1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 *      NET3    Protocol independent device support routines.
4 *
5 *	Derived from the non IP parts of dev.c 1.0.19
6 *              Authors:	Ross Biro
7 *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8 *				Mark Evans, <evansmp@uhura.aston.ac.uk>
9 *
10 *	Additional Authors:
11 *		Florian la Roche <rzsfl@rz.uni-sb.de>
12 *		Alan Cox <gw4pts@gw4pts.ampr.org>
13 *		David Hinds <dahinds@users.sourceforge.net>
14 *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15 *		Adam Sulmicki <adam@cfar.umd.edu>
16 *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17 *
18 *	Changes:
19 *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20 *                                      to 2 if register_netdev gets called
21 *                                      before net_dev_init & also removed a
22 *                                      few lines of code in the process.
23 *		Alan Cox	:	device private ioctl copies fields back.
24 *		Alan Cox	:	Transmit queue code does relevant
25 *					stunts to keep the queue safe.
26 *		Alan Cox	:	Fixed double lock.
27 *		Alan Cox	:	Fixed promisc NULL pointer trap
28 *		????????	:	Support the full private ioctl range
29 *		Alan Cox	:	Moved ioctl permission check into
30 *					drivers
31 *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
32 *		Alan Cox	:	100 backlog just doesn't cut it when
33 *					you start doing multicast video 8)
34 *		Alan Cox	:	Rewrote net_bh and list manager.
35 *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36 *		Alan Cox	:	Took out transmit every packet pass
37 *					Saved a few bytes in the ioctl handler
38 *		Alan Cox	:	Network driver sets packet type before
39 *					calling netif_rx. Saves a function
40 *					call a packet.
41 *		Alan Cox	:	Hashed net_bh()
42 *		Richard Kooijman:	Timestamp fixes.
43 *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
44 *		Alan Cox	:	Device lock protection.
45 *              Alan Cox        :       Fixed nasty side effect of device close
46 *					changes.
47 *		Rudi Cilibrasi	:	Pass the right thing to
48 *					set_mac_address()
49 *		Dave Miller	:	32bit quantity for the device lock to
50 *					make it work out on a Sparc.
51 *		Bjorn Ekwall	:	Added KERNELD hack.
52 *		Alan Cox	:	Cleaned up the backlog initialise.
53 *		Craig Metz	:	SIOCGIFCONF fix if space for under
54 *					1 device.
55 *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
56 *					is no device open function.
57 *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
58 *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
59 *		Cyrus Durgin	:	Cleaned for KMOD
60 *		Adam Sulmicki   :	Bug Fix : Network Device Unload
61 *					A network device unload needs to purge
62 *					the backlog queue.
63 *	Paul Rusty Russell	:	SIOCSIFNAME
64 *              Pekka Riikonen  :	Netdev boot-time settings code
65 *              Andrew Morton   :       Make unregister_netdevice wait
66 *                                      indefinitely on dev->refcnt
67 *              J Hadi Salim    :       - Backlog queue sampling
68 *				        - netif_rx() feedback
69 */
70
71#include <linux/uaccess.h>
72#include <linux/bitmap.h>
73#include <linux/capability.h>
74#include <linux/cpu.h>
75#include <linux/types.h>
76#include <linux/kernel.h>
77#include <linux/hash.h>
78#include <linux/slab.h>
79#include <linux/sched.h>
80#include <linux/sched/mm.h>
81#include <linux/mutex.h>
82#include <linux/rwsem.h>
83#include <linux/string.h>
84#include <linux/mm.h>
85#include <linux/socket.h>
86#include <linux/sockios.h>
87#include <linux/errno.h>
88#include <linux/interrupt.h>
89#include <linux/if_ether.h>
90#include <linux/netdevice.h>
91#include <linux/etherdevice.h>
92#include <linux/ethtool.h>
93#include <linux/skbuff.h>
94#include <linux/kthread.h>
95#include <linux/bpf.h>
96#include <linux/bpf_trace.h>
97#include <net/net_namespace.h>
98#include <net/sock.h>
99#include <net/busy_poll.h>
100#include <linux/rtnetlink.h>
101#include <linux/stat.h>
102#include <net/dsa.h>
103#include <net/dst.h>
104#include <net/dst_metadata.h>
105#include <net/gro.h>
106#include <net/pkt_sched.h>
107#include <net/pkt_cls.h>
108#include <net/checksum.h>
109#include <net/xfrm.h>
110#include <net/tcx.h>
111#include <linux/highmem.h>
112#include <linux/init.h>
113#include <linux/module.h>
114#include <linux/netpoll.h>
115#include <linux/rcupdate.h>
116#include <linux/delay.h>
117#include <net/iw_handler.h>
118#include <asm/current.h>
119#include <linux/audit.h>
120#include <linux/dmaengine.h>
121#include <linux/err.h>
122#include <linux/ctype.h>
123#include <linux/if_arp.h>
124#include <linux/if_vlan.h>
125#include <linux/ip.h>
126#include <net/ip.h>
127#include <net/mpls.h>
128#include <linux/ipv6.h>
129#include <linux/in.h>
130#include <linux/jhash.h>
131#include <linux/random.h>
132#include <trace/events/napi.h>
133#include <trace/events/net.h>
134#include <trace/events/skb.h>
135#include <trace/events/qdisc.h>
136#include <trace/events/xdp.h>
137#include <linux/inetdevice.h>
138#include <linux/cpu_rmap.h>
139#include <linux/static_key.h>
140#include <linux/hashtable.h>
141#include <linux/vmalloc.h>
142#include <linux/if_macvlan.h>
143#include <linux/errqueue.h>
144#include <linux/hrtimer.h>
145#include <linux/netfilter_netdev.h>
146#include <linux/crash_dump.h>
147#include <linux/sctp.h>
148#include <net/udp_tunnel.h>
149#include <linux/net_namespace.h>
150#include <linux/indirect_call_wrapper.h>
151#include <net/devlink.h>
152#include <linux/pm_runtime.h>
153#include <linux/prandom.h>
154#include <linux/once_lite.h>
155#include <net/netdev_rx_queue.h>
156#include <net/page_pool/types.h>
157#include <net/page_pool/helpers.h>
158#include <net/rps.h>
159
160#include "dev.h"
161#include "net-sysfs.h"
162
163static DEFINE_SPINLOCK(ptype_lock);
164struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
165
166static int netif_rx_internal(struct sk_buff *skb);
167static int call_netdevice_notifiers_extack(unsigned long val,
168					   struct net_device *dev,
169					   struct netlink_ext_ack *extack);
170
171static DEFINE_MUTEX(ifalias_mutex);
172
173/* protects napi_hash addition/deletion and napi_gen_id */
174static DEFINE_SPINLOCK(napi_hash_lock);
175
176static unsigned int napi_gen_id = NR_CPUS;
177static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
178
179static DECLARE_RWSEM(devnet_rename_sem);
180
181static inline void dev_base_seq_inc(struct net *net)
182{
183	unsigned int val = net->dev_base_seq + 1;
184
185	WRITE_ONCE(net->dev_base_seq, val ?: 1);
186}
187
188static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
189{
190	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
191
192	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
193}
194
195static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
196{
197	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
198}
199
200static inline void rps_lock_irqsave(struct softnet_data *sd,
201				    unsigned long *flags)
202{
203	if (IS_ENABLED(CONFIG_RPS))
204		spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags);
205	else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
206		local_irq_save(*flags);
207}
208
209static inline void rps_lock_irq_disable(struct softnet_data *sd)
210{
211	if (IS_ENABLED(CONFIG_RPS))
212		spin_lock_irq(&sd->input_pkt_queue.lock);
213	else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
214		local_irq_disable();
215}
216
217static inline void rps_unlock_irq_restore(struct softnet_data *sd,
218					  unsigned long *flags)
219{
220	if (IS_ENABLED(CONFIG_RPS))
221		spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags);
222	else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
223		local_irq_restore(*flags);
224}
225
226static inline void rps_unlock_irq_enable(struct softnet_data *sd)
227{
228	if (IS_ENABLED(CONFIG_RPS))
229		spin_unlock_irq(&sd->input_pkt_queue.lock);
230	else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
231		local_irq_enable();
232}
233
234static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
235						       const char *name)
236{
237	struct netdev_name_node *name_node;
238
239	name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
240	if (!name_node)
241		return NULL;
242	INIT_HLIST_NODE(&name_node->hlist);
243	name_node->dev = dev;
244	name_node->name = name;
245	return name_node;
246}
247
248static struct netdev_name_node *
249netdev_name_node_head_alloc(struct net_device *dev)
250{
251	struct netdev_name_node *name_node;
252
253	name_node = netdev_name_node_alloc(dev, dev->name);
254	if (!name_node)
255		return NULL;
256	INIT_LIST_HEAD(&name_node->list);
257	return name_node;
258}
259
260static void netdev_name_node_free(struct netdev_name_node *name_node)
261{
262	kfree(name_node);
263}
264
265static void netdev_name_node_add(struct net *net,
266				 struct netdev_name_node *name_node)
267{
268	hlist_add_head_rcu(&name_node->hlist,
269			   dev_name_hash(net, name_node->name));
270}
271
272static void netdev_name_node_del(struct netdev_name_node *name_node)
273{
274	hlist_del_rcu(&name_node->hlist);
275}
276
277static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
278							const char *name)
279{
280	struct hlist_head *head = dev_name_hash(net, name);
281	struct netdev_name_node *name_node;
282
283	hlist_for_each_entry(name_node, head, hlist)
284		if (!strcmp(name_node->name, name))
285			return name_node;
286	return NULL;
287}
288
289static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
290							    const char *name)
291{
292	struct hlist_head *head = dev_name_hash(net, name);
293	struct netdev_name_node *name_node;
294
295	hlist_for_each_entry_rcu(name_node, head, hlist)
296		if (!strcmp(name_node->name, name))
297			return name_node;
298	return NULL;
299}
300
301bool netdev_name_in_use(struct net *net, const char *name)
302{
303	return netdev_name_node_lookup(net, name);
304}
305EXPORT_SYMBOL(netdev_name_in_use);
306
307int netdev_name_node_alt_create(struct net_device *dev, const char *name)
308{
309	struct netdev_name_node *name_node;
310	struct net *net = dev_net(dev);
311
312	name_node = netdev_name_node_lookup(net, name);
313	if (name_node)
314		return -EEXIST;
315	name_node = netdev_name_node_alloc(dev, name);
316	if (!name_node)
317		return -ENOMEM;
318	netdev_name_node_add(net, name_node);
319	/* The node that holds dev->name acts as a head of per-device list. */
320	list_add_tail_rcu(&name_node->list, &dev->name_node->list);
321
322	return 0;
323}
324
325static void netdev_name_node_alt_free(struct rcu_head *head)
326{
327	struct netdev_name_node *name_node =
328		container_of(head, struct netdev_name_node, rcu);
329
330	kfree(name_node->name);
331	netdev_name_node_free(name_node);
332}
333
334static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
335{
336	netdev_name_node_del(name_node);
337	list_del(&name_node->list);
338	call_rcu(&name_node->rcu, netdev_name_node_alt_free);
339}
340
341int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
342{
343	struct netdev_name_node *name_node;
344	struct net *net = dev_net(dev);
345
346	name_node = netdev_name_node_lookup(net, name);
347	if (!name_node)
348		return -ENOENT;
349	/* lookup might have found our primary name or a name belonging
350	 * to another device.
351	 */
352	if (name_node == dev->name_node || name_node->dev != dev)
353		return -EINVAL;
354
355	__netdev_name_node_alt_destroy(name_node);
356	return 0;
357}
358
359static void netdev_name_node_alt_flush(struct net_device *dev)
360{
361	struct netdev_name_node *name_node, *tmp;
362
363	list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list) {
364		list_del(&name_node->list);
365		netdev_name_node_alt_free(&name_node->rcu);
366	}
367}
368
369/* Device list insertion */
370static void list_netdevice(struct net_device *dev)
371{
372	struct netdev_name_node *name_node;
373	struct net *net = dev_net(dev);
374
375	ASSERT_RTNL();
376
377	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
378	netdev_name_node_add(net, dev->name_node);
379	hlist_add_head_rcu(&dev->index_hlist,
380			   dev_index_hash(net, dev->ifindex));
381
382	netdev_for_each_altname(dev, name_node)
383		netdev_name_node_add(net, name_node);
384
385	/* We reserved the ifindex, this can't fail */
386	WARN_ON(xa_store(&net->dev_by_index, dev->ifindex, dev, GFP_KERNEL));
387
388	dev_base_seq_inc(net);
389}
390
391/* Device list removal
392 * caller must respect a RCU grace period before freeing/reusing dev
393 */
394static void unlist_netdevice(struct net_device *dev)
395{
396	struct netdev_name_node *name_node;
397	struct net *net = dev_net(dev);
398
399	ASSERT_RTNL();
400
401	xa_erase(&net->dev_by_index, dev->ifindex);
402
403	netdev_for_each_altname(dev, name_node)
404		netdev_name_node_del(name_node);
405
406	/* Unlink dev from the device chain */
407	list_del_rcu(&dev->dev_list);
408	netdev_name_node_del(dev->name_node);
409	hlist_del_rcu(&dev->index_hlist);
410
411	dev_base_seq_inc(dev_net(dev));
412}
413
414/*
415 *	Our notifier list
416 */
417
418static RAW_NOTIFIER_HEAD(netdev_chain);
419
420/*
421 *	Device drivers call our routines to queue packets here. We empty the
422 *	queue in the local softnet handler.
423 */
424
425DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
426EXPORT_PER_CPU_SYMBOL(softnet_data);
427
428/* Page_pool has a lockless array/stack to alloc/recycle pages.
429 * PP consumers must pay attention to run APIs in the appropriate context
430 * (e.g. NAPI context).
431 */
432static DEFINE_PER_CPU(struct page_pool *, system_page_pool);
433
434#ifdef CONFIG_LOCKDEP
435/*
436 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
437 * according to dev->type
438 */
439static const unsigned short netdev_lock_type[] = {
440	 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
441	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
442	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
443	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
444	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
445	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
446	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
447	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
448	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
449	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
450	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
451	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
452	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
453	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
454	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
455
456static const char *const netdev_lock_name[] = {
457	"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
458	"_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
459	"_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
460	"_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
461	"_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
462	"_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
463	"_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
464	"_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
465	"_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
466	"_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
467	"_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
468	"_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
469	"_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
470	"_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
471	"_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
472
473static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
474static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
475
476static inline unsigned short netdev_lock_pos(unsigned short dev_type)
477{
478	int i;
479
480	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
481		if (netdev_lock_type[i] == dev_type)
482			return i;
483	/* the last key is used by default */
484	return ARRAY_SIZE(netdev_lock_type) - 1;
485}
486
487static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
488						 unsigned short dev_type)
489{
490	int i;
491
492	i = netdev_lock_pos(dev_type);
493	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
494				   netdev_lock_name[i]);
495}
496
497static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
498{
499	int i;
500
501	i = netdev_lock_pos(dev->type);
502	lockdep_set_class_and_name(&dev->addr_list_lock,
503				   &netdev_addr_lock_key[i],
504				   netdev_lock_name[i]);
505}
506#else
507static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
508						 unsigned short dev_type)
509{
510}
511
512static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
513{
514}
515#endif
516
517/*******************************************************************************
518 *
519 *		Protocol management and registration routines
520 *
521 *******************************************************************************/
522
523
524/*
525 *	Add a protocol ID to the list. Now that the input handler is
526 *	smarter we can dispense with all the messy stuff that used to be
527 *	here.
528 *
529 *	BEWARE!!! Protocol handlers, mangling input packets,
530 *	MUST BE last in hash buckets and checking protocol handlers
531 *	MUST start from promiscuous ptype_all chain in net_bh.
532 *	It is true now, do not change it.
533 *	Explanation follows: if protocol handler, mangling packet, will
534 *	be the first on list, it is not able to sense, that packet
535 *	is cloned and should be copied-on-write, so that it will
536 *	change it and subsequent readers will get broken packet.
537 *							--ANK (980803)
538 */
539
540static inline struct list_head *ptype_head(const struct packet_type *pt)
541{
542	if (pt->type == htons(ETH_P_ALL))
543		return pt->dev ? &pt->dev->ptype_all : &net_hotdata.ptype_all;
544	else
545		return pt->dev ? &pt->dev->ptype_specific :
546				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
547}
548
549/**
550 *	dev_add_pack - add packet handler
551 *	@pt: packet type declaration
552 *
553 *	Add a protocol handler to the networking stack. The passed &packet_type
554 *	is linked into kernel lists and may not be freed until it has been
555 *	removed from the kernel lists.
556 *
557 *	This call does not sleep therefore it can not
558 *	guarantee all CPU's that are in middle of receiving packets
559 *	will see the new packet type (until the next received packet).
560 */
561
562void dev_add_pack(struct packet_type *pt)
563{
564	struct list_head *head = ptype_head(pt);
565
566	spin_lock(&ptype_lock);
567	list_add_rcu(&pt->list, head);
568	spin_unlock(&ptype_lock);
569}
570EXPORT_SYMBOL(dev_add_pack);
571
572/**
573 *	__dev_remove_pack	 - remove packet handler
574 *	@pt: packet type declaration
575 *
576 *	Remove a protocol handler that was previously added to the kernel
577 *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
578 *	from the kernel lists and can be freed or reused once this function
579 *	returns.
580 *
581 *      The packet type might still be in use by receivers
582 *	and must not be freed until after all the CPU's have gone
583 *	through a quiescent state.
584 */
585void __dev_remove_pack(struct packet_type *pt)
586{
587	struct list_head *head = ptype_head(pt);
588	struct packet_type *pt1;
589
590	spin_lock(&ptype_lock);
591
592	list_for_each_entry(pt1, head, list) {
593		if (pt == pt1) {
594			list_del_rcu(&pt->list);
595			goto out;
596		}
597	}
598
599	pr_warn("dev_remove_pack: %p not found\n", pt);
600out:
601	spin_unlock(&ptype_lock);
602}
603EXPORT_SYMBOL(__dev_remove_pack);
604
605/**
606 *	dev_remove_pack	 - remove packet handler
607 *	@pt: packet type declaration
608 *
609 *	Remove a protocol handler that was previously added to the kernel
610 *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
611 *	from the kernel lists and can be freed or reused once this function
612 *	returns.
613 *
614 *	This call sleeps to guarantee that no CPU is looking at the packet
615 *	type after return.
616 */
617void dev_remove_pack(struct packet_type *pt)
618{
619	__dev_remove_pack(pt);
620
621	synchronize_net();
622}
623EXPORT_SYMBOL(dev_remove_pack);
624
625
626/*******************************************************************************
627 *
628 *			    Device Interface Subroutines
629 *
630 *******************************************************************************/
631
632/**
633 *	dev_get_iflink	- get 'iflink' value of a interface
634 *	@dev: targeted interface
635 *
636 *	Indicates the ifindex the interface is linked to.
637 *	Physical interfaces have the same 'ifindex' and 'iflink' values.
638 */
639
640int dev_get_iflink(const struct net_device *dev)
641{
642	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
643		return dev->netdev_ops->ndo_get_iflink(dev);
644
645	return READ_ONCE(dev->ifindex);
646}
647EXPORT_SYMBOL(dev_get_iflink);
648
649/**
650 *	dev_fill_metadata_dst - Retrieve tunnel egress information.
651 *	@dev: targeted interface
652 *	@skb: The packet.
653 *
654 *	For better visibility of tunnel traffic OVS needs to retrieve
655 *	egress tunnel information for a packet. Following API allows
656 *	user to get this info.
657 */
658int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
659{
660	struct ip_tunnel_info *info;
661
662	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
663		return -EINVAL;
664
665	info = skb_tunnel_info_unclone(skb);
666	if (!info)
667		return -ENOMEM;
668	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
669		return -EINVAL;
670
671	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
672}
673EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
674
675static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
676{
677	int k = stack->num_paths++;
678
679	if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
680		return NULL;
681
682	return &stack->path[k];
683}
684
685int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
686			  struct net_device_path_stack *stack)
687{
688	const struct net_device *last_dev;
689	struct net_device_path_ctx ctx = {
690		.dev	= dev,
691	};
692	struct net_device_path *path;
693	int ret = 0;
694
695	memcpy(ctx.daddr, daddr, sizeof(ctx.daddr));
696	stack->num_paths = 0;
697	while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
698		last_dev = ctx.dev;
699		path = dev_fwd_path(stack);
700		if (!path)
701			return -1;
702
703		memset(path, 0, sizeof(struct net_device_path));
704		ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
705		if (ret < 0)
706			return -1;
707
708		if (WARN_ON_ONCE(last_dev == ctx.dev))
709			return -1;
710	}
711
712	if (!ctx.dev)
713		return ret;
714
715	path = dev_fwd_path(stack);
716	if (!path)
717		return -1;
718	path->type = DEV_PATH_ETHERNET;
719	path->dev = ctx.dev;
720
721	return ret;
722}
723EXPORT_SYMBOL_GPL(dev_fill_forward_path);
724
725/**
726 *	__dev_get_by_name	- find a device by its name
727 *	@net: the applicable net namespace
728 *	@name: name to find
729 *
730 *	Find an interface by name. Must be called under RTNL semaphore.
731 *	If the name is found a pointer to the device is returned.
732 *	If the name is not found then %NULL is returned. The
733 *	reference counters are not incremented so the caller must be
734 *	careful with locks.
735 */
736
737struct net_device *__dev_get_by_name(struct net *net, const char *name)
738{
739	struct netdev_name_node *node_name;
740
741	node_name = netdev_name_node_lookup(net, name);
742	return node_name ? node_name->dev : NULL;
743}
744EXPORT_SYMBOL(__dev_get_by_name);
745
746/**
747 * dev_get_by_name_rcu	- find a device by its name
748 * @net: the applicable net namespace
749 * @name: name to find
750 *
751 * Find an interface by name.
752 * If the name is found a pointer to the device is returned.
753 * If the name is not found then %NULL is returned.
754 * The reference counters are not incremented so the caller must be
755 * careful with locks. The caller must hold RCU lock.
756 */
757
758struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
759{
760	struct netdev_name_node *node_name;
761
762	node_name = netdev_name_node_lookup_rcu(net, name);
763	return node_name ? node_name->dev : NULL;
764}
765EXPORT_SYMBOL(dev_get_by_name_rcu);
766
767/* Deprecated for new users, call netdev_get_by_name() instead */
768struct net_device *dev_get_by_name(struct net *net, const char *name)
769{
770	struct net_device *dev;
771
772	rcu_read_lock();
773	dev = dev_get_by_name_rcu(net, name);
774	dev_hold(dev);
775	rcu_read_unlock();
776	return dev;
777}
778EXPORT_SYMBOL(dev_get_by_name);
779
780/**
781 *	netdev_get_by_name() - find a device by its name
782 *	@net: the applicable net namespace
783 *	@name: name to find
784 *	@tracker: tracking object for the acquired reference
785 *	@gfp: allocation flags for the tracker
786 *
787 *	Find an interface by name. This can be called from any
788 *	context and does its own locking. The returned handle has
789 *	the usage count incremented and the caller must use netdev_put() to
790 *	release it when it is no longer needed. %NULL is returned if no
791 *	matching device is found.
792 */
793struct net_device *netdev_get_by_name(struct net *net, const char *name,
794				      netdevice_tracker *tracker, gfp_t gfp)
795{
796	struct net_device *dev;
797
798	dev = dev_get_by_name(net, name);
799	if (dev)
800		netdev_tracker_alloc(dev, tracker, gfp);
801	return dev;
802}
803EXPORT_SYMBOL(netdev_get_by_name);
804
805/**
806 *	__dev_get_by_index - find a device by its ifindex
807 *	@net: the applicable net namespace
808 *	@ifindex: index of device
809 *
810 *	Search for an interface by index. Returns %NULL if the device
811 *	is not found or a pointer to the device. The device has not
812 *	had its reference counter increased so the caller must be careful
813 *	about locking. The caller must hold the RTNL semaphore.
814 */
815
816struct net_device *__dev_get_by_index(struct net *net, int ifindex)
817{
818	struct net_device *dev;
819	struct hlist_head *head = dev_index_hash(net, ifindex);
820
821	hlist_for_each_entry(dev, head, index_hlist)
822		if (dev->ifindex == ifindex)
823			return dev;
824
825	return NULL;
826}
827EXPORT_SYMBOL(__dev_get_by_index);
828
829/**
830 *	dev_get_by_index_rcu - find a device by its ifindex
831 *	@net: the applicable net namespace
832 *	@ifindex: index of device
833 *
834 *	Search for an interface by index. Returns %NULL if the device
835 *	is not found or a pointer to the device. The device has not
836 *	had its reference counter increased so the caller must be careful
837 *	about locking. The caller must hold RCU lock.
838 */
839
840struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
841{
842	struct net_device *dev;
843	struct hlist_head *head = dev_index_hash(net, ifindex);
844
845	hlist_for_each_entry_rcu(dev, head, index_hlist)
846		if (dev->ifindex == ifindex)
847			return dev;
848
849	return NULL;
850}
851EXPORT_SYMBOL(dev_get_by_index_rcu);
852
853/* Deprecated for new users, call netdev_get_by_index() instead */
854struct net_device *dev_get_by_index(struct net *net, int ifindex)
855{
856	struct net_device *dev;
857
858	rcu_read_lock();
859	dev = dev_get_by_index_rcu(net, ifindex);
860	dev_hold(dev);
861	rcu_read_unlock();
862	return dev;
863}
864EXPORT_SYMBOL(dev_get_by_index);
865
866/**
867 *	netdev_get_by_index() - find a device by its ifindex
868 *	@net: the applicable net namespace
869 *	@ifindex: index of device
870 *	@tracker: tracking object for the acquired reference
871 *	@gfp: allocation flags for the tracker
872 *
873 *	Search for an interface by index. Returns NULL if the device
874 *	is not found or a pointer to the device. The device returned has
875 *	had a reference added and the pointer is safe until the user calls
876 *	netdev_put() to indicate they have finished with it.
877 */
878struct net_device *netdev_get_by_index(struct net *net, int ifindex,
879				       netdevice_tracker *tracker, gfp_t gfp)
880{
881	struct net_device *dev;
882
883	dev = dev_get_by_index(net, ifindex);
884	if (dev)
885		netdev_tracker_alloc(dev, tracker, gfp);
886	return dev;
887}
888EXPORT_SYMBOL(netdev_get_by_index);
889
890/**
891 *	dev_get_by_napi_id - find a device by napi_id
892 *	@napi_id: ID of the NAPI struct
893 *
894 *	Search for an interface by NAPI ID. Returns %NULL if the device
895 *	is not found or a pointer to the device. The device has not had
896 *	its reference counter increased so the caller must be careful
897 *	about locking. The caller must hold RCU lock.
898 */
899
900struct net_device *dev_get_by_napi_id(unsigned int napi_id)
901{
902	struct napi_struct *napi;
903
904	WARN_ON_ONCE(!rcu_read_lock_held());
905
906	if (napi_id < MIN_NAPI_ID)
907		return NULL;
908
909	napi = napi_by_id(napi_id);
910
911	return napi ? napi->dev : NULL;
912}
913EXPORT_SYMBOL(dev_get_by_napi_id);
914
915/**
916 *	netdev_get_name - get a netdevice name, knowing its ifindex.
917 *	@net: network namespace
918 *	@name: a pointer to the buffer where the name will be stored.
919 *	@ifindex: the ifindex of the interface to get the name from.
920 */
921int netdev_get_name(struct net *net, char *name, int ifindex)
922{
923	struct net_device *dev;
924	int ret;
925
926	down_read(&devnet_rename_sem);
927	rcu_read_lock();
928
929	dev = dev_get_by_index_rcu(net, ifindex);
930	if (!dev) {
931		ret = -ENODEV;
932		goto out;
933	}
934
935	strcpy(name, dev->name);
936
937	ret = 0;
938out:
939	rcu_read_unlock();
940	up_read(&devnet_rename_sem);
941	return ret;
942}
943
944/**
945 *	dev_getbyhwaddr_rcu - find a device by its hardware address
946 *	@net: the applicable net namespace
947 *	@type: media type of device
948 *	@ha: hardware address
949 *
950 *	Search for an interface by MAC address. Returns NULL if the device
951 *	is not found or a pointer to the device.
952 *	The caller must hold RCU or RTNL.
953 *	The returned device has not had its ref count increased
954 *	and the caller must therefore be careful about locking
955 *
956 */
957
958struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
959				       const char *ha)
960{
961	struct net_device *dev;
962
963	for_each_netdev_rcu(net, dev)
964		if (dev->type == type &&
965		    !memcmp(dev->dev_addr, ha, dev->addr_len))
966			return dev;
967
968	return NULL;
969}
970EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
971
972struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
973{
974	struct net_device *dev, *ret = NULL;
975
976	rcu_read_lock();
977	for_each_netdev_rcu(net, dev)
978		if (dev->type == type) {
979			dev_hold(dev);
980			ret = dev;
981			break;
982		}
983	rcu_read_unlock();
984	return ret;
985}
986EXPORT_SYMBOL(dev_getfirstbyhwtype);
987
988/**
989 *	__dev_get_by_flags - find any device with given flags
990 *	@net: the applicable net namespace
991 *	@if_flags: IFF_* values
992 *	@mask: bitmask of bits in if_flags to check
993 *
994 *	Search for any interface with the given flags. Returns NULL if a device
995 *	is not found or a pointer to the device. Must be called inside
996 *	rtnl_lock(), and result refcount is unchanged.
997 */
998
999struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1000				      unsigned short mask)
1001{
1002	struct net_device *dev, *ret;
1003
1004	ASSERT_RTNL();
1005
1006	ret = NULL;
1007	for_each_netdev(net, dev) {
1008		if (((dev->flags ^ if_flags) & mask) == 0) {
1009			ret = dev;
1010			break;
1011		}
1012	}
1013	return ret;
1014}
1015EXPORT_SYMBOL(__dev_get_by_flags);
1016
1017/**
1018 *	dev_valid_name - check if name is okay for network device
1019 *	@name: name string
1020 *
1021 *	Network device names need to be valid file names to
1022 *	allow sysfs to work.  We also disallow any kind of
1023 *	whitespace.
1024 */
1025bool dev_valid_name(const char *name)
1026{
1027	if (*name == '\0')
1028		return false;
1029	if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1030		return false;
1031	if (!strcmp(name, ".") || !strcmp(name, ".."))
1032		return false;
1033
1034	while (*name) {
1035		if (*name == '/' || *name == ':' || isspace(*name))
1036			return false;
1037		name++;
1038	}
1039	return true;
1040}
1041EXPORT_SYMBOL(dev_valid_name);
1042
1043/**
1044 *	__dev_alloc_name - allocate a name for a device
1045 *	@net: network namespace to allocate the device name in
1046 *	@name: name format string
1047 *	@res: result name string
1048 *
1049 *	Passed a format string - eg "lt%d" it will try and find a suitable
1050 *	id. It scans list of devices to build up a free map, then chooses
1051 *	the first empty slot. The caller must hold the dev_base or rtnl lock
1052 *	while allocating the name and adding the device in order to avoid
1053 *	duplicates.
1054 *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1055 *	Returns the number of the unit assigned or a negative errno code.
1056 */
1057
1058static int __dev_alloc_name(struct net *net, const char *name, char *res)
1059{
1060	int i = 0;
1061	const char *p;
1062	const int max_netdevices = 8*PAGE_SIZE;
1063	unsigned long *inuse;
1064	struct net_device *d;
1065	char buf[IFNAMSIZ];
1066
1067	/* Verify the string as this thing may have come from the user.
1068	 * There must be one "%d" and no other "%" characters.
1069	 */
1070	p = strchr(name, '%');
1071	if (!p || p[1] != 'd' || strchr(p + 2, '%'))
1072		return -EINVAL;
1073
1074	/* Use one page as a bit array of possible slots */
1075	inuse = bitmap_zalloc(max_netdevices, GFP_ATOMIC);
1076	if (!inuse)
1077		return -ENOMEM;
1078
1079	for_each_netdev(net, d) {
1080		struct netdev_name_node *name_node;
1081
1082		netdev_for_each_altname(d, name_node) {
1083			if (!sscanf(name_node->name, name, &i))
1084				continue;
1085			if (i < 0 || i >= max_netdevices)
1086				continue;
1087
1088			/* avoid cases where sscanf is not exact inverse of printf */
1089			snprintf(buf, IFNAMSIZ, name, i);
1090			if (!strncmp(buf, name_node->name, IFNAMSIZ))
1091				__set_bit(i, inuse);
1092		}
1093		if (!sscanf(d->name, name, &i))
1094			continue;
1095		if (i < 0 || i >= max_netdevices)
1096			continue;
1097
1098		/* avoid cases where sscanf is not exact inverse of printf */
1099		snprintf(buf, IFNAMSIZ, name, i);
1100		if (!strncmp(buf, d->name, IFNAMSIZ))
1101			__set_bit(i, inuse);
1102	}
1103
1104	i = find_first_zero_bit(inuse, max_netdevices);
1105	bitmap_free(inuse);
1106	if (i == max_netdevices)
1107		return -ENFILE;
1108
1109	/* 'res' and 'name' could overlap, use 'buf' as an intermediate buffer */
1110	strscpy(buf, name, IFNAMSIZ);
1111	snprintf(res, IFNAMSIZ, buf, i);
1112	return i;
1113}
1114
1115/* Returns negative errno or allocated unit id (see __dev_alloc_name()) */
1116static int dev_prep_valid_name(struct net *net, struct net_device *dev,
1117			       const char *want_name, char *out_name,
1118			       int dup_errno)
1119{
1120	if (!dev_valid_name(want_name))
1121		return -EINVAL;
1122
1123	if (strchr(want_name, '%'))
1124		return __dev_alloc_name(net, want_name, out_name);
1125
1126	if (netdev_name_in_use(net, want_name))
1127		return -dup_errno;
1128	if (out_name != want_name)
1129		strscpy(out_name, want_name, IFNAMSIZ);
1130	return 0;
1131}
1132
1133/**
1134 *	dev_alloc_name - allocate a name for a device
1135 *	@dev: device
1136 *	@name: name format string
1137 *
1138 *	Passed a format string - eg "lt%d" it will try and find a suitable
1139 *	id. It scans list of devices to build up a free map, then chooses
1140 *	the first empty slot. The caller must hold the dev_base or rtnl lock
1141 *	while allocating the name and adding the device in order to avoid
1142 *	duplicates.
1143 *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1144 *	Returns the number of the unit assigned or a negative errno code.
1145 */
1146
1147int dev_alloc_name(struct net_device *dev, const char *name)
1148{
1149	return dev_prep_valid_name(dev_net(dev), dev, name, dev->name, ENFILE);
1150}
1151EXPORT_SYMBOL(dev_alloc_name);
1152
1153static int dev_get_valid_name(struct net *net, struct net_device *dev,
1154			      const char *name)
1155{
1156	int ret;
1157
1158	ret = dev_prep_valid_name(net, dev, name, dev->name, EEXIST);
1159	return ret < 0 ? ret : 0;
1160}
1161
1162/**
1163 *	dev_change_name - change name of a device
1164 *	@dev: device
1165 *	@newname: name (or format string) must be at least IFNAMSIZ
1166 *
1167 *	Change name of a device, can pass format strings "eth%d".
1168 *	for wildcarding.
1169 */
1170int dev_change_name(struct net_device *dev, const char *newname)
1171{
1172	unsigned char old_assign_type;
1173	char oldname[IFNAMSIZ];
1174	int err = 0;
1175	int ret;
1176	struct net *net;
1177
1178	ASSERT_RTNL();
1179	BUG_ON(!dev_net(dev));
1180
1181	net = dev_net(dev);
1182
1183	down_write(&devnet_rename_sem);
1184
1185	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1186		up_write(&devnet_rename_sem);
1187		return 0;
1188	}
1189
1190	memcpy(oldname, dev->name, IFNAMSIZ);
1191
1192	err = dev_get_valid_name(net, dev, newname);
1193	if (err < 0) {
1194		up_write(&devnet_rename_sem);
1195		return err;
1196	}
1197
1198	if (oldname[0] && !strchr(oldname, '%'))
1199		netdev_info(dev, "renamed from %s%s\n", oldname,
1200			    dev->flags & IFF_UP ? " (while UP)" : "");
1201
1202	old_assign_type = dev->name_assign_type;
1203	WRITE_ONCE(dev->name_assign_type, NET_NAME_RENAMED);
1204
1205rollback:
1206	ret = device_rename(&dev->dev, dev->name);
1207	if (ret) {
1208		memcpy(dev->name, oldname, IFNAMSIZ);
1209		WRITE_ONCE(dev->name_assign_type, old_assign_type);
1210		up_write(&devnet_rename_sem);
1211		return ret;
1212	}
1213
1214	up_write(&devnet_rename_sem);
1215
1216	netdev_adjacent_rename_links(dev, oldname);
1217
1218	netdev_name_node_del(dev->name_node);
1219
1220	synchronize_net();
1221
1222	netdev_name_node_add(net, dev->name_node);
1223
1224	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1225	ret = notifier_to_errno(ret);
1226
1227	if (ret) {
1228		/* err >= 0 after dev_alloc_name() or stores the first errno */
1229		if (err >= 0) {
1230			err = ret;
1231			down_write(&devnet_rename_sem);
1232			memcpy(dev->name, oldname, IFNAMSIZ);
1233			memcpy(oldname, newname, IFNAMSIZ);
1234			WRITE_ONCE(dev->name_assign_type, old_assign_type);
1235			old_assign_type = NET_NAME_RENAMED;
1236			goto rollback;
1237		} else {
1238			netdev_err(dev, "name change rollback failed: %d\n",
1239				   ret);
1240		}
1241	}
1242
1243	return err;
1244}
1245
1246/**
1247 *	dev_set_alias - change ifalias of a device
1248 *	@dev: device
1249 *	@alias: name up to IFALIASZ
1250 *	@len: limit of bytes to copy from info
1251 *
1252 *	Set ifalias for a device,
1253 */
1254int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1255{
1256	struct dev_ifalias *new_alias = NULL;
1257
1258	if (len >= IFALIASZ)
1259		return -EINVAL;
1260
1261	if (len) {
1262		new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1263		if (!new_alias)
1264			return -ENOMEM;
1265
1266		memcpy(new_alias->ifalias, alias, len);
1267		new_alias->ifalias[len] = 0;
1268	}
1269
1270	mutex_lock(&ifalias_mutex);
1271	new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1272					mutex_is_locked(&ifalias_mutex));
1273	mutex_unlock(&ifalias_mutex);
1274
1275	if (new_alias)
1276		kfree_rcu(new_alias, rcuhead);
1277
1278	return len;
1279}
1280EXPORT_SYMBOL(dev_set_alias);
1281
1282/**
1283 *	dev_get_alias - get ifalias of a device
1284 *	@dev: device
1285 *	@name: buffer to store name of ifalias
1286 *	@len: size of buffer
1287 *
1288 *	get ifalias for a device.  Caller must make sure dev cannot go
1289 *	away,  e.g. rcu read lock or own a reference count to device.
1290 */
1291int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1292{
1293	const struct dev_ifalias *alias;
1294	int ret = 0;
1295
1296	rcu_read_lock();
1297	alias = rcu_dereference(dev->ifalias);
1298	if (alias)
1299		ret = snprintf(name, len, "%s", alias->ifalias);
1300	rcu_read_unlock();
1301
1302	return ret;
1303}
1304
1305/**
1306 *	netdev_features_change - device changes features
1307 *	@dev: device to cause notification
1308 *
1309 *	Called to indicate a device has changed features.
1310 */
1311void netdev_features_change(struct net_device *dev)
1312{
1313	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1314}
1315EXPORT_SYMBOL(netdev_features_change);
1316
1317/**
1318 *	netdev_state_change - device changes state
1319 *	@dev: device to cause notification
1320 *
1321 *	Called to indicate a device has changed state. This function calls
1322 *	the notifier chains for netdev_chain and sends a NEWLINK message
1323 *	to the routing socket.
1324 */
1325void netdev_state_change(struct net_device *dev)
1326{
1327	if (dev->flags & IFF_UP) {
1328		struct netdev_notifier_change_info change_info = {
1329			.info.dev = dev,
1330		};
1331
1332		call_netdevice_notifiers_info(NETDEV_CHANGE,
1333					      &change_info.info);
1334		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL, 0, NULL);
1335	}
1336}
1337EXPORT_SYMBOL(netdev_state_change);
1338
1339/**
1340 * __netdev_notify_peers - notify network peers about existence of @dev,
1341 * to be called when rtnl lock is already held.
1342 * @dev: network device
1343 *
1344 * Generate traffic such that interested network peers are aware of
1345 * @dev, such as by generating a gratuitous ARP. This may be used when
1346 * a device wants to inform the rest of the network about some sort of
1347 * reconfiguration such as a failover event or virtual machine
1348 * migration.
1349 */
1350void __netdev_notify_peers(struct net_device *dev)
1351{
1352	ASSERT_RTNL();
1353	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1354	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1355}
1356EXPORT_SYMBOL(__netdev_notify_peers);
1357
1358/**
1359 * netdev_notify_peers - notify network peers about existence of @dev
1360 * @dev: network device
1361 *
1362 * Generate traffic such that interested network peers are aware of
1363 * @dev, such as by generating a gratuitous ARP. This may be used when
1364 * a device wants to inform the rest of the network about some sort of
1365 * reconfiguration such as a failover event or virtual machine
1366 * migration.
1367 */
1368void netdev_notify_peers(struct net_device *dev)
1369{
1370	rtnl_lock();
1371	__netdev_notify_peers(dev);
1372	rtnl_unlock();
1373}
1374EXPORT_SYMBOL(netdev_notify_peers);
1375
1376static int napi_threaded_poll(void *data);
1377
1378static int napi_kthread_create(struct napi_struct *n)
1379{
1380	int err = 0;
1381
1382	/* Create and wake up the kthread once to put it in
1383	 * TASK_INTERRUPTIBLE mode to avoid the blocked task
1384	 * warning and work with loadavg.
