			 * GSO features except frag_list are supported.
4650			 * Try to split the SKB to multiple GSO SKBs
4651			 * with no frag_list.
4652			 * Currently we can do that only when the buffers don't
4653			 * have a linear part and all the buffers except
4654			 * the last are of the same length.
4655			 */
4656			frag_len = list_skb->len;
4657			skb_walk_frags(head_skb, iter) {
4658				if (frag_len != iter->len && iter->next)
4659					goto normal;
4660				if (skb_headlen(iter) && !iter->head_frag)
4661					goto normal;
4662
4663				len -= iter->len;
4664			}
4665
4666			if (len != frag_len)
4667				goto normal;
4668		}
4669
4670		/* GSO partial only requires that we trim off any excess that
4671		 * doesn't fit into an MSS sized block, so take care of that
4672		 * now.
4673		 * Cap len to not accidentally hit GSO_BY_FRAGS.
4674		 */
4675		partial_segs = min(len, GSO_BY_FRAGS - 1) / mss;
4676		if (partial_segs > 1)
4677			mss *= partial_segs;
4678		else
4679			partial_segs = 0;
4680	}
4681
4682normal:
4683	headroom = skb_headroom(head_skb);
4684	pos = skb_headlen(head_skb);
4685
4686	if (skb_orphan_frags(head_skb, GFP_ATOMIC))
4687		return ERR_PTR(-ENOMEM);
4688
4689	nfrags = skb_shinfo(head_skb)->nr_frags;
4690	frag = skb_shinfo(head_skb)->frags;
4691	frag_skb = head_skb;
4692
4693	do {
4694		struct sk_buff *nskb;
4695		skb_frag_t *nskb_frag;
4696		int hsize;
4697		int size;
4698
4699		if (unlikely(mss == GSO_BY_FRAGS)) {
4700			len = list_skb->len;
4701		} else {
4702			len = head_skb->len - offset;
4703			if (len > mss)
4704				len = mss;
4705		}
4706
4707		hsize = skb_headlen(head_skb) - offset;
4708
4709		if (hsize <= 0 && i >= nfrags && skb_headlen(list_skb) &&
4710		    (skb_headlen(list_skb) == len || sg)) {
4711			BUG_ON(skb_headlen(list_skb) > len);
4712
4713			nskb = skb_clone(list_skb, GFP_ATOMIC);
4714			if (unlikely(!nskb))
4715				goto err;
4716
4717			i = 0;
4718			nfrags = skb_shinfo(list_skb)->nr_frags;
4719			frag = skb_shinfo(list_skb)->frags;
4720			frag_skb = list_skb;
4721			pos += skb_headlen(list_skb);
4722
4723			while (pos < offset + len) {
4724				BUG_ON(i >= nfrags);
4725
4726				size = skb_frag_size(frag);
4727				if (pos + size > offset + len)
4728					break;
4729
4730				i++;
4731				pos += size;
4732				frag++;
4733			}
4734
4735			list_skb = list_skb->next;
4736
4737			if (unlikely(pskb_trim(nskb, len))) {
4738				kfree_skb(nskb);
4739				goto err;
4740			}
4741
4742			hsize = skb_end_offset(nskb);
4743			if (skb_cow_head(nskb, doffset + headroom)) {
4744				kfree_skb(nskb);
4745				goto err;
4746			}
4747
4748			nskb->truesize += skb_end_offset(nskb) - hsize;
4749			skb_release_head_state(nskb);
4750			__skb_push(nskb, doffset);
4751		} else {
4752			if (hsize < 0)
4753				hsize = 0;
4754			if (hsize > len || !sg)
4755				hsize = len;
4756
4757			nskb = __alloc_skb(hsize + doffset + headroom,
4758					   GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
4759					   NUMA_NO_NODE);
4760
4761			if (unlikely(!nskb))
4762				goto err;
4763
4764			skb_reserve(nskb, headroom);
4765			__skb_put(nskb, doffset);
4766		}
4767
4768		if (segs)
4769			tail->next = nskb;
4770		else
4771			segs = nskb;
4772		tail = nskb;
4773
4774		__copy_skb_header(nskb, head_skb);
4775
4776		skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
4777		skb_reset_mac_len(nskb);
4778
4779		skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
4780						 nskb->data - tnl_hlen,
4781						 doffset + tnl_hlen);
4782
4783		if (nskb->len == len + doffset)
4784			goto perform_csum_check;
4785
4786		if (!sg) {
4787			if (!csum) {
4788				if (!nskb->remcsum_offload)
4789					nskb->ip_summed = CHECKSUM_NONE;
4790				SKB_GSO_CB(nskb)->csum =
4791					skb_copy_and_csum_bits(head_skb, offset,
4792							       skb_put(nskb,
4793								       len),
4794							       len);
4795				SKB_GSO_CB(nskb)->csum_start =
4796					skb_headroom(nskb) + doffset;
4797			} else {
4798				if (skb_copy_bits(head_skb, offset, skb_put(nskb, len), len))
4799					goto err;
4800			}
4801			continue;
4802		}
4803
4804		nskb_frag = skb_shinfo(nskb)->frags;
4805
4806		skb_copy_from_linear_data_offset(head_skb, offset,
4807						 skb_put(nskb, hsize), hsize);
4808
4809		skb_shinfo(nskb)->flags |= skb_shinfo(head_skb)->flags &
4810					   SKBFL_SHARED_FRAG;
4811
4812		if (skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC))
4813			goto err;
4814
4815		while (pos < offset + len) {
4816			if (i >= nfrags) {
4817				if (skb_orphan_frags(list_skb, GFP_ATOMIC) ||
4818				    skb_zerocopy_clone(nskb, list_skb,
4819						       GFP_ATOMIC))
4820					goto err;
4821
4822				i = 0;
4823				nfrags = skb_shinfo(list_skb)->nr_frags;
4824				frag = skb_shinfo(list_skb)->frags;
4825				frag_skb = list_skb;
4826				if (!skb_headlen(list_skb)) {
4827					BUG_ON(!nfrags);
4828				} else {
4829					BUG_ON(!list_skb->head_frag);
4830
4831					/* to make room for head_frag. */
4832					i--;
4833					frag--;
4834				}
4835
4836				list_skb = list_skb->next;
4837			}
4838
4839			if (unlikely(skb_shinfo(nskb)->nr_frags >=
4840				     MAX_SKB_FRAGS)) {
4841				net_warn_ratelimited(
4842					"skb_segment: too many frags: %u %u\n",
4843					pos, mss);
4844				err = -EINVAL;
4845				goto err;
4846			}
4847
4848			*nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag;
4849			__skb_frag_ref(nskb_frag);
4850			size = skb_frag_size(nskb_frag);
4851
4852			if (pos < offset) {
4853				skb_frag_off_add(nskb_frag, offset - pos);
4854				skb_frag_size_sub(nskb_frag, offset - pos);
4855			}
4856
4857			skb_shinfo(nskb)->nr_frags++;
4858
4859			if (pos + size <= offset + len) {
4860				i++;
4861				frag++;
4862				pos += size;
4863			} else {
4864				skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
4865				goto skip_fraglist;
4866			}
4867
4868			nskb_frag++;
4869		}
4870
4871skip_fraglist:
4872		nskb->data_len = len - hsize;
4873		nskb->len += nskb->data_len;
4874		nskb->truesize += nskb->data_len;
4875
4876perform_csum_check:
4877		if (!csum) {
4878			if (skb_has_shared_frag(nskb) &&
4879			    __skb_linearize(nskb))
4880				goto err;
4881
4882			if (!nskb->remcsum_offload)
4883				nskb->ip_summed = CHECKSUM_NONE;
4884			SKB_GSO_CB(nskb)->csum =
4885				skb_checksum(nskb, doffset,
4886					     nskb->len - doffset, 0);
4887			SKB_GSO_CB(nskb)->csum_start =
4888				skb_headroom(nskb) + doffset;
4889		}
4890	} while ((offset += len) < head_skb->len);
4891
4892	/* Some callers want to get the end of the list.
4893	 * Put it in segs->prev to avoid walking the list.
4894	 * (see validate_xmit_skb_list() for example)
4895	 */
4896	segs->prev = tail;
4897
4898	if (partial_segs) {
4899		struct sk_buff *iter;
4900		int type = skb_shinfo(head_skb)->gso_type;
4901		unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
4902
4903		/* Update type to add partial and then remove dodgy if set */
4904		type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
4905		type &= ~SKB_GSO_DODGY;
4906
4907		/* Update GSO info and prepare to start updating headers on
4908		 * our way back down the stack of protocols.
4909		 */
4910		for (iter = segs; iter; iter = iter->next) {
4911			skb_shinfo(iter)->gso_size = gso_size;
4912			skb_shinfo(iter)->gso_segs = partial_segs;
4913			skb_shinfo(iter)->gso_type = type;
4914			SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
4915		}
4916
4917		if (tail->len - doffset <= gso_size)
4918			skb_shinfo(tail)->gso_size = 0;
4919		else if (tail != segs)
4920			skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
4921	}
4922
4923	/* Following permits correct backpressure, for protocols
4924	 * using skb_set_owner_w().
4925	 * Idea is to tranfert ownership from head_skb to last segment.