1385	 */
1386	n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1387				n->dev->name, n->napi_id);
1388	if (IS_ERR(n->thread)) {
1389		err = PTR_ERR(n->thread);
1390		pr_err("kthread_run failed with err %d\n", err);
1391		n->thread = NULL;
1392	}
1393
1394	return err;
1395}
1396
1397static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1398{
1399	const struct net_device_ops *ops = dev->netdev_ops;
1400	int ret;
1401
1402	ASSERT_RTNL();
1403	dev_addr_check(dev);
1404
1405	if (!netif_device_present(dev)) {
1406		/* may be detached because parent is runtime-suspended */
1407		if (dev->dev.parent)
1408			pm_runtime_resume(dev->dev.parent);
1409		if (!netif_device_present(dev))
1410			return -ENODEV;
1411	}
1412
1413	/* Block netpoll from trying to do any rx path servicing.
1414	 * If we don't do this there is a chance ndo_poll_controller
1415	 * or ndo_poll may be running while we open the device
1416	 */
1417	netpoll_poll_disable(dev);
1418
1419	ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1420	ret = notifier_to_errno(ret);
1421	if (ret)
1422		return ret;
1423
1424	set_bit(__LINK_STATE_START, &dev->state);
1425
1426	if (ops->ndo_validate_addr)
1427		ret = ops->ndo_validate_addr(dev);
1428
1429	if (!ret && ops->ndo_open)
1430		ret = ops->ndo_open(dev);
1431
1432	netpoll_poll_enable(dev);
1433
1434	if (ret)
1435		clear_bit(__LINK_STATE_START, &dev->state);
1436	else {
1437		dev->flags |= IFF_UP;
1438		dev_set_rx_mode(dev);
1439		dev_activate(dev);
1440		add_device_randomness(dev->dev_addr, dev->addr_len);
1441	}
1442
1443	return ret;
1444}
1445
1446/**
1447 *	dev_open	- prepare an interface for use.
1448 *	@dev: device to open
1449 *	@extack: netlink extended ack
1450 *
1451 *	Takes a device from down to up state. The device's private open
1452 *	function is invoked and then the multicast lists are loaded. Finally
1453 *	the device is moved into the up state and a %NETDEV_UP message is
1454 *	sent to the netdev notifier chain.
1455 *
1456 *	Calling this function on an active interface is a nop. On a failure
1457 *	a negative errno code is returned.
1458 */
1459int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1460{
1461	int ret;
1462
1463	if (dev->flags & IFF_UP)
1464		return 0;
1465
1466	ret = __dev_open(dev, extack);
1467	if (ret < 0)
1468		return ret;
1469
1470	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1471	call_netdevice_notifiers(NETDEV_UP, dev);
1472
1473	return ret;
1474}
1475EXPORT_SYMBOL(dev_open);
1476
1477static void __dev_close_many(struct list_head *head)
1478{
1479	struct net_device *dev;
1480
1481	ASSERT_RTNL();
1482	might_sleep();
1483
1484	list_for_each_entry(dev, head, close_list) {
1485		/* Temporarily disable netpoll until the interface is down */
1486		netpoll_poll_disable(dev);
1487
1488		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1489
1490		clear_bit(__LINK_STATE_START, &dev->state);
1491
1492		/* Synchronize to scheduled poll. We cannot touch poll list, it
1493		 * can be even on different cpu. So just clear netif_running().
1494		 *
1495		 * dev->stop() will invoke napi_disable() on all of it's
1496		 * napi_struct instances on this device.
1497		 */
1498		smp_mb__after_atomic(); /* Commit netif_running(). */
1499	}
1500
1501	dev_deactivate_many(head);
1502
1503	list_for_each_entry(dev, head, close_list) {
1504		const struct net_device_ops *ops = dev->netdev_ops;
1505
1506		/*
1507		 *	Call the device specific close. This cannot fail.
1508		 *	Only if device is UP
1509		 *
1510		 *	We allow it to be called even after a DETACH hot-plug
1511		 *	event.
1512		 */
1513		if (ops->ndo_stop)
1514			ops->ndo_stop(dev);
1515
1516		dev->flags &= ~IFF_UP;
1517		netpoll_poll_enable(dev);
1518	}
1519}
1520
1521static void __dev_close(struct net_device *dev)
1522{
1523	LIST_HEAD(single);
1524
1525	list_add(&dev->close_list, &single);
1526	__dev_close_many(&single);
1527	list_del(&single);
1528}
1529
1530void dev_close_many(struct list_head *head, bool unlink)
1531{
1532	struct net_device *dev, *tmp;
1533
1534	/* Remove the devices that don't need to be closed */
1535	list_for_each_entry_safe(dev, tmp, head, close_list)
1536		if (!(dev->flags & IFF_UP))
1537			list_del_init(&dev->close_list);
1538
1539	__dev_close_many(head);
1540
1541	list_for_each_entry_safe(dev, tmp, head, close_list) {
1542		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1543		call_netdevice_notifiers(NETDEV_DOWN, dev);
1544		if (unlink)
1545			list_del_init(&dev->close_list);
1546	}
1547}
1548EXPORT_SYMBOL(dev_close_many);
1549
1550/**
1551 *	dev_close - shutdown an interface.
1552 *	@dev: device to shutdown
1553 *
1554 *	This function moves an active device into down state. A
1555 *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1556 *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1557 *	chain.
1558 */
1559void dev_close(struct net_device *dev)
1560{
1561	if (dev->flags & IFF_UP) {
1562		LIST_HEAD(single);
1563
1564		list_add(&dev->close_list, &single);
1565		dev_close_many(&single, true);
1566		list_del(&single);
1567	}
1568}
1569EXPORT_SYMBOL(dev_close);
1570
1571
1572/**
1573 *	dev_disable_lro - disable Large Receive Offload on a device
1574 *	@dev: device
1575 *
1576 *	Disable Large Receive Offload (LRO) on a net device.  Must be
1577 *	called under RTNL.  This is needed if received packets may be
1578 *	forwarded to another interface.
1579 */
1580void dev_disable_lro(struct net_device *dev)
1581{
1582	struct net_device *lower_dev;
1583	struct list_head *iter;
1584
1585	dev->wanted_features &= ~NETIF_F_LRO;
1586	netdev_update_features(dev);
1587
1588	if (unlikely(dev->features & NETIF_F_LRO))
1589		netdev_WARN(dev, "failed to disable LRO!\n");
1590
1591	netdev_for_each_lower_dev(dev, lower_dev, iter)
1592		dev_disable_lro(lower_dev);
1593}
1594EXPORT_SYMBOL(dev_disable_lro);
1595
1596/**
1597 *	dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1598 *	@dev: device
1599 *
1600 *	Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1601 *	called under RTNL.  This is needed if Generic XDP is installed on
1602 *	the device.
1603 */
1604static void dev_disable_gro_hw(struct net_device *dev)
1605{
1606	dev->wanted_features &= ~NETIF_F_GRO_HW;
1607	netdev_update_features(dev);
1608
1609	if (unlikely(dev->features & NETIF_F_GRO_HW))
1610		netdev_WARN(dev, "failed to disable GRO_HW!\n");
1611}
1612
1613const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1614{
1615#define N(val) 						\
1616	case NETDEV_##val:				\
1617		return "NETDEV_" __stringify(val);
1618	switch (cmd) {
1619	N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1620	N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1621	N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1622	N(POST_INIT) N(PRE_UNINIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN)
1623	N(CHANGEUPPER) N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA)
1624	N(BONDING_INFO) N(PRECHANGEUPPER) N(CHANGELOWERSTATE)
1625	N(UDP_TUNNEL_PUSH_INFO) N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1626	N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1627	N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1628	N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE)
1629	N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA)
1630	N(XDP_FEAT_CHANGE)
1631	}
1632#undef N
1633	return "UNKNOWN_NETDEV_EVENT";
1634}
1635EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1636
1637static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1638				   struct net_device *dev)
1639{
1640	struct netdev_notifier_info info = {
1641		.dev = dev,
1642	};
1643
1644	return nb->notifier_call(nb, val, &info);
1645}
1646
1647static int call_netdevice_register_notifiers(struct notifier_block *nb,
1648					     struct net_device *dev)
1649{
1650	int err;
1651
1652	err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1653	err = notifier_to_errno(err);
1654	if (err)
1655		return err;
1656
1657	if (!(dev->flags & IFF_UP))
1658		return 0;
1659
1660	call_netdevice_notifier(nb, NETDEV_UP, dev);
1661	return 0;
1662}
1663
1664static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1665						struct net_device *dev)
1666{
1667	if (dev->flags & IFF_UP) {
1668		call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1669					dev);
1670		call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1671	}
1672	call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1673}
1674
1675static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1676						 struct net *net)
1677{
1678	struct net_device *dev;
1679	int err;
1680
1681	for_each_netdev(net, dev) {
1682		err = call_netdevice_register_notifiers(nb, dev);
1683		if (err)
1684			goto rollback;
1685	}
1686	return 0;
1687
1688rollback:
1689	for_each_netdev_continue_reverse(net, dev)
1690		call_netdevice_unregister_notifiers(nb, dev);
1691	return err;
1692}
1693
1694static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1695						    struct net *net)
1696{
1697	struct net_device *dev;
1698
1699	for_each_netdev(net, dev)
1700		call_netdevice_unregister_notifiers(nb, dev);
1701}
1702
1703static int dev_boot_phase = 1;
1704
1705/**
1706 * register_netdevice_notifier - register a network notifier block
1707 * @nb: notifier
1708 *
1709 * Register a notifier to be called when network device events occur.
1710 * The notifier passed is linked into the kernel structures and must
1711 * not be reused until it has been unregistered. A negative errno code
1712 * is returned on a failure.
1713 *
1714 * When registered all registration and up events are replayed
1715 * to the new notifier to allow device to have a race free
1716 * view of the network device list.
1717 */
1718
1719int register_netdevice_notifier(struct notifier_block *nb)
1720{
1721	struct net *net;
1722	int err;
1723
1724	/* Close race with setup_net() and cleanup_net() */
1725	down_write(&pernet_ops_rwsem);
1726	rtnl_lock();
1727	err = raw_notifier_chain_register(&netdev_chain, nb);
1728	if (err)
1729		goto unlock;
1730	if (dev_boot_phase)
1731		goto unlock;
1732	for_each_net(net) {
1733		err = call_netdevice_register_net_notifiers(nb, net);
1734		if (err)
1735			goto rollback;
1736	}
1737
1738unlock:
1739	rtnl_unlock();
1740	up_write(&pernet_ops_rwsem);
1741	return err;
1742
1743rollback:
1744	for_each_net_continue_reverse(net)
1745		call_netdevice_unregister_net_notifiers(nb, net);
1746
1747	raw_notifier_chain_unregister(&netdev_chain, nb);
1748	goto unlock;
1749}
1750EXPORT_SYMBOL(register_netdevice_notifier);
1751
1752/**
1753 * unregister_netdevice_notifier - unregister a network notifier block
1754 * @nb: notifier
1755 *
1756 * Unregister a notifier previously registered by
1757 * register_netdevice_notifier(). The notifier is unlinked into the
1758 * kernel structures and may then be reused. A negative errno code
1759 * is returned on a failure.
1760 *
1761 * After unregistering unregister and down device events are synthesized
1762 * for all devices on the device list to the removed notifier to remove
1763 * the need for special case cleanup code.
1764 */
1765
1766int unregister_netdevice_notifier(struct notifier_block *nb)
1767{
1768	struct net *net;
1769	int err;
1770
1771	/* Close race with setup_net() and cleanup_net() */
1772	down_write(&pernet_ops_rwsem);
1773	rtnl_lock();
1774	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1775	if (err)
1776		goto unlock;
1777
1778	for_each_net(net)
1779		call_netdevice_unregister_net_notifiers(nb, net);
1780
1781unlock:
1782	rtnl_unlock();
1783	up_write(&pernet_ops_rwsem);
1784	return err;
1785}
1786EXPORT_SYMBOL(unregister_netdevice_notifier);
1787
1788static int __register_netdevice_notifier_net(struct net *net,
1789					     struct notifier_block *nb,
1790					     bool ignore_call_fail)
1791{
1792	int err;
1793
1794	err = raw_notifier_chain_register(&net->netdev_chain, nb);
1795	if (err)
1796		return err;
1797	if (dev_boot_phase)
1798		return 0;
1799
1800	err = call_netdevice_register_net_notifiers(nb, net);
1801	if (err && !ignore_call_fail)
1802		goto chain_unregister;
1803
1804	return 0;
1805
1806chain_unregister:
1807	raw_notifier_chain_unregister(&net->netdev_chain, nb);
1808	return err;
1809}
1810
1811static int __unregister_netdevice_notifier_net(struct net *net,
1812					       struct notifier_block *nb)
1813{
1814	int err;
1815
1816	err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1817	if (err)
1818		return err;
1819
1820	call_netdevice_unregister_net_notifiers(nb, net);
1821	return 0;
1822}
1823
1824/**
1825 * register_netdevice_notifier_net - register a per-netns network notifier block
1826 * @net: network namespace
1827 * @nb: notifier
1828 *
1829 * Register a notifier to be called when network device events occur.
1830 * The notifier passed is linked into the kernel structures and must
1831 * not be reused until it has been unregistered. A negative errno code
1832 * is returned on a failure.
1833 *
1834 * When registered all registration and up events are replayed
1835 * to the new notifier to allow device to have a race free
1836 * view of the network device list.
1837 */
1838
1839int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1840{
1841	int err;
1842
1843	rtnl_lock();
1844	err = __register_netdevice_notifier_net(net, nb, false);
1845	rtnl_unlock();
1846	return err;
1847}
1848EXPORT_SYMBOL(register_netdevice_notifier_net);
1849
1850/**
1851 * unregister_netdevice_notifier_net - unregister a per-netns
1852 *                                     network notifier block
1853 * @net: network namespace
1854 * @nb: notifier
1855 *
1856 * Unregister a notifier previously registered by
1857 * register_netdevice_notifier_net(). The notifier is unlinked from the
1858 * kernel structures and may then be reused. A negative errno code
1859 * is returned on a failure.
1860 *
1861 * After unregistering unregister and down device events are synthesized
1862 * for all devices on the device list to the removed notifier to remove
1863 * the need for special case cleanup code.
1864 */
1865
1866int unregister_netdevice_notifier_net(struct net *net,
1867				      struct notifier_block *nb)
1868{
1869	int err;
1870
1871	rtnl_lock();
1872	err = __unregister_netdevice_notifier_net(net, nb);
1873	rtnl_unlock();
1874	return err;
1875}
1876EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1877
1878static void __move_netdevice_notifier_net(struct net *src_net,
1879					  struct net *dst_net,
1880					  struct notifier_block *nb)
1881{
1882	__unregister_netdevice_notifier_net(src_net, nb);
1883	__register_netdevice_notifier_net(dst_net, nb, true);
1884}
1885
1886int register_netdevice_notifier_dev_net(struct net_device *dev,
1887					struct notifier_block *nb,
1888					struct netdev_net_notifier *nn)
1889{
1890	int err;
1891
1892	rtnl_lock();
1893	err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1894	if (!err) {
1895		nn->nb = nb;
1896		list_add(&nn->list, &dev->net_notifier_list);
1897	}
1898	rtnl_unlock();
1899	return err;
1900}
1901EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1902
1903int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1904					  struct notifier_block *nb,
1905					  struct netdev_net_notifier *nn)
1906{
1907	int err;
1908
1909	rtnl_lock();
1910	list_del(&nn->list);
1911	err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1912	rtnl_unlock();
1913	return err;
1914}
1915EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1916
1917static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1918					     struct net *net)
1919{
1920	struct netdev_net_notifier *nn;
1921
1922	list_for_each_entry(nn, &dev->net_notifier_list, list)
1923		__move_netdevice_notifier_net(dev_net(dev), net, nn->nb);
1924}
1925
1926/**
1927 *	call_netdevice_notifiers_info - call all network notifier blocks
1928 *	@val: value passed unmodified to notifier function
1929 *	@info: notifier information data
1930 *
1931 *	Call all network notifier blocks.  Parameters and return value
1932 *	are as for raw_notifier_call_chain().
1933 */
1934
1935int call_netdevice_notifiers_info(unsigned long val,
1936				  struct netdev_notifier_info *info)
1937{
1938	struct net *net = dev_net(info->dev);
1939	int ret;
1940
1941	ASSERT_RTNL();
1942
1943	/* Run per-netns notifier block chain first, then run the global one.
1944	 * Hopefully, one day, the global one is going to be removed after
1945	 * all notifier block registrators get converted to be per-netns.
1946	 */
1947	ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
1948	if (ret & NOTIFY_STOP_MASK)
1949		return ret;
1950	return raw_notifier_call_chain(&netdev_chain, val, info);
1951}
1952
1953/**
1954 *	call_netdevice_notifiers_info_robust - call per-netns notifier blocks
1955 *	                                       for and rollback on error
1956 *	@val_up: value passed unmodified to notifier function
1957 *	@val_down: value passed unmodified to the notifier function when
1958 *	           recovering from an error on @val_up
1959 *	@info: notifier information data
1960 *
1961 *	Call all per-netns network notifier blocks, but not notifier blocks on
1962 *	the global notifier chain. Parameters and return value are as for
1963 *	raw_notifier_call_chain_robust().
1964 */
1965
1966static int
1967call_netdevice_notifiers_info_robust(unsigned long val_up,
1968				     unsigned long val_down,
1969				     struct netdev_notifier_info *info)
1970{
1971	struct net *net = dev_net(info->dev);
1972
1973	ASSERT_RTNL();
1974
1975	return raw_notifier_call_chain_robust(&net->netdev_chain,
1976					      val_up, val_down, info);
1977}
1978
1979static int call_netdevice_notifiers_extack(unsigned long val,
1980					   struct net_device *dev,
1981					   struct netlink_ext_ack *extack)
1982{
1983	struct netdev_notifier_info info = {
1984		.dev = dev,
1985		.extack = extack,
1986	};
1987
1988	return call_netdevice_notifiers_info(val, &info);
1989}
1990
1991/**
1992 *	call_netdevice_notifiers - call all network notifier blocks
1993 *      @val: value passed unmodified to notifier function
1994 *      @dev: net_device pointer passed unmodified to notifier function
1995 *
1996 *	Call all network notifier blocks.  Parameters and return value
1997 *	are as for raw_notifier_call_chain().
1998 */
1999
2000int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2001{
2002	return call_netdevice_notifiers_extack(val, dev, NULL);
2003}
2004EXPORT_SYMBOL(call_netdevice_notifiers);
2005
2006/**
2007 *	call_netdevice_notifiers_mtu - call all network notifier blocks
2008 *	@val: value passed unmodified to notifier function
2009 *	@dev: net_device pointer passed unmodified to notifier function
2010 *	@arg: additional u32 argument passed to the notifier function
2011 *
2012 *	Call all network notifier blocks.  Parameters and return value
2013 *	are as for raw_notifier_call_chain().
2014 */
2015static int call_netdevice_notifiers_mtu(unsigned long val,
2016					struct net_device *dev, u32 arg)
2017{
2018	struct netdev_notifier_info_ext info = {
2019		.info.dev = dev,
2020		.ext.mtu = arg,
2021	};
2022
2023	BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2024
2025	return call_netdevice_notifiers_info(val, &info.info);
2026}
2027
2028#ifdef CONFIG_NET_INGRESS
2029static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2030
2031void net_inc_ingress_queue(void)
2032{
2033	static_branch_inc(&ingress_needed_key);
2034}
2035EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2036
2037void net_dec_ingress_queue(void)
2038{
2039	static_branch_dec(&ingress_needed_key);
2040}
2041EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2042#endif
2043
2044#ifdef CONFIG_NET_EGRESS
2045static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2046
2047void net_inc_egress_queue(void)
2048{
2049	static_branch_inc(&egress_needed_key);
2050}
2051EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2052
2053void net_dec_egress_queue(void)
2054{
2055	static_branch_dec(&egress_needed_key);
2056}
2057EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2058#endif
2059
2060DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2061EXPORT_SYMBOL(netstamp_needed_key);
2062#ifdef CONFIG_JUMP_LABEL
2063static atomic_t netstamp_needed_deferred;
2064static atomic_t netstamp_wanted;
2065static void netstamp_clear(struct work_struct *work)
2066{
2067	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2068	int wanted;
2069
2070	wanted = atomic_add_return(deferred, &netstamp_wanted);
2071	if (wanted > 0)
2072		static_branch_enable(&netstamp_needed_key);
2073	else
2074		static_branch_disable(&netstamp_needed_key);
2075}
2076static DECLARE_WORK(netstamp_work, netstamp_clear);
2077#endif
2078
2079void net_enable_timestamp(void)
2080{
2081#ifdef CONFIG_JUMP_LABEL
2082	int wanted = atomic_read(&netstamp_wanted);
2083
2084	while (wanted > 0) {
2085		if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted + 1))
2086			return;
2087	}
2088	atomic_inc(&netstamp_needed_deferred);
2089	schedule_work(&netstamp_work);
2090#else
2091	static_branch_inc(&netstamp_needed_key);
2092#endif
2093}
2094EXPORT_SYMBOL(net_enable_timestamp);
2095
2096void net_disable_timestamp(void)
2097{
2098#ifdef CONFIG_JUMP_LABEL
2099	int wanted = atomic_read(&netstamp_wanted);
2100
2101	while (wanted > 1) {
2102		if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted - 1))
2103			return;
2104	}
2105	atomic_dec(&netstamp_needed_deferred);
2106	schedule_work(&netstamp_work);
2107#else
2108	static_branch_dec(&netstamp_needed_key);
2109#endif
2110}
2111EXPORT_SYMBOL(net_disable_timestamp);
2112
2113static inline void net_timestamp_set(struct sk_buff *skb)
2114{
2115	skb->tstamp = 0;
2116	skb->mono_delivery_time = 0;
2117	if (static_branch_unlikely(&netstamp_needed_key))
2118		skb->tstamp = ktime_get_real();
2119}
2120
2121#define net_timestamp_check(COND, SKB)				\
2122	if (static_branch_unlikely(&netstamp_needed_key)) {	\
2123		if ((COND) && !(SKB)->tstamp)			\
2124			(SKB)->tstamp = ktime_get_real();	\
2125	}							\
2126
2127bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2128{
2129	return __is_skb_forwardable(dev, skb, true);
2130}
2131EXPORT_SYMBOL_GPL(is_skb_forwardable);
2132
2133static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2134			      bool check_mtu)
2135{
2136	int ret = ____dev_forward_skb(dev, skb, check_mtu);
2137
2138	if (likely(!ret)) {
2139		skb->protocol = eth_type_trans(skb, dev);
2140		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2141	}
2142
2143	return ret;
2144}
2145
2146int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2147{
2148	return __dev_forward_skb2(dev, skb, true);
2149}
2150EXPORT_SYMBOL_GPL(__dev_forward_skb);
2151
2152/**
2153 * dev_forward_skb - loopback an skb to another netif
2154 *
2155 * @dev: destination network device
2156 * @skb: buffer to forward
2157 *
2158 * return values:
2159 *	NET_RX_SUCCESS	(no congestion)
2160 *	NET_RX_DROP     (packet was dropped, but freed)
2161 *
2162 * dev_forward_skb can be used for injecting an skb from the
2163 * start_xmit function of one device into the receive queue
2164 * of another device.
2165 *
2166 * The receiving device may be in another namespace, so
2167 * we have to clear all information in the skb that could
2168 * impact namespace isolation.
2169 */
2170int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2171{
2172	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2173}
2174EXPORT_SYMBOL_GPL(dev_forward_skb);
2175
2176int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2177{
2178	return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2179}
2180
2181static inline int deliver_skb(struct sk_buff *skb,
2182			      struct packet_type *pt_prev,
2183			      struct net_device *orig_dev)
2184{
2185	if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2186		return -ENOMEM;
2187	refcount_inc(&skb->users);
2188	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2189}
2190
2191static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2192					  struct packet_type **pt,
2193					  struct net_device *orig_dev,
2194					  __be16 type,
2195					  struct list_head *ptype_list)
2196{
2197	struct packet_type *ptype, *pt_prev = *pt;
2198
2199	list_for_each_entry_rcu(ptype, ptype_list, list) {
2200		if (ptype->type != type)
2201			continue;
2202		if (pt_prev)
2203			deliver_skb(skb, pt_prev, orig_dev);
2204		pt_prev = ptype;
2205	}
2206	*pt = pt_prev;
2207}
2208
2209static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2210{
2211	if (!ptype->af_packet_priv || !skb->sk)
2212		return false;
2213
2214	if (ptype->id_match)
2215		return ptype->id_match(ptype, skb->sk);
2216	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2217		return true;
2218
2219	return false;
2220}
2221
2222/**
2223 * dev_nit_active - return true if any network interface taps are in use
2224 *
2225 * @dev: network device to check for the presence of taps
2226 */
2227bool dev_nit_active(struct net_device *dev)
2228{
2229	return !list_empty(&net_hotdata.ptype_all) ||
2230	       !list_empty(&dev->ptype_all);
2231}
2232EXPORT_SYMBOL_GPL(dev_nit_active);
2233
2234/*
2235 *	Support routine. Sends outgoing frames to any network
2236 *	taps currently in use.
2237 */
2238
2239void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2240{
2241	struct list_head *ptype_list = &net_hotdata.ptype_all;
2242	struct packet_type *ptype, *pt_prev = NULL;
2243	struct sk_buff *skb2 = NULL;
2244
2245	rcu_read_lock();
2246again:
2247	list_for_each_entry_rcu(ptype, ptype_list, list) {
2248		if (READ_ONCE(ptype->ignore_outgoing))
2249			continue;
2250
2251		/* Never send packets back to the socket
2252		 * they originated from - MvS (miquels@drinkel.ow.org)
2253		 */
2254		if (skb_loop_sk(ptype, skb))
2255			continue;
2256
2257		if (pt_prev) {
2258			deliver_skb(skb2, pt_prev, skb->dev);
2259			pt_prev = ptype;
2260			continue;
2261		}
2262
2263		/* need to clone skb, done only once */
2264		skb2 = skb_clone(skb, GFP_ATOMIC);
2265		if (!skb2)
2266			goto out_unlock;
2267
2268		net_timestamp_set(skb2);
2269
2270		/* skb->nh should be correctly
2271		 * set by sender, so that the second statement is
2272		 * just protection against buggy protocols.
2273		 */
2274		skb_reset_mac_header(skb2);
2275
2276		if (skb_network_header(skb2) < skb2->data ||
2277		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2278			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2279					     ntohs(skb2->protocol),
2280					     dev->name);
2281			skb_reset_network_header(skb2);
2282		}
2283
2284		skb2->transport_header = skb2->network_header;
2285		skb2->pkt_type = PACKET_OUTGOING;
2286		pt_prev = ptype;
2287	}
2288
2289	if (ptype_list == &net_hotdata.ptype_all) {
2290		ptype_list = &dev->ptype_all;
2291		goto again;
2292	}
2293out_unlock:
2294	if (pt_prev) {
2295		if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2296			pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2297		else
2298			kfree_skb(skb2);
2299	}
2300	rcu_read_unlock();
2301}
2302EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2303
2304/**
2305 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2306 * @dev: Network device
2307 * @txq: number of queues available
2308 *
2309 * If real_num_tx_queues is changed the tc mappings may no longer be
2310 * valid. To resolve this verify the tc mapping remains valid and if
2311 * not NULL the mapping. With no priorities mapping to this
2312 * offset/count pair it will no longer be used. In the worst case TC0
2313 * is invalid nothing can be done so disable priority mappings. If is
2314 * expected that drivers will fix this mapping if they can before
2315 * calling netif_set_real_num_tx_queues.
2316 */
2317static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2318{
2319	int i;
2320	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2321
2322	/* If TC0 is invalidated disable TC mapping */
2323	if (tc->offset + tc->count > txq) {
2324		netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2325		dev->num_tc = 0;
2326		return;
2327	}
2328
2329	/* Invalidated prio to tc mappings set to TC0 */
2330	for (i = 1; i < TC_BITMASK + 1; i++) {
2331		int q = netdev_get_prio_tc_map(dev, i);
2332
2333		tc = &dev->tc_to_txq[q];
2334		if (tc->offset + tc->count > txq) {
2335			netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2336				    i, q);
2337			netdev_set_prio_tc_map(dev, i, 0);
2338		}
2339	}
2340}
2341
2342int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2343{
2344	if (dev->num_tc) {
2345		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2346		int i;
2347
2348		/* walk through the TCs and see if it falls into any of them */
2349		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2350			if ((txq - tc->offset) < tc->count)
2351				return i;
2352		}
2353
2354		/* didn't find it, just return -1 to indicate no match */
2355		return -1;
2356	}
2357
2358	return 0;
2359}
2360EXPORT_SYMBOL(netdev_txq_to_tc);
2361
2362#ifdef CONFIG_XPS
2363static struct static_key xps_needed __read_mostly;
2364static struct static_key xps_rxqs_needed __read_mostly;
2365static DEFINE_MUTEX(xps_map_mutex);
2366#define xmap_dereference(P)		\
2367	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2368
2369static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2370			     struct xps_dev_maps *old_maps, int tci, u16 index)
2371{
2372	struct xps_map *map = NULL;
2373	int pos;
2374
2375	map = xmap_dereference(dev_maps->attr_map[tci]);
2376	if (!map)
2377		return false;
2378
2379	for (pos = map->len; pos--;) {
2380		if (map->queues[pos] != index)
2381			continue;
2382
2383		if (map->len > 1) {
2384			map->queues[pos] = map->queues[--map->len];
2385			break;
2386		}
2387
2388		if (old_maps)
2389			RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2390		RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2391		kfree_rcu(map, rcu);
2392		return false;
2393	}
2394
2395	return true;
2396}
2397
2398static bool remove_xps_queue_cpu(struct net_device *dev,
2399				 struct xps_dev_maps *dev_maps,
2400				 int cpu, u16 offset, u16 count)
2401{
2402	int num_tc = dev_maps->num_tc;
2403	bool active = false;
2404	int tci;
2405
2406	for (tci = cpu * num_tc; num_tc--; tci++) {
2407		int i, j;
2408
2409		for (i = count, j = offset; i--; j++) {
2410			if (!remove_xps_queue(dev_maps, NULL, tci, j))
2411				break;
2412		}
2413
2414		active |= i < 0;
2415	}
2416
2417	return active;
2418}
2419
2420static void reset_xps_maps(struct net_device *dev,
2421			   struct xps_dev_maps *dev_maps,
2422			   enum xps_map_type type)
2423{
2424	static_key_slow_dec_cpuslocked(&xps_needed);
2425	if (type == XPS_RXQS)
2426		static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2427
2428	RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2429
2430	kfree_rcu(dev_maps, rcu);
2431}
2432
2433static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2434			   u16 offset, u16 count)
2435{
2436	struct xps_dev_maps *dev_maps;
2437	bool active = false;
2438	int i, j;
2439
2440	dev_maps = xmap_dereference(dev->xps_maps[type]);
2441	if (!dev_maps)
2442		return;
2443
2444	for (j = 0; j < dev_maps->nr_ids; j++)
2445		active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2446	if (!active)
2447		reset_xps_maps(dev, dev_maps, type);
2448
2449	if (type == XPS_CPUS) {
2450		for (i = offset + (count - 1); count--; i--)
2451			netdev_queue_numa_node_write(
2452				netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2453	}
2454}
2455
2456static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2457				   u16 count)
2458{
2459	if (!static_key_false(&xps_needed))
2460		return;
2461
2462	cpus_read_lock();
2463	mutex_lock(&xps_map_mutex);
2464
2465	if (static_key_false(&xps_rxqs_needed))
2466		clean_xps_maps(dev, XPS_RXQS, offset, count);
2467
2468	clean_xps_maps(dev, XPS_CPUS, offset, count);
2469
2470	mutex_unlock(&xps_map_mutex);
2471	cpus_read_unlock();
2472}
2473
2474static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2475{
2476	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2477}
2478
2479static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2480				      u16 index, bool is_rxqs_map)
2481{
2482	struct xps_map *new_map;
2483	int alloc_len = XPS_MIN_MAP_ALLOC;
2484	int i, pos;
2485
2486	for (pos = 0; map && pos < map->len; pos++) {
2487		if (map->queues[pos] != index)
2488			continue;
2489		return map;
2490	}
2491
2492	/* Need to add tx-queue to this CPU's/rx-queue's existing map */
2493	if (map) {
2494		if (pos < map->alloc_len)
2495			return map;
2496
2497		alloc_len = map->alloc_len * 2;
2498	}
2499
2500	/* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2501	 *  map
2502	 */
2503	if (is_rxqs_map)
2504		new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2505	else
2506		new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2507				       cpu_to_node(attr_index));
2508	if (!new_map)
2509		return NULL;
2510
2511	for (i = 0; i < pos; i++)
2512		new_map->queues[i] = map->queues[i];
2513	new_map->alloc_len = alloc_len;
2514	new_map->len = pos;
2515
2516	return new_map;
2517}
2518
2519/* Copy xps maps at a given index */
2520static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2521			      struct xps_dev_maps *new_dev_maps, int index,
2522			      int tc, bool skip_tc)
2523{
2524	int i, tci = index * dev_maps->num_tc;
2525	struct xps_map *map;
2526
2527	/* copy maps belonging to foreign traffic classes */
2528	for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2529		if (i == tc && skip_tc)
2530			continue;
2531
2532		/* fill in the new device map from the old device map */
2533		map = xmap_dereference(dev_maps->attr_map[tci]);
2534		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2535	}
2536}
2537
2538/* Must be called under cpus_read_lock */
2539int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2540			  u16 index, enum xps_map_type type)
2541{
2542	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2543	const unsigned long *online_mask = NULL;
2544	bool active = false, copy = false;
2545	int i, j, tci, numa_node_id = -2;
2546	int maps_sz, num_tc = 1, tc = 0;
2547	struct xps_map *map, *new_map;
2548	unsigned int nr_ids;
2549
2550	WARN_ON_ONCE(index >= dev->num_tx_queues);
2551
2552	if (dev->num_tc) {
2553		/* Do not allow XPS on subordinate device directly */
2554		num_tc = dev->num_tc;
2555		if (num_tc < 0)
2556			return -EINVAL;
2557
2558		/* If queue belongs to subordinate dev use its map */
2559		dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2560
2561		tc = netdev_txq_to_tc(dev, index);
2562		if (tc < 0)
2563			return -EINVAL;
2564	}
2565
2566	mutex_lock(&xps_map_mutex);
2567
2568	dev_maps = xmap_dereference(dev->xps_maps[type]);
2569	if (type == XPS_RXQS) {
2570		maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2571		nr_ids = dev->num_rx_queues;
2572	} else {
2573		maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2574		if (num_possible_cpus() > 1)
2575			online_mask = cpumask_bits(cpu_online_mask);
2576		nr_ids = nr_cpu_ids;
2577	}
2578
2579	if (maps_sz < L1_CACHE_BYTES)
2580		maps_sz = L1_CACHE_BYTES;
2581
2582	/* The old dev_maps could be larger or smaller than the one we're
2583	 * setting up now, as dev->num_tc or nr_ids could have been updated in
2584	 * between. We could try to be smart, but let's be safe instead and only
2585	 * copy foreign traffic classes if the two map sizes match.
2586	 */
2587	if (dev_maps &&
2588	    dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2589		copy = true;
2590
2591	/* allocate memory for queue storage */
2592	for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2593	     j < nr_ids;) {
2594		if (!new_dev_maps) {
2595			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2596			if (!new_dev_maps) {
2597				mutex_unlock(&xps_map_mutex);
2598				return -ENOMEM;
2599			}
2600
2601			new_dev_maps->nr_ids = nr_ids;
2602			new_dev_maps->num_tc = num_tc;
2603		}
2604
2605		tci = j * num_tc + tc;
2606		map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2607
2608		map = expand_xps_map(map, j, index, type == XPS_RXQS);
2609		if (!map)
2610			goto error;
2611
2612		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2613	}
2614
2615	if (!new_dev_maps)
2616		goto out_no_new_maps;
2617
2618	if (!dev_maps) {
2619		/* Increment static keys at most once per type */
2620		static_key_slow_inc_cpuslocked(&xps_needed);
2621		if (type == XPS_RXQS)
2622			static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2623	}
2624
2625	for (j = 0; j < nr_ids; j++) {
2626		bool skip_tc = false;
2627
2628		tci = j * num_tc + tc;
2629		if (netif_attr_test_mask(j, mask, nr_ids) &&
2630		    netif_attr_test_online(j, online_mask, nr_ids)) {
2631			/* add tx-queue to CPU/rx-queue maps */
2632			int pos = 0;
2633
2634			skip_tc = true;
2635
2636			map = xmap_dereference(new_dev_maps->attr_map[tci]);
2637			while ((pos < map->len) && (map->queues[pos] != index))
2638				pos++;
2639
2640			if (pos == map->len)
2641				map->queues[map->len++] = index;
2642#ifdef CONFIG_NUMA
2643			if (type == XPS_CPUS) {
2644				if (numa_node_id == -2)
2645					numa_node_id = cpu_to_node(j);
2646				else if (numa_node_id != cpu_to_node(j))
2647					numa_node_id = -1;
2648			}
2649#endif
2650		}
2651
2652		if (copy)
2653			xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2654					  skip_tc);
2655	}
2656
2657	rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2658
2659	/* Cleanup old maps */
2660	if (!dev_maps)
2661		goto out_no_old_maps;
2662
2663	for (j = 0; j < dev_maps->nr_ids; j++) {
2664		for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2665			map = xmap_dereference(dev_maps->attr_map[tci]);
2666			if (!map)
2667				continue;
2668
2669			if (copy) {
2670				new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2671				if (map == new_map)
2672					continue;
2673			}
2674
2675			RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2676			kfree_rcu(map, rcu);
2677		}
2678	}
2679
2680	old_dev_maps = dev_maps;
2681
2682out_no_old_maps:
2683	dev_maps = new_dev_maps;
2684	active = true;
2685
2686out_no_new_maps:
2687	if (type == XPS_CPUS)
2688		/* update Tx queue numa node */
2689		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2690					     (numa_node_id >= 0) ?
2691					     numa_node_id : NUMA_NO_NODE);
2692
2693	if (!dev_maps)
2694		goto out_no_maps;
2695
2696	/* removes tx-queue from unused CPUs/rx-queues */
2697	for (j = 0; j < dev_maps->nr_ids; j++) {
2698		tci = j * dev_maps->num_tc;
2699
2700		for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2701			if (i == tc &&
2702			    netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2703			    netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2704				continue;
2705
2706			active |= remove_xps_queue(dev_maps,
2707						   copy ? old_dev_maps : NULL,
2708						   tci, index);
2709		}
2710	}
2711
2712	if (old_dev_maps)
2713		kfree_rcu(old_dev_maps, rcu);
2714
2715	/* free map if not active */
2716	if (!active)
2717		reset_xps_maps(dev, dev_maps, type);
2718
2719out_no_maps:
2720	mutex_unlock(&xps_map_mutex);
2721
2722	return 0;
2723error:
2724	/* remove any maps that we added */
2725	for (j = 0; j < nr_ids; j++) {
2726		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2727			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2728			map = copy ?
2729			      xmap_dereference(dev_maps->attr_map[tci]) :
2730			      NULL;
2731			if (new_map && new_map != map)
2732				kfree(new_map);
2733		}
2734	}
2735
2736	mutex_unlock(&xps_map_mutex);
2737
2738	kfree(new_dev_maps);
2739	return -ENOMEM;
2740}
2741EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2742
2743int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2744			u16 index)
2745{
2746	int ret;
2747
2748	cpus_read_lock();
2749	ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2750	cpus_read_unlock();
2751
2752	return ret;
2753}
2754EXPORT_SYMBOL(netif_set_xps_queue);
2755
2756#endif
2757static void netdev_unbind_all_sb_channels(struct net_device *dev)
2758{
2759	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2760
2761	/* Unbind any subordinate channels */
2762	while (txq-- != &dev->_tx[0]) {
2763		if (txq->sb_dev)
2764			netdev_unbind_sb_channel(dev, txq->sb_dev);
2765	}
2766}
2767
2768void netdev_reset_tc(struct net_device *dev)
2769{
2770#ifdef CONFIG_XPS
2771	netif_reset_xps_queues_gt(dev, 0);
2772#endif
2773	netdev_unbind_all_sb_channels(dev);
2774
2775	/* Reset TC configuration of device */
2776	dev->num_tc = 0;
2777	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2778	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2779}
2780EXPORT_SYMBOL(netdev_reset_tc);
2781
2782int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2783{
2784	if (tc >= dev->num_tc)
2785		return -EINVAL;
2786
2787#ifdef CONFIG_XPS
2788	netif_reset_xps_queues(dev, offset, count);
2789#endif
2790	dev->tc_to_txq[tc].count = count;
2791	dev->tc_to_txq[tc].offset = offset;
2792	return 0;
2793}
2794EXPORT_SYMBOL(netdev_set_tc_queue);
2795
2796int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2797{
2798	if (num_tc > TC_MAX_QUEUE)
2799		return -EINVAL;
2800
2801#ifdef CONFIG_XPS
2802	netif_reset_xps_queues_gt(dev, 0);
2803#endif
2804	netdev_unbind_all_sb_channels(dev);
2805
2806	dev->num_tc = num_tc;
2807	return 0;
2808}
2809EXPORT_SYMBOL(netdev_set_num_tc);
2810
2811void netdev_unbind_sb_channel(struct net_device *dev,
2812			      struct net_device *sb_dev)
2813{
2814	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2815
2816#ifdef CONFIG_XPS
2817	netif_reset_xps_queues_gt(sb_dev, 0);
2818#endif
2819	memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2820	memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2821
2822	while (txq-- != &dev->_tx[0]) {
2823		if (txq->sb_dev == sb_dev)
2824			txq->sb_dev = NULL;
2825	}
2826}
2827EXPORT_SYMBOL(netdev_unbind_sb_channel);
2828
2829int netdev_bind_sb_channel_queue(struct net_device *dev,
2830				 struct net_device *sb_dev,
2831				 u8 tc, u16 count, u16 offset)
2832{
2833	/* Make certain the sb_dev and dev are already configured */
2834	if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2835		return -EINVAL;
2836
2837	/* We cannot hand out queues we don't have */
2838	if ((offset + count) > dev->real_num_tx_queues)
2839		return -EINVAL;
2840
2841	/* Record the mapping */
2842	sb_dev->tc_to_txq[tc].count = count;
2843	sb_dev->tc_to_txq[tc].offset = offset;
2844
2845	/* Provide a way for Tx queue to find the tc_to_txq map or
2846	 * XPS map for itself.
2847	 */
2848	while (count--)
2849		netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2850
2851	return 0;
2852}
2853EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2854
2855int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2856{
2857	/* Do not use a multiqueue device to represent a subordinate channel */
2858	if (netif_is_multiqueue(dev))
2859		return -ENODEV;
2860
2861	/* We allow channels 1 - 32767 to be used for subordinate channels.
2862	 * Channel 0 is meant to be "native" mode and used only to represent
2863	 * the main root device. We allow writing 0 to reset the device back
2864	 * to normal mode after being used as a subordinate channel.
2865	 */
2866	if (channel > S16_MAX)
2867		return -EINVAL;
2868
2869	dev->num_tc = -channel;
2870
2871	return 0;
2872}
2873EXPORT_SYMBOL(netdev_set_sb_channel);
2874
2875/*
2876 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2877 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2878 */
2879int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2880{
2881	bool disabling;
2882	int rc;
2883
2884	disabling = txq < dev->real_num_tx_queues;
2885
2886	if (txq < 1 || txq > dev->num_tx_queues)
2887		return -EINVAL;
2888
2889	if (dev->reg_state == NETREG_REGISTERED ||
2890	    dev->reg_state == NETREG_UNREGISTERING) {
2891		ASSERT_RTNL();
2892
2893		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2894						  txq);
2895		if (rc)
2896			return rc;
2897
2898		if (dev->num_tc)
2899			netif_setup_tc(dev, txq);
2900
2901		dev_qdisc_change_real_num_tx(dev, txq);
2902
2903		dev->real_num_tx_queues = txq;
2904
2905		if (disabling) {
2906			synchronize_net();
2907			qdisc_reset_all_tx_gt(dev, txq);
2908#ifdef CONFIG_XPS
2909			netif_reset_xps_queues_gt(dev, txq);
2910#endif
2911		}
2912	} else {
2913		dev->real_num_tx_queues = txq;
2914	}
2915
2916	return 0;
2917}
2918EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2919
2920#ifdef CONFIG_SYSFS
2921/**
2922 *	netif_set_real_num_rx_queues - set actual number of RX queues used
2923 *	@dev: Network device
2924 *	@rxq: Actual number of RX queues
2925 *
2926 *	This must be called either with the rtnl_lock held or before
2927 *	registration of the net device.  Returns 0 on success, or a
2928 *	negative error code.  If called before registration, it always
2929 *	succeeds.
2930 */
2931int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2932{
2933	int rc;
2934
2935	if (rxq < 1 || rxq > dev->num_rx_queues)
2936		return -EINVAL;
2937
2938	if (dev->reg_state == NETREG_REGISTERED) {
2939		ASSERT_RTNL();
2940
2941		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2942						  rxq);
2943		if (rc)
2944			return rc;
2945	}
2946
2947	dev->real_num_rx_queues = rxq;
2948	return 0;
2949}
2950EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2951#endif
2952
2953/**
2954 *	netif_set_real_num_queues - set actual number of RX and TX queues used
2955 *	@dev: Network device
2956 *	@txq: Actual number of TX queues
2957 *	@rxq: Actual number of RX queues
2958 *
2959 *	Set the real number of both TX and RX queues.
2960 *	Does nothing if the number of queues is already correct.
2961 */
2962int netif_set_real_num_queues(struct net_device *dev,
2963			      unsigned int txq, unsigned int rxq)
2964{
2965	unsigned int old_rxq = dev->real_num_rx_queues;
2966	int err;
2967
2968	if (txq < 1 || txq > dev->num_tx_queues ||
2969	    rxq < 1 || rxq > dev->num_rx_queues)
2970		return -EINVAL;
2971
2972	/* Start from increases, so the error path only does decreases -
2973	 * decreases can't fail.
2974	 */
2975	if (rxq > dev->real_num_rx_queues) {
2976		err = netif_set_real_num_rx_queues(dev, rxq);
2977		if (err)
2978			return err;
2979	}
2980	if (txq > dev->real_num_tx_queues) {
2981		err = netif_set_real_num_tx_queues(dev, txq);
2982		if (err)
2983			goto undo_rx;
2984	}
2985	if (rxq < dev->real_num_rx_queues)
2986		WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
2987	if (txq < dev->real_num_tx_queues)
2988		WARN_ON(netif_set_real_num_tx_queues(dev, txq));
2989
2990	return 0;
2991undo_rx:
2992	WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
2993	return err;
2994}
2995EXPORT_SYMBOL(netif_set_real_num_queues);
2996
2997/**
2998 * netif_set_tso_max_size() - set the max size of TSO frames supported
2999 * @dev:	netdev to update
3000 * @size:	max skb->len of a TSO frame
3001 *
3002 * Set the limit on the size of TSO super-frames the device can handle.
3003 * Unless explicitly set the stack will assume the value of
3004 * %GSO_LEGACY_MAX_SIZE.
3005 */
3006void netif_set_tso_max_size(struct net_device *dev, unsigned int size)
3007{
3008	dev->tso_max_size = min(GSO_MAX_SIZE, size);
3009	if (size < READ_ONCE(dev->gso_max_size))
3010		netif_set_gso_max_size(dev, size);
3011	if (size < READ_ONCE(dev->gso_ipv4_max_size))
3012		netif_set_gso_ipv4_max_size(dev, size);
3013}
3014EXPORT_SYMBOL(netif_set_tso_max_size);
3015
3016/**
3017 * netif_set_tso_max_segs() - set the max number of segs supported for TSO
3018 * @dev:	netdev to update
3019 * @segs:	max number of TCP segments
3020 *
3021 * Set the limit on the number of TCP segments the device can generate from
3022 * a single TSO super-frame.
3023 * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS.
3024 */
3025void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs)
3026{
3027	dev->tso_max_segs = segs;
3028	if (segs < READ_ONCE(dev->gso_max_segs))
3029		netif_set_gso_max_segs(dev, segs);
3030}
3031EXPORT_SYMBOL(netif_set_tso_max_segs);
3032
3033/**
3034 * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper
3035 * @to:		netdev to update
3036 * @from:	netdev from which to copy the limits
3037 */
3038void netif_inherit_tso_max(struct net_device *to, const struct net_device *from)
3039{
3040	netif_set_tso_max_size(to, from->tso_max_size);
3041	netif_set_tso_max_segs(to, from->tso_max_segs);
3042}
3043EXPORT_SYMBOL(netif_inherit_tso_max);
3044
3045/**
3046 * netif_get_num_default_rss_queues - default number of RSS queues
3047 *
3048 * Default value is the number of physical cores if there are only 1 or 2, or
3049 * divided by 2 if there are more.
3050 */
3051int netif_get_num_default_rss_queues(void)
3052{
3053	cpumask_var_t cpus;
3054	int cpu, count = 0;
3055
3056	if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL)))
3057		return 1;
3058
3059	cpumask_copy(cpus, cpu_online_mask);
3060	for_each_cpu(cpu, cpus) {
3061		++count;
3062		cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu));
3063	}
3064	free_cpumask_var(cpus);
3065
3066	return count > 2 ? DIV_ROUND_UP(count, 2) : count;
3067}
3068EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3069
3070static void __netif_reschedule(struct Qdisc *q)
3071{
3072	struct softnet_data *sd;
3073	unsigned long flags;
3074
3075	local_irq_save(flags);
3076	sd = this_cpu_ptr(&softnet_data);
3077	q->next_sched = NULL;
3078	*sd->output_queue_tailp = q;
3079	sd->output_queue_tailp = &q->next_sched;
3080	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3081	local_irq_restore(flags);
3082}
3083
3084void __netif_schedule(struct Qdisc *q)
3085{
3086	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3087		__netif_reschedule(q);
3088}
3089EXPORT_SYMBOL(__netif_schedule);
3090
3091struct dev_kfree_skb_cb {
3092	enum skb_drop_reason reason;
3093};
3094
3095static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3096{
3097	return (struct dev_kfree_skb_cb *)skb->cb;
3098}
3099
3100void netif_schedule_queue(struct netdev_queue *txq)
3101{
3102	rcu_read_lock();
3103	if (!netif_xmit_stopped(txq)) {
3104		struct Qdisc *q = rcu_dereference(txq->qdisc);
3105
3106		__netif_schedule(q);
3107	}
3108	rcu_read_unlock();
3109}
3110EXPORT_SYMBOL(netif_schedule_queue);
3111
3112void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3113{
3114	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3115		struct Qdisc *q;
3116
3117		rcu_read_lock();
3118		q = rcu_dereference(dev_queue->qdisc);
3119		__netif_schedule(q);
3120		rcu_read_unlock();
3121	}
3122}
3123EXPORT_SYMBOL(netif_tx_wake_queue);
3124
3125void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3126{
3127	unsigned long flags;
3128
3129	if (unlikely(!skb))
3130		return;
3131
3132	if (likely(refcount_read(&skb->users) == 1)) {
3133		smp_rmb();
3134		refcount_set(&skb->users, 0);
3135	} else if (likely(!refcount_dec_and_test(&skb->users))) {
3136		return;
3137	}
3138	get_kfree_skb_cb(skb)->reason = reason;
3139	local_irq_save(flags);
3140	skb->next = __this_cpu_read(softnet_data.completion_queue);
3141	__this_cpu_write(softnet_data.completion_queue, skb);
3142	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3143	local_irq_restore(flags);
3144}
3145EXPORT_SYMBOL(dev_kfree_skb_irq_reason);
3146
3147void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3148{
3149	if (in_hardirq() || irqs_disabled())
3150		dev_kfree_skb_irq_reason(skb, reason);
3151	else
3152		kfree_skb_reason(skb, reason);
3153}
3154EXPORT_SYMBOL(dev_kfree_skb_any_reason);
3155
3156
3157/**
3158 * netif_device_detach - mark device as removed
3159 * @dev: network device
3160 *
3161 * Mark device as removed from system and therefore no longer available.
3162 */
3163void netif_device_detach(struct net_device *dev)
3164{
3165	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3166	    netif_running(dev)) {
3167		netif_tx_stop_all_queues(dev);
3168	}
3169}
3170EXPORT_SYMBOL(netif_device_detach);
3171
3172/**
3173 * netif_device_attach - mark device as attached
3174 * @dev: network device
3175 *
3176 * Mark device as attached from system and restart if needed.
3177 */
3178void netif_device_attach(struct net_device *dev)
3179{
3180	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3181	    netif_running(dev)) {
3182		netif_tx_wake_all_queues(dev);
3183		__netdev_watchdog_up(dev);
3184	}
3185}
3186EXPORT_SYMBOL(netif_device_attach);
3187
3188/*
3189 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3190 * to be used as a distribution range.
3191 */
3192static u16 skb_tx_hash(const struct net_device *dev,
3193		       const struct net_device *sb_dev,
3194		       struct sk_buff *skb)
3195{
3196	u32 hash;
3197	u16 qoffset = 0;
3198	u16 qcount = dev->real_num_tx_queues;
3199
3200	if (dev->num_tc) {
3201		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3202
3203		qoffset = sb_dev->tc_to_txq[tc].offset;
3204		qcount = sb_dev->tc_to_txq[tc].count;
3205		if (unlikely(!qcount)) {
3206			net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3207					     sb_dev->name, qoffset, tc);
3208			qoffset = 0;
3209			qcount = dev->real_num_tx_queues;
3210		}
3211	}
3212
3213	if (skb_rx_queue_recorded(skb)) {
3214		DEBUG_NET_WARN_ON_ONCE(qcount == 0);
3215		hash = skb_get_rx_queue(skb);
3216		if (hash >= qoffset)
3217			hash -= qoffset;
3218		while (unlikely(hash >= qcount))
3219			hash -= qcount;
3220		return hash + qoffset;
3221	}
3222
3223	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3224}
3225
3226void skb_warn_bad_offload(const struct sk_buff *skb)
3227{
3228	static const netdev_features_t null_features;
3229	struct net_device *dev = skb->dev;
3230	const char *name = "";
3231
3232	if (!net_ratelimit())
3233		return;
3234
3235	if (dev) {
3236		if (dev->dev.parent)
3237			name = dev_driver_string(dev->dev.parent);
3238		else
3239			name = netdev_name(dev);
3240	}
3241	skb_dump(KERN_WARNING, skb, false);
3242	WARN(1, "%s: caps=(%pNF, %pNF)\n",
3243	     name, dev ? &dev->features : &null_features,
3244	     skb->sk ? &skb->sk->sk_route_caps : &null_features);
3245}
3246
3247/*
3248 * Invalidate hardware checksum when packet is to be mangled, and
3249 * complete checksum manually on outgoing path.
3250 */
3251int skb_checksum_help(struct sk_buff *skb)
3252{
3253	__wsum csum;
3254	int ret = 0, offset;
3255
3256	if (skb->ip_summed == CHECKSUM_COMPLETE)
3257		goto out_set_summed;
3258
3259	if (unlikely(skb_is_gso(skb))) {
3260		skb_warn_bad_offload(skb);
3261		return -EINVAL;
3262	}
3263
3264	/* Before computing a checksum, we should make sure no frag could
3265	 * be modified by an external entity : checksum could be wrong.
3266	 */
3267	if (skb_has_shared_frag(skb)) {
3268		ret = __skb_linearize(skb);
3269		if (ret)
3270			goto out;
3271	}
3272
3273	offset = skb_checksum_start_offset(skb);
3274	ret = -EINVAL;
3275	if (unlikely(offset >= skb_headlen(skb))) {
3276		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3277		WARN_ONCE(true, "offset (%d) >= skb_headlen() (%u)\n",
3278			  offset, skb_headlen(skb));
3279		goto out;
3280	}
3281	csum = skb_checksum(skb, offset, skb->len - offset, 0);
3282
3283	offset += skb->csum_offset;
3284	if (unlikely(offset + sizeof(__sum16) > skb_headlen(skb))) {
3285		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3286		WARN_ONCE(true, "offset+2 (%zu) > skb_headlen() (%u)\n",
3287			  offset + sizeof(__sum16), skb_headlen(skb));
3288		goto out;
3289	}
3290	ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3291	if (ret)
3292		goto out;
3293
3294	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3295out_set_summed:
3296	skb->ip_summed = CHECKSUM_NONE;
3297out:
3298	return ret;
3299}
3300EXPORT_SYMBOL(skb_checksum_help);
3301
3302int skb_crc32c_csum_help(struct sk_buff *skb)
3303{
3304	__le32 crc32c_csum;
3305	int ret = 0, offset, start;
3306
3307	if (skb->ip_summed != CHECKSUM_PARTIAL)
3308		goto out;
3309
3310	if (unlikely(skb_is_gso(skb)))
3311		goto out;
3312
3313	/* Before computing a checksum, we should make sure no frag could
3314	 * be modified by an external entity : checksum could be wrong.
3315	 */
3316	if (unlikely(skb_has_shared_frag(skb))) {
3317		ret = __skb_linearize(skb);
3318		if (ret)
3319			goto out;
3320	}
3321	start = skb_checksum_start_offset(skb);
3322	offset = start + offsetof(struct sctphdr, checksum);
3323	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3324		ret = -EINVAL;
3325		goto out;
3326	}
3327
3328	ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3329	if (ret)
3330		goto out;
3331
3332	crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3333						  skb->len - start, ~(__u32)0,
3334						  crc32c_csum_stub));
3335	*(__le32 *)(skb->data + offset) = crc32c_csum;
3336	skb_reset_csum_not_inet(skb);
3337out:
3338	return ret;
3339}
3340
3341__be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3342{
3343	__be16 type = skb->protocol;
3344
3345	/* Tunnel gso handlers can set protocol to ethernet. */
3346	if (type == htons(ETH_P_TEB)) {
3347		struct ethhdr *eth;
3348
3349		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3350			return 0;
3351
3352		eth = (struct ethhdr *)skb->data;
3353		type = eth->h_proto;
3354	}
3355
3356	return vlan_get_protocol_and_depth(skb, type, depth);
3357}
3358
3359
3360/* Take action when hardware reception checksum errors are detected. */
3361#ifdef CONFIG_BUG
3362static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3363{
3364	netdev_err(dev, "hw csum failure\n");
3365	skb_dump(KERN_ERR, skb, true);
3366	dump_stack();
3367}
3368
3369void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3370{
3371	DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3372}
3373EXPORT_SYMBOL(netdev_rx_csum_fault);
3374#endif
3375
3376/* XXX: check that highmem exists at all on the given machine. */
3377static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3378{
3379#ifdef CONFIG_HIGHMEM
3380	int i;
3381
3382	if (!(dev->features & NETIF_F_HIGHDMA)) {
3383		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3384			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3385
3386			if (PageHighMem(skb_frag_page(frag)))
3387				return 1;
3388		}
3389	}
3390#endif
3391	return 0;
3392}
3393
3394/* If MPLS offload request, verify we are testing hardware MPLS features
3395 * instead of standard features for the netdev.
3396 */
3397#if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3398static netdev_features_t net_mpls_features(struct sk_buff *skb,
3399					   netdev_features_t features,
3400					   __be16 type)
3401{
3402	if (eth_p_mpls(type))
3403		features &= skb->dev->mpls_features;
3404
3405	return features;
3406}
3407#else
3408static netdev_features_t net_mpls_features(struct sk_buff *skb,
3409					   netdev_features_t features,
3410					   __be16 type)
3411{
3412	return features;
3413}
3414#endif
3415
3416static netdev_features_t harmonize_features(struct sk_buff *skb,
3417	netdev_features_t features)
3418{
3419	__be16 type;
3420
3421	type = skb_network_protocol(skb, NULL);
3422	features = net_mpls_features(skb, features, type);
3423
3424	if (skb->ip_summed != CHECKSUM_NONE &&
3425	    !can_checksum_protocol(features, type)) {
3426		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3427	}
3428	if (illegal_highdma(skb->dev, skb))
3429		features &= ~NETIF_F_SG;
3430
3431	return features;
3432}
3433
3434netdev_features_t passthru_features_check(struct sk_buff *skb,
3435					  struct net_device *dev,
3436					  netdev_features_t features)
3437{
3438	return features;
3439}
3440EXPORT_SYMBOL(passthru_features_check);
3441
3442static netdev_features_t dflt_features_check(struct sk_buff *skb,
3443					     struct net_device *dev,
3444					     netdev_features_t features)
3445{
3446	return vlan_features_check(skb, features);
3447}
3448
3449static netdev_features_t gso_features_check(const struct sk_buff *skb,
3450					    struct net_device *dev,
3451					    netdev_features_t features)
3452{
3453	u16 gso_segs = skb_shinfo(skb)->gso_segs;
3454
3455	if (gso_segs > READ_ONCE(dev->gso_max_segs))
3456		return features & ~NETIF_F_GSO_MASK;
3457
3458	if (unlikely(skb->len >= READ_ONCE(dev->gso_max_size)))
3459		return features & ~NETIF_F_GSO_MASK;
3460
3461	if (!skb_shinfo(skb)->gso_type) {
3462		skb_warn_bad_offload(skb);
3463		return features & ~NETIF_F_GSO_MASK;
3464	}
3465
3466	/* Support for GSO partial features requires software
3467	 * intervention before we can actually process the packets
3468	 * so we need to strip support for any partial features now
3469	 * and we can pull them back in after we have partially
3470	 * segmented the frame.
3471	 */
3472	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3473		features &= ~dev->gso_partial_features;
3474
3475	/* Make sure to clear the IPv4 ID mangling feature if the
3476	 * IPv4 header has the potential to be fragmented.
3477	 */
3478	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3479		struct iphdr *iph = skb->encapsulation ?
3480				    inner_ip_hdr(skb) : ip_hdr(skb);
3481
3482		if (!(iph->frag_off & htons(IP_DF)))
3483			features &= ~NETIF_F_TSO_MANGLEID;
3484	}
3485
3486	return features;
3487}
3488
3489netdev_features_t netif_skb_features(struct sk_buff *skb)
3490{
3491	struct net_device *dev = skb->dev;
3492	netdev_features_t features = dev->features;
3493
3494	if (skb_is_gso(skb))
3495		features = gso_features_check(skb, dev, features);
3496
3497	/* If encapsulation offload request, verify we are testing
3498	 * hardware encapsulation features instead of standard
3499	 * features for the netdev
3500	 */
3501	if (skb->encapsulation)
3502		features &= dev->hw_enc_features;
3503
3504	if (skb_vlan_tagged(skb))
3505		features = netdev_intersect_features(features,
3506						     dev->vlan_features |
3507						     NETIF_F_HW_VLAN_CTAG_TX |
3508						     NETIF_F_HW_VLAN_STAG_TX);
3509
3510	if (dev->netdev_ops->ndo_features_check)
3511		features &= dev->netdev_ops->ndo_features_check(skb, dev,
3512								features);
3513	else
3514		features &= dflt_features_check(skb, dev, features);
3515
3516	return harmonize_features(skb, features);
3517}
3518EXPORT_SYMBOL(netif_skb_features);
3519
3520static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3521		    struct netdev_queue *txq, bool more)
3522{
3523	unsigned int len;
3524	int rc;
3525
3526	if (dev_nit_active(dev))
3527		dev_queue_xmit_nit(skb, dev);
3528
3529	len = skb->len;
3530	trace_net_dev_start_xmit(skb, dev);
3531	rc = netdev_start_xmit(skb, dev, txq, more);
3532	trace_net_dev_xmit(skb, rc, dev, len);
3533
3534	return rc;
3535}
3536
3537struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3538				    struct netdev_queue *txq, int *ret)
3539{
3540	struct sk_buff *skb = first;
3541	int rc = NETDEV_TX_OK;
3542
3543	while (skb) {
3544		struct sk_buff *next = skb->next;
3545
3546		skb_mark_not_on_list(skb);
3547		rc = xmit_one(skb, dev, txq, next != NULL);
3548		if (unlikely(!dev_xmit_complete(rc))) {
3549			skb->next = next;
3550			goto out;
3551		}
3552
3553		skb = next;
3554		if (netif_tx_queue_stopped(txq) && skb) {
3555			rc = NETDEV_TX_BUSY;
3556			break;
3557		}
3558	}
3559
3560out:
3561	*ret = rc;
3562	return skb;
3563}
3564
3565static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3566					  netdev_features_t features)
3567{
3568	if (skb_vlan_tag_present(skb) &&
3569	    !vlan_hw_offload_capable(features, skb->vlan_proto))
3570		skb = __vlan_hwaccel_push_inside(skb);
3571	return skb;
3572}
3573
3574int skb_csum_hwoffload_help(struct sk_buff *skb,
3575			    const netdev_features_t features)
3576{
3577	if (unlikely(skb_csum_is_sctp(skb)))
3578		return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3579			skb_crc32c_csum_help(skb);
3580
3581	if (features & NETIF_F_HW_CSUM)
3582		return 0;
3583
3584	if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3585		switch (skb->csum_offset) {
3586		case offsetof(struct tcphdr, check):
3587		case offsetof(struct udphdr, check):
3588			return 0;
3589		}
3590	}
3591
3592	return skb_checksum_help(skb);
3593}
3594EXPORT_SYMBOL(skb_csum_hwoffload_help);
3595
3596static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3597{
3598	netdev_features_t features;
3599
3600	features = netif_skb_features(skb);
3601	skb = validate_xmit_vlan(skb, features);
3602	if (unlikely(!skb))
3603		goto out_null;
3604
3605	skb = sk_validate_xmit_skb(skb, dev);
3606	if (unlikely(!skb))
3607		goto out_null;
3608
3609	if (netif_needs_gso(skb, features)) {
3610		struct sk_buff *segs;
3611
3612		segs = skb_gso_segment(skb, features);
3613		if (IS_ERR(segs)) {
3614			goto out_kfree_skb;
3615		} else if (segs) {
3616			consume_skb(skb);
3617			skb = segs;
3618		}
3619	} else {
3620		if (skb_needs_linearize(skb, features) &&
3621		    __skb_linearize(skb))
3622			goto out_kfree_skb;
3623
3624		/* If packet is not checksummed and device does not
3625		 * support checksumming for this protocol, complete
3626		 * checksumming here.
3627		 */
3628		if (skb->ip_summed == CHECKSUM_PARTIAL) {
3629			if (skb->encapsulation)
3630				skb_set_inner_transport_header(skb,
3631							       skb_checksum_start_offset(skb));
3632			else
3633				skb_set_transport_header(skb,
3634							 skb_checksum_start_offset(skb));
3635			if (skb_csum_hwoffload_help(skb, features))
3636				goto out_kfree_skb;
3637		}
3638	}
3639
3640	skb = validate_xmit_xfrm(skb, features, again);
3641
3642	return skb;
3643
3644out_kfree_skb:
3645	kfree_skb(skb);
3646out_null:
3647	dev_core_stats_tx_dropped_inc(dev);
3648	return NULL;
3649}
3650
3651struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3652{
3653	struct sk_buff *next, *head = NULL, *tail;
3654
3655	for (; skb != NULL; skb = next) {
3656		next = skb->next;
3657		skb_mark_not_on_list(skb);
3658
3659		/* in case skb wont be segmented, point to itself */
3660		skb->prev = skb;
3661
3662		skb = validate_xmit_skb(skb, dev, again);
3663		if (!skb)
3664			continue;
3665
3666		if (!head)
3667			head = skb;
3668		else
3669			tail->next = skb;
3670		/* If skb was segmented, skb->prev points to
3671		 * the last segment. If not, it still contains skb.
3672		 */
3673		tail = skb->prev;
3674	}
3675	return head;
3676}
3677EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3678
3679static void qdisc_pkt_len_init(struct sk_buff *skb)
3680{
3681	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3682
3683	qdisc_skb_cb(skb)->pkt_len = skb->len;
3684
3685	/* To get more precise estimation of bytes sent on wire,
3686	 * we add to pkt_len the headers size of all segments
3687	 */
3688	if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3689		u16 gso_segs = shinfo->gso_segs;
3690		unsigned int hdr_len;
3691
3692		/* mac layer + network layer */
3693		hdr_len = skb_transport_offset(skb);
3694
3695		/* + transport layer */
3696		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3697			const struct tcphdr *th;
3698			struct tcphdr _tcphdr;
3699
3700			th = skb_header_pointer(skb, hdr_len,
3701						sizeof(_tcphdr), &_tcphdr);
3702			if (likely(th))
3703				hdr_len += __tcp_hdrlen(th);
3704		} else {
3705			struct udphdr _udphdr;
3706
3707			if (skb_header_pointer(skb, hdr_len,
3708					       sizeof(_udphdr), &_udphdr))
3709				hdr_len += sizeof(struct udphdr);
3710		}
3711
3712		if (shinfo->gso_type & SKB_GSO_DODGY)
3713			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3714						shinfo->gso_size);
3715
3716		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3717	}
3718}
3719
3720static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
3721			     struct sk_buff **to_free,
3722			     struct netdev_queue *txq)
3723{
3724	int rc;
3725
3726	rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
3727	if (rc == NET_XMIT_SUCCESS)
3728		trace_qdisc_enqueue(q, txq, skb);
3729	return rc;
3730}
3731
3732static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3733				 struct net_device *dev,
3734				 struct netdev_queue *txq)
3735{
3736	spinlock_t *root_lock = qdisc_lock(q);
3737	struct sk_buff *to_free = NULL;
3738	bool contended;
3739	int rc;
3740
3741	qdisc_calculate_pkt_len(skb, q);
3742
3743	tcf_set_drop_reason(skb, SKB_DROP_REASON_QDISC_DROP);
3744
3745	if (q->flags & TCQ_F_NOLOCK) {
3746		if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
3747		    qdisc_run_begin(q)) {
3748			/* Retest nolock_qdisc_is_empty() within the protection
3749			 * of q->seqlock to protect from racing with requeuing.
3750			 */
3751			if (unlikely(!nolock_qdisc_is_empty(q))) {
3752				rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3753				__qdisc_run(q);
3754				qdisc_run_end(q);
3755
3756				goto no_lock_out;
3757			}
3758
3759			qdisc_bstats_cpu_update(q, skb);
3760			if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
3761			    !nolock_qdisc_is_empty(q))
3762				__qdisc_run(q);
3763
3764			qdisc_run_end(q);
3765			return NET_XMIT_SUCCESS;
3766		}
3767
3768		rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3769		qdisc_run(q);
3770
3771no_lock_out:
3772		if (unlikely(to_free))
3773			kfree_skb_list_reason(to_free,
3774					      tcf_get_drop_reason(to_free));
3775		return rc;
3776	}
3777
3778	if (unlikely(READ_ONCE(q->owner) == smp_processor_id())) {
3779		kfree_skb_reason(skb, SKB_DROP_REASON_TC_RECLASSIFY_LOOP);
3780		return NET_XMIT_DROP;
3781	}
3782	/*
3783	 * Heuristic to force contended enqueues to serialize on a
3784	 * separate lock before trying to get qdisc main lock.
3785	 * This permits qdisc->running owner to get the lock more
3786	 * often and dequeue packets faster.
3787	 * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit
3788	 * and then other tasks will only enqueue packets. The packets will be
3789	 * sent after the qdisc owner is scheduled again. To prevent this
3790	 * scenario the task always serialize on the lock.
3791	 */
3792	contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT);
3793	if (unlikely(contended))
3794		spin_lock(&q->busylock);
3795
3796	spin_lock(root_lock);
3797	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3798		__qdisc_drop(skb, &to_free);
3799		rc = NET_XMIT_DROP;
3800	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3801		   qdisc_run_begin(q)) {
3802		/*
3803		 * This is a work-conserving queue; there are no old skbs
3804		 * waiting to be sent out; and the qdisc is not running -
3805		 * xmit the skb directly.
3806		 */
3807
3808		qdisc_bstats_update(q, skb);
3809
3810		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3811			if (unlikely(contended)) {
3812				spin_unlock(&q->busylock);
3813				contended = false;
3814			}
3815			__qdisc_run(q);
3816		}
3817
3818		qdisc_run_end(q);
3819		rc = NET_XMIT_SUCCESS;
3820	} else {
3821		WRITE_ONCE(q->owner, smp_processor_id());
3822		rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3823		WRITE_ONCE(q->owner, -1);
3824		if (qdisc_run_begin(q)) {
3825			if (unlikely(contended)) {
3826				spin_unlock(&q->busylock);
3827				contended = false;
3828			}
3829			__qdisc_run(q);
3830			qdisc_run_end(q);
3831		}
3832	}
3833	spin_unlock(root_lock);
3834	if (unlikely(to_free))
3835		kfree_skb_list_reason(to_free,
3836				      tcf_get_drop_reason(to_free));
3837	if (unlikely(contended))
3838		spin_unlock(&q->busylock);
3839	return rc;
3840}
3841
3842#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3843static void skb_update_prio(struct sk_buff *skb)
3844{
3845	const struct netprio_map *map;
3846	const struct sock *sk;
3847	unsigned int prioidx;
3848
3849	if (skb->priority)
3850		return;
3851	map = rcu_dereference_bh(skb->dev->priomap);
3852	if (!map)
3853		return;
3854	sk = skb_to_full_sk(skb);
3855	if (!sk)
3856		return;
3857
3858	prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3859
3860	if (prioidx < map->priomap_len)
3861		skb->priority = map->priomap[prioidx];
3862}
3863#else
3864#define skb_update_prio(skb)
3865#endif
3866
3867/**
3868 *	dev_loopback_xmit - loop back @skb
3869 *	@net: network namespace this loopback is happening in
3870 *	@sk:  sk needed to be a netfilter okfn
3871 *	@skb: buffer to transmit
3872 */
3873int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3874{
3875	skb_reset_mac_header(skb);
3876	__skb_pull(skb, skb_network_offset(skb));
3877	skb->pkt_type = PACKET_LOOPBACK;
3878	if (skb->ip_summed == CHECKSUM_NONE)
3879		skb->ip_summed = CHECKSUM_UNNECESSARY;
3880	DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb));
3881	skb_dst_force(skb);
3882	netif_rx(skb);
3883	return 0;
3884}
3885EXPORT_SYMBOL(dev_loopback_xmit);
3886
3887#ifdef CONFIG_NET_EGRESS
3888static struct netdev_queue *
3889netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb)
3890{
3891	int qm = skb_get_queue_mapping(skb);
3892
3893	return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm));
3894}
3895
3896static bool netdev_xmit_txqueue_skipped(void)
3897{
3898	return __this_cpu_read(softnet_data.xmit.skip_txqueue);
3899}
3900
3901void netdev_xmit_skip_txqueue(bool skip)
3902{
3903	__this_cpu_write(softnet_data.xmit.skip_txqueue, skip);
3904}
3905EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
3906#endif /* CONFIG_NET_EGRESS */
3907
3908#ifdef CONFIG_NET_XGRESS
3909static int tc_run(struct tcx_entry *entry, struct sk_buff *skb,
3910		  enum skb_drop_reason *drop_reason)
3911{
3912	int ret = TC_ACT_UNSPEC;
3913#ifdef CONFIG_NET_CLS_ACT
3914	struct mini_Qdisc *miniq = rcu_dereference_bh(entry->miniq);
3915	struct tcf_result res;
3916
3917	if (!miniq)
3918		return ret;
3919
3920	tc_skb_cb(skb)->mru = 0;
3921	tc_skb_cb(skb)->post_ct = false;
3922	tcf_set_drop_reason(skb, *drop_reason);
3923
3924	mini_qdisc_bstats_cpu_update(miniq, skb);
3925	ret = tcf_classify(skb, miniq->block, miniq->filter_list, &res, false);
3926	/* Only tcf related quirks below. */
3927	switch (ret) {
3928	case TC_ACT_SHOT:
3929		*drop_reason = tcf_get_drop_reason(skb);
3930		mini_qdisc_qstats_cpu_drop(miniq);
3931		break;
3932	case TC_ACT_OK:
3933	case TC_ACT_RECLASSIFY:
3934		skb->tc_index = TC_H_MIN(res.classid);
3935		break;
3936	}
3937#endif /* CONFIG_NET_CLS_ACT */
3938	return ret;
3939}
3940
3941static DEFINE_STATIC_KEY_FALSE(tcx_needed_key);
3942
3943void tcx_inc(void)
3944{
3945	static_branch_inc(&tcx_needed_key);
3946}
3947
3948void tcx_dec(void)
3949{
3950	static_branch_dec(&tcx_needed_key);
3951}
3952
3953static __always_inline enum tcx_action_base
3954tcx_run(const struct bpf_mprog_entry *entry, struct sk_buff *skb,
3955	const bool needs_mac)
3956{
3957	const struct bpf_mprog_fp *fp;
3958	const struct bpf_prog *prog;
3959	int ret = TCX_NEXT;
3960
3961	if (needs_mac)
3962		__skb_push(skb, skb->mac_len);
3963	bpf_mprog_foreach_prog(entry, fp, prog) {
3964		bpf_compute_data_pointers(skb);
3965		ret = bpf_prog_run(prog, skb);
3966		if (ret != TCX_NEXT)
3967			break;
3968	}
3969	if (needs_mac)
3970		__skb_pull(skb, skb->mac_len);
3971	return tcx_action_code(skb, ret);
3972}
3973
3974static __always_inline struct sk_buff *
3975sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
3976		   struct net_device *orig_dev, bool *another)
3977{
3978	struct bpf_mprog_entry *entry = rcu_dereference_bh(skb->dev->tcx_ingress);
3979	enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_INGRESS;
3980	int sch_ret;
3981
3982	if (!entry)
3983		return skb;
3984	if (*pt_prev) {
3985		*ret = deliver_skb(skb, *pt_prev, orig_dev);
3986		*pt_prev = NULL;
3987	}
3988
3989	qdisc_skb_cb(skb)->pkt_len = skb->len;
3990	tcx_set_ingress(skb, true);
3991
3992	if (static_branch_unlikely(&tcx_needed_key)) {
3993		sch_ret = tcx_run(entry, skb, true);
3994		if (sch_ret != TC_ACT_UNSPEC)
3995			goto ingress_verdict;
3996	}
3997	sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
3998ingress_verdict:
3999	switch (sch_ret) {
4000	case TC_ACT_REDIRECT:
4001		/* skb_mac_header check was done by BPF, so we can safely
4002		 * push the L2 header back before redirecting to another
4003		 * netdev.
4004		 */
4005		__skb_push(skb, skb->mac_len);
4006		if (skb_do_redirect(skb) == -EAGAIN) {
4007			__skb_pull(skb, skb->mac_len);
4008			*another = true;
4009			break;
4010		}
4011		*ret = NET_RX_SUCCESS;
4012		return NULL;
4013	case TC_ACT_SHOT:
4014		kfree_skb_reason(skb, drop_reason);
4015		*ret = NET_RX_DROP;
4016		return NULL;
4017	/* used by tc_run */
4018	case TC_ACT_STOLEN:
4019	case TC_ACT_QUEUED:
4020	case TC_ACT_TRAP:
4021		consume_skb(skb);
4022		fallthrough;
4023	case TC_ACT_CONSUMED:
4024		*ret = NET_RX_SUCCESS;
4025		return NULL;
4026	}
4027
4028	return skb;
4029}
4030
4031static __always_inline struct sk_buff *
4032sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4033{
4034	struct bpf_mprog_entry *entry = rcu_dereference_bh(dev->tcx_egress);
4035	enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_EGRESS;
4036	int sch_ret;
4037
4038	if (!entry)
4039		return skb;
4040
4041	/* qdisc_skb_cb(skb)->pkt_len & tcx_set_ingress() was
4042	 * already set by the caller.
4043	 */
4044	if (static_branch_unlikely(&tcx_needed_key)) {
4045		sch_ret = tcx_run(entry, skb, false);
4046		if (sch_ret != TC_ACT_UNSPEC)
4047			goto egress_verdict;
4048	}
4049	sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
4050egress_verdict:
4051	switch (sch_ret) {
4052	case TC_ACT_REDIRECT:
4053		/* No need to push/pop skb's mac_header here on egress! */
4054		skb_do_redirect(skb);
4055		*ret = NET_XMIT_SUCCESS;
4056		return NULL;
4057	case TC_ACT_SHOT:
4058		kfree_skb_reason(skb, drop_reason);
4059		*ret = NET_XMIT_DROP;
4060		return NULL;
4061	/* used by tc_run */
4062	case TC_ACT_STOLEN:
4063	case TC_ACT_QUEUED:
4064	case TC_ACT_TRAP:
4065		consume_skb(skb);
4066		fallthrough;
4067	case TC_ACT_CONSUMED:
4068		*ret = NET_XMIT_SUCCESS;
4069		return NULL;
4070	}
4071
4072	return skb;
4073}
4074#else
4075static __always_inline struct sk_buff *
4076sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4077		   struct net_device *orig_dev, bool *another)
4078{
4079	return skb;
4080}
4081
4082static __always_inline struct sk_buff *
4083sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4084{
4085	return skb;
4086}
4087#endif /* CONFIG_NET_XGRESS */
4088
4089#ifdef CONFIG_XPS
4090static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
4091			       struct xps_dev_maps *dev_maps, unsigned int tci)
4092{
4093	int tc = netdev_get_prio_tc_map(dev, skb->priority);
4094	struct xps_map *map;
4095	int queue_index = -1;
4096
4097	if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
4098		return queue_index;
4099
4100	tci *= dev_maps->num_tc;
4101	tci += tc;
4102
4103	map = rcu_dereference(dev_maps->attr_map[tci]);
4104	if (map) {
4105		if (map->len == 1)
4106			queue_index = map->queues[0];
4107		else
4108			queue_index = map->queues[reciprocal_scale(
4109						skb_get_hash(skb), map->len)];
4110		if (unlikely(queue_index >= dev->real_num_tx_queues))
4111			queue_index = -1;
4112	}
4113	return queue_index;
4114}
4115#endif
4116
4117static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4118			 struct sk_buff *skb)
4119{
4120#ifdef CONFIG_XPS
4121	struct xps_dev_maps *dev_maps;
4122	struct sock *sk = skb->sk;
4123	int queue_index = -1;
4124
4125	if (!static_key_false(&xps_needed))
4126		return -1;
4127
4128	rcu_read_lock();
4129	if (!static_key_false(&xps_rxqs_needed))
4130		goto get_cpus_map;
4131
4132	dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4133	if (dev_maps) {
4134		int tci = sk_rx_queue_get(sk);
4135
4136		if (tci >= 0)
4137			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4138							  tci);
4139	}
4140
4141get_cpus_map:
4142	if (queue_index < 0) {
4143		dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4144		if (dev_maps) {
4145			unsigned int tci = skb->sender_cpu - 1;
4146
4147			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4148							  tci);
4149		}
4150	}
4151	rcu_read_unlock();
4152
4153	return queue_index;
4154#else
4155	return -1;
4156#endif
4157}
4158
4159u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4160		     struct net_device *sb_dev)
4161{
4162	return 0;
4163}
4164EXPORT_SYMBOL(dev_pick_tx_zero);
4165
4166u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
4167		       struct net_device *sb_dev)
4168{
4169	return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
4170}
4171EXPORT_SYMBOL(dev_pick_tx_cpu_id);
4172
4173u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4174		     struct net_device *sb_dev)
4175{
4176	struct sock *sk = skb->sk;
4177	int queue_index = sk_tx_queue_get(sk);
4178
4179	sb_dev = sb_dev ? : dev;
4180
4181	if (queue_index < 0 || skb->ooo_okay ||
4182	    queue_index >= dev->real_num_tx_queues) {
4183		int new_index = get_xps_queue(dev, sb_dev, skb);
4184
4185		if (new_index < 0)
4186			new_index = skb_tx_hash(dev, sb_dev, skb);
4187
4188		if (queue_index != new_index && sk &&
4189		    sk_fullsock(sk) &&
4190		    rcu_access_pointer(sk->sk_dst_cache))
4191			sk_tx_queue_set(sk, new_index);
4192
4193		queue_index = new_index;
4194	}
4195
4196	return queue_index;
4197}
4198EXPORT_SYMBOL(netdev_pick_tx);
4199
4200struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4201					 struct sk_buff *skb,
4202					 struct net_device *sb_dev)
4203{
4204	int queue_index = 0;
4205
4206#ifdef CONFIG_XPS
4207	u32 sender_cpu = skb->sender_cpu - 1;
4208
4209	if (sender_cpu >= (u32)NR_CPUS)
4210		skb->sender_cpu = raw_smp_processor_id() + 1;
4211#endif
4212
4213	if (dev->real_num_tx_queues != 1) {
4214		const struct net_device_ops *ops = dev->netdev_ops;
4215
4216		if (ops->ndo_select_queue)
4217			queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4218		else
4219			queue_index = netdev_pick_tx(dev, skb, sb_dev);
4220
4221		queue_index = netdev_cap_txqueue(dev, queue_index);
4222	}
4223
4224	skb_set_queue_mapping(skb, queue_index);
4225	return netdev_get_tx_queue(dev, queue_index);
4226}
4227
4228/**
4229 * __dev_queue_xmit() - transmit a buffer
4230 * @skb:	buffer to transmit
4231 * @sb_dev:	suboordinate device used for L2 forwarding offload
4232 *
4233 * Queue a buffer for transmission to a network device. The caller must
4234 * have set the device and priority and built the buffer before calling
4235 * this function. The function can be called from an interrupt.