4926	 */
4927	if (head_skb->destructor == sock_wfree) {
4928		swap(tail->truesize, head_skb->truesize);
4929		swap(tail->destructor, head_skb->destructor);
4930		swap(tail->sk, head_skb->sk);
4931	}
4932	return segs;
4933
4934err:
4935	kfree_skb_list(segs);
4936	return ERR_PTR(err);
4937}
4938EXPORT_SYMBOL_GPL(skb_segment);
4939
4940#ifdef CONFIG_SKB_EXTENSIONS
4941#define SKB_EXT_ALIGN_VALUE	8
4942#define SKB_EXT_CHUNKSIZEOF(x)	(ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE)
4943
4944static const u8 skb_ext_type_len[] = {
4945#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4946	[SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info),
4947#endif
4948#ifdef CONFIG_XFRM
4949	[SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path),
4950#endif
4951#if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4952	[TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext),
4953#endif
4954#if IS_ENABLED(CONFIG_MPTCP)
4955	[SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext),
4956#endif
4957#if IS_ENABLED(CONFIG_MCTP_FLOWS)
4958	[SKB_EXT_MCTP] = SKB_EXT_CHUNKSIZEOF(struct mctp_flow),
4959#endif
4960};
4961
4962static __always_inline unsigned int skb_ext_total_length(void)
4963{
4964	unsigned int l = SKB_EXT_CHUNKSIZEOF(struct skb_ext);
4965	int i;
4966
4967	for (i = 0; i < ARRAY_SIZE(skb_ext_type_len); i++)
4968		l += skb_ext_type_len[i];
4969
4970	return l;
4971}
4972
4973static void skb_extensions_init(void)
4974{
4975	BUILD_BUG_ON(SKB_EXT_NUM >= 8);
4976#if !IS_ENABLED(CONFIG_KCOV_INSTRUMENT_ALL)
4977	BUILD_BUG_ON(skb_ext_total_length() > 255);
4978#endif
4979
4980	skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache",
4981					     SKB_EXT_ALIGN_VALUE * skb_ext_total_length(),
4982					     0,
4983					     SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4984					     NULL);
4985}
4986#else
4987static void skb_extensions_init(void) {}
4988#endif
4989
4990/* The SKB kmem_cache slab is critical for network performance.  Never
4991 * merge/alias the slab with similar sized objects.  This avoids fragmentation
4992 * that hurts performance of kmem_cache_{alloc,free}_bulk APIs.
4993 */
4994#ifndef CONFIG_SLUB_TINY
4995#define FLAG_SKB_NO_MERGE	SLAB_NO_MERGE
4996#else /* CONFIG_SLUB_TINY - simple loop in kmem_cache_alloc_bulk */
4997#define FLAG_SKB_NO_MERGE	0
4998#endif
4999
5000void __init skb_init(void)
5001{
5002	net_hotdata.skbuff_cache = kmem_cache_create_usercopy("skbuff_head_cache",
5003					      sizeof(struct sk_buff),
5004					      0,
5005					      SLAB_HWCACHE_ALIGN|SLAB_PANIC|
5006						FLAG_SKB_NO_MERGE,
5007					      offsetof(struct sk_buff, cb),
5008					      sizeof_field(struct sk_buff, cb),
5009					      NULL);
5010	net_hotdata.skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
5011						sizeof(struct sk_buff_fclones),
5012						0,
5013						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
5014						NULL);
5015	/* usercopy should only access first SKB_SMALL_HEAD_HEADROOM bytes.
5016	 * struct skb_shared_info is located at the end of skb->head,
5017	 * and should not be copied to/from user.
5018	 */
5019	net_hotdata.skb_small_head_cache = kmem_cache_create_usercopy("skbuff_small_head",
5020						SKB_SMALL_HEAD_CACHE_SIZE,
5021						0,
5022						SLAB_HWCACHE_ALIGN | SLAB_PANIC,
5023						0,
5024						SKB_SMALL_HEAD_HEADROOM,
5025						NULL);
5026	skb_extensions_init();
5027}
5028
5029static int
5030__skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len,
5031	       unsigned int recursion_level)
5032{
5033	int start = skb_headlen(skb);
5034	int i, copy = start - offset;
5035	struct sk_buff *frag_iter;
5036	int elt = 0;
5037
5038	if (unlikely(recursion_level >= 24))
5039		return -EMSGSIZE;
5040
5041	if (copy > 0) {
5042		if (copy > len)
5043			copy = len;
5044		sg_set_buf(sg, skb->data + offset, copy);
5045		elt++;
5046		if ((len -= copy) == 0)
5047			return elt;
5048		offset += copy;
5049	}
5050
5051	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
5052		int end;
5053
5054		WARN_ON(start > offset + len);
5055
5056		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
5057		if ((copy = end - offset) > 0) {
5058			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
5059			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
5060				return -EMSGSIZE;
5061
5062			if (copy > len)
5063				copy = len;
5064			sg_set_page(&sg[elt], skb_frag_page(frag), copy,
5065				    skb_frag_off(frag) + offset - start);
5066			elt++;
5067			if (!(len -= copy))
5068				return elt;
5069			offset += copy;
5070		}
5071		start = end;
5072	}
5073
5074	skb_walk_frags(skb, frag_iter) {
5075		int end, ret;
5076
5077		WARN_ON(start > offset + len);
5078
5079		end = start + frag_iter->len;
5080		if ((copy = end - offset) > 0) {
5081			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
5082				return -EMSGSIZE;
5083
5084			if (copy > len)
5085				copy = len;
5086			ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start,
5087					      copy, recursion_level + 1);
5088			if (unlikely(ret < 0))
5089				return ret;
5090			elt += ret;
5091			if ((len -= copy) == 0)
5092				return elt;
5093			offset += copy;
5094		}
5095		start = end;
5096	}
5097	BUG_ON(len);
5098	return elt;
5099}
5100
5101/**
5102 *	skb_to_sgvec - Fill a scatter-gather list from a socket buffer
5103 *	@skb: Socket buffer containing the buffers to be mapped
5104 *	@sg: The scatter-gather list to map into
5105 *	@offset: The offset into the buffer's contents to start mapping
5106 *	@len: Length of buffer space to be mapped
5107 *
5108 *	Fill the specified scatter-gather list with mappings/pointers into a
5109 *	region of the buffer space attached to a socket buffer. Returns either
5110 *	the number of scatterlist items used, or -EMSGSIZE if the contents
5111 *	could not fit.
5112 */
5113int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
5114{
5115	int nsg = __skb_to_sgvec(skb, sg, offset, len, 0);
5116
5117	if (nsg <= 0)
5118		return nsg;
5119
5120	sg_mark_end(&sg[nsg - 1]);
5121
5122	return nsg;
5123}
5124EXPORT_SYMBOL_GPL(skb_to_sgvec);
5125
5126/* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
5127 * sglist without mark the sg which contain last skb data as the end.
5128 * So the caller can mannipulate sg list as will when padding new data after
5129 * the first call without calling sg_unmark_end to expend sg list.
5130 *
5131 * Scenario to use skb_to_sgvec_nomark:
5132 * 1. sg_init_table
5133 * 2. skb_to_sgvec_nomark(payload1)
5134 * 3. skb_to_sgvec_nomark(payload2)
5135 *
5136 * This is equivalent to:
5137 * 1. sg_init_table
5138 * 2. skb_to_sgvec(payload1)
5139 * 3. sg_unmark_end
5140 * 4. skb_to_sgvec(payload2)
5141 *
5142 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
5143 * is more preferable.
5144 */
5145int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
5146			int offset, int len)
5147{
5148	return __skb_to_sgvec(skb, sg, offset, len, 0);
5149}
5150EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
5151
5152
5153
5154/**
5155 *	skb_cow_data - Check that a socket buffer's data buffers are writable
5156 *	@skb: The socket buffer to check.
5157 *	@tailbits: Amount of trailing space to be added
5158 *	@trailer: Returned pointer to the skb where the @tailbits space begins
5159 *
5160 *	Make sure that the data buffers attached to a socket buffer are
5161 *	writable. If they are not, private copies are made of the data buffers
5162 *	and the socket buffer is set to use these instead.
5163 *
5164 *	If @tailbits is given, make sure that there is space to write @tailbits
5165 *	bytes of data beyond current end of socket buffer.  @trailer will be
5166 *	set to point to the skb in which this space begins.
5167 *
5168 *	The number of scatterlist elements required to completely map the
5169 *	COW'd and extended socket buffer will be returned.
5170 */
5171int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
5172{
5173	int copyflag;
5174	int elt;
5175	struct sk_buff *skb1, **skb_p;
5176
5177	/* If skb is cloned or its head is paged, reallocate
5178	 * head pulling out all the pages (pages are considered not writable
5179	 * at the moment even if they are anonymous).
5180	 */
5181	if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
5182	    !__pskb_pull_tail(skb, __skb_pagelen(skb)))
5183		return -ENOMEM;
5184
5185	/* Easy case. Most of packets will go this way. */
5186	if (!skb_has_frag_list(skb)) {
5187		/* A little of trouble, not enough of space for trailer.
5188		 * This should not happen, when stack is tuned to generate
5189		 * good frames. OK, on miss we reallocate and reserve even more
5190		 * space, 128 bytes is fair. */
5191
5192		if (skb_tailroom(skb) < tailbits &&
5193		    pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
5194			return -ENOMEM;
5195
5196		/* Voila! */
5197		*trailer = skb;
5198		return 1;
5199	}
5200
5201	/* Misery. We are in troubles, going to mincer fragments... */
5202
5203	elt = 1;
5204	skb_p = &skb_shinfo(skb)->frag_list;
5205	copyflag = 0;
5206
5207	while ((skb1 = *skb_p) != NULL) {
5208		int ntail = 0;
5209
5210		/* The fragment is partially pulled by someone,
5211		 * this can happen on input. Copy it and everything
5212		 * after it. */
5213
5214		if (skb_shared(skb1))
5215			copyflag = 1;
5216
5217		/* If the skb is the last, worry about trailer. */
5218
5219		if (skb1->next == NULL && tailbits) {
5220			if (skb_shinfo(skb1)->nr_frags ||
5221			    skb_has_frag_list(skb1) ||
5222			    skb_tailroom(skb1) < tailbits)
5223				ntail = tailbits + 128;
5224		}
5225
5226		if (copyflag ||
5227		    skb_cloned(skb1) ||
5228		    ntail ||
5229		    skb_shinfo(skb1)->nr_frags ||
5230		    skb_has_frag_list(skb1)) {
5231			struct sk_buff *skb2;
5232
5233			/* Fuck, we are miserable poor guys... */
5234			if (ntail == 0)
5235				skb2 = skb_copy(skb1, GFP_ATOMIC);
5236			else
5237				skb2 = skb_copy_expand(skb1,
5238						       skb_headroom(skb1),
5239						       ntail,
5240						       GFP_ATOMIC);
5241			if (unlikely(skb2 == NULL))
5242				return -ENOMEM;
5243
5244			if (skb1->sk)
5245				skb_set_owner_w(skb2, skb1->sk);
5246
5247			/* Looking around. Are we still alive?