4236 *
4237 * When calling this method, interrupts MUST be enabled. This is because
4238 * the BH enable code must have IRQs enabled so that it will not deadlock.
4239 *
4240 * Regardless of the return value, the skb is consumed, so it is currently
4241 * difficult to retry a send to this method. (You can bump the ref count
4242 * before sending to hold a reference for retry if you are careful.)
4243 *
4244 * Return:
4245 * * 0				- buffer successfully transmitted
4246 * * positive qdisc return code	- NET_XMIT_DROP etc.
4247 * * negative errno		- other errors
4248 */
4249int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4250{
4251	struct net_device *dev = skb->dev;
4252	struct netdev_queue *txq = NULL;
4253	struct Qdisc *q;
4254	int rc = -ENOMEM;
4255	bool again = false;
4256
4257	skb_reset_mac_header(skb);
4258	skb_assert_len(skb);
4259
4260	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4261		__skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4262
4263	/* Disable soft irqs for various locks below. Also
4264	 * stops preemption for RCU.
4265	 */
4266	rcu_read_lock_bh();
4267
4268	skb_update_prio(skb);
4269
4270	qdisc_pkt_len_init(skb);
4271	tcx_set_ingress(skb, false);
4272#ifdef CONFIG_NET_EGRESS
4273	if (static_branch_unlikely(&egress_needed_key)) {
4274		if (nf_hook_egress_active()) {
4275			skb = nf_hook_egress(skb, &rc, dev);
4276			if (!skb)
4277				goto out;
4278		}
4279
4280		netdev_xmit_skip_txqueue(false);
4281
4282		nf_skip_egress(skb, true);
4283		skb = sch_handle_egress(skb, &rc, dev);
4284		if (!skb)
4285			goto out;
4286		nf_skip_egress(skb, false);
4287
4288		if (netdev_xmit_txqueue_skipped())
4289			txq = netdev_tx_queue_mapping(dev, skb);
4290	}
4291#endif
4292	/* If device/qdisc don't need skb->dst, release it right now while
4293	 * its hot in this cpu cache.
4294	 */
4295	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4296		skb_dst_drop(skb);
4297	else
4298		skb_dst_force(skb);
4299
4300	if (!txq)
4301		txq = netdev_core_pick_tx(dev, skb, sb_dev);
4302
4303	q = rcu_dereference_bh(txq->qdisc);
4304
4305	trace_net_dev_queue(skb);
4306	if (q->enqueue) {
4307		rc = __dev_xmit_skb(skb, q, dev, txq);
4308		goto out;
4309	}
4310
4311	/* The device has no queue. Common case for software devices:
4312	 * loopback, all the sorts of tunnels...
4313
4314	 * Really, it is unlikely that netif_tx_lock protection is necessary
4315	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4316	 * counters.)
4317	 * However, it is possible, that they rely on protection
4318	 * made by us here.
4319
4320	 * Check this and shot the lock. It is not prone from deadlocks.
4321	 *Either shot noqueue qdisc, it is even simpler 8)
4322	 */
4323	if (dev->flags & IFF_UP) {
4324		int cpu = smp_processor_id(); /* ok because BHs are off */
4325
4326		/* Other cpus might concurrently change txq->xmit_lock_owner
4327		 * to -1 or to their cpu id, but not to our id.
4328		 */
4329		if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
4330			if (dev_xmit_recursion())
4331				goto recursion_alert;
4332
4333			skb = validate_xmit_skb(skb, dev, &again);
4334			if (!skb)
4335				goto out;
4336
4337			HARD_TX_LOCK(dev, txq, cpu);
4338
4339			if (!netif_xmit_stopped(txq)) {
4340				dev_xmit_recursion_inc();
4341				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4342				dev_xmit_recursion_dec();
4343				if (dev_xmit_complete(rc)) {
4344					HARD_TX_UNLOCK(dev, txq);
4345					goto out;
4346				}
4347			}
4348			HARD_TX_UNLOCK(dev, txq);
4349			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4350					     dev->name);
4351		} else {
4352			/* Recursion is detected! It is possible,
4353			 * unfortunately
4354			 */
4355recursion_alert:
4356			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4357					     dev->name);
4358		}
4359	}
4360
4361	rc = -ENETDOWN;
4362	rcu_read_unlock_bh();
4363
4364	dev_core_stats_tx_dropped_inc(dev);
4365	kfree_skb_list(skb);
4366	return rc;
4367out:
4368	rcu_read_unlock_bh();
4369	return rc;
4370}
4371EXPORT_SYMBOL(__dev_queue_xmit);
4372
4373int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4374{
4375	struct net_device *dev = skb->dev;
4376	struct sk_buff *orig_skb = skb;
4377	struct netdev_queue *txq;
4378	int ret = NETDEV_TX_BUSY;
4379	bool again = false;
4380
4381	if (unlikely(!netif_running(dev) ||
4382		     !netif_carrier_ok(dev)))
4383		goto drop;
4384
4385	skb = validate_xmit_skb_list(skb, dev, &again);
4386	if (skb != orig_skb)
4387		goto drop;
4388
4389	skb_set_queue_mapping(skb, queue_id);
4390	txq = skb_get_tx_queue(dev, skb);
4391
4392	local_bh_disable();
4393
4394	dev_xmit_recursion_inc();
4395	HARD_TX_LOCK(dev, txq, smp_processor_id());
4396	if (!netif_xmit_frozen_or_drv_stopped(txq))
4397		ret = netdev_start_xmit(skb, dev, txq, false);
4398	HARD_TX_UNLOCK(dev, txq);
4399	dev_xmit_recursion_dec();
4400
4401	local_bh_enable();
4402	return ret;
4403drop:
4404	dev_core_stats_tx_dropped_inc(dev);
4405	kfree_skb_list(skb);
4406	return NET_XMIT_DROP;
4407}
4408EXPORT_SYMBOL(__dev_direct_xmit);
4409
4410/*************************************************************************
4411 *			Receiver routines
4412 *************************************************************************/
4413
4414unsigned int sysctl_skb_defer_max __read_mostly = 64;
4415int weight_p __read_mostly = 64;           /* old backlog weight */
4416int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4417int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4418
4419/* Called with irq disabled */
4420static inline void ____napi_schedule(struct softnet_data *sd,
4421				     struct napi_struct *napi)
4422{
4423	struct task_struct *thread;
4424
4425	lockdep_assert_irqs_disabled();
4426
4427	if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4428		/* Paired with smp_mb__before_atomic() in
4429		 * napi_enable()/dev_set_threaded().
4430		 * Use READ_ONCE() to guarantee a complete
4431		 * read on napi->thread. Only call
4432		 * wake_up_process() when it's not NULL.
4433		 */
4434		thread = READ_ONCE(napi->thread);
4435		if (thread) {
4436			/* Avoid doing set_bit() if the thread is in
4437			 * INTERRUPTIBLE state, cause napi_thread_wait()
4438			 * makes sure to proceed with napi polling
4439			 * if the thread is explicitly woken from here.
4440			 */
4441			if (READ_ONCE(thread->__state) != TASK_INTERRUPTIBLE)
4442				set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4443			wake_up_process(thread);
4444			return;
4445		}
4446	}
4447
4448	list_add_tail(&napi->poll_list, &sd->poll_list);
4449	WRITE_ONCE(napi->list_owner, smp_processor_id());
4450	/* If not called from net_rx_action()
4451	 * we have to raise NET_RX_SOFTIRQ.
4452	 */
4453	if (!sd->in_net_rx_action)
4454		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4455}
4456
4457#ifdef CONFIG_RPS
4458
4459struct static_key_false rps_needed __read_mostly;
4460EXPORT_SYMBOL(rps_needed);
4461struct static_key_false rfs_needed __read_mostly;
4462EXPORT_SYMBOL(rfs_needed);
4463
4464static struct rps_dev_flow *
4465set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4466	    struct rps_dev_flow *rflow, u16 next_cpu)
4467{
4468	if (next_cpu < nr_cpu_ids) {
4469#ifdef CONFIG_RFS_ACCEL
4470		struct netdev_rx_queue *rxqueue;
4471		struct rps_dev_flow_table *flow_table;
4472		struct rps_dev_flow *old_rflow;
4473		u32 flow_id;
4474		u16 rxq_index;
4475		int rc;
4476
4477		/* Should we steer this flow to a different hardware queue? */
4478		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4479		    !(dev->features & NETIF_F_NTUPLE))
4480			goto out;
4481		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4482		if (rxq_index == skb_get_rx_queue(skb))
4483			goto out;
4484
4485		rxqueue = dev->_rx + rxq_index;
4486		flow_table = rcu_dereference(rxqueue->rps_flow_table);
4487		if (!flow_table)
4488			goto out;
4489		flow_id = skb_get_hash(skb) & flow_table->mask;
4490		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4491							rxq_index, flow_id);
4492		if (rc < 0)
4493			goto out;
4494		old_rflow = rflow;
4495		rflow = &flow_table->flows[flow_id];
4496		rflow->filter = rc;
4497		if (old_rflow->filter == rflow->filter)
4498			old_rflow->filter = RPS_NO_FILTER;
4499	out:
4500#endif
4501		rflow->last_qtail =
4502			per_cpu(softnet_data, next_cpu).input_queue_head;
4503	}
4504
4505	rflow->cpu = next_cpu;
4506	return rflow;
4507}
4508
4509/*
4510 * get_rps_cpu is called from netif_receive_skb and returns the target
4511 * CPU from the RPS map of the receiving queue for a given skb.
4512 * rcu_read_lock must be held on entry.
4513 */
4514static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4515		       struct rps_dev_flow **rflowp)
4516{
4517	const struct rps_sock_flow_table *sock_flow_table;
4518	struct netdev_rx_queue *rxqueue = dev->_rx;
4519	struct rps_dev_flow_table *flow_table;
4520	struct rps_map *map;
4521	int cpu = -1;
4522	u32 tcpu;
4523	u32 hash;
4524
4525	if (skb_rx_queue_recorded(skb)) {
4526		u16 index = skb_get_rx_queue(skb);
4527
4528		if (unlikely(index >= dev->real_num_rx_queues)) {
4529			WARN_ONCE(dev->real_num_rx_queues > 1,
4530				  "%s received packet on queue %u, but number "
4531				  "of RX queues is %u\n",
4532				  dev->name, index, dev->real_num_rx_queues);
4533			goto done;
4534		}
4535		rxqueue += index;
4536	}
4537
4538	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4539
4540	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4541	map = rcu_dereference(rxqueue->rps_map);
4542	if (!flow_table && !map)
4543		goto done;
4544
4545	skb_reset_network_header(skb);
4546	hash = skb_get_hash(skb);
4547	if (!hash)
4548		goto done;
4549
4550	sock_flow_table = rcu_dereference(net_hotdata.rps_sock_flow_table);
4551	if (flow_table && sock_flow_table) {
4552		struct rps_dev_flow *rflow;
4553		u32 next_cpu;
4554		u32 ident;
4555
4556		/* First check into global flow table if there is a match.
4557		 * This READ_ONCE() pairs with WRITE_ONCE() from rps_record_sock_flow().
4558		 */
4559		ident = READ_ONCE(sock_flow_table->ents[hash & sock_flow_table->mask]);
4560		if ((ident ^ hash) & ~net_hotdata.rps_cpu_mask)
4561			goto try_rps;
4562
4563		next_cpu = ident & net_hotdata.rps_cpu_mask;
4564
4565		/* OK, now we know there is a match,
4566		 * we can look at the local (per receive queue) flow table
4567		 */
4568		rflow = &flow_table->flows[hash & flow_table->mask];
4569		tcpu = rflow->cpu;
4570
4571		/*
4572		 * If the desired CPU (where last recvmsg was done) is
4573		 * different from current CPU (one in the rx-queue flow
4574		 * table entry), switch if one of the following holds:
4575		 *   - Current CPU is unset (>= nr_cpu_ids).
4576		 *   - Current CPU is offline.
4577		 *   - The current CPU's queue tail has advanced beyond the
4578		 *     last packet that was enqueued using this table entry.
4579		 *     This guarantees that all previous packets for the flow
4580		 *     have been dequeued, thus preserving in order delivery.
4581		 */
4582		if (unlikely(tcpu != next_cpu) &&
4583		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4584		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4585		      rflow->last_qtail)) >= 0)) {
4586			tcpu = next_cpu;
4587			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4588		}
4589
4590		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4591			*rflowp = rflow;
4592			cpu = tcpu;
4593			goto done;
4594		}
4595	}
4596
4597try_rps:
4598
4599	if (map) {
4600		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4601		if (cpu_online(tcpu)) {
4602			cpu = tcpu;
4603			goto done;
4604		}
4605	}
4606
4607done:
4608	return cpu;
4609}
4610
4611#ifdef CONFIG_RFS_ACCEL
4612
4613/**
4614 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4615 * @dev: Device on which the filter was set
4616 * @rxq_index: RX queue index
4617 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4618 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4619 *
4620 * Drivers that implement ndo_rx_flow_steer() should periodically call
4621 * this function for each installed filter and remove the filters for
4622 * which it returns %true.
4623 */
4624bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4625			 u32 flow_id, u16 filter_id)
4626{
4627	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4628	struct rps_dev_flow_table *flow_table;
4629	struct rps_dev_flow *rflow;
4630	bool expire = true;
4631	unsigned int cpu;
4632
4633	rcu_read_lock();
4634	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4635	if (flow_table && flow_id <= flow_table->mask) {
4636		rflow = &flow_table->flows[flow_id];
4637		cpu = READ_ONCE(rflow->cpu);
4638		if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4639		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4640			   rflow->last_qtail) <
4641		     (int)(10 * flow_table->mask)))
4642			expire = false;
4643	}
4644	rcu_read_unlock();
4645	return expire;
4646}
4647EXPORT_SYMBOL(rps_may_expire_flow);
4648
4649#endif /* CONFIG_RFS_ACCEL */
4650
4651/* Called from hardirq (IPI) context */
4652static void rps_trigger_softirq(void *data)
4653{
4654	struct softnet_data *sd = data;
4655
4656	____napi_schedule(sd, &sd->backlog);
4657	sd->received_rps++;
4658}
4659
4660#endif /* CONFIG_RPS */
4661
4662/* Called from hardirq (IPI) context */
4663static void trigger_rx_softirq(void *data)
4664{
4665	struct softnet_data *sd = data;
4666
4667	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4668	smp_store_release(&sd->defer_ipi_scheduled, 0);
4669}
4670
4671/*
4672 * After we queued a packet into sd->input_pkt_queue,
4673 * we need to make sure this queue is serviced soon.
4674 *
4675 * - If this is another cpu queue, link it to our rps_ipi_list,
4676 *   and make sure we will process rps_ipi_list from net_rx_action().
4677 *
4678 * - If this is our own queue, NAPI schedule our backlog.
4679 *   Note that this also raises NET_RX_SOFTIRQ.
4680 */
4681static void napi_schedule_rps(struct softnet_data *sd)
4682{
4683	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4684
4685#ifdef CONFIG_RPS
4686	if (sd != mysd) {
4687		sd->rps_ipi_next = mysd->rps_ipi_list;
4688		mysd->rps_ipi_list = sd;
4689
4690		/* If not called from net_rx_action() or napi_threaded_poll()
4691		 * we have to raise NET_RX_SOFTIRQ.
4692		 */
4693		if (!mysd->in_net_rx_action && !mysd->in_napi_threaded_poll)
4694			__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4695		return;
4696	}
4697#endif /* CONFIG_RPS */
4698	__napi_schedule_irqoff(&mysd->backlog);
4699}
4700
4701#ifdef CONFIG_NET_FLOW_LIMIT
4702int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4703#endif
4704
4705static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4706{
4707#ifdef CONFIG_NET_FLOW_LIMIT
4708	struct sd_flow_limit *fl;
4709	struct softnet_data *sd;
4710	unsigned int old_flow, new_flow;
4711
4712	if (qlen < (READ_ONCE(net_hotdata.max_backlog) >> 1))
4713		return false;
4714
4715	sd = this_cpu_ptr(&softnet_data);
4716
4717	rcu_read_lock();
4718	fl = rcu_dereference(sd->flow_limit);
4719	if (fl) {
4720		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4721		old_flow = fl->history[fl->history_head];
4722		fl->history[fl->history_head] = new_flow;
4723
4724		fl->history_head++;
4725		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4726
4727		if (likely(fl->buckets[old_flow]))
4728			fl->buckets[old_flow]--;
4729
4730		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4731			fl->count++;
4732			rcu_read_unlock();
4733			return true;
4734		}
4735	}
4736	rcu_read_unlock();
4737#endif
4738	return false;
4739}
4740
4741/*
4742 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4743 * queue (may be a remote CPU queue).
4744 */
4745static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4746			      unsigned int *qtail)
4747{
4748	enum skb_drop_reason reason;
4749	struct softnet_data *sd;
4750	unsigned long flags;
4751	unsigned int qlen;
4752
4753	reason = SKB_DROP_REASON_NOT_SPECIFIED;
4754	sd = &per_cpu(softnet_data, cpu);
4755
4756	rps_lock_irqsave(sd, &flags);
4757	if (!netif_running(skb->dev))
4758		goto drop;
4759	qlen = skb_queue_len(&sd->input_pkt_queue);
4760	if (qlen <= READ_ONCE(net_hotdata.max_backlog) &&
4761	    !skb_flow_limit(skb, qlen)) {
4762		if (qlen) {
4763enqueue:
4764			__skb_queue_tail(&sd->input_pkt_queue, skb);
4765			input_queue_tail_incr_save(sd, qtail);
4766			rps_unlock_irq_restore(sd, &flags);
4767			return NET_RX_SUCCESS;
4768		}
4769
4770		/* Schedule NAPI for backlog device
4771		 * We can use non atomic operation since we own the queue lock
4772		 */
4773		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state))
4774			napi_schedule_rps(sd);
4775		goto enqueue;
4776	}
4777	reason = SKB_DROP_REASON_CPU_BACKLOG;
4778
4779drop:
4780	sd->dropped++;
4781	rps_unlock_irq_restore(sd, &flags);
4782
4783	dev_core_stats_rx_dropped_inc(skb->dev);
4784	kfree_skb_reason(skb, reason);
4785	return NET_RX_DROP;
4786}
4787
4788static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4789{
4790	struct net_device *dev = skb->dev;
4791	struct netdev_rx_queue *rxqueue;
4792
4793	rxqueue = dev->_rx;
4794
4795	if (skb_rx_queue_recorded(skb)) {
4796		u16 index = skb_get_rx_queue(skb);
4797
4798		if (unlikely(index >= dev->real_num_rx_queues)) {
4799			WARN_ONCE(dev->real_num_rx_queues > 1,
4800				  "%s received packet on queue %u, but number "
4801				  "of RX queues is %u\n",
4802				  dev->name, index, dev->real_num_rx_queues);
4803
4804			return rxqueue; /* Return first rxqueue */
4805		}
4806		rxqueue += index;
4807	}
4808	return rxqueue;
4809}
4810
4811u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
4812			     struct bpf_prog *xdp_prog)
4813{
4814	void *orig_data, *orig_data_end, *hard_start;
4815	struct netdev_rx_queue *rxqueue;
4816	bool orig_bcast, orig_host;
4817	u32 mac_len, frame_sz;
4818	__be16 orig_eth_type;
4819	struct ethhdr *eth;
4820	u32 metalen, act;
4821	int off;
4822
4823	/* The XDP program wants to see the packet starting at the MAC
4824	 * header.
4825	 */
4826	mac_len = skb->data - skb_mac_header(skb);
4827	hard_start = skb->data - skb_headroom(skb);
4828
4829	/* SKB "head" area always have tailroom for skb_shared_info */
4830	frame_sz = (void *)skb_end_pointer(skb) - hard_start;
4831	frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4832
4833	rxqueue = netif_get_rxqueue(skb);
4834	xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4835	xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4836			 skb_headlen(skb) + mac_len, true);
4837	if (skb_is_nonlinear(skb)) {
4838		skb_shinfo(skb)->xdp_frags_size = skb->data_len;
4839		xdp_buff_set_frags_flag(xdp);
4840	} else {
4841		xdp_buff_clear_frags_flag(xdp);
4842	}
4843
4844	orig_data_end = xdp->data_end;
4845	orig_data = xdp->data;
4846	eth = (struct ethhdr *)xdp->data;
4847	orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
4848	orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4849	orig_eth_type = eth->h_proto;
4850
4851	act = bpf_prog_run_xdp(xdp_prog, xdp);
4852
4853	/* check if bpf_xdp_adjust_head was used */
4854	off = xdp->data - orig_data;
4855	if (off) {
4856		if (off > 0)
4857			__skb_pull(skb, off);
4858		else if (off < 0)
4859			__skb_push(skb, -off);
4860
4861		skb->mac_header += off;
4862		skb_reset_network_header(skb);
4863	}
4864
4865	/* check if bpf_xdp_adjust_tail was used */
4866	off = xdp->data_end - orig_data_end;
4867	if (off != 0) {
4868		skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4869		skb->len += off; /* positive on grow, negative on shrink */
4870	}
4871
4872	/* XDP frag metadata (e.g. nr_frags) are updated in eBPF helpers
4873	 * (e.g. bpf_xdp_adjust_tail), we need to update data_len here.
4874	 */
4875	if (xdp_buff_has_frags(xdp))
4876		skb->data_len = skb_shinfo(skb)->xdp_frags_size;
4877	else
4878		skb->data_len = 0;
4879
4880	/* check if XDP changed eth hdr such SKB needs update */
4881	eth = (struct ethhdr *)xdp->data;
4882	if ((orig_eth_type != eth->h_proto) ||
4883	    (orig_host != ether_addr_equal_64bits(eth->h_dest,
4884						  skb->dev->dev_addr)) ||
4885	    (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4886		__skb_push(skb, ETH_HLEN);
4887		skb->pkt_type = PACKET_HOST;
4888		skb->protocol = eth_type_trans(skb, skb->dev);
4889	}
4890
4891	/* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
4892	 * before calling us again on redirect path. We do not call do_redirect
4893	 * as we leave that up to the caller.
4894	 *
4895	 * Caller is responsible for managing lifetime of skb (i.e. calling
4896	 * kfree_skb in response to actions it cannot handle/XDP_DROP).
4897	 */
4898	switch (act) {
4899	case XDP_REDIRECT:
4900	case XDP_TX:
4901		__skb_push(skb, mac_len);
4902		break;
4903	case XDP_PASS:
4904		metalen = xdp->data - xdp->data_meta;
4905		if (metalen)
4906			skb_metadata_set(skb, metalen);
4907		break;
4908	}
4909
4910	return act;
4911}
4912
4913static int
4914netif_skb_check_for_xdp(struct sk_buff **pskb, struct bpf_prog *prog)
4915{
4916	struct sk_buff *skb = *pskb;
4917	int err, hroom, troom;
4918
4919	if (!skb_cow_data_for_xdp(this_cpu_read(system_page_pool), pskb, prog))
4920		return 0;
4921
4922	/* In case we have to go down the path and also linearize,
4923	 * then lets do the pskb_expand_head() work just once here.
4924	 */
4925	hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4926	troom = skb->tail + skb->data_len - skb->end;
4927	err = pskb_expand_head(skb,
4928			       hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4929			       troom > 0 ? troom + 128 : 0, GFP_ATOMIC);
4930	if (err)
4931		return err;
4932
4933	return skb_linearize(skb);
4934}
4935
4936static u32 netif_receive_generic_xdp(struct sk_buff **pskb,
4937				     struct xdp_buff *xdp,
4938				     struct bpf_prog *xdp_prog)
4939{
4940	struct sk_buff *skb = *pskb;
4941	u32 mac_len, act = XDP_DROP;
4942
4943	/* Reinjected packets coming from act_mirred or similar should
4944	 * not get XDP generic processing.
4945	 */
4946	if (skb_is_redirected(skb))
4947		return XDP_PASS;
4948
4949	/* XDP packets must have sufficient headroom of XDP_PACKET_HEADROOM
4950	 * bytes. This is the guarantee that also native XDP provides,
4951	 * thus we need to do it here as well.
4952	 */
4953	mac_len = skb->data - skb_mac_header(skb);
4954	__skb_push(skb, mac_len);
4955
4956	if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4957	    skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4958		if (netif_skb_check_for_xdp(pskb, xdp_prog))
4959			goto do_drop;
4960	}
4961
4962	__skb_pull(*pskb, mac_len);
4963
4964	act = bpf_prog_run_generic_xdp(*pskb, xdp, xdp_prog);
4965	switch (act) {
4966	case XDP_REDIRECT:
4967	case XDP_TX:
4968	case XDP_PASS:
4969		break;
4970	default:
4971		bpf_warn_invalid_xdp_action((*pskb)->dev, xdp_prog, act);
4972		fallthrough;
4973	case XDP_ABORTED:
4974		trace_xdp_exception((*pskb)->dev, xdp_prog, act);
4975		fallthrough;
4976	case XDP_DROP:
4977	do_drop:
4978		kfree_skb(*pskb);
4979		break;
4980	}
4981
4982	return act;
4983}
4984
4985/* When doing generic XDP we have to bypass the qdisc layer and the
4986 * network taps in order to match in-driver-XDP behavior. This also means
4987 * that XDP packets are able to starve other packets going through a qdisc,
4988 * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX
4989 * queues, so they do not have this starvation issue.
4990 */
4991void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4992{
4993	struct net_device *dev = skb->dev;
4994	struct netdev_queue *txq;
4995	bool free_skb = true;
4996	int cpu, rc;
4997
4998	txq = netdev_core_pick_tx(dev, skb, NULL);
4999	cpu = smp_processor_id();
5000	HARD_TX_LOCK(dev, txq, cpu);
5001	if (!netif_xmit_frozen_or_drv_stopped(txq)) {
5002		rc = netdev_start_xmit(skb, dev, txq, 0);
5003		if (dev_xmit_complete(rc))
5004			free_skb = false;
5005	}
5006	HARD_TX_UNLOCK(dev, txq);
5007	if (free_skb) {
5008		trace_xdp_exception(dev, xdp_prog, XDP_TX);
5009		dev_core_stats_tx_dropped_inc(dev);
5010		kfree_skb(skb);
5011	}
5012}
5013
5014static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
5015
5016int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff **pskb)
5017{
5018	if (xdp_prog) {
5019		struct xdp_buff xdp;
5020		u32 act;
5021		int err;
5022
5023		act = netif_receive_generic_xdp(pskb, &xdp, xdp_prog);
5024		if (act != XDP_PASS) {
5025			switch (act) {
5026			case XDP_REDIRECT:
5027				err = xdp_do_generic_redirect((*pskb)->dev, *pskb,
5028							      &xdp, xdp_prog);
5029				if (err)
5030					goto out_redir;
5031				break;
5032			case XDP_TX:
5033				generic_xdp_tx(*pskb, xdp_prog);
5034				break;
5035			}
5036			return XDP_DROP;
5037		}
5038	}
5039	return XDP_PASS;
5040out_redir:
5041	kfree_skb_reason(*pskb, SKB_DROP_REASON_XDP);
5042	return XDP_DROP;
5043}
5044EXPORT_SYMBOL_GPL(do_xdp_generic);
5045
5046static int netif_rx_internal(struct sk_buff *skb)
5047{
5048	int ret;
5049
5050	net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb);
5051
5052	trace_netif_rx(skb);
5053
5054#ifdef CONFIG_RPS
5055	if (static_branch_unlikely(&rps_needed)) {
5056		struct rps_dev_flow voidflow, *rflow = &voidflow;
5057		int cpu;
5058
5059		rcu_read_lock();
5060
5061		cpu = get_rps_cpu(skb->dev, skb, &rflow);
5062		if (cpu < 0)
5063			cpu = smp_processor_id();
5064
5065		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5066
5067		rcu_read_unlock();
5068	} else
5069#endif
5070	{
5071		unsigned int qtail;
5072
5073		ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail);
5074	}
5075	return ret;
5076}
5077
5078/**
5079 *	__netif_rx	-	Slightly optimized version of netif_rx
5080 *	@skb: buffer to post
5081 *
5082 *	This behaves as netif_rx except that it does not disable bottom halves.
5083 *	As a result this function may only be invoked from the interrupt context
5084 *	(either hard or soft interrupt).
5085 */
5086int __netif_rx(struct sk_buff *skb)
5087{
5088	int ret;
5089
5090	lockdep_assert_once(hardirq_count() | softirq_count());
5091
5092	trace_netif_rx_entry(skb);
5093	ret = netif_rx_internal(skb);
5094	trace_netif_rx_exit(ret);
5095	return ret;
5096}
5097EXPORT_SYMBOL(__netif_rx);
5098
5099/**
5100 *	netif_rx	-	post buffer to the network code
5101 *	@skb: buffer to post
5102 *
5103 *	This function receives a packet from a device driver and queues it for
5104 *	the upper (protocol) levels to process via the backlog NAPI device. It
5105 *	always succeeds. The buffer may be dropped during processing for
5106 *	congestion control or by the protocol layers.
5107 *	The network buffer is passed via the backlog NAPI device. Modern NIC
5108 *	driver should use NAPI and GRO.
5109 *	This function can used from interrupt and from process context. The
5110 *	caller from process context must not disable interrupts before invoking
5111 *	this function.
5112 *
5113 *	return values:
5114 *	NET_RX_SUCCESS	(no congestion)
5115 *	NET_RX_DROP     (packet was dropped)
5116 *
5117 */
5118int netif_rx(struct sk_buff *skb)
5119{
5120	bool need_bh_off = !(hardirq_count() | softirq_count());
5121	int ret;
5122
5123	if (need_bh_off)
5124		local_bh_disable();
5125	trace_netif_rx_entry(skb);
5126	ret = netif_rx_internal(skb);
5127	trace_netif_rx_exit(ret);
5128	if (need_bh_off)
5129		local_bh_enable();
5130	return ret;
5131}
5132EXPORT_SYMBOL(netif_rx);
5133
5134static __latent_entropy void net_tx_action(struct softirq_action *h)
5135{
5136	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5137
5138	if (sd->completion_queue) {
5139		struct sk_buff *clist;
5140
5141		local_irq_disable();
5142		clist = sd->completion_queue;
5143		sd->completion_queue = NULL;
5144		local_irq_enable();
5145
5146		while (clist) {
5147			struct sk_buff *skb = clist;
5148
5149			clist = clist->next;
5150
5151			WARN_ON(refcount_read(&skb->users));
5152			if (likely(get_kfree_skb_cb(skb)->reason == SKB_CONSUMED))
5153				trace_consume_skb(skb, net_tx_action);
5154			else
5155				trace_kfree_skb(skb, net_tx_action,
5156						get_kfree_skb_cb(skb)->reason);
5157
5158			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5159				__kfree_skb(skb);
5160			else
5161				__napi_kfree_skb(skb,
5162						 get_kfree_skb_cb(skb)->reason);
5163		}
5164	}
5165
5166	if (sd->output_queue) {
5167		struct Qdisc *head;
5168
5169		local_irq_disable();
5170		head = sd->output_queue;
5171		sd->output_queue = NULL;
5172		sd->output_queue_tailp = &sd->output_queue;
5173		local_irq_enable();
5174
5175		rcu_read_lock();
5176
5177		while (head) {
5178			struct Qdisc *q = head;
5179			spinlock_t *root_lock = NULL;
5180
5181			head = head->next_sched;
5182
5183			/* We need to make sure head->next_sched is read
5184			 * before clearing __QDISC_STATE_SCHED
5185			 */
5186			smp_mb__before_atomic();
5187
5188			if (!(q->flags & TCQ_F_NOLOCK)) {
5189				root_lock = qdisc_lock(q);
5190				spin_lock(root_lock);
5191			} else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5192						     &q->state))) {
5193				/* There is a synchronize_net() between
5194				 * STATE_DEACTIVATED flag being set and
5195				 * qdisc_reset()/some_qdisc_is_busy() in
5196				 * dev_deactivate(), so we can safely bail out
5197				 * early here to avoid data race between
5198				 * qdisc_deactivate() and some_qdisc_is_busy()
5199				 * for lockless qdisc.
5200				 */
5201				clear_bit(__QDISC_STATE_SCHED, &q->state);
5202				continue;
5203			}
5204
5205			clear_bit(__QDISC_STATE_SCHED, &q->state);
5206			qdisc_run(q);
5207			if (root_lock)
5208				spin_unlock(root_lock);
5209		}
5210
5211		rcu_read_unlock();
5212	}
5213
5214	xfrm_dev_backlog(sd);
5215}
5216
5217#if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5218/* This hook is defined here for ATM LANE */
5219int (*br_fdb_test_addr_hook)(struct net_device *dev,
5220			     unsigned char *addr) __read_mostly;
5221EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5222#endif
5223
5224/**
5225 *	netdev_is_rx_handler_busy - check if receive handler is registered
5226 *	@dev: device to check
5227 *
5228 *	Check if a receive handler is already registered for a given device.
5229 *	Return true if there one.
5230 *
5231 *	The caller must hold the rtnl_mutex.
5232 */
5233bool netdev_is_rx_handler_busy(struct net_device *dev)
5234{
5235	ASSERT_RTNL();
5236	return dev && rtnl_dereference(dev->rx_handler);
5237}
5238EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5239
5240/**
5241 *	netdev_rx_handler_register - register receive handler
5242 *	@dev: device to register a handler for
5243 *	@rx_handler: receive handler to register
5244 *	@rx_handler_data: data pointer that is used by rx handler
5245 *
5246 *	Register a receive handler for a device. This handler will then be
5247 *	called from __netif_receive_skb. A negative errno code is returned
5248 *	on a failure.
5249 *
5250 *	The caller must hold the rtnl_mutex.
5251 *
5252 *	For a general description of rx_handler, see enum rx_handler_result.
5253 */
5254int netdev_rx_handler_register(struct net_device *dev,
5255			       rx_handler_func_t *rx_handler,
5256			       void *rx_handler_data)
5257{
5258	if (netdev_is_rx_handler_busy(dev))
5259		return -EBUSY;
5260
5261	if (dev->priv_flags & IFF_NO_RX_HANDLER)
5262		return -EINVAL;
5263
5264	/* Note: rx_handler_data must be set before rx_handler */
5265	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5266	rcu_assign_pointer(dev->rx_handler, rx_handler);
5267
5268	return 0;
5269}
5270EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5271
5272/**
5273 *	netdev_rx_handler_unregister - unregister receive handler
5274 *	@dev: device to unregister a handler from
5275 *
5276 *	Unregister a receive handler from a device.
5277 *
5278 *	The caller must hold the rtnl_mutex.
5279 */
5280void netdev_rx_handler_unregister(struct net_device *dev)
5281{
5282
5283	ASSERT_RTNL();
5284	RCU_INIT_POINTER(dev->rx_handler, NULL);
5285	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5286	 * section has a guarantee to see a non NULL rx_handler_data
5287	 * as well.
5288	 */
5289	synchronize_net();
5290	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5291}
5292EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5293
5294/*
5295 * Limit the use of PFMEMALLOC reserves to those protocols that implement
5296 * the special handling of PFMEMALLOC skbs.
5297 */
5298static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5299{
5300	switch (skb->protocol) {
5301	case htons(ETH_P_ARP):
5302	case htons(ETH_P_IP):
5303	case htons(ETH_P_IPV6):
5304	case htons(ETH_P_8021Q):
5305	case htons(ETH_P_8021AD):
5306		return true;
5307	default:
5308		return false;
5309	}
5310}
5311
5312static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5313			     int *ret, struct net_device *orig_dev)
5314{
5315	if (nf_hook_ingress_active(skb)) {
5316		int ingress_retval;
5317
5318		if (*pt_prev) {
5319			*ret = deliver_skb(skb, *pt_prev, orig_dev);
5320			*pt_prev = NULL;
5321		}
5322
5323		rcu_read_lock();
5324		ingress_retval = nf_hook_ingress(skb);
5325		rcu_read_unlock();
5326		return ingress_retval;
5327	}
5328	return 0;
5329}
5330
5331static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5332				    struct packet_type **ppt_prev)
5333{
5334	struct packet_type *ptype, *pt_prev;
5335	rx_handler_func_t *rx_handler;
5336	struct sk_buff *skb = *pskb;
5337	struct net_device *orig_dev;
5338	bool deliver_exact = false;
5339	int ret = NET_RX_DROP;
5340	__be16 type;
5341
5342	net_timestamp_check(!READ_ONCE(net_hotdata.tstamp_prequeue), skb);
5343
5344	trace_netif_receive_skb(skb);
5345
5346	orig_dev = skb->dev;
5347
5348	skb_reset_network_header(skb);
5349	if (!skb_transport_header_was_set(skb))
5350		skb_reset_transport_header(skb);
5351	skb_reset_mac_len(skb);
5352
5353	pt_prev = NULL;
5354
5355another_round:
5356	skb->skb_iif = skb->dev->ifindex;
5357
5358	__this_cpu_inc(softnet_data.processed);
5359
5360	if (static_branch_unlikely(&generic_xdp_needed_key)) {
5361		int ret2;
5362
5363		migrate_disable();
5364		ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog),
5365				      &skb);
5366		migrate_enable();
5367
5368		if (ret2 != XDP_PASS) {
5369			ret = NET_RX_DROP;
5370			goto out;
5371		}
5372	}
5373
5374	if (eth_type_vlan(skb->protocol)) {
5375		skb = skb_vlan_untag(skb);
5376		if (unlikely(!skb))
5377			goto out;
5378	}
5379
5380	if (skb_skip_tc_classify(skb))
5381		goto skip_classify;
5382
5383	if (pfmemalloc)
5384		goto skip_taps;
5385
5386	list_for_each_entry_rcu(ptype, &net_hotdata.ptype_all, list) {
5387		if (pt_prev)
5388			ret = deliver_skb(skb, pt_prev, orig_dev);
5389		pt_prev = ptype;
5390	}
5391
5392	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5393		if (pt_prev)
5394			ret = deliver_skb(skb, pt_prev, orig_dev);
5395		pt_prev = ptype;
5396	}
5397
5398skip_taps:
5399#ifdef CONFIG_NET_INGRESS
5400	if (static_branch_unlikely(&ingress_needed_key)) {
5401		bool another = false;
5402
5403		nf_skip_egress(skb, true);
5404		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5405					 &another);
5406		if (another)
5407			goto another_round;
5408		if (!skb)
5409			goto out;
5410
5411		nf_skip_egress(skb, false);
5412		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5413			goto out;
5414	}
5415#endif
5416	skb_reset_redirect(skb);
5417skip_classify:
5418	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5419		goto drop;
5420
5421	if (skb_vlan_tag_present(skb)) {
5422		if (pt_prev) {
5423			ret = deliver_skb(skb, pt_prev, orig_dev);
5424			pt_prev = NULL;
5425		}
5426		if (vlan_do_receive(&skb))
5427			goto another_round;
5428		else if (unlikely(!skb))
5429			goto out;
5430	}
5431
5432	rx_handler = rcu_dereference(skb->dev->rx_handler);
5433	if (rx_handler) {
5434		if (pt_prev) {
5435			ret = deliver_skb(skb, pt_prev, orig_dev);
5436			pt_prev = NULL;
5437		}
5438		switch (rx_handler(&skb)) {
5439		case RX_HANDLER_CONSUMED:
5440			ret = NET_RX_SUCCESS;
5441			goto out;
5442		case RX_HANDLER_ANOTHER:
5443			goto another_round;
5444		case RX_HANDLER_EXACT:
5445			deliver_exact = true;
5446			break;
5447		case RX_HANDLER_PASS:
5448			break;
5449		default:
5450			BUG();
5451		}
5452	}
5453
5454	if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5455check_vlan_id:
5456		if (skb_vlan_tag_get_id(skb)) {
5457			/* Vlan id is non 0 and vlan_do_receive() above couldn't
5458			 * find vlan device.
5459			 */
5460			skb->pkt_type = PACKET_OTHERHOST;
5461		} else if (eth_type_vlan(skb->protocol)) {
5462			/* Outer header is 802.1P with vlan 0, inner header is
5463			 * 802.1Q or 802.1AD and vlan_do_receive() above could
5464			 * not find vlan dev for vlan id 0.
5465			 */
5466			__vlan_hwaccel_clear_tag(skb);
5467			skb = skb_vlan_untag(skb);
5468			if (unlikely(!skb))
5469				goto out;
5470			if (vlan_do_receive(&skb))
5471				/* After stripping off 802.1P header with vlan 0
5472				 * vlan dev is found for inner header.
5473				 */
5474				goto another_round;
5475			else if (unlikely(!skb))
5476				goto out;
5477			else
5478				/* We have stripped outer 802.1P vlan 0 header.