5248			 * OK, link new skb, drop old one */
5249
5250			skb2->next = skb1->next;
5251			*skb_p = skb2;
5252			kfree_skb(skb1);
5253			skb1 = skb2;
5254		}
5255		elt++;
5256		*trailer = skb1;
5257		skb_p = &skb1->next;
5258	}
5259
5260	return elt;
5261}
5262EXPORT_SYMBOL_GPL(skb_cow_data);
5263
5264static void sock_rmem_free(struct sk_buff *skb)
5265{
5266	struct sock *sk = skb->sk;
5267
5268	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
5269}
5270
5271static void skb_set_err_queue(struct sk_buff *skb)
5272{
5273	/* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
5274	 * So, it is safe to (mis)use it to mark skbs on the error queue.
5275	 */
5276	skb->pkt_type = PACKET_OUTGOING;
5277	BUILD_BUG_ON(PACKET_OUTGOING == 0);
5278}
5279
5280/*
5281 * Note: We dont mem charge error packets (no sk_forward_alloc changes)
5282 */
5283int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
5284{
5285	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
5286	    (unsigned int)READ_ONCE(sk->sk_rcvbuf))
5287		return -ENOMEM;
5288
5289	skb_orphan(skb);
5290	skb->sk = sk;
5291	skb->destructor = sock_rmem_free;
5292	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
5293	skb_set_err_queue(skb);
5294
5295	/* before exiting rcu section, make sure dst is refcounted */
5296	skb_dst_force(skb);
5297
5298	skb_queue_tail(&sk->sk_error_queue, skb);
5299	if (!sock_flag(sk, SOCK_DEAD))
5300		sk_error_report(sk);
5301	return 0;
5302}
5303EXPORT_SYMBOL(sock_queue_err_skb);
5304
5305static bool is_icmp_err_skb(const struct sk_buff *skb)
5306{
5307	return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
5308		       SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
5309}
5310
5311struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
5312{
5313	struct sk_buff_head *q = &sk->sk_error_queue;
5314	struct sk_buff *skb, *skb_next = NULL;
5315	bool icmp_next = false;
5316	unsigned long flags;
5317
5318	if (skb_queue_empty_lockless(q))
5319		return NULL;
5320
5321	spin_lock_irqsave(&q->lock, flags);
5322	skb = __skb_dequeue(q);
5323	if (skb && (skb_next = skb_peek(q))) {
5324		icmp_next = is_icmp_err_skb(skb_next);
5325		if (icmp_next)
5326			sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_errno;
5327	}
5328	spin_unlock_irqrestore(&q->lock, flags);
5329
5330	if (is_icmp_err_skb(skb) && !icmp_next)
5331		sk->sk_err = 0;
5332
5333	if (skb_next)
5334		sk_error_report(sk);
5335
5336	return skb;
5337}
5338EXPORT_SYMBOL(sock_dequeue_err_skb);
5339
5340/**
5341 * skb_clone_sk - create clone of skb, and take reference to socket
5342 * @skb: the skb to clone
5343 *
5344 * This function creates a clone of a buffer that holds a reference on
5345 * sk_refcnt.  Buffers created via this function are meant to be
5346 * returned using sock_queue_err_skb, or free via kfree_skb.
5347 *
5348 * When passing buffers allocated with this function to sock_queue_err_skb
5349 * it is necessary to wrap the call with sock_hold/sock_put in order to
5350 * prevent the socket from being released prior to being enqueued on
5351 * the sk_error_queue.
5352 */
5353struct sk_buff *skb_clone_sk(struct sk_buff *skb)
5354{
5355	struct sock *sk = skb->sk;
5356	struct sk_buff *clone;
5357
5358	if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
5359		return NULL;
5360
5361	clone = skb_clone(skb, GFP_ATOMIC);
5362	if (!clone) {
5363		sock_put(sk);
5364		return NULL;
5365	}
5366
5367	clone->sk = sk;
5368	clone->destructor = sock_efree;
5369
5370	return clone;
5371}
5372EXPORT_SYMBOL(skb_clone_sk);
5373
5374static void __skb_complete_tx_timestamp(struct sk_buff *skb,
5375					struct sock *sk,
5376					int tstype,
5377					bool opt_stats)
5378{
5379	struct sock_exterr_skb *serr;
5380	int err;
5381
5382	BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb));
5383
5384	serr = SKB_EXT_ERR(skb);
5385	memset(serr, 0, sizeof(*serr));
5386	serr->ee.ee_errno = ENOMSG;
5387	serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
5388	serr->ee.ee_info = tstype;
5389	serr->opt_stats = opt_stats;
5390	serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
5391	if (READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_OPT_ID) {
5392		serr->ee.ee_data = skb_shinfo(skb)->tskey;
5393		if (sk_is_tcp(sk))
5394			serr->ee.ee_data -= atomic_read(&sk->sk_tskey);
5395	}
5396
5397	err = sock_queue_err_skb(sk, skb);
5398
5399	if (err)
5400		kfree_skb(skb);
5401}
5402
5403static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
5404{
5405	bool ret;
5406
5407	if (likely(READ_ONCE(sysctl_tstamp_allow_data) || tsonly))
5408		return true;
5409
5410	read_lock_bh(&sk->sk_callback_lock);
5411	ret = sk->sk_socket && sk->sk_socket->file &&
5412	      file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
5413	read_unlock_bh(&sk->sk_callback_lock);
5414	return ret;
5415}
5416
5417void skb_complete_tx_timestamp(struct sk_buff *skb,
5418			       struct skb_shared_hwtstamps *hwtstamps)
5419{
5420	struct sock *sk = skb->sk;
5421
5422	if (!skb_may_tx_timestamp(sk, false))
5423		goto err;
5424
5425	/* Take a reference to prevent skb_orphan() from freeing the socket,
5426	 * but only if the socket refcount is not zero.
5427	 */
5428	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
5429		*skb_hwtstamps(skb) = *hwtstamps;
5430		__skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false);
5431		sock_put(sk);
5432		return;
5433	}
5434
5435err:
5436	kfree_skb(skb);
5437}
5438EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
5439
5440void __skb_tstamp_tx(struct sk_buff *orig_skb,
5441		     const struct sk_buff *ack_skb,
5442		     struct skb_shared_hwtstamps *hwtstamps,
5443		     struct sock *sk, int tstype)
5444{
5445	struct sk_buff *skb;
5446	bool tsonly, opt_stats = false;
5447	u32 tsflags;
5448
5449	if (!sk)
5450		return;
5451
5452	tsflags = READ_ONCE(sk->sk_tsflags);
5453	if (!hwtstamps && !(tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) &&
5454	    skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS)
5455		return;
5456
5457	tsonly = tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
5458	if (!skb_may_tx_timestamp(sk, tsonly))
5459		return;
5460
5461	if (tsonly) {
5462#ifdef CONFIG_INET
5463		if ((tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
5464		    sk_is_tcp(sk)) {
5465			skb = tcp_get_timestamping_opt_stats(sk, orig_skb,
5466							     ack_skb);
5467			opt_stats = true;
5468		} else
5469#endif
5470			skb = alloc_skb(0, GFP_ATOMIC);
5471	} else {
5472		skb = skb_clone(orig_skb, GFP_ATOMIC);
5473
5474		if (skb_orphan_frags_rx(skb, GFP_ATOMIC)) {
5475			kfree_skb(skb);
5476			return;
5477		}
5478	}
5479	if (!skb)
5480		return;
5481
5482	if (tsonly) {
5483		skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags &
5484					     SKBTX_ANY_TSTAMP;
5485		skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
5486	}
5487
5488	if (hwtstamps)
5489		*skb_hwtstamps(skb) = *hwtstamps;
5490	else
5491		__net_timestamp(skb);
5492
5493	__skb_complete_tx_timestamp(skb, sk, tstype, opt_stats);
5494}
5495EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
5496
5497void skb_tstamp_tx(struct sk_buff *orig_skb,
5498		   struct skb_shared_hwtstamps *hwtstamps)
5499{
5500	return __skb_tstamp_tx(orig_skb, NULL, hwtstamps, orig_skb->sk,
5501			       SCM_TSTAMP_SND);
5502}
5503EXPORT_SYMBOL_GPL(skb_tstamp_tx);
5504
5505#ifdef CONFIG_WIRELESS
5506void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
5507{
5508	struct sock *sk = skb->sk;
5509	struct sock_exterr_skb *serr;
5510	int err = 1;
5511
5512	skb->wifi_acked_valid = 1;
5513	skb->wifi_acked = acked;
5514
5515	serr = SKB_EXT_ERR(skb);
5516	memset(serr, 0, sizeof(*serr));
5517	serr->ee.ee_errno = ENOMSG;
5518	serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
5519
5520	/* Take a reference to prevent skb_orphan() from freeing the socket,
5521	 * but only if the socket refcount is not zero.
5522	 */
5523	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
5524		err = sock_queue_err_skb(sk, skb);
5525		sock_put(sk);
5526	}
5527	if (err)
5528		kfree_skb(skb);
5529}
5530EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
5531#endif /* CONFIG_WIRELESS */
5532
5533/**
5534 * skb_partial_csum_set - set up and verify partial csum values for packet
5535 * @skb: the skb to set
5536 * @start: the number of bytes after skb->data to start checksumming.
5537 * @off: the offset from start to place the checksum.
5538 *
5539 * For untrusted partially-checksummed packets, we need to make sure the values
5540 * for skb->csum_start and skb->csum_offset are valid so we don't oops.
5541 *
5542 * This function checks and sets those values and skb->ip_summed: if this
5543 * returns false you should drop the packet.
5544 */
5545bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
5546{
5547	u32 csum_end = (u32)start + (u32)off + sizeof(__sum16);
5548	u32 csum_start = skb_headroom(skb) + (u32)start;
5549
5550	if (unlikely(csum_start >= U16_MAX || csum_end > skb_headlen(skb))) {
5551		net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n",
5552				     start, off, skb_headroom(skb), skb_headlen(skb));
5553		return false;
5554	}
5555	skb->ip_summed = CHECKSUM_PARTIAL;
5556	skb->csum_start = csum_start;
5557	skb->csum_offset = off;
5558	skb->transport_header = csum_start;
5559	return true;
5560}
5561EXPORT_SYMBOL_GPL(skb_partial_csum_set);
5562
5563static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
5564			       unsigned int max)
5565{
5566	if (skb_headlen(skb) >= len)
5567		return 0;
5568
5569	/* If we need to pullup then pullup to the max, so we
5570	 * won't need to do it again.
5571	 */
5572	if (max > skb->len)
5573		max = skb->len;
5574
5575	if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
5576		return -ENOMEM;
5577
5578	if (skb_headlen(skb) < len)
5579		return -EPROTO;
5580
5581	return 0;
5582}
5583
5584#define MAX_TCP_HDR_LEN (15 * 4)
5585
5586static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
5587				      typeof(IPPROTO_IP) proto,
5588				      unsigned int off)
5589{
5590	int err;
5591
5592	switch (proto) {
5593	case IPPROTO_TCP:
5594		err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
5595					  off + MAX_TCP_HDR_LEN);
5596		if (!err && !skb_partial_csum_set(skb, off,
5597						  offsetof(struct tcphdr,
5598							   check)))
5599			err = -EPROTO;
5600		return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
5601
5602	case IPPROTO_UDP:
5603		err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
5604					  off + sizeof(struct udphdr));
5605		if (!err && !skb_partial_csum_set(skb, off,
5606						  offsetof(struct udphdr,
5607							   check)))
5608			err = -EPROTO;
5609		return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
5610	}
5611
5612	return ERR_PTR(-EPROTO);
5613}
5614
5615/* This value should be large enough to cover a tagged ethernet header plus
5616 * maximally sized IP and TCP or UDP headers.
5617 */
5618#define MAX_IP_HDR_LEN 128
5619
5620static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
5621{
5622	unsigned int off;
5623	bool fragment;
5624	__sum16 *csum;
5625	int err;
5626
5627	fragment = false;
5628
5629	err = skb_maybe_pull_tail(skb,
5630				  sizeof(struct iphdr),
5631				  MAX_IP_HDR_LEN);
5632	if (err < 0)
5633		goto out;
5634
5635	if (ip_is_fragment(ip_hdr(skb)))
5636		fragment = true;
5637
5638	off = ip_hdrlen(skb);
5639
5640	err = -EPROTO;
5641
5642	if (fragment)
5643		goto out;
5644
5645	csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
5646	if (IS_ERR(csum))
5647		return PTR_ERR(csum);
5648
5649	if (recalculate)
5650		*csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
5651					   ip_hdr(skb)->daddr,
5652					   skb->len - off,
5653					   ip_hdr(skb)->protocol, 0);
5654	err = 0;
5655
5656out:
5657	return err;
5658}
5659
5660/* This value should be large enough to cover a tagged ethernet header plus
5661 * an IPv6 header, all options, and a maximal TCP or UDP header.
5662 */
5663#define MAX_IPV6_HDR_LEN 256
5664
5665#define OPT_HDR(type, skb, off) \
5666	(type *)(skb_network_header(skb) + (off))
5667
5668static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
5669{
5670	int err;
5671	u8 nexthdr;
5672	unsigned int off;
5673	unsigned int len;
5674	bool fragment;
5675	bool done;
5676	__sum16 *csum;
5677
5678	fragment = false;
5679	done = false;
5680
5681	off = sizeof(struct ipv6hdr);
5682
5683	err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
5684	if (err < 0)
5685		goto out;
5686
5687	nexthdr = ipv6_hdr(skb)->nexthdr;
5688
5689	len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
5690	while (off <= len && !done) {
5691		switch (nexthdr) {
5692		case IPPROTO_DSTOPTS:
5693		case IPPROTO_HOPOPTS:
5694		case IPPROTO_ROUTING: {
5695			struct ipv6_opt_hdr *hp;
5696
5697			err = skb_maybe_pull_tail(skb,
5698						  off +
5699						  sizeof(struct ipv6_opt_hdr),
5700						  MAX_IPV6_HDR_LEN);
5701			if (err < 0)
5702				goto out;
5703
5704			hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
5705			nexthdr = hp->nexthdr;
5706			off += ipv6_optlen(hp);
5707			break;
5708		}
5709		case IPPROTO_AH: {
5710			struct ip_auth_hdr *hp;
5711
5712			err = skb_maybe_pull_tail(skb,
5713						  off +
5714						  sizeof(struct ip_auth_hdr),
5715						  MAX_IPV6_HDR_LEN);
5716			if (err < 0)
5717				goto out;
5718
5719			hp = OPT_HDR(struct ip_auth_hdr, skb, off);
5720			nexthdr = hp->nexthdr;
5721			off += ipv6_authlen(hp);
5722			break;
5723		}
5724		case IPPROTO_FRAGMENT: {
5725			struct frag_hdr *hp;
5726
5727			err = skb_maybe_pull_tail(skb,
5728						  off +
5729						  sizeof(struct frag_hdr),
5730						  MAX_IPV6_HDR_LEN);
5731			if (err < 0)
5732				goto out;
5733
5734			hp = OPT_HDR(struct frag_hdr, skb, off);
5735
5736			if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
5737				fragment = true;
5738
5739			nexthdr = hp->nexthdr;
5740			off += sizeof(struct frag_hdr);
5741			break;
5742		}
5743		default:
5744			done = true;
5745			break;
5746		}
5747	}
5748
5749	err = -EPROTO;
5750
5751	if (!done || fragment)
5752		goto out;
5753
5754	csum = skb_checksum_setup_ip(skb, nexthdr, off);
5755	if (IS_ERR(csum))
5756		return PTR_ERR(csum);
5757
5758	if (recalculate)
5759		*csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
5760					 &ipv6_hdr(skb)->daddr,
5761					 skb->len - off, nexthdr, 0);
5762	err = 0;
5763
5764out:
5765	return err;
5766}
5767
5768/**
5769 * skb_checksum_setup - set up partial checksum offset
5770 * @skb: the skb to set up
5771 * @recalculate: if true the pseudo-header checksum will be recalculated
5772 */
5773int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
5774{
5775	int err;
5776
5777	switch (skb->protocol) {
5778	case htons(ETH_P_IP):
5779		err = skb_checksum_setup_ipv4(skb, recalculate);
5780		break;
5781
5782	case htons(ETH_P_IPV6):
5783		err = skb_checksum_setup_ipv6(skb, recalculate);
5784		break;
5785
5786	default:
5787		err = -EPROTO;
5788		break;
5789	}
5790
5791	return err;
5792}
5793EXPORT_SYMBOL(skb_checksum_setup);
5794
5795/**
5796 * skb_checksum_maybe_trim - maybe trims the given skb
5797 * @skb: the skb to check
5798 * @transport_len: the data length beyond the network header
5799 *
5800 * Checks whether the given skb has data beyond the given transport length.
5801 * If so, returns a cloned skb trimmed to this transport length.
5802 * Otherwise returns the provided skb. Returns NULL in error cases
5803 * (e.g. transport_len exceeds skb length or out-of-memory).
5804 *
5805 * Caller needs to set the skb transport header and free any returned skb if it
5806 * differs from the provided skb.
5807 */
5808static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
5809					       unsigned int transport_len)
5810{
5811	struct sk_buff *skb_chk;
5812	unsigned int len = skb_transport_offset(skb) + transport_len;
5813	int ret;
5814
5815	if (skb->len < len)
5816		return NULL;
5817	else if (skb->len == len)
5818		return skb;
5819
5820	skb_chk = skb_clone(skb, GFP_ATOMIC);
5821	if (!skb_chk)
5822		return NULL;
5823
5824	ret = pskb_trim_rcsum(skb_chk, len);
5825	if (ret) {
5826		kfree_skb(skb_chk);
5827		return NULL;
5828	}
5829
5830	return skb_chk;
5831}
5832
5833/**
5834 * skb_checksum_trimmed - validate checksum of an skb
5835 * @skb: the skb to check
5836 * @transport_len: the data length beyond the network header
5837 * @skb_chkf: checksum function to use
5838 *
5839 * Applies the given checksum function skb_chkf to the provided skb.
5840 * Returns a checked and maybe trimmed skb. Returns NULL on error.
5841 *
5842 * If the skb has data beyond the given transport length, then a
5843 * trimmed & cloned skb is checked and returned.
5844 *
5845 * Caller needs to set the skb transport header and free any returned skb if it
5846 * differs from the provided skb.
5847 */
5848struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
5849				     unsigned int transport_len,
5850				     __sum16(*skb_chkf)(struct sk_buff *skb))
5851{
5852	struct sk_buff *skb_chk;
5853	unsigned int offset = skb_transport_offset(skb);
5854	__sum16 ret;
5855
5856	skb_chk = skb_checksum_maybe_trim(skb, transport_len);
5857	if (!skb_chk)
5858		goto err;
5859
5860	if (!pskb_may_pull(skb_chk, offset))
5861		goto err;
5862
5863	skb_pull_rcsum(skb_chk, offset);
5864	ret = skb_chkf(skb_chk);
5865	skb_push_rcsum(skb_chk, offset);
5866
5867	if (ret)
5868		goto err;
5869
5870	return skb_chk;
5871
5872err:
5873	if (skb_chk && skb_chk != skb)
5874		kfree_skb(skb_chk);
5875
5876	return NULL;
5877
5878}
5879EXPORT_SYMBOL(skb_checksum_trimmed);
5880
5881void __skb_warn_lro_forwarding(const struct sk_buff *skb)
5882{
5883	net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
5884			     skb->dev->name);
5885}
5886EXPORT_SYMBOL(__skb_warn_lro_forwarding);
5887
5888void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
5889{
5890	if (head_stolen) {
5891		skb_release_head_state(skb);
5892		kmem_cache_free(net_hotdata.skbuff_cache, skb);
5893	} else {
5894		__kfree_skb(skb);
5895	}
5896}
5897EXPORT_SYMBOL(kfree_skb_partial);
5898
5899/**
5900 * skb_try_coalesce - try to merge skb to prior one
5901 * @to: prior buffer
5902 * @from: buffer to add
5903 * @fragstolen: pointer to boolean
5904 * @delta_truesize: how much more was allocated than was requested
5905 */
5906bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
5907		      bool *fragstolen, int *delta_truesize)
5908{
5909	struct skb_shared_info *to_shinfo, *from_shinfo;
5910	int i, delta, len = from->len;
5911
5912	*fragstolen = false;
5913
5914	if (skb_cloned(to))
5915		return false;
5916
5917	/* In general, avoid mixing page_pool and non-page_pool allocated
5918	 * pages within the same SKB. In theory we could take full
5919	 * references if @from is cloned and !@to->pp_recycle but its
5920	 * tricky (due to potential race with the clone disappearing) and
5921	 * rare, so not worth dealing with.