5479				 * But could not find vlan dev.
5480				 * check again for vlan id to set OTHERHOST.
5481				 */
5482				goto check_vlan_id;
5483		}
5484		/* Note: we might in the future use prio bits
5485		 * and set skb->priority like in vlan_do_receive()
5486		 * For the time being, just ignore Priority Code Point
5487		 */
5488		__vlan_hwaccel_clear_tag(skb);
5489	}
5490
5491	type = skb->protocol;
5492
5493	/* deliver only exact match when indicated */
5494	if (likely(!deliver_exact)) {
5495		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5496				       &ptype_base[ntohs(type) &
5497						   PTYPE_HASH_MASK]);
5498	}
5499
5500	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5501			       &orig_dev->ptype_specific);
5502
5503	if (unlikely(skb->dev != orig_dev)) {
5504		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5505				       &skb->dev->ptype_specific);
5506	}
5507
5508	if (pt_prev) {
5509		if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5510			goto drop;
5511		*ppt_prev = pt_prev;
5512	} else {
5513drop:
5514		if (!deliver_exact)
5515			dev_core_stats_rx_dropped_inc(skb->dev);
5516		else
5517			dev_core_stats_rx_nohandler_inc(skb->dev);
5518		kfree_skb_reason(skb, SKB_DROP_REASON_UNHANDLED_PROTO);
5519		/* Jamal, now you will not able to escape explaining
5520		 * me how you were going to use this. :-)
5521		 */
5522		ret = NET_RX_DROP;
5523	}
5524
5525out:
5526	/* The invariant here is that if *ppt_prev is not NULL
5527	 * then skb should also be non-NULL.
5528	 *
5529	 * Apparently *ppt_prev assignment above holds this invariant due to
5530	 * skb dereferencing near it.
5531	 */
5532	*pskb = skb;
5533	return ret;
5534}
5535
5536static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5537{
5538	struct net_device *orig_dev = skb->dev;
5539	struct packet_type *pt_prev = NULL;
5540	int ret;
5541
5542	ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5543	if (pt_prev)
5544		ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5545					 skb->dev, pt_prev, orig_dev);
5546	return ret;
5547}
5548
5549/**
5550 *	netif_receive_skb_core - special purpose version of netif_receive_skb
5551 *	@skb: buffer to process
5552 *
5553 *	More direct receive version of netif_receive_skb().  It should
5554 *	only be used by callers that have a need to skip RPS and Generic XDP.
5555 *	Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5556 *
5557 *	This function may only be called from softirq context and interrupts
5558 *	should be enabled.
5559 *
5560 *	Return values (usually ignored):
5561 *	NET_RX_SUCCESS: no congestion
5562 *	NET_RX_DROP: packet was dropped
5563 */
5564int netif_receive_skb_core(struct sk_buff *skb)
5565{
5566	int ret;
5567
5568	rcu_read_lock();
5569	ret = __netif_receive_skb_one_core(skb, false);
5570	rcu_read_unlock();
5571
5572	return ret;
5573}
5574EXPORT_SYMBOL(netif_receive_skb_core);
5575
5576static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5577						  struct packet_type *pt_prev,
5578						  struct net_device *orig_dev)
5579{
5580	struct sk_buff *skb, *next;
5581
5582	if (!pt_prev)
5583		return;
5584	if (list_empty(head))
5585		return;
5586	if (pt_prev->list_func != NULL)
5587		INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5588				   ip_list_rcv, head, pt_prev, orig_dev);
5589	else
5590		list_for_each_entry_safe(skb, next, head, list) {
5591			skb_list_del_init(skb);
5592			pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5593		}
5594}
5595
5596static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5597{
5598	/* Fast-path assumptions:
5599	 * - There is no RX handler.
5600	 * - Only one packet_type matches.
5601	 * If either of these fails, we will end up doing some per-packet
5602	 * processing in-line, then handling the 'last ptype' for the whole
5603	 * sublist.  This can't cause out-of-order delivery to any single ptype,
5604	 * because the 'last ptype' must be constant across the sublist, and all
5605	 * other ptypes are handled per-packet.
5606	 */
5607	/* Current (common) ptype of sublist */
5608	struct packet_type *pt_curr = NULL;
5609	/* Current (common) orig_dev of sublist */
5610	struct net_device *od_curr = NULL;
5611	struct list_head sublist;
5612	struct sk_buff *skb, *next;
5613
5614	INIT_LIST_HEAD(&sublist);
5615	list_for_each_entry_safe(skb, next, head, list) {
5616		struct net_device *orig_dev = skb->dev;
5617		struct packet_type *pt_prev = NULL;
5618
5619		skb_list_del_init(skb);
5620		__netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5621		if (!pt_prev)
5622			continue;
5623		if (pt_curr != pt_prev || od_curr != orig_dev) {
5624			/* dispatch old sublist */
5625			__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5626			/* start new sublist */
5627			INIT_LIST_HEAD(&sublist);
5628			pt_curr = pt_prev;
5629			od_curr = orig_dev;
5630		}
5631		list_add_tail(&skb->list, &sublist);
5632	}
5633
5634	/* dispatch final sublist */
5635	__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5636}
5637
5638static int __netif_receive_skb(struct sk_buff *skb)
5639{
5640	int ret;
5641
5642	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5643		unsigned int noreclaim_flag;
5644
5645		/*
5646		 * PFMEMALLOC skbs are special, they should
5647		 * - be delivered to SOCK_MEMALLOC sockets only
5648		 * - stay away from userspace
5649		 * - have bounded memory usage
5650		 *
5651		 * Use PF_MEMALLOC as this saves us from propagating the allocation
5652		 * context down to all allocation sites.
5653		 */
5654		noreclaim_flag = memalloc_noreclaim_save();
5655		ret = __netif_receive_skb_one_core(skb, true);
5656		memalloc_noreclaim_restore(noreclaim_flag);
5657	} else
5658		ret = __netif_receive_skb_one_core(skb, false);
5659
5660	return ret;
5661}
5662
5663static void __netif_receive_skb_list(struct list_head *head)
5664{
5665	unsigned long noreclaim_flag = 0;
5666	struct sk_buff *skb, *next;
5667	bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5668
5669	list_for_each_entry_safe(skb, next, head, list) {
5670		if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5671			struct list_head sublist;
5672
5673			/* Handle the previous sublist */
5674			list_cut_before(&sublist, head, &skb->list);
5675			if (!list_empty(&sublist))
5676				__netif_receive_skb_list_core(&sublist, pfmemalloc);
5677			pfmemalloc = !pfmemalloc;
5678			/* See comments in __netif_receive_skb */
5679			if (pfmemalloc)
5680				noreclaim_flag = memalloc_noreclaim_save();
5681			else
5682				memalloc_noreclaim_restore(noreclaim_flag);
5683		}
5684	}
5685	/* Handle the remaining sublist */
5686	if (!list_empty(head))
5687		__netif_receive_skb_list_core(head, pfmemalloc);
5688	/* Restore pflags */
5689	if (pfmemalloc)
5690		memalloc_noreclaim_restore(noreclaim_flag);
5691}
5692
5693static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5694{
5695	struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5696	struct bpf_prog *new = xdp->prog;
5697	int ret = 0;
5698
5699	switch (xdp->command) {
5700	case XDP_SETUP_PROG:
5701		rcu_assign_pointer(dev->xdp_prog, new);
5702		if (old)
5703			bpf_prog_put(old);
5704
5705		if (old && !new) {
5706			static_branch_dec(&generic_xdp_needed_key);
5707		} else if (new && !old) {
5708			static_branch_inc(&generic_xdp_needed_key);
5709			dev_disable_lro(dev);
5710			dev_disable_gro_hw(dev);
5711		}
5712		break;
5713
5714	default:
5715		ret = -EINVAL;
5716		break;
5717	}
5718
5719	return ret;
5720}
5721
5722static int netif_receive_skb_internal(struct sk_buff *skb)
5723{
5724	int ret;
5725
5726	net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb);
5727
5728	if (skb_defer_rx_timestamp(skb))
5729		return NET_RX_SUCCESS;
5730
5731	rcu_read_lock();
5732#ifdef CONFIG_RPS
5733	if (static_branch_unlikely(&rps_needed)) {
5734		struct rps_dev_flow voidflow, *rflow = &voidflow;
5735		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5736
5737		if (cpu >= 0) {
5738			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5739			rcu_read_unlock();
5740			return ret;
5741		}
5742	}
5743#endif
5744	ret = __netif_receive_skb(skb);
5745	rcu_read_unlock();
5746	return ret;
5747}
5748
5749void netif_receive_skb_list_internal(struct list_head *head)
5750{
5751	struct sk_buff *skb, *next;
5752	struct list_head sublist;
5753
5754	INIT_LIST_HEAD(&sublist);
5755	list_for_each_entry_safe(skb, next, head, list) {
5756		net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue),
5757				    skb);
5758		skb_list_del_init(skb);
5759		if (!skb_defer_rx_timestamp(skb))
5760			list_add_tail(&skb->list, &sublist);
5761	}
5762	list_splice_init(&sublist, head);
5763
5764	rcu_read_lock();
5765#ifdef CONFIG_RPS
5766	if (static_branch_unlikely(&rps_needed)) {
5767		list_for_each_entry_safe(skb, next, head, list) {
5768			struct rps_dev_flow voidflow, *rflow = &voidflow;
5769			int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5770
5771			if (cpu >= 0) {
5772				/* Will be handled, remove from list */
5773				skb_list_del_init(skb);
5774				enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5775			}
5776		}
5777	}
5778#endif
5779	__netif_receive_skb_list(head);
5780	rcu_read_unlock();
5781}
5782
5783/**
5784 *	netif_receive_skb - process receive buffer from network
5785 *	@skb: buffer to process
5786 *
5787 *	netif_receive_skb() is the main receive data processing function.
5788 *	It always succeeds. The buffer may be dropped during processing
5789 *	for congestion control or by the protocol layers.
5790 *
5791 *	This function may only be called from softirq context and interrupts
5792 *	should be enabled.
5793 *
5794 *	Return values (usually ignored):
5795 *	NET_RX_SUCCESS: no congestion
5796 *	NET_RX_DROP: packet was dropped
5797 */
5798int netif_receive_skb(struct sk_buff *skb)
5799{
5800	int ret;
5801
5802	trace_netif_receive_skb_entry(skb);
5803
5804	ret = netif_receive_skb_internal(skb);
5805	trace_netif_receive_skb_exit(ret);
5806
5807	return ret;
5808}
5809EXPORT_SYMBOL(netif_receive_skb);
5810
5811/**
5812 *	netif_receive_skb_list - process many receive buffers from network
5813 *	@head: list of skbs to process.
5814 *
5815 *	Since return value of netif_receive_skb() is normally ignored, and
5816 *	wouldn't be meaningful for a list, this function returns void.
5817 *
5818 *	This function may only be called from softirq context and interrupts
5819 *	should be enabled.
5820 */
5821void netif_receive_skb_list(struct list_head *head)
5822{
5823	struct sk_buff *skb;
5824
5825	if (list_empty(head))
5826		return;
5827	if (trace_netif_receive_skb_list_entry_enabled()) {
5828		list_for_each_entry(skb, head, list)
5829			trace_netif_receive_skb_list_entry(skb);
5830	}
5831	netif_receive_skb_list_internal(head);
5832	trace_netif_receive_skb_list_exit(0);
5833}
5834EXPORT_SYMBOL(netif_receive_skb_list);
5835
5836static DEFINE_PER_CPU(struct work_struct, flush_works);
5837
5838/* Network device is going away, flush any packets still pending */
5839static void flush_backlog(struct work_struct *work)
5840{
5841	struct sk_buff *skb, *tmp;
5842	struct softnet_data *sd;
5843
5844	local_bh_disable();
5845	sd = this_cpu_ptr(&softnet_data);
5846
5847	rps_lock_irq_disable(sd);
5848	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5849		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5850			__skb_unlink(skb, &sd->input_pkt_queue);
5851			dev_kfree_skb_irq(skb);
5852			input_queue_head_incr(sd);
5853		}
5854	}
5855	rps_unlock_irq_enable(sd);
5856
5857	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5858		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5859			__skb_unlink(skb, &sd->process_queue);
5860			kfree_skb(skb);
5861			input_queue_head_incr(sd);
5862		}
5863	}
5864	local_bh_enable();
5865}
5866
5867static bool flush_required(int cpu)
5868{
5869#if IS_ENABLED(CONFIG_RPS)
5870	struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5871	bool do_flush;
5872
5873	rps_lock_irq_disable(sd);
5874
5875	/* as insertion into process_queue happens with the rps lock held,
5876	 * process_queue access may race only with dequeue
5877	 */
5878	do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5879		   !skb_queue_empty_lockless(&sd->process_queue);
5880	rps_unlock_irq_enable(sd);
5881
5882	return do_flush;
5883#endif
5884	/* without RPS we can't safely check input_pkt_queue: during a
5885	 * concurrent remote skb_queue_splice() we can detect as empty both
5886	 * input_pkt_queue and process_queue even if the latter could end-up
5887	 * containing a lot of packets.
5888	 */
5889	return true;
5890}
5891
5892static void flush_all_backlogs(void)
5893{
5894	static cpumask_t flush_cpus;
5895	unsigned int cpu;
5896
5897	/* since we are under rtnl lock protection we can use static data
5898	 * for the cpumask and avoid allocating on stack the possibly
5899	 * large mask
5900	 */
5901	ASSERT_RTNL();
5902
5903	cpus_read_lock();
5904
5905	cpumask_clear(&flush_cpus);
5906	for_each_online_cpu(cpu) {
5907		if (flush_required(cpu)) {
5908			queue_work_on(cpu, system_highpri_wq,
5909				      per_cpu_ptr(&flush_works, cpu));
5910			cpumask_set_cpu(cpu, &flush_cpus);
5911		}
5912	}
5913
5914	/* we can have in flight packet[s] on the cpus we are not flushing,
5915	 * synchronize_net() in unregister_netdevice_many() will take care of
5916	 * them
5917	 */
5918	for_each_cpu(cpu, &flush_cpus)
5919		flush_work(per_cpu_ptr(&flush_works, cpu));
5920
5921	cpus_read_unlock();
5922}
5923
5924static void net_rps_send_ipi(struct softnet_data *remsd)
5925{
5926#ifdef CONFIG_RPS
5927	while (remsd) {
5928		struct softnet_data *next = remsd->rps_ipi_next;
5929
5930		if (cpu_online(remsd->cpu))
5931			smp_call_function_single_async(remsd->cpu, &remsd->csd);
5932		remsd = next;
5933	}
5934#endif
5935}
5936
5937/*
5938 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5939 * Note: called with local irq disabled, but exits with local irq enabled.
5940 */
5941static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5942{
5943#ifdef CONFIG_RPS
5944	struct softnet_data *remsd = sd->rps_ipi_list;
5945
5946	if (remsd) {
5947		sd->rps_ipi_list = NULL;
5948
5949		local_irq_enable();
5950
5951		/* Send pending IPI's to kick RPS processing on remote cpus. */
5952		net_rps_send_ipi(remsd);
5953	} else
5954#endif
5955		local_irq_enable();
5956}
5957
5958static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5959{
5960#ifdef CONFIG_RPS
5961	return sd->rps_ipi_list != NULL;
5962#else
5963	return false;
5964#endif
5965}
5966
5967static int process_backlog(struct napi_struct *napi, int quota)
5968{
5969	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5970	bool again = true;
5971	int work = 0;
5972
5973	/* Check if we have pending ipi, its better to send them now,
5974	 * not waiting net_rx_action() end.
5975	 */
5976	if (sd_has_rps_ipi_waiting(sd)) {
5977		local_irq_disable();
5978		net_rps_action_and_irq_enable(sd);
5979	}
5980
5981	napi->weight = READ_ONCE(net_hotdata.dev_rx_weight);
5982	while (again) {
5983		struct sk_buff *skb;
5984
5985		while ((skb = __skb_dequeue(&sd->process_queue))) {
5986			rcu_read_lock();
5987			__netif_receive_skb(skb);
5988			rcu_read_unlock();
5989			input_queue_head_incr(sd);
5990			if (++work >= quota)
5991				return work;
5992
5993		}
5994
5995		rps_lock_irq_disable(sd);
5996		if (skb_queue_empty(&sd->input_pkt_queue)) {
5997			/*
5998			 * Inline a custom version of __napi_complete().
5999			 * only current cpu owns and manipulates this napi,
6000			 * and NAPI_STATE_SCHED is the only possible flag set
6001			 * on backlog.
6002			 * We can use a plain write instead of clear_bit(),
6003			 * and we dont need an smp_mb() memory barrier.
6004			 */
6005			napi->state = 0;
6006			again = false;
6007		} else {
6008			skb_queue_splice_tail_init(&sd->input_pkt_queue,
6009						   &sd->process_queue);
6010		}
6011		rps_unlock_irq_enable(sd);
6012	}
6013
6014	return work;
6015}
6016
6017/**
6018 * __napi_schedule - schedule for receive
6019 * @n: entry to schedule
6020 *
6021 * The entry's receive function will be scheduled to run.
6022 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6023 */
6024void __napi_schedule(struct napi_struct *n)
6025{
6026	unsigned long flags;
6027
6028	local_irq_save(flags);
6029	____napi_schedule(this_cpu_ptr(&softnet_data), n);
6030	local_irq_restore(flags);
6031}
6032EXPORT_SYMBOL(__napi_schedule);
6033
6034/**
6035 *	napi_schedule_prep - check if napi can be scheduled
6036 *	@n: napi context
6037 *
6038 * Test if NAPI routine is already running, and if not mark
6039 * it as running.  This is used as a condition variable to
6040 * insure only one NAPI poll instance runs.  We also make
6041 * sure there is no pending NAPI disable.
6042 */
6043bool napi_schedule_prep(struct napi_struct *n)
6044{
6045	unsigned long new, val = READ_ONCE(n->state);
6046
6047	do {
6048		if (unlikely(val & NAPIF_STATE_DISABLE))
6049			return false;
6050		new = val | NAPIF_STATE_SCHED;
6051
6052		/* Sets STATE_MISSED bit if STATE_SCHED was already set
6053		 * This was suggested by Alexander Duyck, as compiler
6054		 * emits better code than :
6055		 * if (val & NAPIF_STATE_SCHED)
6056		 *     new |= NAPIF_STATE_MISSED;
6057		 */
6058		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6059						   NAPIF_STATE_MISSED;
6060	} while (!try_cmpxchg(&n->state, &val, new));
6061
6062	return !(val & NAPIF_STATE_SCHED);
6063}
6064EXPORT_SYMBOL(napi_schedule_prep);
6065
6066/**
6067 * __napi_schedule_irqoff - schedule for receive
6068 * @n: entry to schedule
6069 *
6070 * Variant of __napi_schedule() assuming hard irqs are masked.
6071 *
6072 * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6073 * because the interrupt disabled assumption might not be true
6074 * due to force-threaded interrupts and spinlock substitution.
6075 */
6076void __napi_schedule_irqoff(struct napi_struct *n)
6077{
6078	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6079		____napi_schedule(this_cpu_ptr(&softnet_data), n);
6080	else
6081		__napi_schedule(n);
6082}
6083EXPORT_SYMBOL(__napi_schedule_irqoff);
6084
6085bool napi_complete_done(struct napi_struct *n, int work_done)
6086{
6087	unsigned long flags, val, new, timeout = 0;
6088	bool ret = true;
6089
6090	/*
6091	 * 1) Don't let napi dequeue from the cpu poll list
6092	 *    just in case its running on a different cpu.
6093	 * 2) If we are busy polling, do nothing here, we have
6094	 *    the guarantee we will be called later.
6095	 */
6096	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6097				 NAPIF_STATE_IN_BUSY_POLL)))
6098		return false;
6099
6100	if (work_done) {
6101		if (n->gro_bitmask)
6102			timeout = READ_ONCE(n->dev->gro_flush_timeout);
6103		n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6104	}
6105	if (n->defer_hard_irqs_count > 0) {
6106		n->defer_hard_irqs_count--;
6107		timeout = READ_ONCE(n->dev->gro_flush_timeout);
6108		if (timeout)
6109			ret = false;
6110	}
6111	if (n->gro_bitmask) {
6112		/* When the NAPI instance uses a timeout and keeps postponing
6113		 * it, we need to bound somehow the time packets are kept in
6114		 * the GRO layer
6115		 */
6116		napi_gro_flush(n, !!timeout);
6117	}
6118
6119	gro_normal_list(n);
6120
6121	if (unlikely(!list_empty(&n->poll_list))) {
6122		/* If n->poll_list is not empty, we need to mask irqs */
6123		local_irq_save(flags);
6124		list_del_init(&n->poll_list);
6125		local_irq_restore(flags);
6126	}
6127	WRITE_ONCE(n->list_owner, -1);
6128
6129	val = READ_ONCE(n->state);
6130	do {
6131		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6132
6133		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6134			      NAPIF_STATE_SCHED_THREADED |
6135			      NAPIF_STATE_PREFER_BUSY_POLL);
6136
6137		/* If STATE_MISSED was set, leave STATE_SCHED set,
6138		 * because we will call napi->poll() one more time.
6139		 * This C code was suggested by Alexander Duyck to help gcc.
6140		 */
6141		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6142						    NAPIF_STATE_SCHED;
6143	} while (!try_cmpxchg(&n->state, &val, new));
6144
6145	if (unlikely(val & NAPIF_STATE_MISSED)) {
6146		__napi_schedule(n);
6147		return false;
6148	}
6149
6150	if (timeout)
6151		hrtimer_start(&n->timer, ns_to_ktime(timeout),
6152			      HRTIMER_MODE_REL_PINNED);
6153	return ret;
6154}
6155EXPORT_SYMBOL(napi_complete_done);
6156
6157/* must be called under rcu_read_lock(), as we dont take a reference */
6158struct napi_struct *napi_by_id(unsigned int napi_id)
6159{
6160	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6161	struct napi_struct *napi;
6162
6163	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6164		if (napi->napi_id == napi_id)
6165			return napi;
6166
6167	return NULL;
6168}
6169
6170static void skb_defer_free_flush(struct softnet_data *sd)
6171{
6172	struct sk_buff *skb, *next;
6173
6174	/* Paired with WRITE_ONCE() in skb_attempt_defer_free() */
6175	if (!READ_ONCE(sd->defer_list))
6176		return;
6177
6178	spin_lock(&sd->defer_lock);
6179	skb = sd->defer_list;
6180	sd->defer_list = NULL;
6181	sd->defer_count = 0;
6182	spin_unlock(&sd->defer_lock);
6183
6184	while (skb != NULL) {
6185		next = skb->next;
6186		napi_consume_skb(skb, 1);
6187		skb = next;
6188	}
6189}
6190
6191#if defined(CONFIG_NET_RX_BUSY_POLL)
6192
6193static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6194{
6195	if (!skip_schedule) {
6196		gro_normal_list(napi);
6197		__napi_schedule(napi);
6198		return;
6199	}
6200
6201	if (napi->gro_bitmask) {
6202		/* flush too old packets
6203		 * If HZ < 1000, flush all packets.
6204		 */
6205		napi_gro_flush(napi, HZ >= 1000);
6206	}
6207
6208	gro_normal_list(napi);
6209	clear_bit(NAPI_STATE_SCHED, &napi->state);
6210}
6211
6212enum {
6213	NAPI_F_PREFER_BUSY_POLL	= 1,
6214	NAPI_F_END_ON_RESCHED	= 2,
6215};
6216
6217static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock,
6218			   unsigned flags, u16 budget)
6219{
6220	bool skip_schedule = false;
6221	unsigned long timeout;
6222	int rc;
6223
6224	/* Busy polling means there is a high chance device driver hard irq
6225	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6226	 * set in napi_schedule_prep().
6227	 * Since we are about to call napi->poll() once more, we can safely
6228	 * clear NAPI_STATE_MISSED.
6229	 *
6230	 * Note: x86 could use a single "lock and ..." instruction
6231	 * to perform these two clear_bit()
6232	 */
6233	clear_bit(NAPI_STATE_MISSED, &napi->state);
6234	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6235
6236	local_bh_disable();
6237
6238	if (flags & NAPI_F_PREFER_BUSY_POLL) {
6239		napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6240		timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6241		if (napi->defer_hard_irqs_count && timeout) {
6242			hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6243			skip_schedule = true;
6244		}
6245	}
6246
6247	/* All we really want here is to re-enable device interrupts.
6248	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6249	 */
6250	rc = napi->poll(napi, budget);
6251	/* We can't gro_normal_list() here, because napi->poll() might have
6252	 * rearmed the napi (napi_complete_done()) in which case it could
6253	 * already be running on another CPU.
6254	 */
6255	trace_napi_poll(napi, rc, budget);
6256	netpoll_poll_unlock(have_poll_lock);
6257	if (rc == budget)
6258		__busy_poll_stop(napi, skip_schedule);
6259	local_bh_enable();
6260}
6261
6262static void __napi_busy_loop(unsigned int napi_id,
6263		      bool (*loop_end)(void *, unsigned long),
6264		      void *loop_end_arg, unsigned flags, u16 budget)
6265{
6266	unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6267	int (*napi_poll)(struct napi_struct *napi, int budget);
6268	void *have_poll_lock = NULL;
6269	struct napi_struct *napi;
6270
6271	WARN_ON_ONCE(!rcu_read_lock_held());
6272
6273restart:
6274	napi_poll = NULL;
6275
6276	napi = napi_by_id(napi_id);
6277	if (!napi)
6278		return;
6279
6280	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6281		preempt_disable();
6282	for (;;) {
6283		int work = 0;
6284
6285		local_bh_disable();
6286		if (!napi_poll) {
6287			unsigned long val = READ_ONCE(napi->state);
6288
6289			/* If multiple threads are competing for this napi,
6290			 * we avoid dirtying napi->state as much as we can.
6291			 */
6292			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6293				   NAPIF_STATE_IN_BUSY_POLL)) {
6294				if (flags & NAPI_F_PREFER_BUSY_POLL)
6295					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6296				goto count;
6297			}
6298			if (cmpxchg(&napi->state, val,
6299				    val | NAPIF_STATE_IN_BUSY_POLL |
6300					  NAPIF_STATE_SCHED) != val) {
6301				if (flags & NAPI_F_PREFER_BUSY_POLL)
6302					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6303				goto count;
6304			}
6305			have_poll_lock = netpoll_poll_lock(napi);
6306			napi_poll = napi->poll;
6307		}
6308		work = napi_poll(napi, budget);
6309		trace_napi_poll(napi, work, budget);
6310		gro_normal_list(napi);
6311count:
6312		if (work > 0)
6313			__NET_ADD_STATS(dev_net(napi->dev),
6314					LINUX_MIB_BUSYPOLLRXPACKETS, work);
6315		skb_defer_free_flush(this_cpu_ptr(&softnet_data));
6316		local_bh_enable();
6317
6318		if (!loop_end || loop_end(loop_end_arg, start_time))
6319			break;
6320
6321		if (unlikely(need_resched())) {
6322			if (flags & NAPI_F_END_ON_RESCHED)
6323				break;
6324			if (napi_poll)
6325				busy_poll_stop(napi, have_poll_lock, flags, budget);
6326			if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6327				preempt_enable();
6328			rcu_read_unlock();
6329			cond_resched();
6330			rcu_read_lock();
6331			if (loop_end(loop_end_arg, start_time))
6332				return;
6333			goto restart;
6334		}
6335		cpu_relax();
6336	}
6337	if (napi_poll)
6338		busy_poll_stop(napi, have_poll_lock, flags, budget);
6339	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6340		preempt_enable();
6341}
6342
6343void napi_busy_loop_rcu(unsigned int napi_id,
6344			bool (*loop_end)(void *, unsigned long),
6345			void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6346{
6347	unsigned flags = NAPI_F_END_ON_RESCHED;
6348
6349	if (prefer_busy_poll)
6350		flags |= NAPI_F_PREFER_BUSY_POLL;
6351
6352	__napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget);
6353}
6354
6355void napi_busy_loop(unsigned int napi_id,
6356		    bool (*loop_end)(void *, unsigned long),
6357		    void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6358{
6359	unsigned flags = prefer_busy_poll ? NAPI_F_PREFER_BUSY_POLL : 0;
6360
6361	rcu_read_lock();
6362	__napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget);
6363	rcu_read_unlock();
6364}
6365EXPORT_SYMBOL(napi_busy_loop);
6366
6367#endif /* CONFIG_NET_RX_BUSY_POLL */
6368
6369static void napi_hash_add(struct napi_struct *napi)
6370{
6371	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6372		return;
6373
6374	spin_lock(&napi_hash_lock);
6375
6376	/* 0..NR_CPUS range is reserved for sender_cpu use */
6377	do {
6378		if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6379			napi_gen_id = MIN_NAPI_ID;
6380	} while (napi_by_id(napi_gen_id));
6381	napi->napi_id = napi_gen_id;
6382
6383	hlist_add_head_rcu(&napi->napi_hash_node,
6384			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6385
6386	spin_unlock(&napi_hash_lock);
6387}
6388
6389/* Warning : caller is responsible to make sure rcu grace period
6390 * is respected before freeing memory containing @napi
6391 */
6392static void napi_hash_del(struct napi_struct *napi)
6393{
6394	spin_lock(&napi_hash_lock);
6395
6396	hlist_del_init_rcu(&napi->napi_hash_node);
6397
6398	spin_unlock(&napi_hash_lock);
6399}
6400
6401static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6402{
6403	struct napi_struct *napi;
6404
6405	napi = container_of(timer, struct napi_struct, timer);
6406
6407	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
6408	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6409	 */
6410	if (!napi_disable_pending(napi) &&
6411	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6412		clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6413		__napi_schedule_irqoff(napi);
6414	}
6415
6416	return HRTIMER_NORESTART;
6417}
6418
6419static void init_gro_hash(struct napi_struct *napi)
6420{
6421	int i;
6422
6423	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6424		INIT_LIST_HEAD(&napi->gro_hash[i].list);
6425		napi->gro_hash[i].count = 0;
6426	}
6427	napi->gro_bitmask = 0;
6428}
6429
6430int dev_set_threaded(struct net_device *dev, bool threaded)
6431{
6432	struct napi_struct *napi;
6433	int err = 0;
6434
6435	if (dev->threaded == threaded)
6436		return 0;
6437
6438	if (threaded) {
6439		list_for_each_entry(napi, &dev->napi_list, dev_list) {
6440			if (!napi->thread) {
6441				err = napi_kthread_create(napi);
6442				if (err) {
6443					threaded = false;
6444					break;
6445				}
6446			}
6447		}
6448	}
6449
6450	dev->threaded = threaded;
6451
6452	/* Make sure kthread is created before THREADED bit
6453	 * is set.
6454	 */
6455	smp_mb__before_atomic();
6456
6457	/* Setting/unsetting threaded mode on a napi might not immediately
6458	 * take effect, if the current napi instance is actively being
6459	 * polled. In this case, the switch between threaded mode and
6460	 * softirq mode will happen in the next round of napi_schedule().
6461	 * This should not cause hiccups/stalls to the live traffic.
6462	 */
6463	list_for_each_entry(napi, &dev->napi_list, dev_list)
6464		assign_bit(NAPI_STATE_THREADED, &napi->state, threaded);
6465
6466	return err;
6467}
6468EXPORT_SYMBOL(dev_set_threaded);
6469
6470/**
6471 * netif_queue_set_napi - Associate queue with the napi
6472 * @dev: device to which NAPI and queue belong
6473 * @queue_index: Index of queue
6474 * @type: queue type as RX or TX
6475 * @napi: NAPI context, pass NULL to clear previously set NAPI
6476 *
6477 * Set queue with its corresponding napi context. This should be done after
6478 * registering the NAPI handler for the queue-vector and the queues have been
6479 * mapped to the corresponding interrupt vector.
6480 */
6481void netif_queue_set_napi(struct net_device *dev, unsigned int queue_index,
6482			  enum netdev_queue_type type, struct napi_struct *napi)
6483{
6484	struct netdev_rx_queue *rxq;
6485	struct netdev_queue *txq;
6486
6487	if (WARN_ON_ONCE(napi && !napi->dev))
6488		return;
6489	if (dev->reg_state >= NETREG_REGISTERED)
6490		ASSERT_RTNL();
6491
6492	switch (type) {
6493	case NETDEV_QUEUE_TYPE_RX:
6494		rxq = __netif_get_rx_queue(dev, queue_index);
6495		rxq->napi = napi;
6496		return;
6497	case NETDEV_QUEUE_TYPE_TX:
6498		txq = netdev_get_tx_queue(dev, queue_index);
6499		txq->napi = napi;
6500		return;
6501	default:
6502		return;
6503	}
6504}
6505EXPORT_SYMBOL(netif_queue_set_napi);
6506
6507void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi,
6508			   int (*poll)(struct napi_struct *, int), int weight)
6509{
6510	if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6511		return;
6512
6513	INIT_LIST_HEAD(&napi->poll_list);
6514	INIT_HLIST_NODE(&napi->napi_hash_node);
6515	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6516	napi->timer.function = napi_watchdog;
6517	init_gro_hash(napi);
6518	napi->skb = NULL;
6519	INIT_LIST_HEAD(&napi->rx_list);
6520	napi->rx_count = 0;
6521	napi->poll = poll;
6522	if (weight > NAPI_POLL_WEIGHT)
6523		netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6524				weight);
6525	napi->weight = weight;
6526	napi->dev = dev;
6527#ifdef CONFIG_NETPOLL
6528	napi->poll_owner = -1;
6529#endif
6530	napi->list_owner = -1;
6531	set_bit(NAPI_STATE_SCHED, &napi->state);
6532	set_bit(NAPI_STATE_NPSVC, &napi->state);
6533	list_add_rcu(&napi->dev_list, &dev->napi_list);
6534	napi_hash_add(napi);
6535	napi_get_frags_check(napi);
6536	/* Create kthread for this napi if dev->threaded is set.
6537	 * Clear dev->threaded if kthread creation failed so that
6538	 * threaded mode will not be enabled in napi_enable().
6539	 */
6540	if (dev->threaded && napi_kthread_create(napi))
6541		dev->threaded = 0;
6542	netif_napi_set_irq(napi, -1);
6543}
6544EXPORT_SYMBOL(netif_napi_add_weight);
6545
6546void napi_disable(struct napi_struct *n)
6547{
6548	unsigned long val, new;
6549
6550	might_sleep();
6551	set_bit(NAPI_STATE_DISABLE, &n->state);
6552
6553	val = READ_ONCE(n->state);
6554	do {
6555		while (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) {
6556			usleep_range(20, 200);
6557			val = READ_ONCE(n->state);
6558		}
6559
6560		new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC;
6561		new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL);
6562	} while (!try_cmpxchg(&n->state, &val, new));
6563
6564	hrtimer_cancel(&n->timer);
6565
6566	clear_bit(NAPI_STATE_DISABLE, &n->state);
6567}
6568EXPORT_SYMBOL(napi_disable);
6569
6570/**
6571 *	napi_enable - enable NAPI scheduling
6572 *	@n: NAPI context
6573 *
6574 * Resume NAPI from being scheduled on this context.
6575 * Must be paired with napi_disable.
6576 */
6577void napi_enable(struct napi_struct *n)
6578{
6579	unsigned long new, val = READ_ONCE(n->state);
6580
6581	do {
6582		BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
6583
6584		new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
6585		if (n->dev->threaded && n->thread)
6586			new |= NAPIF_STATE_THREADED;
6587	} while (!try_cmpxchg(&n->state, &val, new));
6588}
6589EXPORT_SYMBOL(napi_enable);
6590
6591static void flush_gro_hash(struct napi_struct *napi)
6592{
6593	int i;
6594
6595	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6596		struct sk_buff *skb, *n;
6597
6598		list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6599			kfree_skb(skb);
6600		napi->gro_hash[i].count = 0;
6601	}
6602}
6603
6604/* Must be called in process context */
6605void __netif_napi_del(struct napi_struct *napi)
6606{
6607	if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6608		return;
6609
6610	napi_hash_del(napi);
6611	list_del_rcu(&napi->dev_list);
6612	napi_free_frags(napi);
6613
6614	flush_gro_hash(napi);
6615	napi->gro_bitmask = 0;
6616
6617	if (napi->thread) {
6618		kthread_stop(napi->thread);
6619		napi->thread = NULL;
6620	}
6621}
6622EXPORT_SYMBOL(__netif_napi_del);
6623
6624static int __napi_poll(struct napi_struct *n, bool *repoll)
6625{
6626	int work, weight;
6627
6628	weight = n->weight;
6629
6630	/* This NAPI_STATE_SCHED test is for avoiding a race
6631	 * with netpoll's poll_napi().  Only the entity which
6632	 * obtains the lock and sees NAPI_STATE_SCHED set will
6633	 * actually make the ->poll() call.  Therefore we avoid
6634	 * accidentally calling ->poll() when NAPI is not scheduled.
6635	 */
6636	work = 0;
6637	if (napi_is_scheduled(n)) {
6638		work = n->poll(n, weight);
6639		trace_napi_poll(n, work, weight);
6640
6641		xdp_do_check_flushed(n);
6642	}
6643
6644	if (unlikely(work > weight))
6645		netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6646				n->poll, work, weight);
6647
6648	if (likely(work < weight))
6649		return work;
6650
6651	/* Drivers must not modify the NAPI state if they
6652	 * consume the entire weight.  In such cases this code
6653	 * still "owns" the NAPI instance and therefore can
6654	 * move the instance around on the list at-will.
6655	 */
6656	if (unlikely(napi_disable_pending(n))) {
6657		napi_complete(n);
6658		return work;
6659	}
6660
6661	/* The NAPI context has more processing work, but busy-polling
6662	 * is preferred. Exit early.
6663	 */
6664	if (napi_prefer_busy_poll(n)) {
6665		if (napi_complete_done(n, work)) {
6666			/* If timeout is not set, we need to make sure
6667			 * that the NAPI is re-scheduled.
6668			 */
6669			napi_schedule(n);
6670		}
6671		return work;
6672	}
6673
6674	if (n->gro_bitmask) {
6675		/* flush too old packets
6676		 * If HZ < 1000, flush all packets.
6677		 */
6678		napi_gro_flush(n, HZ >= 1000);
6679	}
6680
6681	gro_normal_list(n);
6682
6683	/* Some drivers may have called napi_schedule
6684	 * prior to exhausting their budget.
6685	 */
6686	if (unlikely(!list_empty(&n->poll_list))) {
6687		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6688			     n->dev ? n->dev->name : "backlog");
6689		return work;
6690	}
6691
6692	*repoll = true;
6693
6694	return work;
6695}
6696
6697static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6698{
6699	bool do_repoll = false;
6700	void *have;
6701	int work;
6702
6703	list_del_init(&n->poll_list);
6704
6705	have = netpoll_poll_lock(n);
6706
6707	work = __napi_poll(n, &do_repoll);
6708
6709	if (do_repoll)
6710		list_add_tail(&n->poll_list, repoll);
6711
6712	netpoll_poll_unlock(have);
6713
6714	return work;
6715}
6716
6717static int napi_thread_wait(struct napi_struct *napi)
6718{
6719	bool woken = false;
6720
6721	set_current_state(TASK_INTERRUPTIBLE);
6722
6723	while (!kthread_should_stop()) {
6724		/* Testing SCHED_THREADED bit here to make sure the current
6725		 * kthread owns this napi and could poll on this napi.
6726		 * Testing SCHED bit is not enough because SCHED bit might be
6727		 * set by some other busy poll thread or by napi_disable().
6728		 */
6729		if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state) || woken) {
6730			WARN_ON(!list_empty(&napi->poll_list));
6731			__set_current_state(TASK_RUNNING);
6732			return 0;
6733		}
6734
6735		schedule();
6736		/* woken being true indicates this thread owns this napi. */
6737		woken = true;
6738		set_current_state(TASK_INTERRUPTIBLE);
6739	}
6740	__set_current_state(TASK_RUNNING);
6741
6742	return -1;
6743}
6744
6745static int napi_threaded_poll(void *data)
6746{
6747	struct napi_struct *napi = data;
6748	struct softnet_data *sd;
6749	void *have;
6750
6751	while (!napi_thread_wait(napi)) {
6752		unsigned long last_qs = jiffies;
6753
6754		for (;;) {
6755			bool repoll = false;
6756
6757			local_bh_disable();
6758			sd = this_cpu_ptr(&softnet_data);
6759			sd->in_napi_threaded_poll = true;
6760
6761			have = netpoll_poll_lock(napi);
6762			__napi_poll(napi, &repoll);
6763			netpoll_poll_unlock(have);
6764
6765			sd->in_napi_threaded_poll = false;
6766			barrier();
6767
6768			if (sd_has_rps_ipi_waiting(sd)) {
6769				local_irq_disable();
6770				net_rps_action_and_irq_enable(sd);
6771			}
6772			skb_defer_free_flush(sd);
6773			local_bh_enable();
6774
6775			if (!repoll)
6776				break;
6777
6778			rcu_softirq_qs_periodic(last_qs);
6779			cond_resched();
6780		}
6781	}
6782	return 0;
6783}
6784
6785static __latent_entropy void net_rx_action(struct softirq_action *h)
6786{
6787	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6788	unsigned long time_limit = jiffies +
6789		usecs_to_jiffies(READ_ONCE(net_hotdata.netdev_budget_usecs));
6790	int budget = READ_ONCE(net_hotdata.netdev_budget);
6791	LIST_HEAD(list);
6792	LIST_HEAD(repoll);
6793
6794start:
6795	sd->in_net_rx_action = true;
6796	local_irq_disable();
6797	list_splice_init(&sd->poll_list, &list);
6798	local_irq_enable();
6799
6800	for (;;) {
6801		struct napi_struct *n;
6802
6803		skb_defer_free_flush(sd);
6804
6805		if (list_empty(&list)) {
6806			if (list_empty(&repoll)) {
6807				sd->in_net_rx_action = false;
6808				barrier();
6809				/* We need to check if ____napi_schedule()
6810				 * had refilled poll_list while
6811				 * sd->in_net_rx_action was true.