5922	 */
5923	if (to->pp_recycle != from->pp_recycle)
5924		return false;
5925
5926	if (len <= skb_tailroom(to)) {
5927		if (len)
5928			BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
5929		*delta_truesize = 0;
5930		return true;
5931	}
5932
5933	to_shinfo = skb_shinfo(to);
5934	from_shinfo = skb_shinfo(from);
5935	if (to_shinfo->frag_list || from_shinfo->frag_list)
5936		return false;
5937	if (skb_zcopy(to) || skb_zcopy(from))
5938		return false;
5939
5940	if (skb_headlen(from) != 0) {
5941		struct page *page;
5942		unsigned int offset;
5943
5944		if (to_shinfo->nr_frags +
5945		    from_shinfo->nr_frags >= MAX_SKB_FRAGS)
5946			return false;
5947
5948		if (skb_head_is_locked(from))
5949			return false;
5950
5951		delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
5952
5953		page = virt_to_head_page(from->head);
5954		offset = from->data - (unsigned char *)page_address(page);
5955
5956		skb_fill_page_desc(to, to_shinfo->nr_frags,
5957				   page, offset, skb_headlen(from));
5958		*fragstolen = true;
5959	} else {
5960		if (to_shinfo->nr_frags +
5961		    from_shinfo->nr_frags > MAX_SKB_FRAGS)
5962			return false;
5963
5964		delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
5965	}
5966
5967	WARN_ON_ONCE(delta < len);
5968
5969	memcpy(to_shinfo->frags + to_shinfo->nr_frags,
5970	       from_shinfo->frags,
5971	       from_shinfo->nr_frags * sizeof(skb_frag_t));
5972	to_shinfo->nr_frags += from_shinfo->nr_frags;
5973
5974	if (!skb_cloned(from))
5975		from_shinfo->nr_frags = 0;
5976
5977	/* if the skb is not cloned this does nothing
5978	 * since we set nr_frags to 0.
5979	 */
5980	if (skb_pp_frag_ref(from)) {
5981		for (i = 0; i < from_shinfo->nr_frags; i++)
5982			__skb_frag_ref(&from_shinfo->frags[i]);
5983	}
5984
5985	to->truesize += delta;
5986	to->len += len;
5987	to->data_len += len;
5988
5989	*delta_truesize = delta;
5990	return true;
5991}
5992EXPORT_SYMBOL(skb_try_coalesce);
5993
5994/**
5995 * skb_scrub_packet - scrub an skb
5996 *
5997 * @skb: buffer to clean
5998 * @xnet: packet is crossing netns
5999 *
6000 * skb_scrub_packet can be used after encapsulating or decapsulting a packet
6001 * into/from a tunnel. Some information have to be cleared during these
6002 * operations.
6003 * skb_scrub_packet can also be used to clean a skb before injecting it in
6004 * another namespace (@xnet == true). We have to clear all information in the
6005 * skb that could impact namespace isolation.
6006 */
6007void skb_scrub_packet(struct sk_buff *skb, bool xnet)
6008{
6009	skb->pkt_type = PACKET_HOST;
6010	skb->skb_iif = 0;
6011	skb->ignore_df = 0;
6012	skb_dst_drop(skb);
6013	skb_ext_reset(skb);
6014	nf_reset_ct(skb);
6015	nf_reset_trace(skb);
6016
6017#ifdef CONFIG_NET_SWITCHDEV
6018	skb->offload_fwd_mark = 0;
6019	skb->offload_l3_fwd_mark = 0;
6020#endif
6021
6022	if (!xnet)
6023		return;
6024
6025	ipvs_reset(skb);
6026	skb->mark = 0;
6027	skb_clear_tstamp(skb);
6028}
6029EXPORT_SYMBOL_GPL(skb_scrub_packet);
6030
6031static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
6032{
6033	int mac_len, meta_len;
6034	void *meta;
6035
6036	if (skb_cow(skb, skb_headroom(skb)) < 0) {
6037		kfree_skb(skb);
6038		return NULL;
6039	}
6040
6041	mac_len = skb->data - skb_mac_header(skb);
6042	if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) {
6043		memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb),
6044			mac_len - VLAN_HLEN - ETH_TLEN);
6045	}
6046
6047	meta_len = skb_metadata_len(skb);
6048	if (meta_len) {
6049		meta = skb_metadata_end(skb) - meta_len;
6050		memmove(meta + VLAN_HLEN, meta, meta_len);
6051	}
6052
6053	skb->mac_header += VLAN_HLEN;
6054	return skb;
6055}
6056
6057struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
6058{
6059	struct vlan_hdr *vhdr;
6060	u16 vlan_tci;
6061
6062	if (unlikely(skb_vlan_tag_present(skb))) {
6063		/* vlan_tci is already set-up so leave this for another time */
6064		return skb;
6065	}
6066
6067	skb = skb_share_check(skb, GFP_ATOMIC);
6068	if (unlikely(!skb))
6069		goto err_free;
6070	/* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */
6071	if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short))))
6072		goto err_free;
6073
6074	vhdr = (struct vlan_hdr *)skb->data;
6075	vlan_tci = ntohs(vhdr->h_vlan_TCI);
6076	__vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
6077
6078	skb_pull_rcsum(skb, VLAN_HLEN);
6079	vlan_set_encap_proto(skb, vhdr);
6080
6081	skb = skb_reorder_vlan_header(skb);
6082	if (unlikely(!skb))
6083		goto err_free;
6084
6085	skb_reset_network_header(skb);
6086	if (!skb_transport_header_was_set(skb))
6087		skb_reset_transport_header(skb);
6088	skb_reset_mac_len(skb);
6089
6090	return skb;
6091
6092err_free:
6093	kfree_skb(skb);
6094	return NULL;
6095}
6096EXPORT_SYMBOL(skb_vlan_untag);
6097
6098int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len)
6099{
6100	if (!pskb_may_pull(skb, write_len))
6101		return -ENOMEM;
6102
6103	if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
6104		return 0;
6105
6106	return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
6107}
6108EXPORT_SYMBOL(skb_ensure_writable);
6109
6110int skb_ensure_writable_head_tail(struct sk_buff *skb, struct net_device *dev)
6111{
6112	int needed_headroom = dev->needed_headroom;
6113	int needed_tailroom = dev->needed_tailroom;
6114
6115	/* For tail taggers, we need to pad short frames ourselves, to ensure
6116	 * that the tail tag does not fail at its role of being at the end of
6117	 * the packet, once the conduit interface pads the frame. Account for
6118	 * that pad length here, and pad later.
6119	 */
6120	if (unlikely(needed_tailroom && skb->len < ETH_ZLEN))
6121		needed_tailroom += ETH_ZLEN - skb->len;
6122	/* skb_headroom() returns unsigned int... */
6123	needed_headroom = max_t(int, needed_headroom - skb_headroom(skb), 0);
6124	needed_tailroom = max_t(int, needed_tailroom - skb_tailroom(skb), 0);
6125
6126	if (likely(!needed_headroom && !needed_tailroom && !skb_cloned(skb)))
6127		/* No reallocation needed, yay! */
6128		return 0;
6129
6130	return pskb_expand_head(skb, needed_headroom, needed_tailroom,
6131				GFP_ATOMIC);
6132}
6133EXPORT_SYMBOL(skb_ensure_writable_head_tail);
6134
6135/* remove VLAN header from packet and update csum accordingly.
6136 * expects a non skb_vlan_tag_present skb with a vlan tag payload
6137 */
6138int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
6139{
6140	int offset = skb->data - skb_mac_header(skb);
6141	int err;
6142
6143	if (WARN_ONCE(offset,
6144		      "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
6145		      offset)) {
6146		return -EINVAL;
6147	}
6148
6149	err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
6150	if (unlikely(err))
6151		return err;
6152
6153	skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
6154
6155	vlan_remove_tag(skb, vlan_tci);
6156
6157	skb->mac_header += VLAN_HLEN;
6158
6159	if (skb_network_offset(skb) < ETH_HLEN)
6160		skb_set_network_header(skb, ETH_HLEN);
6161
6162	skb_reset_mac_len(skb);
6163
6164	return err;
6165}
6166EXPORT_SYMBOL(__skb_vlan_pop);
6167
6168/* Pop a vlan tag either from hwaccel or from payload.
6169 * Expects skb->data at mac header.
6170 */
6171int skb_vlan_pop(struct sk_buff *skb)
6172{
6173	u16 vlan_tci;
6174	__be16 vlan_proto;
6175	int err;
6176
6177	if (likely(skb_vlan_tag_present(skb))) {
6178		__vlan_hwaccel_clear_tag(skb);
6179	} else {
6180		if (unlikely(!eth_type_vlan(skb->protocol)))
6181			return 0;
6182
6183		err = __skb_vlan_pop(skb, &vlan_tci);
6184		if (err)
6185			return err;
6186	}
6187	/* move next vlan tag to hw accel tag */
6188	if (likely(!eth_type_vlan(skb->protocol)))
6189		return 0;
6190
6191	vlan_proto = skb->protocol;
6192	err = __skb_vlan_pop(skb, &vlan_tci);
6193	if (unlikely(err))
6194		return err;
6195
6196	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
6197	return 0;
6198}
6199EXPORT_SYMBOL(skb_vlan_pop);
6200
6201/* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
6202 * Expects skb->data at mac header.
6203 */
6204int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
6205{
6206	if (skb_vlan_tag_present(skb)) {
6207		int offset = skb->data - skb_mac_header(skb);
6208		int err;
6209
6210		if (WARN_ONCE(offset,
6211			      "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
6212			      offset)) {
6213			return -EINVAL;
6214		}
6215
6216		err = __vlan_insert_tag(skb, skb->vlan_proto,
6217					skb_vlan_tag_get(skb));
6218		if (err)
6219			return err;
6220
6221		skb->protocol = skb->vlan_proto;
6222		skb->mac_len += VLAN_HLEN;
6223
6224		skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
6225	}
6226	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
6227	return 0;
6228}
6229EXPORT_SYMBOL(skb_vlan_push);
6230
6231/**
6232 * skb_eth_pop() - Drop the Ethernet header at the head of a packet
6233 *
6234 * @skb: Socket buffer to modify
6235 *
6236 * Drop the Ethernet header of @skb.
6237 *
6238 * Expects that skb->data points to the mac header and that no VLAN tags are
6239 * present.
6240 *
6241 * Returns 0 on success, -errno otherwise.