6812				 */
6813				if (!list_empty(&sd->poll_list))
6814					goto start;
6815				if (!sd_has_rps_ipi_waiting(sd))
6816					goto end;
6817			}
6818			break;
6819		}
6820
6821		n = list_first_entry(&list, struct napi_struct, poll_list);
6822		budget -= napi_poll(n, &repoll);
6823
6824		/* If softirq window is exhausted then punt.
6825		 * Allow this to run for 2 jiffies since which will allow
6826		 * an average latency of 1.5/HZ.
6827		 */
6828		if (unlikely(budget <= 0 ||
6829			     time_after_eq(jiffies, time_limit))) {
6830			sd->time_squeeze++;
6831			break;
6832		}
6833	}
6834
6835	local_irq_disable();
6836
6837	list_splice_tail_init(&sd->poll_list, &list);
6838	list_splice_tail(&repoll, &list);
6839	list_splice(&list, &sd->poll_list);
6840	if (!list_empty(&sd->poll_list))
6841		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
6842	else
6843		sd->in_net_rx_action = false;
6844
6845	net_rps_action_and_irq_enable(sd);
6846end:;
6847}
6848
6849struct netdev_adjacent {
6850	struct net_device *dev;
6851	netdevice_tracker dev_tracker;
6852
6853	/* upper master flag, there can only be one master device per list */
6854	bool master;
6855
6856	/* lookup ignore flag */
6857	bool ignore;
6858
6859	/* counter for the number of times this device was added to us */
6860	u16 ref_nr;
6861
6862	/* private field for the users */
6863	void *private;
6864
6865	struct list_head list;
6866	struct rcu_head rcu;
6867};
6868
6869static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6870						 struct list_head *adj_list)
6871{
6872	struct netdev_adjacent *adj;
6873
6874	list_for_each_entry(adj, adj_list, list) {
6875		if (adj->dev == adj_dev)
6876			return adj;
6877	}
6878	return NULL;
6879}
6880
6881static int ____netdev_has_upper_dev(struct net_device *upper_dev,
6882				    struct netdev_nested_priv *priv)
6883{
6884	struct net_device *dev = (struct net_device *)priv->data;
6885
6886	return upper_dev == dev;
6887}
6888
6889/**
6890 * netdev_has_upper_dev - Check if device is linked to an upper device
6891 * @dev: device
6892 * @upper_dev: upper device to check
6893 *
6894 * Find out if a device is linked to specified upper device and return true
6895 * in case it is. Note that this checks only immediate upper device,
6896 * not through a complete stack of devices. The caller must hold the RTNL lock.
6897 */
6898bool netdev_has_upper_dev(struct net_device *dev,
6899			  struct net_device *upper_dev)
6900{
6901	struct netdev_nested_priv priv = {
6902		.data = (void *)upper_dev,
6903	};
6904
6905	ASSERT_RTNL();
6906
6907	return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6908					     &priv);
6909}
6910EXPORT_SYMBOL(netdev_has_upper_dev);
6911
6912/**
6913 * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
6914 * @dev: device
6915 * @upper_dev: upper device to check
6916 *
6917 * Find out if a device is linked to specified upper device and return true
6918 * in case it is. Note that this checks the entire upper device chain.
6919 * The caller must hold rcu lock.
6920 */
6921
6922bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6923				  struct net_device *upper_dev)
6924{
6925	struct netdev_nested_priv priv = {
6926		.data = (void *)upper_dev,
6927	};
6928
6929	return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6930					       &priv);
6931}
6932EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6933
6934/**
6935 * netdev_has_any_upper_dev - Check if device is linked to some device
6936 * @dev: device
6937 *
6938 * Find out if a device is linked to an upper device and return true in case
6939 * it is. The caller must hold the RTNL lock.
6940 */
6941bool netdev_has_any_upper_dev(struct net_device *dev)
6942{
6943	ASSERT_RTNL();
6944
6945	return !list_empty(&dev->adj_list.upper);
6946}
6947EXPORT_SYMBOL(netdev_has_any_upper_dev);
6948
6949/**
6950 * netdev_master_upper_dev_get - Get master upper device
6951 * @dev: device
6952 *
6953 * Find a master upper device and return pointer to it or NULL in case
6954 * it's not there. The caller must hold the RTNL lock.
6955 */
6956struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6957{
6958	struct netdev_adjacent *upper;
6959
6960	ASSERT_RTNL();
6961
6962	if (list_empty(&dev->adj_list.upper))
6963		return NULL;
6964
6965	upper = list_first_entry(&dev->adj_list.upper,
6966				 struct netdev_adjacent, list);
6967	if (likely(upper->master))
6968		return upper->dev;
6969	return NULL;
6970}
6971EXPORT_SYMBOL(netdev_master_upper_dev_get);
6972
6973static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
6974{
6975	struct netdev_adjacent *upper;
6976
6977	ASSERT_RTNL();
6978
6979	if (list_empty(&dev->adj_list.upper))
6980		return NULL;
6981
6982	upper = list_first_entry(&dev->adj_list.upper,
6983				 struct netdev_adjacent, list);
6984	if (likely(upper->master) && !upper->ignore)
6985		return upper->dev;
6986	return NULL;
6987}
6988
6989/**
6990 * netdev_has_any_lower_dev - Check if device is linked to some device
6991 * @dev: device
6992 *
6993 * Find out if a device is linked to a lower device and return true in case
6994 * it is. The caller must hold the RTNL lock.
6995 */
6996static bool netdev_has_any_lower_dev(struct net_device *dev)
6997{
6998	ASSERT_RTNL();
6999
7000	return !list_empty(&dev->adj_list.lower);
7001}
7002
7003void *netdev_adjacent_get_private(struct list_head *adj_list)
7004{
7005	struct netdev_adjacent *adj;
7006
7007	adj = list_entry(adj_list, struct netdev_adjacent, list);
7008
7009	return adj->private;
7010}
7011EXPORT_SYMBOL(netdev_adjacent_get_private);
7012
7013/**
7014 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
7015 * @dev: device
7016 * @iter: list_head ** of the current position
7017 *
7018 * Gets the next device from the dev's upper list, starting from iter
7019 * position. The caller must hold RCU read lock.
7020 */
7021struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
7022						 struct list_head **iter)
7023{
7024	struct netdev_adjacent *upper;
7025
7026	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7027
7028	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7029
7030	if (&upper->list == &dev->adj_list.upper)
7031		return NULL;
7032
7033	*iter = &upper->list;
7034
7035	return upper->dev;
7036}
7037EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
7038
7039static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
7040						  struct list_head **iter,
7041						  bool *ignore)
7042{
7043	struct netdev_adjacent *upper;
7044
7045	upper = list_entry((*iter)->next, struct netdev_adjacent, list);
7046
7047	if (&upper->list == &dev->adj_list.upper)
7048		return NULL;
7049
7050	*iter = &upper->list;
7051	*ignore = upper->ignore;
7052
7053	return upper->dev;
7054}
7055
7056static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
7057						    struct list_head **iter)
7058{
7059	struct netdev_adjacent *upper;
7060
7061	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7062
7063	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7064
7065	if (&upper->list == &dev->adj_list.upper)
7066		return NULL;
7067
7068	*iter = &upper->list;
7069
7070	return upper->dev;
7071}
7072
7073static int __netdev_walk_all_upper_dev(struct net_device *dev,
7074				       int (*fn)(struct net_device *dev,
7075					 struct netdev_nested_priv *priv),
7076				       struct netdev_nested_priv *priv)
7077{
7078	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7079	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7080	int ret, cur = 0;
7081	bool ignore;
7082
7083	now = dev;
7084	iter = &dev->adj_list.upper;
7085
7086	while (1) {
7087		if (now != dev) {
7088			ret = fn(now, priv);
7089			if (ret)
7090				return ret;
7091		}
7092
7093		next = NULL;
7094		while (1) {
7095			udev = __netdev_next_upper_dev(now, &iter, &ignore);
7096			if (!udev)
7097				break;
7098			if (ignore)
7099				continue;
7100
7101			next = udev;
7102			niter = &udev->adj_list.upper;
7103			dev_stack[cur] = now;
7104			iter_stack[cur++] = iter;
7105			break;
7106		}
7107
7108		if (!next) {
7109			if (!cur)
7110				return 0;
7111			next = dev_stack[--cur];
7112			niter = iter_stack[cur];
7113		}
7114
7115		now = next;
7116		iter = niter;
7117	}
7118
7119	return 0;
7120}
7121
7122int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7123				  int (*fn)(struct net_device *dev,
7124					    struct netdev_nested_priv *priv),
7125				  struct netdev_nested_priv *priv)
7126{
7127	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7128	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7129	int ret, cur = 0;
7130
7131	now = dev;
7132	iter = &dev->adj_list.upper;
7133
7134	while (1) {
7135		if (now != dev) {
7136			ret = fn(now, priv);
7137			if (ret)
7138				return ret;
7139		}
7140
7141		next = NULL;
7142		while (1) {
7143			udev = netdev_next_upper_dev_rcu(now, &iter);
7144			if (!udev)
7145				break;
7146
7147			next = udev;
7148			niter = &udev->adj_list.upper;
7149			dev_stack[cur] = now;
7150			iter_stack[cur++] = iter;
7151			break;
7152		}
7153
7154		if (!next) {
7155			if (!cur)
7156				return 0;
7157			next = dev_stack[--cur];
7158			niter = iter_stack[cur];
7159		}
7160
7161		now = next;
7162		iter = niter;
7163	}
7164
7165	return 0;
7166}
7167EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7168
7169static bool __netdev_has_upper_dev(struct net_device *dev,
7170				   struct net_device *upper_dev)
7171{
7172	struct netdev_nested_priv priv = {
7173		.flags = 0,
7174		.data = (void *)upper_dev,
7175	};
7176
7177	ASSERT_RTNL();
7178
7179	return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7180					   &priv);
7181}
7182
7183/**
7184 * netdev_lower_get_next_private - Get the next ->private from the
7185 *				   lower neighbour list
7186 * @dev: device
7187 * @iter: list_head ** of the current position
7188 *
7189 * Gets the next netdev_adjacent->private from the dev's lower neighbour
7190 * list, starting from iter position. The caller must hold either hold the
7191 * RTNL lock or its own locking that guarantees that the neighbour lower
7192 * list will remain unchanged.
7193 */
7194void *netdev_lower_get_next_private(struct net_device *dev,
7195				    struct list_head **iter)
7196{
7197	struct netdev_adjacent *lower;
7198
7199	lower = list_entry(*iter, struct netdev_adjacent, list);
7200
7201	if (&lower->list == &dev->adj_list.lower)
7202		return NULL;
7203
7204	*iter = lower->list.next;
7205
7206	return lower->private;
7207}
7208EXPORT_SYMBOL(netdev_lower_get_next_private);
7209
7210/**
7211 * netdev_lower_get_next_private_rcu - Get the next ->private from the
7212 *				       lower neighbour list, RCU
7213 *				       variant
7214 * @dev: device
7215 * @iter: list_head ** of the current position
7216 *
7217 * Gets the next netdev_adjacent->private from the dev's lower neighbour
7218 * list, starting from iter position. The caller must hold RCU read lock.
7219 */
7220void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7221					struct list_head **iter)
7222{
7223	struct netdev_adjacent *lower;
7224
7225	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
7226
7227	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7228
7229	if (&lower->list == &dev->adj_list.lower)
7230		return NULL;
7231
7232	*iter = &lower->list;
7233
7234	return lower->private;
7235}
7236EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7237
7238/**
7239 * netdev_lower_get_next - Get the next device from the lower neighbour
7240 *                         list
7241 * @dev: device
7242 * @iter: list_head ** of the current position
7243 *
7244 * Gets the next netdev_adjacent from the dev's lower neighbour
7245 * list, starting from iter position. The caller must hold RTNL lock or
7246 * its own locking that guarantees that the neighbour lower
7247 * list will remain unchanged.
7248 */
7249void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7250{
7251	struct netdev_adjacent *lower;
7252
7253	lower = list_entry(*iter, struct netdev_adjacent, list);
7254
7255	if (&lower->list == &dev->adj_list.lower)
7256		return NULL;
7257
7258	*iter = lower->list.next;
7259
7260	return lower->dev;
7261}
7262EXPORT_SYMBOL(netdev_lower_get_next);
7263
7264static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7265						struct list_head **iter)
7266{
7267	struct netdev_adjacent *lower;
7268
7269	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7270
7271	if (&lower->list == &dev->adj_list.lower)
7272		return NULL;
7273
7274	*iter = &lower->list;
7275
7276	return lower->dev;
7277}
7278
7279static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7280						  struct list_head **iter,
7281						  bool *ignore)
7282{
7283	struct netdev_adjacent *lower;
7284
7285	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7286
7287	if (&lower->list == &dev->adj_list.lower)
7288		return NULL;
7289
7290	*iter = &lower->list;
7291	*ignore = lower->ignore;
7292
7293	return lower->dev;
7294}
7295
7296int netdev_walk_all_lower_dev(struct net_device *dev,
7297			      int (*fn)(struct net_device *dev,
7298					struct netdev_nested_priv *priv),
7299			      struct netdev_nested_priv *priv)
7300{
7301	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7302	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7303	int ret, cur = 0;
7304
7305	now = dev;
7306	iter = &dev->adj_list.lower;
7307
7308	while (1) {
7309		if (now != dev) {
7310			ret = fn(now, priv);
7311			if (ret)
7312				return ret;
7313		}
7314
7315		next = NULL;
7316		while (1) {
7317			ldev = netdev_next_lower_dev(now, &iter);
7318			if (!ldev)
7319				break;
7320
7321			next = ldev;
7322			niter = &ldev->adj_list.lower;
7323			dev_stack[cur] = now;
7324			iter_stack[cur++] = iter;
7325			break;
7326		}
7327
7328		if (!next) {
7329			if (!cur)
7330				return 0;
7331			next = dev_stack[--cur];
7332			niter = iter_stack[cur];
7333		}
7334
7335		now = next;
7336		iter = niter;
7337	}
7338
7339	return 0;
7340}
7341EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7342
7343static int __netdev_walk_all_lower_dev(struct net_device *dev,
7344				       int (*fn)(struct net_device *dev,
7345					 struct netdev_nested_priv *priv),
7346				       struct netdev_nested_priv *priv)
7347{
7348	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7349	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7350	int ret, cur = 0;
7351	bool ignore;
7352
7353	now = dev;
7354	iter = &dev->adj_list.lower;
7355
7356	while (1) {
7357		if (now != dev) {
7358			ret = fn(now, priv);
7359			if (ret)
7360				return ret;
7361		}
7362
7363		next = NULL;
7364		while (1) {
7365			ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7366			if (!ldev)
7367				break;
7368			if (ignore)
7369				continue;
7370
7371			next = ldev;
7372			niter = &ldev->adj_list.lower;
7373			dev_stack[cur] = now;
7374			iter_stack[cur++] = iter;
7375			break;
7376		}
7377
7378		if (!next) {
7379			if (!cur)
7380				return 0;
7381			next = dev_stack[--cur];
7382			niter = iter_stack[cur];
7383		}
7384
7385		now = next;
7386		iter = niter;
7387	}
7388
7389	return 0;
7390}
7391
7392struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7393					     struct list_head **iter)
7394{
7395	struct netdev_adjacent *lower;
7396
7397	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7398	if (&lower->list == &dev->adj_list.lower)
7399		return NULL;
7400
7401	*iter = &lower->list;
7402
7403	return lower->dev;
7404}
7405EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7406
7407static u8 __netdev_upper_depth(struct net_device *dev)
7408{
7409	struct net_device *udev;
7410	struct list_head *iter;
7411	u8 max_depth = 0;
7412	bool ignore;
7413
7414	for (iter = &dev->adj_list.upper,
7415	     udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7416	     udev;
7417	     udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7418		if (ignore)
7419			continue;
7420		if (max_depth < udev->upper_level)
7421			max_depth = udev->upper_level;
7422	}
7423
7424	return max_depth;
7425}
7426
7427static u8 __netdev_lower_depth(struct net_device *dev)
7428{
7429	struct net_device *ldev;
7430	struct list_head *iter;
7431	u8 max_depth = 0;
7432	bool ignore;
7433
7434	for (iter = &dev->adj_list.lower,
7435	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7436	     ldev;
7437	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7438		if (ignore)
7439			continue;
7440		if (max_depth < ldev->lower_level)
7441			max_depth = ldev->lower_level;
7442	}
7443
7444	return max_depth;
7445}
7446
7447static int __netdev_update_upper_level(struct net_device *dev,
7448				       struct netdev_nested_priv *__unused)
7449{
7450	dev->upper_level = __netdev_upper_depth(dev) + 1;
7451	return 0;
7452}
7453
7454#ifdef CONFIG_LOCKDEP
7455static LIST_HEAD(net_unlink_list);
7456
7457static void net_unlink_todo(struct net_device *dev)
7458{
7459	if (list_empty(&dev->unlink_list))
7460		list_add_tail(&dev->unlink_list, &net_unlink_list);
7461}
7462#endif
7463
7464static int __netdev_update_lower_level(struct net_device *dev,
7465				       struct netdev_nested_priv *priv)
7466{
7467	dev->lower_level = __netdev_lower_depth(dev) + 1;
7468
7469#ifdef CONFIG_LOCKDEP
7470	if (!priv)
7471		return 0;
7472
7473	if (priv->flags & NESTED_SYNC_IMM)
7474		dev->nested_level = dev->lower_level - 1;
7475	if (priv->flags & NESTED_SYNC_TODO)
7476		net_unlink_todo(dev);
7477#endif
7478	return 0;
7479}
7480
7481int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7482				  int (*fn)(struct net_device *dev,
7483					    struct netdev_nested_priv *priv),
7484				  struct netdev_nested_priv *priv)
7485{
7486	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7487	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7488	int ret, cur = 0;
7489
7490	now = dev;
7491	iter = &dev->adj_list.lower;
7492
7493	while (1) {
7494		if (now != dev) {
7495			ret = fn(now, priv);
7496			if (ret)
7497				return ret;
7498		}
7499
7500		next = NULL;
7501		while (1) {
7502			ldev = netdev_next_lower_dev_rcu(now, &iter);
7503			if (!ldev)
7504				break;
7505
7506			next = ldev;
7507			niter = &ldev->adj_list.lower;
7508			dev_stack[cur] = now;
7509			iter_stack[cur++] = iter;
7510			break;
7511		}
7512
7513		if (!next) {
7514			if (!cur)
7515				return 0;
7516			next = dev_stack[--cur];
7517			niter = iter_stack[cur];
7518		}
7519
7520		now = next;
7521		iter = niter;
7522	}
7523
7524	return 0;
7525}
7526EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7527
7528/**
7529 * netdev_lower_get_first_private_rcu - Get the first ->private from the
7530 *				       lower neighbour list, RCU
7531 *				       variant
7532 * @dev: device
7533 *
7534 * Gets the first netdev_adjacent->private from the dev's lower neighbour
7535 * list. The caller must hold RCU read lock.
7536 */
7537void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7538{
7539	struct netdev_adjacent *lower;
7540
7541	lower = list_first_or_null_rcu(&dev->adj_list.lower,
7542			struct netdev_adjacent, list);
7543	if (lower)
7544		return lower->private;
7545	return NULL;
7546}
7547EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7548
7549/**
7550 * netdev_master_upper_dev_get_rcu - Get master upper device
7551 * @dev: device
7552 *
7553 * Find a master upper device and return pointer to it or NULL in case
7554 * it's not there. The caller must hold the RCU read lock.
7555 */
7556struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7557{
7558	struct netdev_adjacent *upper;
7559
7560	upper = list_first_or_null_rcu(&dev->adj_list.upper,
7561				       struct netdev_adjacent, list);
7562	if (upper && likely(upper->master))
7563		return upper->dev;
7564	return NULL;
7565}
7566EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7567
7568static int netdev_adjacent_sysfs_add(struct net_device *dev,
7569			      struct net_device *adj_dev,
7570			      struct list_head *dev_list)
7571{
7572	char linkname[IFNAMSIZ+7];
7573
7574	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7575		"upper_%s" : "lower_%s", adj_dev->name);
7576	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7577				 linkname);
7578}
7579static void netdev_adjacent_sysfs_del(struct net_device *dev,
7580			       char *name,
7581			       struct list_head *dev_list)
7582{
7583	char linkname[IFNAMSIZ+7];
7584
7585	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7586		"upper_%s" : "lower_%s", name);
7587	sysfs_remove_link(&(dev->dev.kobj), linkname);
7588}
7589
7590static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7591						 struct net_device *adj_dev,
7592						 struct list_head *dev_list)
7593{
7594	return (dev_list == &dev->adj_list.upper ||
7595		dev_list == &dev->adj_list.lower) &&
7596		net_eq(dev_net(dev), dev_net(adj_dev));
7597}
7598
7599static int __netdev_adjacent_dev_insert(struct net_device *dev,
7600					struct net_device *adj_dev,
7601					struct list_head *dev_list,
7602					void *private, bool master)
7603{
7604	struct netdev_adjacent *adj;
7605	int ret;
7606
7607	adj = __netdev_find_adj(adj_dev, dev_list);
7608
7609	if (adj) {
7610		adj->ref_nr += 1;
7611		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7612			 dev->name, adj_dev->name, adj->ref_nr);
7613
7614		return 0;
7615	}
7616
7617	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7618	if (!adj)
7619		return -ENOMEM;
7620
7621	adj->dev = adj_dev;
7622	adj->master = master;
7623	adj->ref_nr = 1;
7624	adj->private = private;
7625	adj->ignore = false;
7626	netdev_hold(adj_dev, &adj->dev_tracker, GFP_KERNEL);
7627
7628	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7629		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7630
7631	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7632		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7633		if (ret)
7634			goto free_adj;
7635	}
7636
7637	/* Ensure that master link is always the first item in list. */
7638	if (master) {
7639		ret = sysfs_create_link(&(dev->dev.kobj),
7640					&(adj_dev->dev.kobj), "master");
7641		if (ret)
7642			goto remove_symlinks;
7643
7644		list_add_rcu(&adj->list, dev_list);
7645	} else {
7646		list_add_tail_rcu(&adj->list, dev_list);
7647	}
7648
7649	return 0;
7650
7651remove_symlinks:
7652	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7653		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7654free_adj:
7655	netdev_put(adj_dev, &adj->dev_tracker);
7656	kfree(adj);
7657
7658	return ret;
7659}
7660
7661static void __netdev_adjacent_dev_remove(struct net_device *dev,
7662					 struct net_device *adj_dev,
7663					 u16 ref_nr,
7664					 struct list_head *dev_list)
7665{
7666	struct netdev_adjacent *adj;
7667
7668	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7669		 dev->name, adj_dev->name, ref_nr);
7670
7671	adj = __netdev_find_adj(adj_dev, dev_list);
7672
7673	if (!adj) {
7674		pr_err("Adjacency does not exist for device %s from %s\n",
7675		       dev->name, adj_dev->name);
7676		WARN_ON(1);
7677		return;
7678	}
7679
7680	if (adj->ref_nr > ref_nr) {
7681		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7682			 dev->name, adj_dev->name, ref_nr,
7683			 adj->ref_nr - ref_nr);
7684		adj->ref_nr -= ref_nr;
7685		return;
7686	}
7687
7688	if (adj->master)
7689		sysfs_remove_link(&(dev->dev.kobj), "master");
7690
7691	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7692		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7693
7694	list_del_rcu(&adj->list);
7695	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7696		 adj_dev->name, dev->name, adj_dev->name);
7697	netdev_put(adj_dev, &adj->dev_tracker);
7698	kfree_rcu(adj, rcu);
7699}
7700
7701static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7702					    struct net_device *upper_dev,
7703					    struct list_head *up_list,
7704					    struct list_head *down_list,
7705					    void *private, bool master)
7706{
7707	int ret;
7708
7709	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7710					   private, master);
7711	if (ret)
7712		return ret;
7713
7714	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7715					   private, false);
7716	if (ret) {
7717		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7718		return ret;
7719	}
7720
7721	return 0;
7722}
7723
7724static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7725					       struct net_device *upper_dev,
7726					       u16 ref_nr,
7727					       struct list_head *up_list,
7728					       struct list_head *down_list)
7729{
7730	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7731	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7732}
7733
7734static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7735						struct net_device *upper_dev,
7736						void *private, bool master)
7737{
7738	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7739						&dev->adj_list.upper,
7740						&upper_dev->adj_list.lower,
7741						private, master);
7742}
7743
7744static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7745						   struct net_device *upper_dev)
7746{
7747	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7748					   &dev->adj_list.upper,
7749					   &upper_dev->adj_list.lower);
7750}
7751
7752static int __netdev_upper_dev_link(struct net_device *dev,
7753				   struct net_device *upper_dev, bool master,
7754				   void *upper_priv, void *upper_info,
7755				   struct netdev_nested_priv *priv,
7756				   struct netlink_ext_ack *extack)
7757{
7758	struct netdev_notifier_changeupper_info changeupper_info = {
7759		.info = {
7760			.dev = dev,
7761			.extack = extack,
7762		},
7763		.upper_dev = upper_dev,
7764		.master = master,
7765		.linking = true,
7766		.upper_info = upper_info,
7767	};
7768	struct net_device *master_dev;
7769	int ret = 0;
7770
7771	ASSERT_RTNL();
7772
7773	if (dev == upper_dev)
7774		return -EBUSY;
7775
7776	/* To prevent loops, check if dev is not upper device to upper_dev. */
7777	if (__netdev_has_upper_dev(upper_dev, dev))
7778		return -EBUSY;
7779
7780	if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7781		return -EMLINK;
7782
7783	if (!master) {
7784		if (__netdev_has_upper_dev(dev, upper_dev))
7785			return -EEXIST;
7786	} else {
7787		master_dev = __netdev_master_upper_dev_get(dev);
7788		if (master_dev)
7789			return master_dev == upper_dev ? -EEXIST : -EBUSY;
7790	}
7791
7792	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7793					    &changeupper_info.info);
7794	ret = notifier_to_errno(ret);
7795	if (ret)
7796		return ret;
7797
7798	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7799						   master);
7800	if (ret)
7801		return ret;
7802
7803	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7804					    &changeupper_info.info);
7805	ret = notifier_to_errno(ret);
7806	if (ret)
7807		goto rollback;
7808
7809	__netdev_update_upper_level(dev, NULL);
7810	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7811
7812	__netdev_update_lower_level(upper_dev, priv);
7813	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7814				    priv);
7815
7816	return 0;
7817
7818rollback:
7819	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7820
7821	return ret;
7822}
7823
7824/**
7825 * netdev_upper_dev_link - Add a link to the upper device
7826 * @dev: device
7827 * @upper_dev: new upper device
7828 * @extack: netlink extended ack
7829 *
7830 * Adds a link to device which is upper to this one. The caller must hold
7831 * the RTNL lock. On a failure a negative errno code is returned.
7832 * On success the reference counts are adjusted and the function
7833 * returns zero.
7834 */
7835int netdev_upper_dev_link(struct net_device *dev,
7836			  struct net_device *upper_dev,
7837			  struct netlink_ext_ack *extack)
7838{
7839	struct netdev_nested_priv priv = {
7840		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7841		.data = NULL,
7842	};
7843
7844	return __netdev_upper_dev_link(dev, upper_dev, false,
7845				       NULL, NULL, &priv, extack);
7846}
7847EXPORT_SYMBOL(netdev_upper_dev_link);
7848
7849/**
7850 * netdev_master_upper_dev_link - Add a master link to the upper device
7851 * @dev: device
7852 * @upper_dev: new upper device
7853 * @upper_priv: upper device private
7854 * @upper_info: upper info to be passed down via notifier
7855 * @extack: netlink extended ack
7856 *
7857 * Adds a link to device which is upper to this one. In this case, only
7858 * one master upper device can be linked, although other non-master devices
7859 * might be linked as well. The caller must hold the RTNL lock.
7860 * On a failure a negative errno code is returned. On success the reference
7861 * counts are adjusted and the function returns zero.
7862 */
7863int netdev_master_upper_dev_link(struct net_device *dev,
7864				 struct net_device *upper_dev,
7865				 void *upper_priv, void *upper_info,
7866				 struct netlink_ext_ack *extack)
7867{
7868	struct netdev_nested_priv priv = {
7869		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7870		.data = NULL,
7871	};
7872
7873	return __netdev_upper_dev_link(dev, upper_dev, true,
7874				       upper_priv, upper_info, &priv, extack);
7875}
7876EXPORT_SYMBOL(netdev_master_upper_dev_link);
7877
7878static void __netdev_upper_dev_unlink(struct net_device *dev,
7879				      struct net_device *upper_dev,
7880				      struct netdev_nested_priv *priv)
7881{
7882	struct netdev_notifier_changeupper_info changeupper_info = {
7883		.info = {
7884			.dev = dev,
7885		},
7886		.upper_dev = upper_dev,
7887		.linking = false,
7888	};
7889
7890	ASSERT_RTNL();
7891
7892	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7893
7894	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7895				      &changeupper_info.info);
7896
7897	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7898
7899	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7900				      &changeupper_info.info);
7901
7902	__netdev_update_upper_level(dev, NULL);
7903	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7904
7905	__netdev_update_lower_level(upper_dev, priv);
7906	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7907				    priv);
7908}
7909
7910/**
7911 * netdev_upper_dev_unlink - Removes a link to upper device
7912 * @dev: device
7913 * @upper_dev: new upper device
7914 *
7915 * Removes a link to device which is upper to this one. The caller must hold
7916 * the RTNL lock.
7917 */
7918void netdev_upper_dev_unlink(struct net_device *dev,
7919			     struct net_device *upper_dev)
7920{
7921	struct netdev_nested_priv priv = {
7922		.flags = NESTED_SYNC_TODO,
7923		.data = NULL,
7924	};
7925
7926	__netdev_upper_dev_unlink(dev, upper_dev, &priv);
7927}
7928EXPORT_SYMBOL(netdev_upper_dev_unlink);
7929
7930static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
7931				      struct net_device *lower_dev,
7932				      bool val)
7933{
7934	struct netdev_adjacent *adj;
7935
7936	adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
7937	if (adj)
7938		adj->ignore = val;
7939
7940	adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
7941	if (adj)
7942		adj->ignore = val;
7943}
7944
7945static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
7946					struct net_device *lower_dev)
7947{
7948	__netdev_adjacent_dev_set(upper_dev, lower_dev, true);
7949}
7950
7951static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
7952				       struct net_device *lower_dev)
7953{
7954	__netdev_adjacent_dev_set(upper_dev, lower_dev, false);
7955}
7956
7957int netdev_adjacent_change_prepare(struct net_device *old_dev,
7958				   struct net_device *new_dev,
7959				   struct net_device *dev,
7960				   struct netlink_ext_ack *extack)
7961{
7962	struct netdev_nested_priv priv = {
7963		.flags = 0,
7964		.data = NULL,
7965	};
7966	int err;
7967
7968	if (!new_dev)
7969		return 0;
7970
7971	if (old_dev && new_dev != old_dev)
7972		netdev_adjacent_dev_disable(dev, old_dev);
7973	err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
7974				      extack);
7975	if (err) {
7976		if (old_dev && new_dev != old_dev)
7977			netdev_adjacent_dev_enable(dev, old_dev);
7978		return err;
7979	}
7980
7981	return 0;
7982}
7983EXPORT_SYMBOL(netdev_adjacent_change_prepare);
7984
7985void netdev_adjacent_change_commit(struct net_device *old_dev,
7986				   struct net_device *new_dev,
7987				   struct net_device *dev)
7988{
7989	struct netdev_nested_priv priv = {
7990		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7991		.data = NULL,
7992	};
7993
7994	if (!new_dev || !old_dev)
7995		return;
7996
7997	if (new_dev == old_dev)
7998		return;
7999
8000	netdev_adjacent_dev_enable(dev, old_dev);
8001	__netdev_upper_dev_unlink(old_dev, dev, &priv);
8002}
8003EXPORT_SYMBOL(netdev_adjacent_change_commit);
8004
8005void netdev_adjacent_change_abort(struct net_device *old_dev,
8006				  struct net_device *new_dev,
8007				  struct net_device *dev)
8008{
8009	struct netdev_nested_priv priv = {
8010		.flags = 0,
8011		.data = NULL,
8012	};
8013
8014	if (!new_dev)
8015		return;
8016
8017	if (old_dev && new_dev != old_dev)
8018		netdev_adjacent_dev_enable(dev, old_dev);
8019
8020	__netdev_upper_dev_unlink(new_dev, dev, &priv);
8021}
8022EXPORT_SYMBOL(netdev_adjacent_change_abort);
8023
8024/**
8025 * netdev_bonding_info_change - Dispatch event about slave change
8026 * @dev: device
8027 * @bonding_info: info to dispatch
8028 *
8029 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
8030 * The caller must hold the RTNL lock.
8031 */
8032void netdev_bonding_info_change(struct net_device *dev,
8033				struct netdev_bonding_info *bonding_info)
8034{
8035	struct netdev_notifier_bonding_info info = {
8036		.info.dev = dev,
8037	};
8038
8039	memcpy(&info.bonding_info, bonding_info,
8040	       sizeof(struct netdev_bonding_info));
8041	call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
8042				      &info.info);
8043}
8044EXPORT_SYMBOL(netdev_bonding_info_change);
8045
8046static int netdev_offload_xstats_enable_l3(struct net_device *dev,
8047					   struct netlink_ext_ack *extack)
8048{
8049	struct netdev_notifier_offload_xstats_info info = {
8050		.info.dev = dev,
8051		.info.extack = extack,
8052		.type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
8053	};
8054	int err;
8055	int rc;
8056
8057	dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3),
8058					 GFP_KERNEL);
8059	if (!dev->offload_xstats_l3)
8060		return -ENOMEM;
8061
8062	rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE,
8063						  NETDEV_OFFLOAD_XSTATS_DISABLE,
8064						  &info.info);
8065	err = notifier_to_errno(rc);
8066	if (err)
8067		goto free_stats;
8068
8069	return 0;
8070
8071free_stats:
8072	kfree(dev->offload_xstats_l3);
8073	dev->offload_xstats_l3 = NULL;
8074	return err;
8075}
8076
8077int netdev_offload_xstats_enable(struct net_device *dev,
8078				 enum netdev_offload_xstats_type type,
8079				 struct netlink_ext_ack *extack)
8080{
8081	ASSERT_RTNL();
8082
8083	if (netdev_offload_xstats_enabled(dev, type))
8084		return -EALREADY;
8085
8086	switch (type) {
8087	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8088		return netdev_offload_xstats_enable_l3(dev, extack);
8089	}
8090
8091	WARN_ON(1);
8092	return -EINVAL;
8093}
8094EXPORT_SYMBOL(netdev_offload_xstats_enable);
8095
8096static void netdev_offload_xstats_disable_l3(struct net_device *dev)
8097{
8098	struct netdev_notifier_offload_xstats_info info = {
8099		.info.dev = dev,
8100		.type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
8101	};
8102
8103	call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE,
8104				      &info.info);
8105	kfree(dev->offload_xstats_l3);
8106	dev->offload_xstats_l3 = NULL;
8107}
8108
8109int netdev_offload_xstats_disable(struct net_device *dev,
8110				  enum netdev_offload_xstats_type type)
8111{
8112	ASSERT_RTNL();
8113
8114	if (!netdev_offload_xstats_enabled(dev, type))
8115		return -EALREADY;
8116
8117	switch (type) {
8118	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8119		netdev_offload_xstats_disable_l3(dev);
8120		return 0;
8121	}
8122
8123	WARN_ON(1);
8124	return -EINVAL;
8125}
8126EXPORT_SYMBOL(netdev_offload_xstats_disable);
8127
8128static void netdev_offload_xstats_disable_all(struct net_device *dev)
8129{
8130	netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3);
8131}
8132
8133static struct rtnl_hw_stats64 *
8134netdev_offload_xstats_get_ptr(const struct net_device *dev,
8135			      enum netdev_offload_xstats_type type)
8136{
8137	switch (type) {
8138	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8139		return dev->offload_xstats_l3;
8140	}
8141
8142	WARN_ON(1);
8143	return NULL;
8144}
8145
8146bool netdev_offload_xstats_enabled(const struct net_device *dev,
8147				   enum netdev_offload_xstats_type type)
8148{
8149	ASSERT_RTNL();
8150
8151	return netdev_offload_xstats_get_ptr(dev, type);
8152}
8153EXPORT_SYMBOL(netdev_offload_xstats_enabled);
8154
8155struct netdev_notifier_offload_xstats_ru {
8156	bool used;
8157};
8158
8159struct netdev_notifier_offload_xstats_rd {
8160	struct rtnl_hw_stats64 stats;
8161	bool used;
8162};
8163
8164static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest,
8165				  const struct rtnl_hw_stats64 *src)
8166{
8167	dest->rx_packets	  += src->rx_packets;
8168	dest->tx_packets	  += src->tx_packets;
8169	dest->rx_bytes		  += src->rx_bytes;
8170	dest->tx_bytes		  += src->tx_bytes;
8171	dest->rx_errors		  += src->rx_errors;
8172	dest->tx_errors		  += src->tx_errors;
8173	dest->rx_dropped	  += src->rx_dropped;
8174	dest->tx_dropped	  += src->tx_dropped;
8175	dest->multicast		  += src->multicast;
8176}
8177
8178static int netdev_offload_xstats_get_used(struct net_device *dev,
8179					  enum netdev_offload_xstats_type type,
8180					  bool *p_used,
8181					  struct netlink_ext_ack *extack)
8182{
8183	struct netdev_notifier_offload_xstats_ru report_used = {};
8184	struct netdev_notifier_offload_xstats_info info = {
8185		.info.dev = dev,
8186		.info.extack = extack,
8187		.type = type,
8188		.report_used = &report_used,
8189	};
8190	int rc;
8191
8192	WARN_ON(!netdev_offload_xstats_enabled(dev, type));
8193	rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED,
8194					   &info.info);
8195	*p_used = report_used.used;
8196	return notifier_to_errno(rc);
8197}
8198
8199static int netdev_offload_xstats_get_stats(struct net_device *dev,
8200					   enum netdev_offload_xstats_type type,
8201					   struct rtnl_hw_stats64 *p_stats,
8202					   bool *p_used,
8203					   struct netlink_ext_ack *extack)
8204{
8205	struct netdev_notifier_offload_xstats_rd report_delta = {};
8206	struct netdev_notifier_offload_xstats_info info = {
8207		.info.dev = dev,
8208		.info.extack = extack,
8209		.type = type,
8210		.report_delta = &report_delta,
8211	};
8212	struct rtnl_hw_stats64 *stats;
8213	int rc;
8214
8215	stats = netdev_offload_xstats_get_ptr(dev, type);
8216	if (WARN_ON(!stats))
8217		return -EINVAL;
8218
8219	rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
8220					   &info.info);
8221
8222	/* Cache whatever we got, even if there was an error, otherwise the
8223	 * successful stats retrievals would get lost.
8224	 */
8225	netdev_hw_stats64_add(stats, &report_delta.stats);
8226
8227	if (p_stats)
8228		*p_stats = *stats;
8229	*p_used = report_delta.used;
8230
8231	return notifier_to_errno(rc);
8232}
8233
8234int netdev_offload_xstats_get(struct net_device *dev,
8235			      enum netdev_offload_xstats_type type,
8236			      struct rtnl_hw_stats64 *p_stats, bool *p_used,
8237			      struct netlink_ext_ack *extack)
8238{
8239	ASSERT_RTNL();
8240
8241	if (p_stats)
8242		return netdev_offload_xstats_get_stats(dev, type, p_stats,
8243						       p_used, extack);
8244	else
8245		return netdev_offload_xstats_get_used(dev, type, p_used,
8246						      extack);
8247}
8248EXPORT_SYMBOL(netdev_offload_xstats_get);
8249
8250void
8251netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta,
8252				   const struct rtnl_hw_stats64 *stats)
8253{
8254	report_delta->used = true;
8255	netdev_hw_stats64_add(&report_delta->stats, stats);
8256}
8257EXPORT_SYMBOL(netdev_offload_xstats_report_delta);
8258
8259void
8260netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used)
8261{
8262	report_used->used = true;
8263}
8264EXPORT_SYMBOL(netdev_offload_xstats_report_used);
8265
8266void netdev_offload_xstats_push_delta(struct net_device *dev,
8267				      enum netdev_offload_xstats_type type,
8268				      const struct rtnl_hw_stats64 *p_stats)
8269{
8270	struct rtnl_hw_stats64 *stats;
8271
8272	ASSERT_RTNL();
8273
8274	stats = netdev_offload_xstats_get_ptr(dev, type);
8275	if (WARN_ON(!stats))
8276		return;
8277
8278	netdev_hw_stats64_add(stats, p_stats);
8279}
8280EXPORT_SYMBOL(netdev_offload_xstats_push_delta);
8281
8282/**
8283 * netdev_get_xmit_slave - Get the xmit slave of master device
8284 * @dev: device
8285 * @skb: The packet
8286 * @all_slaves: assume all the slaves are active
8287 *
8288 * The reference counters are not incremented so the caller must be
8289 * careful with locks. The caller must hold RCU lock.
8290 * %NULL is returned if no slave is found.
8291 */
8292
8293struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8294					 struct sk_buff *skb,
8295					 bool all_slaves)
8296{
8297	const struct net_device_ops *ops = dev->netdev_ops;
8298
8299	if (!ops->ndo_get_xmit_slave)
8300		return NULL;
8301	return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8302}
8303EXPORT_SYMBOL(netdev_get_xmit_slave);
8304
8305static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8306						  struct sock *sk)
8307{
8308	const struct net_device_ops *ops = dev->netdev_ops;
8309
8310	if (!ops->ndo_sk_get_lower_dev)
8311		return NULL;
8312	return ops->ndo_sk_get_lower_dev(dev, sk);
8313}
8314
8315/**
8316 * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8317 * @dev: device
8318 * @sk: the socket
8319 *
8320 * %NULL is returned if no lower device is found.