6242 */
6243int skb_eth_pop(struct sk_buff *skb)
6244{
6245	if (!pskb_may_pull(skb, ETH_HLEN) || skb_vlan_tagged(skb) ||
6246	    skb_network_offset(skb) < ETH_HLEN)
6247		return -EPROTO;
6248
6249	skb_pull_rcsum(skb, ETH_HLEN);
6250	skb_reset_mac_header(skb);
6251	skb_reset_mac_len(skb);
6252
6253	return 0;
6254}
6255EXPORT_SYMBOL(skb_eth_pop);
6256
6257/**
6258 * skb_eth_push() - Add a new Ethernet header at the head of a packet
6259 *
6260 * @skb: Socket buffer to modify
6261 * @dst: Destination MAC address of the new header
6262 * @src: Source MAC address of the new header
6263 *
6264 * Prepend @skb with a new Ethernet header.
6265 *
6266 * Expects that skb->data points to the mac header, which must be empty.
6267 *
6268 * Returns 0 on success, -errno otherwise.
6269 */
6270int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
6271		 const unsigned char *src)
6272{
6273	struct ethhdr *eth;
6274	int err;
6275
6276	if (skb_network_offset(skb) || skb_vlan_tag_present(skb))
6277		return -EPROTO;
6278
6279	err = skb_cow_head(skb, sizeof(*eth));
6280	if (err < 0)
6281		return err;
6282
6283	skb_push(skb, sizeof(*eth));
6284	skb_reset_mac_header(skb);
6285	skb_reset_mac_len(skb);
6286
6287	eth = eth_hdr(skb);
6288	ether_addr_copy(eth->h_dest, dst);
6289	ether_addr_copy(eth->h_source, src);
6290	eth->h_proto = skb->protocol;
6291
6292	skb_postpush_rcsum(skb, eth, sizeof(*eth));
6293
6294	return 0;
6295}
6296EXPORT_SYMBOL(skb_eth_push);
6297
6298/* Update the ethertype of hdr and the skb csum value if required. */
6299static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr,
6300			     __be16 ethertype)
6301{
6302	if (skb->ip_summed == CHECKSUM_COMPLETE) {
6303		__be16 diff[] = { ~hdr->h_proto, ethertype };
6304
6305		skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
6306	}
6307
6308	hdr->h_proto = ethertype;
6309}
6310
6311/**
6312 * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of
6313 *                   the packet
6314 *
6315 * @skb: buffer
6316 * @mpls_lse: MPLS label stack entry to push
6317 * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848)
6318 * @mac_len: length of the MAC header
6319 * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is
6320 *            ethernet
6321 *
6322 * Expects skb->data at mac header.
6323 *
6324 * Returns 0 on success, -errno otherwise.
6325 */
6326int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
6327		  int mac_len, bool ethernet)
6328{
6329	struct mpls_shim_hdr *lse;
6330	int err;
6331
6332	if (unlikely(!eth_p_mpls(mpls_proto)))
6333		return -EINVAL;
6334
6335	/* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */
6336	if (skb->encapsulation)
6337		return -EINVAL;
6338
6339	err = skb_cow_head(skb, MPLS_HLEN);
6340	if (unlikely(err))
6341		return err;
6342
6343	if (!skb->inner_protocol) {
6344		skb_set_inner_network_header(skb, skb_network_offset(skb));
6345		skb_set_inner_protocol(skb, skb->protocol);
6346	}
6347
6348	skb_push(skb, MPLS_HLEN);
6349	memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb),
6350		mac_len);
6351	skb_reset_mac_header(skb);
6352	skb_set_network_header(skb, mac_len);
6353	skb_reset_mac_len(skb);
6354
6355	lse = mpls_hdr(skb);
6356	lse->label_stack_entry = mpls_lse;
6357	skb_postpush_rcsum(skb, lse, MPLS_HLEN);
6358
6359	if (ethernet && mac_len >= ETH_HLEN)
6360		skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto);
6361	skb->protocol = mpls_proto;
6362
6363	return 0;
6364}
6365EXPORT_SYMBOL_GPL(skb_mpls_push);
6366
6367/**
6368 * skb_mpls_pop() - pop the outermost MPLS header
6369 *
6370 * @skb: buffer
6371 * @next_proto: ethertype of header after popped MPLS header
6372 * @mac_len: length of the MAC header
6373 * @ethernet: flag to indicate if the packet is ethernet
6374 *
6375 * Expects skb->data at mac header.
6376 *
6377 * Returns 0 on success, -errno otherwise.
6378 */
6379int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
6380		 bool ethernet)
6381{
6382	int err;
6383
6384	if (unlikely(!eth_p_mpls(skb->protocol)))
6385		return 0;
6386
6387	err = skb_ensure_writable(skb, mac_len + MPLS_HLEN);
6388	if (unlikely(err))
6389		return err;
6390
6391	skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN);
6392	memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb),
6393		mac_len);
6394
6395	__skb_pull(skb, MPLS_HLEN);
6396	skb_reset_mac_header(skb);
6397	skb_set_network_header(skb, mac_len);
6398
6399	if (ethernet && mac_len >= ETH_HLEN) {
6400		struct ethhdr *hdr;
6401
6402		/* use mpls_hdr() to get ethertype to account for VLANs. */
6403		hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN);
6404		skb_mod_eth_type(skb, hdr, next_proto);
6405	}
6406	skb->protocol = next_proto;
6407
6408	return 0;
6409}
6410EXPORT_SYMBOL_GPL(skb_mpls_pop);
6411
6412/**
6413 * skb_mpls_update_lse() - modify outermost MPLS header and update csum
6414 *
6415 * @skb: buffer
6416 * @mpls_lse: new MPLS label stack entry to update to
6417 *
6418 * Expects skb->data at mac header.
6419 *
6420 * Returns 0 on success, -errno otherwise.
6421 */
6422int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse)
6423{
6424	int err;
6425
6426	if (unlikely(!eth_p_mpls(skb->protocol)))
6427		return -EINVAL;
6428
6429	err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
6430	if (unlikely(err))
6431		return err;
6432
6433	if (skb->ip_summed == CHECKSUM_COMPLETE) {
6434		__be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse };
6435
6436		skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
6437	}
6438
6439	mpls_hdr(skb)->label_stack_entry = mpls_lse;
6440
6441	return 0;
6442}
6443EXPORT_SYMBOL_GPL(skb_mpls_update_lse);
6444
6445/**
6446 * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header
6447 *
6448 * @skb: buffer
6449 *
6450 * Expects skb->data at mac header.
6451 *
6452 * Returns 0 on success, -errno otherwise.
6453 */
6454int skb_mpls_dec_ttl(struct sk_buff *skb)
6455{
6456	u32 lse;
6457	u8 ttl;
6458
6459	if (unlikely(!eth_p_mpls(skb->protocol)))
6460		return -EINVAL;
6461
6462	if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN))
6463		return -ENOMEM;
6464
6465	lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry);
6466	ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT;
6467	if (!--ttl)
6468		return -EINVAL;
6469
6470	lse &= ~MPLS_LS_TTL_MASK;
6471	lse |= ttl << MPLS_LS_TTL_SHIFT;
6472
6473	return skb_mpls_update_lse(skb, cpu_to_be32(lse));
6474}
6475EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl);
6476
6477/**
6478 * alloc_skb_with_frags - allocate skb with page frags
6479 *
6480 * @header_len: size of linear part
6481 * @data_len: needed length in frags
6482 * @order: max page order desired.
6483 * @errcode: pointer to error code if any
6484 * @gfp_mask: allocation mask
6485 *
6486 * This can be used to allocate a paged skb, given a maximal order for frags.