8321 */
8322
8323struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8324					    struct sock *sk)
8325{
8326	struct net_device *lower;
8327
8328	lower = netdev_sk_get_lower_dev(dev, sk);
8329	while (lower) {
8330		dev = lower;
8331		lower = netdev_sk_get_lower_dev(dev, sk);
8332	}
8333
8334	return dev;
8335}
8336EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8337
8338static void netdev_adjacent_add_links(struct net_device *dev)
8339{
8340	struct netdev_adjacent *iter;
8341
8342	struct net *net = dev_net(dev);
8343
8344	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8345		if (!net_eq(net, dev_net(iter->dev)))
8346			continue;
8347		netdev_adjacent_sysfs_add(iter->dev, dev,
8348					  &iter->dev->adj_list.lower);
8349		netdev_adjacent_sysfs_add(dev, iter->dev,
8350					  &dev->adj_list.upper);
8351	}
8352
8353	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8354		if (!net_eq(net, dev_net(iter->dev)))
8355			continue;
8356		netdev_adjacent_sysfs_add(iter->dev, dev,
8357					  &iter->dev->adj_list.upper);
8358		netdev_adjacent_sysfs_add(dev, iter->dev,
8359					  &dev->adj_list.lower);
8360	}
8361}
8362
8363static void netdev_adjacent_del_links(struct net_device *dev)
8364{
8365	struct netdev_adjacent *iter;
8366
8367	struct net *net = dev_net(dev);
8368
8369	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8370		if (!net_eq(net, dev_net(iter->dev)))
8371			continue;
8372		netdev_adjacent_sysfs_del(iter->dev, dev->name,
8373					  &iter->dev->adj_list.lower);
8374		netdev_adjacent_sysfs_del(dev, iter->dev->name,
8375					  &dev->adj_list.upper);
8376	}
8377
8378	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8379		if (!net_eq(net, dev_net(iter->dev)))
8380			continue;
8381		netdev_adjacent_sysfs_del(iter->dev, dev->name,
8382					  &iter->dev->adj_list.upper);
8383		netdev_adjacent_sysfs_del(dev, iter->dev->name,
8384					  &dev->adj_list.lower);
8385	}
8386}
8387
8388void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8389{
8390	struct netdev_adjacent *iter;
8391
8392	struct net *net = dev_net(dev);
8393
8394	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8395		if (!net_eq(net, dev_net(iter->dev)))
8396			continue;
8397		netdev_adjacent_sysfs_del(iter->dev, oldname,
8398					  &iter->dev->adj_list.lower);
8399		netdev_adjacent_sysfs_add(iter->dev, dev,
8400					  &iter->dev->adj_list.lower);
8401	}
8402
8403	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8404		if (!net_eq(net, dev_net(iter->dev)))
8405			continue;
8406		netdev_adjacent_sysfs_del(iter->dev, oldname,
8407					  &iter->dev->adj_list.upper);
8408		netdev_adjacent_sysfs_add(iter->dev, dev,
8409					  &iter->dev->adj_list.upper);
8410	}
8411}
8412
8413void *netdev_lower_dev_get_private(struct net_device *dev,
8414				   struct net_device *lower_dev)
8415{
8416	struct netdev_adjacent *lower;
8417
8418	if (!lower_dev)
8419		return NULL;
8420	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8421	if (!lower)
8422		return NULL;
8423
8424	return lower->private;
8425}
8426EXPORT_SYMBOL(netdev_lower_dev_get_private);
8427
8428
8429/**
8430 * netdev_lower_state_changed - Dispatch event about lower device state change
8431 * @lower_dev: device
8432 * @lower_state_info: state to dispatch
8433 *
8434 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8435 * The caller must hold the RTNL lock.
8436 */
8437void netdev_lower_state_changed(struct net_device *lower_dev,
8438				void *lower_state_info)
8439{
8440	struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8441		.info.dev = lower_dev,
8442	};
8443
8444	ASSERT_RTNL();
8445	changelowerstate_info.lower_state_info = lower_state_info;
8446	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8447				      &changelowerstate_info.info);
8448}
8449EXPORT_SYMBOL(netdev_lower_state_changed);
8450
8451static void dev_change_rx_flags(struct net_device *dev, int flags)
8452{
8453	const struct net_device_ops *ops = dev->netdev_ops;
8454
8455	if (ops->ndo_change_rx_flags)
8456		ops->ndo_change_rx_flags(dev, flags);
8457}
8458
8459static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8460{
8461	unsigned int old_flags = dev->flags;
8462	kuid_t uid;
8463	kgid_t gid;
8464
8465	ASSERT_RTNL();
8466
8467	dev->flags |= IFF_PROMISC;
8468	dev->promiscuity += inc;
8469	if (dev->promiscuity == 0) {
8470		/*
8471		 * Avoid overflow.
8472		 * If inc causes overflow, untouch promisc and return error.
8473		 */
8474		if (inc < 0)
8475			dev->flags &= ~IFF_PROMISC;
8476		else {
8477			dev->promiscuity -= inc;
8478			netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n");
8479			return -EOVERFLOW;
8480		}
8481	}
8482	if (dev->flags != old_flags) {
8483		netdev_info(dev, "%s promiscuous mode\n",
8484			    dev->flags & IFF_PROMISC ? "entered" : "left");
8485		if (audit_enabled) {
8486			current_uid_gid(&uid, &gid);
8487			audit_log(audit_context(), GFP_ATOMIC,
8488				  AUDIT_ANOM_PROMISCUOUS,
8489				  "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8490				  dev->name, (dev->flags & IFF_PROMISC),
8491				  (old_flags & IFF_PROMISC),
8492				  from_kuid(&init_user_ns, audit_get_loginuid(current)),
8493				  from_kuid(&init_user_ns, uid),
8494				  from_kgid(&init_user_ns, gid),
8495				  audit_get_sessionid(current));
8496		}
8497
8498		dev_change_rx_flags(dev, IFF_PROMISC);
8499	}
8500	if (notify)
8501		__dev_notify_flags(dev, old_flags, IFF_PROMISC, 0, NULL);
8502	return 0;
8503}
8504
8505/**
8506 *	dev_set_promiscuity	- update promiscuity count on a device
8507 *	@dev: device
8508 *	@inc: modifier
8509 *
8510 *	Add or remove promiscuity from a device. While the count in the device
8511 *	remains above zero the interface remains promiscuous. Once it hits zero
8512 *	the device reverts back to normal filtering operation. A negative inc
8513 *	value is used to drop promiscuity on the device.
8514 *	Return 0 if successful or a negative errno code on error.
8515 */
8516int dev_set_promiscuity(struct net_device *dev, int inc)
8517{
8518	unsigned int old_flags = dev->flags;
8519	int err;
8520
8521	err = __dev_set_promiscuity(dev, inc, true);
8522	if (err < 0)
8523		return err;
8524	if (dev->flags != old_flags)
8525		dev_set_rx_mode(dev);
8526	return err;
8527}
8528EXPORT_SYMBOL(dev_set_promiscuity);
8529
8530static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8531{
8532	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8533
8534	ASSERT_RTNL();
8535
8536	dev->flags |= IFF_ALLMULTI;
8537	dev->allmulti += inc;
8538	if (dev->allmulti == 0) {
8539		/*
8540		 * Avoid overflow.
8541		 * If inc causes overflow, untouch allmulti and return error.
8542		 */
8543		if (inc < 0)
8544			dev->flags &= ~IFF_ALLMULTI;
8545		else {
8546			dev->allmulti -= inc;
8547			netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n");
8548			return -EOVERFLOW;
8549		}
8550	}
8551	if (dev->flags ^ old_flags) {
8552		netdev_info(dev, "%s allmulticast mode\n",
8553			    dev->flags & IFF_ALLMULTI ? "entered" : "left");
8554		dev_change_rx_flags(dev, IFF_ALLMULTI);
8555		dev_set_rx_mode(dev);
8556		if (notify)
8557			__dev_notify_flags(dev, old_flags,
8558					   dev->gflags ^ old_gflags, 0, NULL);
8559	}
8560	return 0;
8561}
8562
8563/**
8564 *	dev_set_allmulti	- update allmulti count on a device
8565 *	@dev: device
8566 *	@inc: modifier
8567 *
8568 *	Add or remove reception of all multicast frames to a device. While the
8569 *	count in the device remains above zero the interface remains listening
8570 *	to all interfaces. Once it hits zero the device reverts back to normal
8571 *	filtering operation. A negative @inc value is used to drop the counter
8572 *	when releasing a resource needing all multicasts.
8573 *	Return 0 if successful or a negative errno code on error.
8574 */
8575
8576int dev_set_allmulti(struct net_device *dev, int inc)
8577{
8578	return __dev_set_allmulti(dev, inc, true);
8579}
8580EXPORT_SYMBOL(dev_set_allmulti);
8581
8582/*
8583 *	Upload unicast and multicast address lists to device and
8584 *	configure RX filtering. When the device doesn't support unicast
8585 *	filtering it is put in promiscuous mode while unicast addresses
8586 *	are present.
8587 */
8588void __dev_set_rx_mode(struct net_device *dev)
8589{
8590	const struct net_device_ops *ops = dev->netdev_ops;
8591
8592	/* dev_open will call this function so the list will stay sane. */
8593	if (!(dev->flags&IFF_UP))
8594		return;
8595
8596	if (!netif_device_present(dev))
8597		return;
8598
8599	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8600		/* Unicast addresses changes may only happen under the rtnl,
8601		 * therefore calling __dev_set_promiscuity here is safe.
8602		 */
8603		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8604			__dev_set_promiscuity(dev, 1, false);
8605			dev->uc_promisc = true;
8606		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8607			__dev_set_promiscuity(dev, -1, false);
8608			dev->uc_promisc = false;
8609		}
8610	}
8611
8612	if (ops->ndo_set_rx_mode)
8613		ops->ndo_set_rx_mode(dev);
8614}
8615
8616void dev_set_rx_mode(struct net_device *dev)
8617{
8618	netif_addr_lock_bh(dev);
8619	__dev_set_rx_mode(dev);
8620	netif_addr_unlock_bh(dev);
8621}
8622
8623/**
8624 *	dev_get_flags - get flags reported to userspace
8625 *	@dev: device
8626 *
8627 *	Get the combination of flag bits exported through APIs to userspace.
8628 */
8629unsigned int dev_get_flags(const struct net_device *dev)
8630{
8631	unsigned int flags;
8632
8633	flags = (READ_ONCE(dev->flags) & ~(IFF_PROMISC |
8634				IFF_ALLMULTI |
8635				IFF_RUNNING |
8636				IFF_LOWER_UP |
8637				IFF_DORMANT)) |
8638		(READ_ONCE(dev->gflags) & (IFF_PROMISC |
8639				IFF_ALLMULTI));
8640
8641	if (netif_running(dev)) {
8642		if (netif_oper_up(dev))
8643			flags |= IFF_RUNNING;
8644		if (netif_carrier_ok(dev))
8645			flags |= IFF_LOWER_UP;
8646		if (netif_dormant(dev))
8647			flags |= IFF_DORMANT;
8648	}
8649
8650	return flags;
8651}
8652EXPORT_SYMBOL(dev_get_flags);
8653
8654int __dev_change_flags(struct net_device *dev, unsigned int flags,
8655		       struct netlink_ext_ack *extack)
8656{
8657	unsigned int old_flags = dev->flags;
8658	int ret;
8659
8660	ASSERT_RTNL();
8661
8662	/*
8663	 *	Set the flags on our device.
8664	 */
8665
8666	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8667			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8668			       IFF_AUTOMEDIA)) |
8669		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8670				    IFF_ALLMULTI));
8671
8672	/*
8673	 *	Load in the correct multicast list now the flags have changed.
8674	 */
8675
8676	if ((old_flags ^ flags) & IFF_MULTICAST)
8677		dev_change_rx_flags(dev, IFF_MULTICAST);
8678
8679	dev_set_rx_mode(dev);
8680
8681	/*
8682	 *	Have we downed the interface. We handle IFF_UP ourselves
8683	 *	according to user attempts to set it, rather than blindly
8684	 *	setting it.
8685	 */
8686
8687	ret = 0;
8688	if ((old_flags ^ flags) & IFF_UP) {
8689		if (old_flags & IFF_UP)
8690			__dev_close(dev);
8691		else
8692			ret = __dev_open(dev, extack);
8693	}
8694
8695	if ((flags ^ dev->gflags) & IFF_PROMISC) {
8696		int inc = (flags & IFF_PROMISC) ? 1 : -1;
8697		unsigned int old_flags = dev->flags;
8698
8699		dev->gflags ^= IFF_PROMISC;
8700
8701		if (__dev_set_promiscuity(dev, inc, false) >= 0)
8702			if (dev->flags != old_flags)
8703				dev_set_rx_mode(dev);
8704	}
8705
8706	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8707	 * is important. Some (broken) drivers set IFF_PROMISC, when
8708	 * IFF_ALLMULTI is requested not asking us and not reporting.
8709	 */
8710	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8711		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8712
8713		dev->gflags ^= IFF_ALLMULTI;
8714		__dev_set_allmulti(dev, inc, false);
8715	}
8716
8717	return ret;
8718}
8719
8720void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8721			unsigned int gchanges, u32 portid,
8722			const struct nlmsghdr *nlh)
8723{
8724	unsigned int changes = dev->flags ^ old_flags;
8725
8726	if (gchanges)
8727		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC, portid, nlh);
8728
8729	if (changes & IFF_UP) {
8730		if (dev->flags & IFF_UP)
8731			call_netdevice_notifiers(NETDEV_UP, dev);
8732		else
8733			call_netdevice_notifiers(NETDEV_DOWN, dev);
8734	}
8735
8736	if (dev->flags & IFF_UP &&
8737	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8738		struct netdev_notifier_change_info change_info = {
8739			.info = {
8740				.dev = dev,
8741			},
8742			.flags_changed = changes,
8743		};
8744
8745		call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8746	}
8747}
8748
8749/**
8750 *	dev_change_flags - change device settings
8751 *	@dev: device
8752 *	@flags: device state flags
8753 *	@extack: netlink extended ack
8754 *
8755 *	Change settings on device based state flags. The flags are
8756 *	in the userspace exported format.
8757 */
8758int dev_change_flags(struct net_device *dev, unsigned int flags,
8759		     struct netlink_ext_ack *extack)
8760{
8761	int ret;
8762	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8763
8764	ret = __dev_change_flags(dev, flags, extack);
8765	if (ret < 0)
8766		return ret;
8767
8768	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8769	__dev_notify_flags(dev, old_flags, changes, 0, NULL);
8770	return ret;
8771}
8772EXPORT_SYMBOL(dev_change_flags);
8773
8774int __dev_set_mtu(struct net_device *dev, int new_mtu)
8775{
8776	const struct net_device_ops *ops = dev->netdev_ops;
8777
8778	if (ops->ndo_change_mtu)
8779		return ops->ndo_change_mtu(dev, new_mtu);
8780
8781	/* Pairs with all the lockless reads of dev->mtu in the stack */
8782	WRITE_ONCE(dev->mtu, new_mtu);
8783	return 0;
8784}
8785EXPORT_SYMBOL(__dev_set_mtu);
8786
8787int dev_validate_mtu(struct net_device *dev, int new_mtu,
8788		     struct netlink_ext_ack *extack)
8789{
8790	/* MTU must be positive, and in range */
8791	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8792		NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8793		return -EINVAL;
8794	}
8795
8796	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8797		NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8798		return -EINVAL;
8799	}
8800	return 0;
8801}
8802
8803/**
8804 *	dev_set_mtu_ext - Change maximum transfer unit
8805 *	@dev: device
8806 *	@new_mtu: new transfer unit
8807 *	@extack: netlink extended ack
8808 *
8809 *	Change the maximum transfer size of the network device.
8810 */
8811int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8812		    struct netlink_ext_ack *extack)
8813{
8814	int err, orig_mtu;
8815
8816	if (new_mtu == dev->mtu)
8817		return 0;
8818
8819	err = dev_validate_mtu(dev, new_mtu, extack);
8820	if (err)
8821		return err;
8822
8823	if (!netif_device_present(dev))
8824		return -ENODEV;
8825
8826	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8827	err = notifier_to_errno(err);
8828	if (err)
8829		return err;
8830
8831	orig_mtu = dev->mtu;
8832	err = __dev_set_mtu(dev, new_mtu);
8833
8834	if (!err) {
8835		err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8836						   orig_mtu);
8837		err = notifier_to_errno(err);
8838		if (err) {
8839			/* setting mtu back and notifying everyone again,
8840			 * so that they have a chance to revert changes.
8841			 */
8842			__dev_set_mtu(dev, orig_mtu);
8843			call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8844						     new_mtu);
8845		}
8846	}
8847	return err;
8848}
8849
8850int dev_set_mtu(struct net_device *dev, int new_mtu)
8851{
8852	struct netlink_ext_ack extack;
8853	int err;
8854
8855	memset(&extack, 0, sizeof(extack));
8856	err = dev_set_mtu_ext(dev, new_mtu, &extack);
8857	if (err && extack._msg)
8858		net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8859	return err;
8860}
8861EXPORT_SYMBOL(dev_set_mtu);
8862
8863/**
8864 *	dev_change_tx_queue_len - Change TX queue length of a netdevice
8865 *	@dev: device
8866 *	@new_len: new tx queue length
8867 */
8868int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8869{
8870	unsigned int orig_len = dev->tx_queue_len;
8871	int res;
8872
8873	if (new_len != (unsigned int)new_len)
8874		return -ERANGE;
8875
8876	if (new_len != orig_len) {
8877		dev->tx_queue_len = new_len;
8878		res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8879		res = notifier_to_errno(res);
8880		if (res)
8881			goto err_rollback;
8882		res = dev_qdisc_change_tx_queue_len(dev);
8883		if (res)
8884			goto err_rollback;
8885	}
8886
8887	return 0;
8888
8889err_rollback:
8890	netdev_err(dev, "refused to change device tx_queue_len\n");
8891	dev->tx_queue_len = orig_len;
8892	return res;
8893}
8894
8895/**
8896 *	dev_set_group - Change group this device belongs to
8897 *	@dev: device
8898 *	@new_group: group this device should belong to
8899 */
8900void dev_set_group(struct net_device *dev, int new_group)
8901{
8902	dev->group = new_group;
8903}
8904
8905/**
8906 *	dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8907 *	@dev: device
8908 *	@addr: new address
8909 *	@extack: netlink extended ack
8910 */
8911int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8912			      struct netlink_ext_ack *extack)
8913{
8914	struct netdev_notifier_pre_changeaddr_info info = {
8915		.info.dev = dev,
8916		.info.extack = extack,
8917		.dev_addr = addr,
8918	};
8919	int rc;
8920
8921	rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8922	return notifier_to_errno(rc);
8923}
8924EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8925
8926/**
8927 *	dev_set_mac_address - Change Media Access Control Address
8928 *	@dev: device
8929 *	@sa: new address
8930 *	@extack: netlink extended ack
8931 *
8932 *	Change the hardware (MAC) address of the device
8933 */
8934int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8935			struct netlink_ext_ack *extack)
8936{
8937	const struct net_device_ops *ops = dev->netdev_ops;
8938	int err;
8939
8940	if (!ops->ndo_set_mac_address)
8941		return -EOPNOTSUPP;
8942	if (sa->sa_family != dev->type)
8943		return -EINVAL;
8944	if (!netif_device_present(dev))
8945		return -ENODEV;
8946	err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8947	if (err)
8948		return err;
8949	if (memcmp(dev->dev_addr, sa->sa_data, dev->addr_len)) {
8950		err = ops->ndo_set_mac_address(dev, sa);
8951		if (err)
8952			return err;
8953	}
8954	dev->addr_assign_type = NET_ADDR_SET;
8955	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8956	add_device_randomness(dev->dev_addr, dev->addr_len);
8957	return 0;
8958}
8959EXPORT_SYMBOL(dev_set_mac_address);
8960
8961DECLARE_RWSEM(dev_addr_sem);
8962
8963int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
8964			     struct netlink_ext_ack *extack)
8965{
8966	int ret;
8967
8968	down_write(&dev_addr_sem);
8969	ret = dev_set_mac_address(dev, sa, extack);
8970	up_write(&dev_addr_sem);
8971	return ret;
8972}
8973EXPORT_SYMBOL(dev_set_mac_address_user);
8974
8975int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
8976{
8977	size_t size = sizeof(sa->sa_data_min);
8978	struct net_device *dev;
8979	int ret = 0;
8980
8981	down_read(&dev_addr_sem);
8982	rcu_read_lock();
8983
8984	dev = dev_get_by_name_rcu(net, dev_name);
8985	if (!dev) {
8986		ret = -ENODEV;
8987		goto unlock;
8988	}
8989	if (!dev->addr_len)
8990		memset(sa->sa_data, 0, size);
8991	else
8992		memcpy(sa->sa_data, dev->dev_addr,
8993		       min_t(size_t, size, dev->addr_len));
8994	sa->sa_family = dev->type;
8995
8996unlock:
8997	rcu_read_unlock();
8998	up_read(&dev_addr_sem);
8999	return ret;
9000}
9001EXPORT_SYMBOL(dev_get_mac_address);
9002
9003/**
9004 *	dev_change_carrier - Change device carrier
9005 *	@dev: device
9006 *	@new_carrier: new value
9007 *
9008 *	Change device carrier
9009 */
9010int dev_change_carrier(struct net_device *dev, bool new_carrier)
9011{
9012	const struct net_device_ops *ops = dev->netdev_ops;
9013
9014	if (!ops->ndo_change_carrier)
9015		return -EOPNOTSUPP;
9016	if (!netif_device_present(dev))
9017		return -ENODEV;
9018	return ops->ndo_change_carrier(dev, new_carrier);
9019}
9020
9021/**
9022 *	dev_get_phys_port_id - Get device physical port ID
9023 *	@dev: device
9024 *	@ppid: port ID
9025 *
9026 *	Get device physical port ID
9027 */
9028int dev_get_phys_port_id(struct net_device *dev,
9029			 struct netdev_phys_item_id *ppid)
9030{
9031	const struct net_device_ops *ops = dev->netdev_ops;
9032
9033	if (!ops->ndo_get_phys_port_id)
9034		return -EOPNOTSUPP;
9035	return ops->ndo_get_phys_port_id(dev, ppid);
9036}
9037
9038/**
9039 *	dev_get_phys_port_name - Get device physical port name
9040 *	@dev: device
9041 *	@name: port name
9042 *	@len: limit of bytes to copy to name
9043 *
9044 *	Get device physical port name
9045 */
9046int dev_get_phys_port_name(struct net_device *dev,
9047			   char *name, size_t len)
9048{
9049	const struct net_device_ops *ops = dev->netdev_ops;
9050	int err;
9051
9052	if (ops->ndo_get_phys_port_name) {
9053		err = ops->ndo_get_phys_port_name(dev, name, len);
9054		if (err != -EOPNOTSUPP)
9055			return err;
9056	}
9057	return devlink_compat_phys_port_name_get(dev, name, len);
9058}
9059
9060/**
9061 *	dev_get_port_parent_id - Get the device's port parent identifier
9062 *	@dev: network device
9063 *	@ppid: pointer to a storage for the port's parent identifier
9064 *	@recurse: allow/disallow recursion to lower devices
9065 *
9066 *	Get the devices's port parent identifier
9067 */
9068int dev_get_port_parent_id(struct net_device *dev,
9069			   struct netdev_phys_item_id *ppid,
9070			   bool recurse)
9071{
9072	const struct net_device_ops *ops = dev->netdev_ops;
9073	struct netdev_phys_item_id first = { };
9074	struct net_device *lower_dev;
9075	struct list_head *iter;
9076	int err;
9077
9078	if (ops->ndo_get_port_parent_id) {
9079		err = ops->ndo_get_port_parent_id(dev, ppid);
9080		if (err != -EOPNOTSUPP)
9081			return err;
9082	}
9083
9084	err = devlink_compat_switch_id_get(dev, ppid);
9085	if (!recurse || err != -EOPNOTSUPP)
9086		return err;
9087
9088	netdev_for_each_lower_dev(dev, lower_dev, iter) {
9089		err = dev_get_port_parent_id(lower_dev, ppid, true);
9090		if (err)
9091			break;
9092		if (!first.id_len)
9093			first = *ppid;
9094		else if (memcmp(&first, ppid, sizeof(*ppid)))
9095			return -EOPNOTSUPP;
9096	}
9097
9098	return err;
9099}
9100EXPORT_SYMBOL(dev_get_port_parent_id);
9101
9102/**
9103 *	netdev_port_same_parent_id - Indicate if two network devices have
9104 *	the same port parent identifier
9105 *	@a: first network device
9106 *	@b: second network device
9107 */
9108bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
9109{
9110	struct netdev_phys_item_id a_id = { };
9111	struct netdev_phys_item_id b_id = { };
9112
9113	if (dev_get_port_parent_id(a, &a_id, true) ||
9114	    dev_get_port_parent_id(b, &b_id, true))
9115		return false;
9116
9117	return netdev_phys_item_id_same(&a_id, &b_id);
9118}
9119EXPORT_SYMBOL(netdev_port_same_parent_id);
9120
9121/**
9122 *	dev_change_proto_down - set carrier according to proto_down.
9123 *
9124 *	@dev: device
9125 *	@proto_down: new value
9126 */
9127int dev_change_proto_down(struct net_device *dev, bool proto_down)
9128{
9129	if (!(dev->priv_flags & IFF_CHANGE_PROTO_DOWN))
9130		return -EOPNOTSUPP;
9131	if (!netif_device_present(dev))
9132		return -ENODEV;
9133	if (proto_down)
9134		netif_carrier_off(dev);
9135	else
9136		netif_carrier_on(dev);
9137	dev->proto_down = proto_down;
9138	return 0;
9139}
9140
9141/**
9142 *	dev_change_proto_down_reason - proto down reason
9143 *
9144 *	@dev: device
9145 *	@mask: proto down mask
9146 *	@value: proto down value
9147 */
9148void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
9149				  u32 value)
9150{
9151	int b;
9152
9153	if (!mask) {
9154		dev->proto_down_reason = value;
9155	} else {
9156		for_each_set_bit(b, &mask, 32) {
9157			if (value & (1 << b))
9158				dev->proto_down_reason |= BIT(b);
9159			else
9160				dev->proto_down_reason &= ~BIT(b);
9161		}
9162	}
9163}
9164
9165struct bpf_xdp_link {
9166	struct bpf_link link;
9167	struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9168	int flags;
9169};
9170
9171static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9172{
9173	if (flags & XDP_FLAGS_HW_MODE)
9174		return XDP_MODE_HW;
9175	if (flags & XDP_FLAGS_DRV_MODE)
9176		return XDP_MODE_DRV;
9177	if (flags & XDP_FLAGS_SKB_MODE)
9178		return XDP_MODE_SKB;
9179	return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9180}
9181
9182static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9183{
9184	switch (mode) {
9185	case XDP_MODE_SKB:
9186		return generic_xdp_install;
9187	case XDP_MODE_DRV:
9188	case XDP_MODE_HW:
9189		return dev->netdev_ops->ndo_bpf;
9190	default:
9191		return NULL;
9192	}
9193}
9194
9195static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9196					 enum bpf_xdp_mode mode)
9197{
9198	return dev->xdp_state[mode].link;
9199}
9200
9201static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9202				     enum bpf_xdp_mode mode)
9203{
9204	struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9205
9206	if (link)
9207		return link->link.prog;
9208	return dev->xdp_state[mode].prog;
9209}
9210
9211u8 dev_xdp_prog_count(struct net_device *dev)
9212{
9213	u8 count = 0;
9214	int i;
9215
9216	for (i = 0; i < __MAX_XDP_MODE; i++)
9217		if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9218			count++;
9219	return count;
9220}
9221EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
9222
9223u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9224{
9225	struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9226
9227	return prog ? prog->aux->id : 0;
9228}
9229
9230static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9231			     struct bpf_xdp_link *link)
9232{
9233	dev->xdp_state[mode].link = link;
9234	dev->xdp_state[mode].prog = NULL;
9235}
9236
9237static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9238			     struct bpf_prog *prog)
9239{
9240	dev->xdp_state[mode].link = NULL;
9241	dev->xdp_state[mode].prog = prog;
9242}
9243
9244static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9245			   bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9246			   u32 flags, struct bpf_prog *prog)
9247{
9248	struct netdev_bpf xdp;
9249	int err;
9250
9251	memset(&xdp, 0, sizeof(xdp));
9252	xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9253	xdp.extack = extack;
9254	xdp.flags = flags;
9255	xdp.prog = prog;
9256
9257	/* Drivers assume refcnt is already incremented (i.e, prog pointer is
9258	 * "moved" into driver), so they don't increment it on their own, but
9259	 * they do decrement refcnt when program is detached or replaced.
9260	 * Given net_device also owns link/prog, we need to bump refcnt here
9261	 * to prevent drivers from underflowing it.
9262	 */
9263	if (prog)
9264		bpf_prog_inc(prog);
9265	err = bpf_op(dev, &xdp);
9266	if (err) {
9267		if (prog)
9268			bpf_prog_put(prog);
9269		return err;
9270	}
9271
9272	if (mode != XDP_MODE_HW)
9273		bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9274
9275	return 0;
9276}
9277
9278static void dev_xdp_uninstall(struct net_device *dev)
9279{
9280	struct bpf_xdp_link *link;
9281	struct bpf_prog *prog;
9282	enum bpf_xdp_mode mode;
9283	bpf_op_t bpf_op;
9284
9285	ASSERT_RTNL();
9286
9287	for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9288		prog = dev_xdp_prog(dev, mode);
9289		if (!prog)
9290			continue;
9291
9292		bpf_op = dev_xdp_bpf_op(dev, mode);
9293		if (!bpf_op)
9294			continue;
9295
9296		WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9297
9298		/* auto-detach link from net device */
9299		link = dev_xdp_link(dev, mode);
9300		if (link)
9301			link->dev = NULL;
9302		else
9303			bpf_prog_put(prog);
9304
9305		dev_xdp_set_link(dev, mode, NULL);
9306	}
9307}
9308
9309static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9310			  struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9311			  struct bpf_prog *old_prog, u32 flags)
9312{
9313	unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9314	struct bpf_prog *cur_prog;
9315	struct net_device *upper;
9316	struct list_head *iter;
9317	enum bpf_xdp_mode mode;
9318	bpf_op_t bpf_op;
9319	int err;
9320
9321	ASSERT_RTNL();
9322
9323	/* either link or prog attachment, never both */
9324	if (link && (new_prog || old_prog))
9325		return -EINVAL;
9326	/* link supports only XDP mode flags */
9327	if (link && (flags & ~XDP_FLAGS_MODES)) {
9328		NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9329		return -EINVAL;
9330	}
9331	/* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9332	if (num_modes > 1) {
9333		NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9334		return -EINVAL;
9335	}
9336	/* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9337	if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9338		NL_SET_ERR_MSG(extack,
9339			       "More than one program loaded, unset mode is ambiguous");
9340		return -EINVAL;
9341	}
9342	/* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9343	if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9344		NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9345		return -EINVAL;
9346	}
9347
9348	mode = dev_xdp_mode(dev, flags);
9349	/* can't replace attached link */
9350	if (dev_xdp_link(dev, mode)) {
9351		NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9352		return -EBUSY;
9353	}
9354
9355	/* don't allow if an upper device already has a program */
9356	netdev_for_each_upper_dev_rcu(dev, upper, iter) {
9357		if (dev_xdp_prog_count(upper) > 0) {
9358			NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
9359			return -EEXIST;
9360		}
9361	}
9362
9363	cur_prog = dev_xdp_prog(dev, mode);
9364	/* can't replace attached prog with link */
9365	if (link && cur_prog) {
9366		NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9367		return -EBUSY;
9368	}
9369	if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9370		NL_SET_ERR_MSG(extack, "Active program does not match expected");
9371		return -EEXIST;
9372	}
9373
9374	/* put effective new program into new_prog */
9375	if (link)
9376		new_prog = link->link.prog;
9377
9378	if (new_prog) {
9379		bool offload = mode == XDP_MODE_HW;
9380		enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9381					       ? XDP_MODE_DRV : XDP_MODE_SKB;
9382
9383		if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9384			NL_SET_ERR_MSG(extack, "XDP program already attached");
9385			return -EBUSY;
9386		}
9387		if (!offload && dev_xdp_prog(dev, other_mode)) {
9388			NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9389			return -EEXIST;
9390		}
9391		if (!offload && bpf_prog_is_offloaded(new_prog->aux)) {
9392			NL_SET_ERR_MSG(extack, "Using offloaded program without HW_MODE flag is not supported");
9393			return -EINVAL;
9394		}
9395		if (bpf_prog_is_dev_bound(new_prog->aux) && !bpf_offload_dev_match(new_prog, dev)) {
9396			NL_SET_ERR_MSG(extack, "Program bound to different device");
9397			return -EINVAL;
9398		}
9399		if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9400			NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9401			return -EINVAL;
9402		}
9403		if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9404			NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9405			return -EINVAL;
9406		}
9407	}
9408
9409	/* don't call drivers if the effective program didn't change */
9410	if (new_prog != cur_prog) {
9411		bpf_op = dev_xdp_bpf_op(dev, mode);
9412		if (!bpf_op) {
9413			NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9414			return -EOPNOTSUPP;
9415		}
9416
9417		err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9418		if (err)
9419			return err;
9420	}
9421
9422	if (link)
9423		dev_xdp_set_link(dev, mode, link);
9424	else
9425		dev_xdp_set_prog(dev, mode, new_prog);
9426	if (cur_prog)
9427		bpf_prog_put(cur_prog);
9428
9429	return 0;
9430}
9431
9432static int dev_xdp_attach_link(struct net_device *dev,
9433			       struct netlink_ext_ack *extack,
9434			       struct bpf_xdp_link *link)
9435{
9436	return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9437}
9438
9439static int dev_xdp_detach_link(struct net_device *dev,
9440			       struct netlink_ext_ack *extack,
9441			       struct bpf_xdp_link *link)
9442{
9443	enum bpf_xdp_mode mode;
9444	bpf_op_t bpf_op;
9445
9446	ASSERT_RTNL();
9447
9448	mode = dev_xdp_mode(dev, link->flags);
9449	if (dev_xdp_link(dev, mode) != link)
9450		return -EINVAL;
9451
9452	bpf_op = dev_xdp_bpf_op(dev, mode);
9453	WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9454	dev_xdp_set_link(dev, mode, NULL);
9455	return 0;
9456}
9457
9458static void bpf_xdp_link_release(struct bpf_link *link)
9459{
9460	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9461
9462	rtnl_lock();
9463
9464	/* if racing with net_device's tear down, xdp_link->dev might be
9465	 * already NULL, in which case link was already auto-detached
9466	 */
9467	if (xdp_link->dev) {
9468		WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9469		xdp_link->dev = NULL;
9470	}
9471
9472	rtnl_unlock();
9473}
9474
9475static int bpf_xdp_link_detach(struct bpf_link *link)
9476{
9477	bpf_xdp_link_release(link);
9478	return 0;
9479}
9480
9481static void bpf_xdp_link_dealloc(struct bpf_link *link)
9482{
9483	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9484
9485	kfree(xdp_link);
9486}
9487
9488static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9489				     struct seq_file *seq)
9490{
9491	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9492	u32 ifindex = 0;
9493
9494	rtnl_lock();
9495	if (xdp_link->dev)
9496		ifindex = xdp_link->dev->ifindex;
9497	rtnl_unlock();
9498
9499	seq_printf(seq, "ifindex:\t%u\n", ifindex);
9500}
9501
9502static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9503				       struct bpf_link_info *info)
9504{
9505	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9506	u32 ifindex = 0;
9507
9508	rtnl_lock();
9509	if (xdp_link->dev)
9510		ifindex = xdp_link->dev->ifindex;
9511	rtnl_unlock();
9512
9513	info->xdp.ifindex = ifindex;
9514	return 0;
9515}
9516
9517static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9518			       struct bpf_prog *old_prog)
9519{
9520	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9521	enum bpf_xdp_mode mode;
9522	bpf_op_t bpf_op;
9523	int err = 0;
9524
9525	rtnl_lock();
9526
9527	/* link might have been auto-released already, so fail */
9528	if (!xdp_link->dev) {
9529		err = -ENOLINK;
9530		goto out_unlock;
9531	}
9532
9533	if (old_prog && link->prog != old_prog) {
9534		err = -EPERM;
9535		goto out_unlock;
9536	}
9537	old_prog = link->prog;
9538	if (old_prog->type != new_prog->type ||
9539	    old_prog->expected_attach_type != new_prog->expected_attach_type) {
9540		err = -EINVAL;
9541		goto out_unlock;
9542	}
9543
9544	if (old_prog == new_prog) {
9545		/* no-op, don't disturb drivers */
9546		bpf_prog_put(new_prog);
9547		goto out_unlock;
9548	}
9549
9550	mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9551	bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9552	err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9553			      xdp_link->flags, new_prog);
9554	if (err)
9555		goto out_unlock;
9556
9557	old_prog = xchg(&link->prog, new_prog);
9558	bpf_prog_put(old_prog);
9559
9560out_unlock:
9561	rtnl_unlock();
9562	return err;
9563}
9564
9565static const struct bpf_link_ops bpf_xdp_link_lops = {
9566	.release = bpf_xdp_link_release,
9567	.dealloc = bpf_xdp_link_dealloc,
9568	.detach = bpf_xdp_link_detach,
9569	.show_fdinfo = bpf_xdp_link_show_fdinfo,
9570	.fill_link_info = bpf_xdp_link_fill_link_info,
9571	.update_prog = bpf_xdp_link_update,
9572};
9573
9574int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9575{
9576	struct net *net = current->nsproxy->net_ns;
9577	struct bpf_link_primer link_primer;
9578	struct netlink_ext_ack extack = {};
9579	struct bpf_xdp_link *link;
9580	struct net_device *dev;
9581	int err, fd;
9582
9583	rtnl_lock();
9584	dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9585	if (!dev) {
9586		rtnl_unlock();
9587		return -EINVAL;
9588	}
9589
9590	link = kzalloc(sizeof(*link), GFP_USER);
9591	if (!link) {
9592		err = -ENOMEM;
9593		goto unlock;
9594	}
9595
9596	bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9597	link->dev = dev;
9598	link->flags = attr->link_create.flags;
9599
9600	err = bpf_link_prime(&link->link, &link_primer);
9601	if (err) {
9602		kfree(link);
9603		goto unlock;
9604	}
9605
9606	err = dev_xdp_attach_link(dev, &extack, link);
9607	rtnl_unlock();
9608
9609	if (err) {
9610		link->dev = NULL;
9611		bpf_link_cleanup(&link_primer);
9612		trace_bpf_xdp_link_attach_failed(extack._msg);
9613		goto out_put_dev;
9614	}
9615
9616	fd = bpf_link_settle(&link_primer);
9617	/* link itself doesn't hold dev's refcnt to not complicate shutdown */
9618	dev_put(dev);
9619	return fd;
9620
9621unlock:
9622	rtnl_unlock();
9623
9624out_put_dev:
9625	dev_put(dev);
9626	return err;
9627}
9628
9629/**
9630 *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
9631 *	@dev: device
9632 *	@extack: netlink extended ack
9633 *	@fd: new program fd or negative value to clear
9634 *	@expected_fd: old program fd that userspace expects to replace or clear
9635 *	@flags: xdp-related flags
9636 *
9637 *	Set or clear a bpf program for a device
9638 */
9639int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9640		      int fd, int expected_fd, u32 flags)
9641{
9642	enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9643	struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9644	int err;
9645
9646	ASSERT_RTNL();
9647
9648	if (fd >= 0) {
9649		new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9650						 mode != XDP_MODE_SKB);
9651		if (IS_ERR(new_prog))
9652			return PTR_ERR(new_prog);
9653	}
9654
9655	if (expected_fd >= 0) {
9656		old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9657						 mode != XDP_MODE_SKB);
9658		if (IS_ERR(old_prog)) {
9659			err = PTR_ERR(old_prog);
9660			old_prog = NULL;
9661			goto err_out;
9662		}
9663	}
9664
9665	err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9666
9667err_out:
9668	if (err && new_prog)
9669		bpf_prog_put(new_prog);
9670	if (old_prog)
9671		bpf_prog_put(old_prog);
9672	return err;
9673}
9674
9675/**
9676 * dev_index_reserve() - allocate an ifindex in a namespace
9677 * @net: the applicable net namespace
9678 * @ifindex: requested ifindex, pass %0 to get one allocated
9679 *
9680 * Allocate a ifindex for a new device. Caller must either use the ifindex
9681 * to store the device (via list_netdevice()) or call dev_index_release()
9682 * to give the index up.
9683 *
9684 * Return: a suitable unique value for a new device interface number or -errno.