6487 */
6488struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
6489				     unsigned long data_len,
6490				     int order,
6491				     int *errcode,
6492				     gfp_t gfp_mask)
6493{
6494	unsigned long chunk;
6495	struct sk_buff *skb;
6496	struct page *page;
6497	int nr_frags = 0;
6498
6499	*errcode = -EMSGSIZE;
6500	if (unlikely(data_len > MAX_SKB_FRAGS * (PAGE_SIZE << order)))
6501		return NULL;
6502
6503	*errcode = -ENOBUFS;
6504	skb = alloc_skb(header_len, gfp_mask);
6505	if (!skb)
6506		return NULL;
6507
6508	while (data_len) {
6509		if (nr_frags == MAX_SKB_FRAGS - 1)
6510			goto failure;
6511		while (order && PAGE_ALIGN(data_len) < (PAGE_SIZE << order))
6512			order--;
6513
6514		if (order) {
6515			page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
6516					   __GFP_COMP |
6517					   __GFP_NOWARN,
6518					   order);
6519			if (!page) {
6520				order--;
6521				continue;
6522			}
6523		} else {
6524			page = alloc_page(gfp_mask);
6525			if (!page)
6526				goto failure;
6527		}
6528		chunk = min_t(unsigned long, data_len,
6529			      PAGE_SIZE << order);
6530		skb_fill_page_desc(skb, nr_frags, page, 0, chunk);
6531		nr_frags++;
6532		skb->truesize += (PAGE_SIZE << order);
6533		data_len -= chunk;
6534	}
6535	return skb;
6536
6537failure:
6538	kfree_skb(skb);
6539	return NULL;
6540}
6541EXPORT_SYMBOL(alloc_skb_with_frags);
6542
6543/* carve out the first off bytes from skb when off < headlen */
6544static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
6545				    const int headlen, gfp_t gfp_mask)
6546{
6547	int i;
6548	unsigned int size = skb_end_offset(skb);
6549	int new_hlen = headlen - off;
6550	u8 *data;
6551
6552	if (skb_pfmemalloc(skb))
6553		gfp_mask |= __GFP_MEMALLOC;
6554
6555	data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL);
6556	if (!data)
6557		return -ENOMEM;
6558	size = SKB_WITH_OVERHEAD(size);
6559
6560	/* Copy real data, and all frags */
6561	skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
6562	skb->len -= off;
6563
6564	memcpy((struct skb_shared_info *)(data + size),
6565	       skb_shinfo(skb),
6566	       offsetof(struct skb_shared_info,
6567			frags[skb_shinfo(skb)->nr_frags]));
6568	if (skb_cloned(skb)) {
6569		/* drop the old head gracefully */
6570		if (skb_orphan_frags(skb, gfp_mask)) {
6571			skb_kfree_head(data, size);
6572			return -ENOMEM;
6573		}
6574		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
6575			skb_frag_ref(skb, i);
6576		if (skb_has_frag_list(skb))
6577			skb_clone_fraglist(skb);
6578		skb_release_data(skb, SKB_CONSUMED, false);
6579	} else {
6580		/* we can reuse existing recount- all we did was
6581		 * relocate values
6582		 */
6583		skb_free_head(skb, false);
6584	}
6585
6586	skb->head = data;
6587	skb->data = data;
6588	skb->head_frag = 0;
6589	skb_set_end_offset(skb, size);
6590	skb_set_tail_pointer(skb, skb_headlen(skb));
6591	skb_headers_offset_update(skb, 0);
6592	skb->cloned = 0;
6593	skb->hdr_len = 0;
6594	skb->nohdr = 0;
6595	atomic_set(&skb_shinfo(skb)->dataref, 1);
6596
6597	return 0;
6598}
6599
6600static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
6601
6602/* carve out the first eat bytes from skb's frag_list. May recurse into
6603 * pskb_carve()
6604 */
6605static int pskb_carve_frag_list(struct sk_buff *skb,
6606				struct skb_shared_info *shinfo, int eat,
6607				gfp_t gfp_mask)
6608{
6609	struct sk_buff *list = shinfo->frag_list;
6610	struct sk_buff *clone = NULL;
6611	struct sk_buff *insp = NULL;
6612
6613	do {
6614		if (!list) {
6615			pr_err("Not enough bytes to eat. Want %d\n", eat);
6616			return -EFAULT;
6617		}
6618		if (list->len <= eat) {
6619			/* Eaten as whole. */
6620			eat -= list->len;
6621			list = list->next;
6622			insp = list;
6623		} else {
6624			/* Eaten partially. */
6625			if (skb_shared(list)) {
6626				clone = skb_clone(list, gfp_mask);
6627				if (!clone)
6628					return -ENOMEM;
6629				insp = list->next;
6630				list = clone;
6631			} else {
6632				/* This may be pulled without problems. */
6633				insp = list;
6634			}
6635			if (pskb_carve(list, eat, gfp_mask) < 0) {
6636				kfree_skb(clone);
6637				return -ENOMEM;
6638			}
6639			break;
6640		}
6641	} while (eat);
6642
6643	/* Free pulled out fragments. */
6644	while ((list = shinfo->frag_list) != insp) {
6645		shinfo->frag_list = list->next;
6646		consume_skb(list);
6647	}
6648	/* And insert new clone at head. */
6649	if (clone) {
6650		clone->next = list;
6651		shinfo->frag_list = clone;
6652	}
6653	return 0;
6654}
6655
6656/* carve off first len bytes from skb. Split line (off) is in the
6657 * non-linear part of skb
6658 */
6659static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
6660				       int pos, gfp_t gfp_mask)
6661{
6662	int i, k = 0;
6663	unsigned int size = skb_end_offset(skb);
6664	u8 *data;
6665	const int nfrags = skb_shinfo(skb)->nr_frags;
6666	struct skb_shared_info *shinfo;
6667
6668	if (skb_pfmemalloc(skb))
6669		gfp_mask |= __GFP_MEMALLOC;
6670
6671	data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL);
6672	if (!data)
6673		return -ENOMEM;
6674	size = SKB_WITH_OVERHEAD(size);
6675
6676	memcpy((struct skb_shared_info *)(data + size),
6677	       skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0]));
6678	if (skb_orphan_frags(skb, gfp_mask)) {
6679		skb_kfree_head(data, size);
6680		return -ENOMEM;
6681	}
6682	shinfo = (struct skb_shared_info *)(data + size);
6683	for (i = 0; i < nfrags; i++) {
6684		int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
6685
6686		if (pos + fsize > off) {
6687			shinfo->frags[k] = skb_shinfo(skb)->frags[i];
6688
6689			if (pos < off) {
6690				/* Split frag.
6691				 * We have two variants in this case:
6692				 * 1. Move all the frag to the second
6693				 *    part, if it is possible. F.e.
6694				 *    this approach is mandatory for TUX,
6695				 *    where splitting is expensive.
6696				 * 2. Split is accurately. We make this.
6697				 */
6698				skb_frag_off_add(&shinfo->frags[0], off - pos);
6699				skb_frag_size_sub(&shinfo->frags[0], off - pos);
6700			}
6701			skb_frag_ref(skb, i);
6702			k++;
6703		}
6704		pos += fsize;
6705	}
6706	shinfo->nr_frags = k;
6707	if (skb_has_frag_list(skb))
6708		skb_clone_fraglist(skb);
6709
6710	/* split line is in frag list */
6711	if (k == 0 && pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask)) {
6712		/* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */
6713		if (skb_has_frag_list(skb))
6714			kfree_skb_list(skb_shinfo(skb)->frag_list);
6715		skb_kfree_head(data, size);
6716		return -ENOMEM;
6717	}
6718	skb_release_data(skb, SKB_CONSUMED, false);
6719
6720	skb->head = data;
6721	skb->head_frag = 0;
6722	skb->data = data;
6723	skb_set_end_offset(skb, size);
6724	skb_reset_tail_pointer(skb);
6725	skb_headers_offset_update(skb, 0);
6726	skb->cloned   = 0;
6727	skb->hdr_len  = 0;
6728	skb->nohdr    = 0;
6729	skb->len -= off;
6730	skb->data_len = skb->len;
6731	atomic_set(&skb_shinfo(skb)->dataref, 1);
6732	return 0;
6733}
6734
6735/* remove len bytes from the beginning of the skb */
6736static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
6737{
6738	int headlen = skb_headlen(skb);
6739
6740	if (len < headlen)
6741		return pskb_carve_inside_header(skb, len, headlen, gfp);
6742	else
6743		return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
6744}
6745
6746/* Extract to_copy bytes starting at off from skb, and return this in
6747 * a new skb
6748 */
6749struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
6750			     int to_copy, gfp_t gfp)
6751{
6752	struct sk_buff  *clone = skb_clone(skb, gfp);
6753
6754	if (!clone)
6755		return NULL;
6756
6757	if (pskb_carve(clone, off, gfp) < 0 ||
6758	    pskb_trim(clone, to_copy)) {
6759		kfree_skb(clone);
6760		return NULL;
6761	}
6762	return clone;
6763}
6764EXPORT_SYMBOL(pskb_extract);
6765
6766/**
6767 * skb_condense - try to get rid of fragments/frag_list if possible
6768 * @skb: buffer
6769 *
6770 * Can be used to save memory before skb is added to a busy queue.
6771 * If packet has bytes in frags and enough tail room in skb->head,
6772 * pull all of them, so that we can free the frags right now and adjust
6773 * truesize.
6774 * Notes:
6775 *	We do not reallocate skb->head thus can not fail.
6776 *	Caller must re-evaluate skb->truesize if needed.
6777 */
6778void skb_condense(struct sk_buff *skb)
6779{
6780	if (skb->data_len) {
6781		if (skb->data_len > skb->end - skb->tail ||
6782		    skb_cloned(skb))
6783			return;
6784
6785		/* Nice, we can free page frag(s) right now */
6786		__pskb_pull_tail(skb, skb->data_len);
6787	}
6788	/* At this point, skb->truesize might be over estimated,
6789	 * because skb had a fragment, and fragments do not tell
6790	 * their truesize.
6791	 * When we pulled its content into skb->head, fragment
6792	 * was freed, but __pskb_pull_tail() could not possibly
6793	 * adjust skb->truesize, not knowing the frag truesize.
6794	 */
6795	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6796}
6797EXPORT_SYMBOL(skb_condense);
6798
6799#ifdef CONFIG_SKB_EXTENSIONS
6800static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id)
6801{
6802	return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE);
6803}
6804
6805/**
6806 * __skb_ext_alloc - allocate a new skb extensions storage
6807 *
6808 * @flags: See kmalloc().
6809 *
6810 * Returns the newly allocated pointer. The pointer can later attached to a
6811 * skb via __skb_ext_set().
6812 * Note: caller must handle the skb_ext as an opaque data.
6813 */
6814struct skb_ext *__skb_ext_alloc(gfp_t flags)
6815{
6816	struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags);
6817
6818	if (new) {
6819		memset(new->offset, 0, sizeof(new->offset));
6820		refcount_set(&new->refcnt, 1);
6821	}
6822
6823	return new;
6824}
6825
6826static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old,
6827					 unsigned int old_active)
6828{
6829	struct skb_ext *new;
6830
6831	if (refcount_read(&old->refcnt) == 1)
6832		return old;
6833
6834	new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC);
6835	if (!new)
6836		return NULL;
6837
6838	memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE);
6839	refcount_set(&new->refcnt, 1);
6840
6841#ifdef CONFIG_XFRM
6842	if (old_active & (1 << SKB_EXT_SEC_PATH)) {
6843		struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH);
6844		unsigned int i;
6845
6846		for (i = 0; i < sp->len; i++)
6847			xfrm_state_hold(sp->xvec[i]);
6848	}
6849#endif
6850#ifdef CONFIG_MCTP_FLOWS
6851	if (old_active & (1 << SKB_EXT_MCTP)) {
6852		struct mctp_flow *flow = skb_ext_get_ptr(old, SKB_EXT_MCTP);
6853
6854		if (flow->key)
6855			refcount_inc(&flow->key->refs);
6856	}
6857#endif
6858	__skb_ext_put(old);
6859	return new;
6860}
6861
6862/**
6863 * __skb_ext_set - attach the specified extension storage to this skb
6864 * @skb: buffer
6865 * @id: extension id
6866 * @ext: extension storage previously allocated via __skb_ext_alloc()
6867 *
6868 * Existing extensions, if any, are cleared.
6869 *
6870 * Returns the pointer to the extension.
6871 */
6872void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
6873		    struct skb_ext *ext)
6874{
6875	unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext);
6876
6877	skb_ext_put(skb);
6878	newlen = newoff + skb_ext_type_len[id];
6879	ext->chunks = newlen;
6880	ext->offset[id] = newoff;
6881	skb->extensions = ext;
6882	skb->active_extensions = 1 << id;
6883	return skb_ext_get_ptr(ext, id);
6884}
6885
6886/**
6887 * skb_ext_add - allocate space for given extension, COW if needed
6888 * @skb: buffer
6889 * @id: extension to allocate space for
6890 *
6891 * Allocates enough space for the given extension.
6892 * If the extension is already present, a pointer to that extension
6893 * is returned.
6894 *
6895 * If the skb was cloned, COW applies and the returned memory can be
6896 * modified without changing the extension space of clones buffers.
6897 *
6898 * Returns pointer to the extension or NULL on allocation failure.
6899 */
6900void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id)
6901{
6902	struct skb_ext *new, *old = NULL;
6903	unsigned int newlen, newoff;
6904
6905	if (skb->active_extensions) {
6906		old = skb->extensions;
6907
6908		new = skb_ext_maybe_cow(old, skb->active_extensions);
6909		if (!new)
6910			return NULL;
6911
6912		if (__skb_ext_exist(new, id))
6913			goto set_active;
6914
6915		newoff = new->chunks;
6916	} else {
6917		newoff = SKB_EXT_CHUNKSIZEOF(*new);
6918
6919		new = __skb_ext_alloc(GFP_ATOMIC);
6920		if (!new)
6921			return NULL;
6922	}
6923
6924	newlen = newoff + skb_ext_type_len[id];
6925	new->chunks = newlen;
6926	new->offset[id] = newoff;
6927set_active:
6928	skb->slow_gro = 1;
6929	skb->extensions = new;
6930	skb->active_extensions |= 1 << id;
6931	return skb_ext_get_ptr(new, id);
6932}
6933EXPORT_SYMBOL(skb_ext_add);
6934
6935#ifdef CONFIG_XFRM
6936static void skb_ext_put_sp(struct sec_path *sp)
6937{
6938	unsigned int i;
6939
6940	for (i = 0; i < sp->len; i++)
6941		xfrm_state_put(sp->xvec[i]);
6942}
6943#endif
6944
6945#ifdef CONFIG_MCTP_FLOWS
6946static void skb_ext_put_mctp(struct mctp_flow *flow)
6947{
6948	if (flow->key)
6949		mctp_key_unref(flow->key);
6950}
6951#endif
6952
6953void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
6954{
6955	struct skb_ext *ext = skb->extensions;
6956
6957	skb->active_extensions &= ~(1 << id);
6958	if (skb->active_extensions == 0) {
6959		skb->extensions = NULL;
6960		__skb_ext_put(ext);
6961#ifdef CONFIG_XFRM
6962	} else if (id == SKB_EXT_SEC_PATH &&
6963		   refcount_read(&ext->refcnt) == 1) {
6964		struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH);
6965
6966		skb_ext_put_sp(sp);
6967		sp->len = 0;
6968#endif
6969	}
6970}
6971EXPORT_SYMBOL(__skb_ext_del);
6972
6973void __skb_ext_put(struct skb_ext *ext)
6974{
6975	/* If this is last clone, nothing can increment
6976	 * it after check passes.  Avoids one atomic op.
6977	 */
6978	if (refcount_read(&ext->refcnt) == 1)
6979		goto free_now;
6980
6981	if (!refcount_dec_and_test(&ext->refcnt))
6982		return;
6983free_now:
6984#ifdef CONFIG_XFRM
6985	if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH))
6986		skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH));
6987#endif
6988#ifdef CONFIG_MCTP_FLOWS
6989	if (__skb_ext_exist(ext, SKB_EXT_MCTP))
6990		skb_ext_put_mctp(skb_ext_get_ptr(ext, SKB_EXT_MCTP));
6991#endif
6992
6993	kmem_cache_free(skbuff_ext_cache, ext);
6994}
6995EXPORT_SYMBOL(__skb_ext_put);
6996#endif /* CONFIG_SKB_EXTENSIONS */
6997
6998/**
6999 * skb_attempt_defer_free - queue skb for remote freeing
7000 * @skb: buffer
7001 *
7002 * Put @skb in a per-cpu list, using the cpu which
7003 * allocated the skb/pages to reduce false sharing
7004 * and memory zone spinlock contention.
7005 */
7006void skb_attempt_defer_free(struct sk_buff *skb)
7007{
7008	int cpu = skb->alloc_cpu;
7009	struct softnet_data *sd;
7010	unsigned int defer_max;
7011	bool kick;
7012
7013	if (WARN_ON_ONCE(cpu >= nr_cpu_ids) ||
7014	    !cpu_online(cpu) ||
7015	    cpu == raw_smp_processor_id()) {
7016nodefer:	__kfree_skb(skb);
7017		return;
7018	}
7019
7020	DEBUG_NET_WARN_ON_ONCE(skb_dst(skb));
7021	DEBUG_NET_WARN_ON_ONCE(skb->destructor);
7022
7023	sd = &per_cpu(softnet_data, cpu);
7024	defer_max = READ_ONCE(sysctl_skb_defer_max);
7025	if (READ_ONCE(sd->defer_count) >= defer_max)
7026		goto nodefer;
7027
7028	spin_lock_bh(&sd->defer_lock);
7029	/* Send an IPI every time queue reaches half capacity. */
7030	kick = sd->defer_count == (defer_max >> 1);
7031	/* Paired with the READ_ONCE() few lines above */
7032	WRITE_ONCE(sd->defer_count, sd->defer_count + 1);
7033
7034	skb->next = sd->defer_list;
7035	/* Paired with READ_ONCE() in skb_defer_free_flush() */
7036	WRITE_ONCE(sd->defer_list, skb);
7037	spin_unlock_bh(&sd->defer_lock);
7038
7039	/* Make sure to trigger NET_RX_SOFTIRQ on the remote CPU
7040	 * if we are unlucky enough (this seems very unlikely).
7041	 */
7042	if (unlikely(kick) && !cmpxchg(&sd->defer_ipi_scheduled, 0, 1))
7043		smp_call_function_single_async(cpu, &sd->defer_csd);
7044}
7045
7046static void skb_splice_csum_page(struct sk_buff *skb, struct page *page,
7047				 size_t offset, size_t len)
7048{
7049	const char *kaddr;
7050	__wsum csum;
7051
7052	kaddr = kmap_local_page(page);
7053	csum = csum_partial(kaddr + offset, len, 0);
7054	kunmap_local(kaddr);
7055	skb->csum = csum_block_add(skb->csum, csum, skb->len);
7056}
7057
7058/**
7059 * skb_splice_from_iter - Splice (or copy) pages to skbuff
7060 * @skb: The buffer to add pages to
7061 * @iter: Iterator representing the pages to be added
7062 * @maxsize: Maximum amount of pages to be added
7063 * @gfp: Allocation flags
7064 *
7065 * This is a common helper function for supporting MSG_SPLICE_PAGES.  It
7066 * extracts pages from an iterator and adds them to the socket buffer if
7067 * possible, copying them to fragments if not possible (such as if they're slab
7068 * pages).
7069 *
7070 * Returns the amount of data spliced/copied or -EMSGSIZE if there's
7071 * insufficient space in the buffer to transfer anything.
7072 */
7073ssize_t skb_splice_from_iter(struct sk_buff *skb, struct iov_iter *iter,
7074			     ssize_t maxsize, gfp_t gfp)
7075{
7076	size_t frag_limit = READ_ONCE(sysctl_max_skb_frags);
7077	struct page *pages[8], **ppages = pages;
7078	ssize_t spliced = 0, ret = 0;
7079	unsigned int i;
7080
7081	while (iter->count > 0) {
7082		ssize_t space, nr, len;
7083		size_t off;
7084
7085		ret = -EMSGSIZE;
7086		space = frag_limit - skb_shinfo(skb)->nr_frags;
7087		if (space < 0)
7088			break;
7089
7090		/* We might be able to coalesce without increasing nr_frags */
7091		nr = clamp_t(size_t, space, 1, ARRAY_SIZE(pages));
7092
7093		len = iov_iter_extract_pages(iter, &ppages, maxsize, nr, 0, &off);
7094		if (len <= 0) {
7095			ret = len ?: -EIO;
7096			break;
7097		}
7098
7099		i = 0;
7100		do {
7101			struct page *page = pages[i++];
7102			size_t part = min_t(size_t, PAGE_SIZE - off, len);
7103
7104			ret = -EIO;
7105			if (WARN_ON_ONCE(!sendpage_ok(page)))
7106				goto out;
7107
7108			ret = skb_append_pagefrags(skb, page, off, part,
7109						   frag_limit);
7110			if (ret < 0) {
7111				iov_iter_revert(iter, len);
7112				goto out;
7113			}
7114
7115			if (skb->ip_summed == CHECKSUM_NONE)
7116				skb_splice_csum_page(skb, page, off, part);
7117
7118			off = 0;
7119			spliced += part;
7120			maxsize -= part;
7121			len -= part;
7122		} while (len > 0);
7123
7124		if (maxsize <= 0)
7125			break;
7126	}
7127
7128out:
7129	skb_len_add(skb, spliced);
7130	return spliced ?: ret;
7131}
7132EXPORT_SYMBOL(skb_splice_from_iter);
7133
7134static __always_inline
7135size_t memcpy_from_iter_csum(void *iter_from, size_t progress,
7136			     size_t len, void *to, void *priv2)
7137{
7138	__wsum *csum = priv2;
7139	__wsum next = csum_partial_copy_nocheck(iter_from, to + progress, len);
7140
7141	*csum = csum_block_add(*csum, next, progress);
7142	return 0;
7143}
7144
7145static __always_inline
7146size_t copy_from_user_iter_csum(void __user *iter_from, size_t progress,
7147				size_t len, void *to, void *priv2)
7148{
7149	__wsum next, *csum = priv2;
7150
7151	next = csum_and_copy_from_user(iter_from, to + progress, len);
7152	*csum = csum_block_add(*csum, next, progress);
7153	return next ? 0 : len;
7154}
7155
7156bool csum_and_copy_from_iter_full(void *addr, size_t bytes,
7157				  __wsum *csum, struct iov_iter *i)
7158{
7159	size_t copied;
7160
7161	if (WARN_ON_ONCE(!i->data_source))
7162		return false;
7163	copied = iterate_and_advance2(i, bytes, addr, csum,
7164				      copy_from_user_iter_csum,
7165				      memcpy_from_iter_csum);
7166	if (likely(copied == bytes))
7167		return true;
7168	iov_iter_revert(i, copied);
7169	return false;
7170}
7171EXPORT_SYMBOL(csum_and_copy_from_iter_full);
7172