9685 */
9686static int dev_index_reserve(struct net *net, u32 ifindex)
9687{
9688	int err;
9689
9690	if (ifindex > INT_MAX) {
9691		DEBUG_NET_WARN_ON_ONCE(1);
9692		return -EINVAL;
9693	}
9694
9695	if (!ifindex)
9696		err = xa_alloc_cyclic(&net->dev_by_index, &ifindex, NULL,
9697				      xa_limit_31b, &net->ifindex, GFP_KERNEL);
9698	else
9699		err = xa_insert(&net->dev_by_index, ifindex, NULL, GFP_KERNEL);
9700	if (err < 0)
9701		return err;
9702
9703	return ifindex;
9704}
9705
9706static void dev_index_release(struct net *net, int ifindex)
9707{
9708	/* Expect only unused indexes, unlist_netdevice() removes the used */
9709	WARN_ON(xa_erase(&net->dev_by_index, ifindex));
9710}
9711
9712/* Delayed registration/unregisteration */
9713LIST_HEAD(net_todo_list);
9714DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9715atomic_t dev_unreg_count = ATOMIC_INIT(0);
9716
9717static void net_set_todo(struct net_device *dev)
9718{
9719	list_add_tail(&dev->todo_list, &net_todo_list);
9720}
9721
9722static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9723	struct net_device *upper, netdev_features_t features)
9724{
9725	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9726	netdev_features_t feature;
9727	int feature_bit;
9728
9729	for_each_netdev_feature(upper_disables, feature_bit) {
9730		feature = __NETIF_F_BIT(feature_bit);
9731		if (!(upper->wanted_features & feature)
9732		    && (features & feature)) {
9733			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9734				   &feature, upper->name);
9735			features &= ~feature;
9736		}
9737	}
9738
9739	return features;
9740}
9741
9742static void netdev_sync_lower_features(struct net_device *upper,
9743	struct net_device *lower, netdev_features_t features)
9744{
9745	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9746	netdev_features_t feature;
9747	int feature_bit;
9748
9749	for_each_netdev_feature(upper_disables, feature_bit) {
9750		feature = __NETIF_F_BIT(feature_bit);
9751		if (!(features & feature) && (lower->features & feature)) {
9752			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9753				   &feature, lower->name);
9754			lower->wanted_features &= ~feature;
9755			__netdev_update_features(lower);
9756
9757			if (unlikely(lower->features & feature))
9758				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9759					    &feature, lower->name);
9760			else
9761				netdev_features_change(lower);
9762		}
9763	}
9764}
9765
9766static netdev_features_t netdev_fix_features(struct net_device *dev,
9767	netdev_features_t features)
9768{
9769	/* Fix illegal checksum combinations */
9770	if ((features & NETIF_F_HW_CSUM) &&
9771	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9772		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9773		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9774	}
9775
9776	/* TSO requires that SG is present as well. */
9777	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9778		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9779		features &= ~NETIF_F_ALL_TSO;
9780	}
9781
9782	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9783					!(features & NETIF_F_IP_CSUM)) {
9784		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9785		features &= ~NETIF_F_TSO;
9786		features &= ~NETIF_F_TSO_ECN;
9787	}
9788
9789	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9790					 !(features & NETIF_F_IPV6_CSUM)) {
9791		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9792		features &= ~NETIF_F_TSO6;
9793	}
9794
9795	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9796	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9797		features &= ~NETIF_F_TSO_MANGLEID;
9798
9799	/* TSO ECN requires that TSO is present as well. */
9800	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9801		features &= ~NETIF_F_TSO_ECN;
9802
9803	/* Software GSO depends on SG. */
9804	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9805		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9806		features &= ~NETIF_F_GSO;
9807	}
9808
9809	/* GSO partial features require GSO partial be set */
9810	if ((features & dev->gso_partial_features) &&
9811	    !(features & NETIF_F_GSO_PARTIAL)) {
9812		netdev_dbg(dev,
9813			   "Dropping partially supported GSO features since no GSO partial.\n");
9814		features &= ~dev->gso_partial_features;
9815	}
9816
9817	if (!(features & NETIF_F_RXCSUM)) {
9818		/* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9819		 * successfully merged by hardware must also have the
9820		 * checksum verified by hardware.  If the user does not
9821		 * want to enable RXCSUM, logically, we should disable GRO_HW.
9822		 */
9823		if (features & NETIF_F_GRO_HW) {
9824			netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9825			features &= ~NETIF_F_GRO_HW;
9826		}
9827	}
9828
9829	/* LRO/HW-GRO features cannot be combined with RX-FCS */
9830	if (features & NETIF_F_RXFCS) {
9831		if (features & NETIF_F_LRO) {
9832			netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9833			features &= ~NETIF_F_LRO;
9834		}
9835
9836		if (features & NETIF_F_GRO_HW) {
9837			netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9838			features &= ~NETIF_F_GRO_HW;
9839		}
9840	}
9841
9842	if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) {
9843		netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n");
9844		features &= ~NETIF_F_LRO;
9845	}
9846
9847	if (features & NETIF_F_HW_TLS_TX) {
9848		bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) ==
9849			(NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
9850		bool hw_csum = features & NETIF_F_HW_CSUM;
9851
9852		if (!ip_csum && !hw_csum) {
9853			netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
9854			features &= ~NETIF_F_HW_TLS_TX;
9855		}
9856	}
9857
9858	if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9859		netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9860		features &= ~NETIF_F_HW_TLS_RX;
9861	}
9862
9863	return features;
9864}
9865
9866int __netdev_update_features(struct net_device *dev)
9867{
9868	struct net_device *upper, *lower;
9869	netdev_features_t features;
9870	struct list_head *iter;
9871	int err = -1;
9872
9873	ASSERT_RTNL();
9874
9875	features = netdev_get_wanted_features(dev);
9876
9877	if (dev->netdev_ops->ndo_fix_features)
9878		features = dev->netdev_ops->ndo_fix_features(dev, features);
9879
9880	/* driver might be less strict about feature dependencies */
9881	features = netdev_fix_features(dev, features);
9882
9883	/* some features can't be enabled if they're off on an upper device */
9884	netdev_for_each_upper_dev_rcu(dev, upper, iter)
9885		features = netdev_sync_upper_features(dev, upper, features);
9886
9887	if (dev->features == features)
9888		goto sync_lower;
9889
9890	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9891		&dev->features, &features);
9892
9893	if (dev->netdev_ops->ndo_set_features)
9894		err = dev->netdev_ops->ndo_set_features(dev, features);
9895	else
9896		err = 0;
9897
9898	if (unlikely(err < 0)) {
9899		netdev_err(dev,
9900			"set_features() failed (%d); wanted %pNF, left %pNF\n",
9901			err, &features, &dev->features);
9902		/* return non-0 since some features might have changed and
9903		 * it's better to fire a spurious notification than miss it
9904		 */
9905		return -1;
9906	}
9907
9908sync_lower:
9909	/* some features must be disabled on lower devices when disabled
9910	 * on an upper device (think: bonding master or bridge)
9911	 */
9912	netdev_for_each_lower_dev(dev, lower, iter)
9913		netdev_sync_lower_features(dev, lower, features);
9914
9915	if (!err) {
9916		netdev_features_t diff = features ^ dev->features;
9917
9918		if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9919			/* udp_tunnel_{get,drop}_rx_info both need
9920			 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9921			 * device, or they won't do anything.
9922			 * Thus we need to update dev->features
9923			 * *before* calling udp_tunnel_get_rx_info,
9924			 * but *after* calling udp_tunnel_drop_rx_info.
9925			 */
9926			if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9927				dev->features = features;
9928				udp_tunnel_get_rx_info(dev);
9929			} else {
9930				udp_tunnel_drop_rx_info(dev);
9931			}
9932		}
9933
9934		if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9935			if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9936				dev->features = features;
9937				err |= vlan_get_rx_ctag_filter_info(dev);
9938			} else {
9939				vlan_drop_rx_ctag_filter_info(dev);
9940			}
9941		}
9942
9943		if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9944			if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9945				dev->features = features;
9946				err |= vlan_get_rx_stag_filter_info(dev);
9947			} else {
9948				vlan_drop_rx_stag_filter_info(dev);
9949			}
9950		}
9951
9952		dev->features = features;
9953	}
9954
9955	return err < 0 ? 0 : 1;
9956}
9957
9958/**
9959 *	netdev_update_features - recalculate device features
9960 *	@dev: the device to check
9961 *
9962 *	Recalculate dev->features set and send notifications if it
9963 *	has changed. Should be called after driver or hardware dependent
9964 *	conditions might have changed that influence the features.
9965 */
9966void netdev_update_features(struct net_device *dev)
9967{
9968	if (__netdev_update_features(dev))
9969		netdev_features_change(dev);
9970}
9971EXPORT_SYMBOL(netdev_update_features);
9972
9973/**
9974 *	netdev_change_features - recalculate device features
9975 *	@dev: the device to check
9976 *
9977 *	Recalculate dev->features set and send notifications even
9978 *	if they have not changed. Should be called instead of
9979 *	netdev_update_features() if also dev->vlan_features might
9980 *	have changed to allow the changes to be propagated to stacked
9981 *	VLAN devices.
9982 */
9983void netdev_change_features(struct net_device *dev)
9984{
9985	__netdev_update_features(dev);
9986	netdev_features_change(dev);
9987}
9988EXPORT_SYMBOL(netdev_change_features);
9989
9990/**
9991 *	netif_stacked_transfer_operstate -	transfer operstate
9992 *	@rootdev: the root or lower level device to transfer state from
9993 *	@dev: the device to transfer operstate to
9994 *
9995 *	Transfer operational state from root to device. This is normally
9996 *	called when a stacking relationship exists between the root
9997 *	device and the device(a leaf device).
9998 */
9999void netif_stacked_transfer_operstate(const struct net_device *rootdev,
10000					struct net_device *dev)
10001{
10002	if (rootdev->operstate == IF_OPER_DORMANT)
10003		netif_dormant_on(dev);
10004	else
10005		netif_dormant_off(dev);
10006
10007	if (rootdev->operstate == IF_OPER_TESTING)
10008		netif_testing_on(dev);
10009	else
10010		netif_testing_off(dev);
10011
10012	if (netif_carrier_ok(rootdev))
10013		netif_carrier_on(dev);
10014	else
10015		netif_carrier_off(dev);
10016}
10017EXPORT_SYMBOL(netif_stacked_transfer_operstate);
10018
10019static int netif_alloc_rx_queues(struct net_device *dev)
10020{
10021	unsigned int i, count = dev->num_rx_queues;
10022	struct netdev_rx_queue *rx;
10023	size_t sz = count * sizeof(*rx);
10024	int err = 0;
10025
10026	BUG_ON(count < 1);
10027
10028	rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10029	if (!rx)
10030		return -ENOMEM;
10031
10032	dev->_rx = rx;
10033
10034	for (i = 0; i < count; i++) {
10035		rx[i].dev = dev;
10036
10037		/* XDP RX-queue setup */
10038		err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
10039		if (err < 0)
10040			goto err_rxq_info;
10041	}
10042	return 0;
10043
10044err_rxq_info:
10045	/* Rollback successful reg's and free other resources */
10046	while (i--)
10047		xdp_rxq_info_unreg(&rx[i].xdp_rxq);
10048	kvfree(dev->_rx);
10049	dev->_rx = NULL;
10050	return err;
10051}
10052
10053static void netif_free_rx_queues(struct net_device *dev)
10054{
10055	unsigned int i, count = dev->num_rx_queues;
10056
10057	/* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
10058	if (!dev->_rx)
10059		return;
10060
10061	for (i = 0; i < count; i++)
10062		xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
10063
10064	kvfree(dev->_rx);
10065}
10066
10067static void netdev_init_one_queue(struct net_device *dev,
10068				  struct netdev_queue *queue, void *_unused)
10069{
10070	/* Initialize queue lock */
10071	spin_lock_init(&queue->_xmit_lock);
10072	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
10073	queue->xmit_lock_owner = -1;
10074	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
10075	queue->dev = dev;
10076#ifdef CONFIG_BQL
10077	dql_init(&queue->dql, HZ);
10078#endif
10079}
10080
10081static void netif_free_tx_queues(struct net_device *dev)
10082{
10083	kvfree(dev->_tx);
10084}
10085
10086static int netif_alloc_netdev_queues(struct net_device *dev)
10087{
10088	unsigned int count = dev->num_tx_queues;
10089	struct netdev_queue *tx;
10090	size_t sz = count * sizeof(*tx);
10091
10092	if (count < 1 || count > 0xffff)
10093		return -EINVAL;
10094
10095	tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10096	if (!tx)
10097		return -ENOMEM;
10098
10099	dev->_tx = tx;
10100
10101	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
10102	spin_lock_init(&dev->tx_global_lock);
10103
10104	return 0;
10105}
10106
10107void netif_tx_stop_all_queues(struct net_device *dev)
10108{
10109	unsigned int i;
10110
10111	for (i = 0; i < dev->num_tx_queues; i++) {
10112		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
10113
10114		netif_tx_stop_queue(txq);
10115	}
10116}
10117EXPORT_SYMBOL(netif_tx_stop_all_queues);
10118
10119static int netdev_do_alloc_pcpu_stats(struct net_device *dev)
10120{
10121	void __percpu *v;
10122
10123	/* Drivers implementing ndo_get_peer_dev must support tstat
10124	 * accounting, so that skb_do_redirect() can bump the dev's
10125	 * RX stats upon network namespace switch.
10126	 */
10127	if (dev->netdev_ops->ndo_get_peer_dev &&
10128	    dev->pcpu_stat_type != NETDEV_PCPU_STAT_TSTATS)
10129		return -EOPNOTSUPP;
10130
10131	switch (dev->pcpu_stat_type) {
10132	case NETDEV_PCPU_STAT_NONE:
10133		return 0;
10134	case NETDEV_PCPU_STAT_LSTATS:
10135		v = dev->lstats = netdev_alloc_pcpu_stats(struct pcpu_lstats);
10136		break;
10137	case NETDEV_PCPU_STAT_TSTATS:
10138		v = dev->tstats = netdev_alloc_pcpu_stats(struct pcpu_sw_netstats);
10139		break;
10140	case NETDEV_PCPU_STAT_DSTATS:
10141		v = dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
10142		break;
10143	default:
10144		return -EINVAL;
10145	}
10146
10147	return v ? 0 : -ENOMEM;
10148}
10149
10150static void netdev_do_free_pcpu_stats(struct net_device *dev)
10151{
10152	switch (dev->pcpu_stat_type) {
10153	case NETDEV_PCPU_STAT_NONE:
10154		return;
10155	case NETDEV_PCPU_STAT_LSTATS:
10156		free_percpu(dev->lstats);
10157		break;
10158	case NETDEV_PCPU_STAT_TSTATS:
10159		free_percpu(dev->tstats);
10160		break;
10161	case NETDEV_PCPU_STAT_DSTATS:
10162		free_percpu(dev->dstats);
10163		break;
10164	}
10165}
10166
10167/**
10168 * register_netdevice() - register a network device
10169 * @dev: device to register
10170 *
10171 * Take a prepared network device structure and make it externally accessible.
10172 * A %NETDEV_REGISTER message is sent to the netdev notifier chain.
10173 * Callers must hold the rtnl lock - you may want register_netdev()
10174 * instead of this.
10175 */
10176int register_netdevice(struct net_device *dev)
10177{
10178	int ret;
10179	struct net *net = dev_net(dev);
10180
10181	BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
10182		     NETDEV_FEATURE_COUNT);
10183	BUG_ON(dev_boot_phase);
10184	ASSERT_RTNL();
10185
10186	might_sleep();
10187
10188	/* When net_device's are persistent, this will be fatal. */
10189	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
10190	BUG_ON(!net);
10191
10192	ret = ethtool_check_ops(dev->ethtool_ops);
10193	if (ret)
10194		return ret;
10195
10196	spin_lock_init(&dev->addr_list_lock);
10197	netdev_set_addr_lockdep_class(dev);
10198
10199	ret = dev_get_valid_name(net, dev, dev->name);
10200	if (ret < 0)
10201		goto out;
10202
10203	ret = -ENOMEM;
10204	dev->name_node = netdev_name_node_head_alloc(dev);
10205	if (!dev->name_node)
10206		goto out;
10207
10208	/* Init, if this function is available */
10209	if (dev->netdev_ops->ndo_init) {
10210		ret = dev->netdev_ops->ndo_init(dev);
10211		if (ret) {
10212			if (ret > 0)
10213				ret = -EIO;
10214			goto err_free_name;
10215		}
10216	}
10217
10218	if (((dev->hw_features | dev->features) &
10219	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
10220	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
10221	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
10222		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
10223		ret = -EINVAL;
10224		goto err_uninit;
10225	}
10226
10227	ret = netdev_do_alloc_pcpu_stats(dev);
10228	if (ret)
10229		goto err_uninit;
10230
10231	ret = dev_index_reserve(net, dev->ifindex);
10232	if (ret < 0)
10233		goto err_free_pcpu;
10234	dev->ifindex = ret;
10235
10236	/* Transfer changeable features to wanted_features and enable
10237	 * software offloads (GSO and GRO).
10238	 */
10239	dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10240	dev->features |= NETIF_F_SOFT_FEATURES;
10241
10242	if (dev->udp_tunnel_nic_info) {
10243		dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10244		dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10245	}
10246
10247	dev->wanted_features = dev->features & dev->hw_features;
10248
10249	if (!(dev->flags & IFF_LOOPBACK))
10250		dev->hw_features |= NETIF_F_NOCACHE_COPY;
10251
10252	/* If IPv4 TCP segmentation offload is supported we should also
10253	 * allow the device to enable segmenting the frame with the option
10254	 * of ignoring a static IP ID value.  This doesn't enable the
10255	 * feature itself but allows the user to enable it later.
10256	 */
10257	if (dev->hw_features & NETIF_F_TSO)
10258		dev->hw_features |= NETIF_F_TSO_MANGLEID;
10259	if (dev->vlan_features & NETIF_F_TSO)
10260		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10261	if (dev->mpls_features & NETIF_F_TSO)
10262		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10263	if (dev->hw_enc_features & NETIF_F_TSO)
10264		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10265
10266	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10267	 */
10268	dev->vlan_features |= NETIF_F_HIGHDMA;
10269
10270	/* Make NETIF_F_SG inheritable to tunnel devices.
10271	 */
10272	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10273
10274	/* Make NETIF_F_SG inheritable to MPLS.
10275	 */
10276	dev->mpls_features |= NETIF_F_SG;
10277
10278	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10279	ret = notifier_to_errno(ret);
10280	if (ret)
10281		goto err_ifindex_release;
10282
10283	ret = netdev_register_kobject(dev);
10284
10285	WRITE_ONCE(dev->reg_state, ret ? NETREG_UNREGISTERED : NETREG_REGISTERED);
10286
10287	if (ret)
10288		goto err_uninit_notify;
10289
10290	__netdev_update_features(dev);
10291
10292	/*
10293	 *	Default initial state at registry is that the
10294	 *	device is present.
10295	 */
10296
10297	set_bit(__LINK_STATE_PRESENT, &dev->state);
10298
10299	linkwatch_init_dev(dev);
10300
10301	dev_init_scheduler(dev);
10302
10303	netdev_hold(dev, &dev->dev_registered_tracker, GFP_KERNEL);
10304	list_netdevice(dev);
10305
10306	add_device_randomness(dev->dev_addr, dev->addr_len);
10307
10308	/* If the device has permanent device address, driver should
10309	 * set dev_addr and also addr_assign_type should be set to
10310	 * NET_ADDR_PERM (default value).
10311	 */
10312	if (dev->addr_assign_type == NET_ADDR_PERM)
10313		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10314
10315	/* Notify protocols, that a new device appeared. */
10316	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10317	ret = notifier_to_errno(ret);
10318	if (ret) {
10319		/* Expect explicit free_netdev() on failure */
10320		dev->needs_free_netdev = false;
10321		unregister_netdevice_queue(dev, NULL);
10322		goto out;
10323	}
10324	/*
10325	 *	Prevent userspace races by waiting until the network
10326	 *	device is fully setup before sending notifications.
10327	 */
10328	if (!dev->rtnl_link_ops ||
10329	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10330		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
10331
10332out:
10333	return ret;
10334
10335err_uninit_notify:
10336	call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
10337err_ifindex_release:
10338	dev_index_release(net, dev->ifindex);
10339err_free_pcpu:
10340	netdev_do_free_pcpu_stats(dev);
10341err_uninit:
10342	if (dev->netdev_ops->ndo_uninit)
10343		dev->netdev_ops->ndo_uninit(dev);
10344	if (dev->priv_destructor)
10345		dev->priv_destructor(dev);
10346err_free_name:
10347	netdev_name_node_free(dev->name_node);
10348	goto out;
10349}
10350EXPORT_SYMBOL(register_netdevice);
10351
10352/**
10353 *	init_dummy_netdev	- init a dummy network device for NAPI
10354 *	@dev: device to init
10355 *
10356 *	This takes a network device structure and initialize the minimum
10357 *	amount of fields so it can be used to schedule NAPI polls without
10358 *	registering a full blown interface. This is to be used by drivers
10359 *	that need to tie several hardware interfaces to a single NAPI
10360 *	poll scheduler due to HW limitations.
10361 */
10362void init_dummy_netdev(struct net_device *dev)
10363{
10364	/* Clear everything. Note we don't initialize spinlocks
10365	 * are they aren't supposed to be taken by any of the
10366	 * NAPI code and this dummy netdev is supposed to be
10367	 * only ever used for NAPI polls
10368	 */
10369	memset(dev, 0, sizeof(struct net_device));
10370
10371	/* make sure we BUG if trying to hit standard
10372	 * register/unregister code path
10373	 */
10374	dev->reg_state = NETREG_DUMMY;
10375
10376	/* NAPI wants this */
10377	INIT_LIST_HEAD(&dev->napi_list);
10378
10379	/* a dummy interface is started by default */
10380	set_bit(__LINK_STATE_PRESENT, &dev->state);
10381	set_bit(__LINK_STATE_START, &dev->state);
10382
10383	/* napi_busy_loop stats accounting wants this */
10384	dev_net_set(dev, &init_net);
10385
10386	/* Note : We dont allocate pcpu_refcnt for dummy devices,
10387	 * because users of this 'device' dont need to change
10388	 * its refcount.
10389	 */
10390}
10391EXPORT_SYMBOL_GPL(init_dummy_netdev);
10392
10393
10394/**
10395 *	register_netdev	- register a network device
10396 *	@dev: device to register
10397 *
10398 *	Take a completed network device structure and add it to the kernel
10399 *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10400 *	chain. 0 is returned on success. A negative errno code is returned
10401 *	on a failure to set up the device, or if the name is a duplicate.
10402 *
10403 *	This is a wrapper around register_netdevice that takes the rtnl semaphore
10404 *	and expands the device name if you passed a format string to
10405 *	alloc_netdev.
10406 */
10407int register_netdev(struct net_device *dev)
10408{
10409	int err;
10410
10411	if (rtnl_lock_killable())
10412		return -EINTR;
10413	err = register_netdevice(dev);
10414	rtnl_unlock();
10415	return err;
10416}
10417EXPORT_SYMBOL(register_netdev);
10418
10419int netdev_refcnt_read(const struct net_device *dev)
10420{
10421#ifdef CONFIG_PCPU_DEV_REFCNT
10422	int i, refcnt = 0;
10423
10424	for_each_possible_cpu(i)
10425		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10426	return refcnt;
10427#else
10428	return refcount_read(&dev->dev_refcnt);
10429#endif
10430}
10431EXPORT_SYMBOL(netdev_refcnt_read);
10432
10433int netdev_unregister_timeout_secs __read_mostly = 10;
10434
10435#define WAIT_REFS_MIN_MSECS 1
10436#define WAIT_REFS_MAX_MSECS 250
10437/**
10438 * netdev_wait_allrefs_any - wait until all references are gone.
10439 * @list: list of net_devices to wait on
10440 *
10441 * This is called when unregistering network devices.
10442 *
10443 * Any protocol or device that holds a reference should register
10444 * for netdevice notification, and cleanup and put back the
10445 * reference if they receive an UNREGISTER event.
10446 * We can get stuck here if buggy protocols don't correctly
10447 * call dev_put.
10448 */
10449static struct net_device *netdev_wait_allrefs_any(struct list_head *list)
10450{
10451	unsigned long rebroadcast_time, warning_time;
10452	struct net_device *dev;
10453	int wait = 0;
10454
10455	rebroadcast_time = warning_time = jiffies;
10456
10457	list_for_each_entry(dev, list, todo_list)
10458		if (netdev_refcnt_read(dev) == 1)
10459			return dev;
10460
10461	while (true) {
10462		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10463			rtnl_lock();
10464
10465			/* Rebroadcast unregister notification */
10466			list_for_each_entry(dev, list, todo_list)
10467				call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10468
10469			__rtnl_unlock();
10470			rcu_barrier();
10471			rtnl_lock();
10472
10473			list_for_each_entry(dev, list, todo_list)
10474				if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10475					     &dev->state)) {
10476					/* We must not have linkwatch events
10477					 * pending on unregister. If this
10478					 * happens, we simply run the queue
10479					 * unscheduled, resulting in a noop
10480					 * for this device.
10481					 */
10482					linkwatch_run_queue();
10483					break;
10484				}
10485
10486			__rtnl_unlock();
10487
10488			rebroadcast_time = jiffies;
10489		}
10490
10491		if (!wait) {
10492			rcu_barrier();
10493			wait = WAIT_REFS_MIN_MSECS;
10494		} else {
10495			msleep(wait);
10496			wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10497		}
10498
10499		list_for_each_entry(dev, list, todo_list)
10500			if (netdev_refcnt_read(dev) == 1)
10501				return dev;
10502
10503		if (time_after(jiffies, warning_time +
10504			       READ_ONCE(netdev_unregister_timeout_secs) * HZ)) {
10505			list_for_each_entry(dev, list, todo_list) {
10506				pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10507					 dev->name, netdev_refcnt_read(dev));
10508				ref_tracker_dir_print(&dev->refcnt_tracker, 10);
10509			}
10510
10511			warning_time = jiffies;
10512		}
10513	}
10514}
10515
10516/* The sequence is:
10517 *
10518 *	rtnl_lock();
10519 *	...
10520 *	register_netdevice(x1);
10521 *	register_netdevice(x2);
10522 *	...
10523 *	unregister_netdevice(y1);
10524 *	unregister_netdevice(y2);
10525 *      ...
10526 *	rtnl_unlock();
10527 *	free_netdev(y1);
10528 *	free_netdev(y2);
10529 *
10530 * We are invoked by rtnl_unlock().
10531 * This allows us to deal with problems:
10532 * 1) We can delete sysfs objects which invoke hotplug
10533 *    without deadlocking with linkwatch via keventd.
10534 * 2) Since we run with the RTNL semaphore not held, we can sleep
10535 *    safely in order to wait for the netdev refcnt to drop to zero.
10536 *
10537 * We must not return until all unregister events added during
10538 * the interval the lock was held have been completed.
10539 */
10540void netdev_run_todo(void)
10541{
10542	struct net_device *dev, *tmp;
10543	struct list_head list;
10544	int cnt;
10545#ifdef CONFIG_LOCKDEP
10546	struct list_head unlink_list;
10547
10548	list_replace_init(&net_unlink_list, &unlink_list);
10549
10550	while (!list_empty(&unlink_list)) {
10551		struct net_device *dev = list_first_entry(&unlink_list,
10552							  struct net_device,
10553							  unlink_list);
10554		list_del_init(&dev->unlink_list);
10555		dev->nested_level = dev->lower_level - 1;
10556	}
10557#endif
10558
10559	/* Snapshot list, allow later requests */
10560	list_replace_init(&net_todo_list, &list);
10561
10562	__rtnl_unlock();
10563
10564	/* Wait for rcu callbacks to finish before next phase */
10565	if (!list_empty(&list))
10566		rcu_barrier();
10567
10568	list_for_each_entry_safe(dev, tmp, &list, todo_list) {
10569		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10570			netdev_WARN(dev, "run_todo but not unregistering\n");
10571			list_del(&dev->todo_list);
10572			continue;
10573		}
10574
10575		WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERED);
10576		linkwatch_sync_dev(dev);
10577	}
10578
10579	cnt = 0;
10580	while (!list_empty(&list)) {
10581		dev = netdev_wait_allrefs_any(&list);
10582		list_del(&dev->todo_list);
10583
10584		/* paranoia */
10585		BUG_ON(netdev_refcnt_read(dev) != 1);
10586		BUG_ON(!list_empty(&dev->ptype_all));
10587		BUG_ON(!list_empty(&dev->ptype_specific));
10588		WARN_ON(rcu_access_pointer(dev->ip_ptr));
10589		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10590
10591		netdev_do_free_pcpu_stats(dev);
10592		if (dev->priv_destructor)
10593			dev->priv_destructor(dev);
10594		if (dev->needs_free_netdev)
10595			free_netdev(dev);
10596
10597		cnt++;
10598
10599		/* Free network device */
10600		kobject_put(&dev->dev.kobj);
10601	}
10602	if (cnt && atomic_sub_and_test(cnt, &dev_unreg_count))
10603		wake_up(&netdev_unregistering_wq);
10604}
10605
10606/* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10607 * all the same fields in the same order as net_device_stats, with only
10608 * the type differing, but rtnl_link_stats64 may have additional fields
10609 * at the end for newer counters.
10610 */
10611void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10612			     const struct net_device_stats *netdev_stats)
10613{
10614	size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t);
10615	const atomic_long_t *src = (atomic_long_t *)netdev_stats;
10616	u64 *dst = (u64 *)stats64;
10617
10618	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10619	for (i = 0; i < n; i++)
10620		dst[i] = (unsigned long)atomic_long_read(&src[i]);
10621	/* zero out counters that only exist in rtnl_link_stats64 */
10622	memset((char *)stats64 + n * sizeof(u64), 0,
10623	       sizeof(*stats64) - n * sizeof(u64));
10624}
10625EXPORT_SYMBOL(netdev_stats_to_stats64);
10626
10627static __cold struct net_device_core_stats __percpu *netdev_core_stats_alloc(
10628		struct net_device *dev)
10629{
10630	struct net_device_core_stats __percpu *p;
10631
10632	p = alloc_percpu_gfp(struct net_device_core_stats,
10633			     GFP_ATOMIC | __GFP_NOWARN);
10634
10635	if (p && cmpxchg(&dev->core_stats, NULL, p))
10636		free_percpu(p);
10637
10638	/* This READ_ONCE() pairs with the cmpxchg() above */
10639	return READ_ONCE(dev->core_stats);
10640}
10641
10642noinline void netdev_core_stats_inc(struct net_device *dev, u32 offset)
10643{
10644	/* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
10645	struct net_device_core_stats __percpu *p = READ_ONCE(dev->core_stats);
10646	unsigned long __percpu *field;
10647
10648	if (unlikely(!p)) {
10649		p = netdev_core_stats_alloc(dev);
10650		if (!p)
10651			return;
10652	}
10653
10654	field = (__force unsigned long __percpu *)((__force void *)p + offset);
10655	this_cpu_inc(*field);
10656}
10657EXPORT_SYMBOL_GPL(netdev_core_stats_inc);
10658
10659/**
10660 *	dev_get_stats	- get network device statistics
10661 *	@dev: device to get statistics from
10662 *	@storage: place to store stats
10663 *
10664 *	Get network statistics from device. Return @storage.
10665 *	The device driver may provide its own method by setting
10666 *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10667 *	otherwise the internal statistics structure is used.
10668 */
10669struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10670					struct rtnl_link_stats64 *storage)
10671{
10672	const struct net_device_ops *ops = dev->netdev_ops;
10673	const struct net_device_core_stats __percpu *p;
10674
10675	if (ops->ndo_get_stats64) {
10676		memset(storage, 0, sizeof(*storage));
10677		ops->ndo_get_stats64(dev, storage);
10678	} else if (ops->ndo_get_stats) {
10679		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10680	} else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_TSTATS) {
10681		dev_get_tstats64(dev, storage);
10682	} else {
10683		netdev_stats_to_stats64(storage, &dev->stats);
10684	}
10685
10686	/* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
10687	p = READ_ONCE(dev->core_stats);
10688	if (p) {
10689		const struct net_device_core_stats *core_stats;
10690		int i;
10691
10692		for_each_possible_cpu(i) {
10693			core_stats = per_cpu_ptr(p, i);
10694			storage->rx_dropped += READ_ONCE(core_stats->rx_dropped);
10695			storage->tx_dropped += READ_ONCE(core_stats->tx_dropped);
10696			storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler);
10697			storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped);
10698		}
10699	}
10700	return storage;
10701}
10702EXPORT_SYMBOL(dev_get_stats);
10703
10704/**
10705 *	dev_fetch_sw_netstats - get per-cpu network device statistics
10706 *	@s: place to store stats
10707 *	@netstats: per-cpu network stats to read from
10708 *
10709 *	Read per-cpu network statistics and populate the related fields in @s.
10710 */
10711void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10712			   const struct pcpu_sw_netstats __percpu *netstats)
10713{
10714	int cpu;
10715
10716	for_each_possible_cpu(cpu) {
10717		u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
10718		const struct pcpu_sw_netstats *stats;
10719		unsigned int start;
10720
10721		stats = per_cpu_ptr(netstats, cpu);
10722		do {
10723			start = u64_stats_fetch_begin(&stats->syncp);
10724			rx_packets = u64_stats_read(&stats->rx_packets);
10725			rx_bytes   = u64_stats_read(&stats->rx_bytes);
10726			tx_packets = u64_stats_read(&stats->tx_packets);
10727			tx_bytes   = u64_stats_read(&stats->tx_bytes);
10728		} while (u64_stats_fetch_retry(&stats->syncp, start));
10729
10730		s->rx_packets += rx_packets;
10731		s->rx_bytes   += rx_bytes;
10732		s->tx_packets += tx_packets;
10733		s->tx_bytes   += tx_bytes;
10734	}
10735}
10736EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10737
10738/**
10739 *	dev_get_tstats64 - ndo_get_stats64 implementation
10740 *	@dev: device to get statistics from
10741 *	@s: place to store stats
10742 *
10743 *	Populate @s from dev->stats and dev->tstats. Can be used as
10744 *	ndo_get_stats64() callback.
10745 */
10746void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10747{
10748	netdev_stats_to_stats64(s, &dev->stats);
10749	dev_fetch_sw_netstats(s, dev->tstats);
10750}
10751EXPORT_SYMBOL_GPL(dev_get_tstats64);
10752
10753struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10754{
10755	struct netdev_queue *queue = dev_ingress_queue(dev);
10756
10757#ifdef CONFIG_NET_CLS_ACT
10758	if (queue)
10759		return queue;
10760	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10761	if (!queue)
10762		return NULL;
10763	netdev_init_one_queue(dev, queue, NULL);
10764	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10765	RCU_INIT_POINTER(queue->qdisc_sleeping, &noop_qdisc);
10766	rcu_assign_pointer(dev->ingress_queue, queue);
10767#endif
10768	return queue;
10769}
10770
10771static const struct ethtool_ops default_ethtool_ops;
10772
10773void netdev_set_default_ethtool_ops(struct net_device *dev,
10774				    const struct ethtool_ops *ops)
10775{
10776	if (dev->ethtool_ops == &default_ethtool_ops)
10777		dev->ethtool_ops = ops;
10778}
10779EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10780
10781/**
10782 * netdev_sw_irq_coalesce_default_on() - enable SW IRQ coalescing by default
10783 * @dev: netdev to enable the IRQ coalescing on
10784 *
10785 * Sets a conservative default for SW IRQ coalescing. Users can use
10786 * sysfs attributes to override the default values.
10787 */
10788void netdev_sw_irq_coalesce_default_on(struct net_device *dev)
10789{
10790	WARN_ON(dev->reg_state == NETREG_REGISTERED);
10791
10792	if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
10793		dev->gro_flush_timeout = 20000;
10794		dev->napi_defer_hard_irqs = 1;
10795	}
10796}
10797EXPORT_SYMBOL_GPL(netdev_sw_irq_coalesce_default_on);
10798
10799void netdev_freemem(struct net_device *dev)
10800{
10801	char *addr = (char *)dev - dev->padded;
10802
10803	kvfree(addr);
10804}
10805
10806/**
10807 * alloc_netdev_mqs - allocate network device
10808 * @sizeof_priv: size of private data to allocate space for
10809 * @name: device name format string
10810 * @name_assign_type: origin of device name
10811 * @setup: callback to initialize device
10812 * @txqs: the number of TX subqueues to allocate
10813 * @rxqs: the number of RX subqueues to allocate
10814 *
10815 * Allocates a struct net_device with private data area for driver use
10816 * and performs basic initialization.  Also allocates subqueue structs
10817 * for each queue on the device.
10818 */
10819struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10820		unsigned char name_assign_type,
10821		void (*setup)(struct net_device *),
10822		unsigned int txqs, unsigned int rxqs)
10823{
10824	struct net_device *dev;
10825	unsigned int alloc_size;
10826	struct net_device *p;
10827
10828	BUG_ON(strlen(name) >= sizeof(dev->name));
10829
10830	if (txqs < 1) {
10831		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10832		return NULL;
10833	}
10834
10835	if (rxqs < 1) {
10836		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10837		return NULL;
10838	}
10839
10840	alloc_size = sizeof(struct net_device);
10841	if (sizeof_priv) {
10842		/* ensure 32-byte alignment of private area */
10843		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10844		alloc_size += sizeof_priv;
10845	}
10846	/* ensure 32-byte alignment of whole construct */
10847	alloc_size += NETDEV_ALIGN - 1;
10848
10849	p = kvzalloc(alloc_size, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10850	if (!p)
10851		return NULL;
10852
10853	dev = PTR_ALIGN(p, NETDEV_ALIGN);
10854	dev->padded = (char *)dev - (char *)p;
10855
10856	ref_tracker_dir_init(&dev->refcnt_tracker, 128, name);
10857#ifdef CONFIG_PCPU_DEV_REFCNT
10858	dev->pcpu_refcnt = alloc_percpu(int);
10859	if (!dev->pcpu_refcnt)
10860		goto free_dev;
10861	__dev_hold(dev);
10862#else
10863	refcount_set(&dev->dev_refcnt, 1);
10864#endif
10865
10866	if (dev_addr_init(dev))
10867		goto free_pcpu;
10868
10869	dev_mc_init(dev);
10870	dev_uc_init(dev);
10871
10872	dev_net_set(dev, &init_net);
10873
10874	dev->gso_max_size = GSO_LEGACY_MAX_SIZE;
10875	dev->xdp_zc_max_segs = 1;
10876	dev->gso_max_segs = GSO_MAX_SEGS;
10877	dev->gro_max_size = GRO_LEGACY_MAX_SIZE;
10878	dev->gso_ipv4_max_size = GSO_LEGACY_MAX_SIZE;
10879	dev->gro_ipv4_max_size = GRO_LEGACY_MAX_SIZE;
10880	dev->tso_max_size = TSO_LEGACY_MAX_SIZE;
10881	dev->tso_max_segs = TSO_MAX_SEGS;
10882	dev->upper_level = 1;
10883	dev->lower_level = 1;
10884#ifdef CONFIG_LOCKDEP
10885	dev->nested_level = 0;
10886	INIT_LIST_HEAD(&dev->unlink_list);
10887#endif
10888
10889	INIT_LIST_HEAD(&dev->napi_list);
10890	INIT_LIST_HEAD(&dev->unreg_list);
10891	INIT_LIST_HEAD(&dev->close_list);
10892	INIT_LIST_HEAD(&dev->link_watch_list);
10893	INIT_LIST_HEAD(&dev->adj_list.upper);
10894	INIT_LIST_HEAD(&dev->adj_list.lower);
10895	INIT_LIST_HEAD(&dev->ptype_all);
10896	INIT_LIST_HEAD(&dev->ptype_specific);
10897	INIT_LIST_HEAD(&dev->net_notifier_list);
10898#ifdef CONFIG_NET_SCHED
10899	hash_init(dev->qdisc_hash);
10900#endif
10901	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10902	setup(dev);
10903
10904	if (!dev->tx_queue_len) {
10905		dev->priv_flags |= IFF_NO_QUEUE;
10906		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10907	}
10908
10909	dev->num_tx_queues = txqs;
10910	dev->real_num_tx_queues = txqs;
10911	if (netif_alloc_netdev_queues(dev))
10912		goto free_all;
10913
10914	dev->num_rx_queues = rxqs;
10915	dev->real_num_rx_queues = rxqs;
10916	if (netif_alloc_rx_queues(dev))
10917		goto free_all;
10918
10919	strcpy(dev->name, name);
10920	dev->name_assign_type = name_assign_type;
10921	dev->group = INIT_NETDEV_GROUP;
10922	if (!dev->ethtool_ops)
10923		dev->ethtool_ops = &default_ethtool_ops;
10924
10925	nf_hook_netdev_init(dev);
10926
10927	return dev;
10928
10929free_all:
10930	free_netdev(dev);
10931	return NULL;
10932
10933free_pcpu:
10934#ifdef CONFIG_PCPU_DEV_REFCNT
10935	free_percpu(dev->pcpu_refcnt);
10936free_dev:
10937#endif
10938	netdev_freemem(dev);
10939	return NULL;
10940}
10941EXPORT_SYMBOL(alloc_netdev_mqs);
10942
10943/**
10944 * free_netdev - free network device
10945 * @dev: device
10946 *
10947 * This function does the last stage of destroying an allocated device
10948 * interface. The reference to the device object is released. If this
10949 * is the last reference then it will be freed.Must be called in process
10950 * context.
10951 */
10952void free_netdev(struct net_device *dev)
10953{
10954	struct napi_struct *p, *n;
10955
10956	might_sleep();
10957
10958	/* When called immediately after register_netdevice() failed the unwind
10959	 * handling may still be dismantling the device. Handle that case by
10960	 * deferring the free.
10961	 */
10962	if (dev->reg_state == NETREG_UNREGISTERING) {
10963		ASSERT_RTNL();
10964		dev->needs_free_netdev = true;
10965		return;
10966	}
10967
10968	netif_free_tx_queues(dev);
10969	netif_free_rx_queues(dev);
10970
10971	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10972
10973	/* Flush device addresses */
10974	dev_addr_flush(dev);
10975
10976	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10977		netif_napi_del(p);
10978
10979	ref_tracker_dir_exit(&dev->refcnt_tracker);
10980#ifdef CONFIG_PCPU_DEV_REFCNT
10981	free_percpu(dev->pcpu_refcnt);
10982	dev->pcpu_refcnt = NULL;
10983#endif
10984	free_percpu(dev->core_stats);
10985	dev->core_stats = NULL;
10986	free_percpu(dev->xdp_bulkq);
10987	dev->xdp_bulkq = NULL;
10988
10989	/*  Compatibility with error handling in drivers */
10990	if (dev->reg_state == NETREG_UNINITIALIZED) {
10991		netdev_freemem(dev);
10992		return;
10993	}
10994
10995	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10996	WRITE_ONCE(dev->reg_state, NETREG_RELEASED);
10997
10998	/* will free via device release */
10999	put_device(&dev->dev);
11000}
11001EXPORT_SYMBOL(free_netdev);
11002
11003/**
11004 *	synchronize_net -  Synchronize with packet receive processing
11005 *
11006 *	Wait for packets currently being received to be done.
11007 *	Does not block later packets from starting.
11008 */
11009void synchronize_net(void)
11010{
11011	might_sleep();
11012	if (rtnl_is_locked())
11013		synchronize_rcu_expedited();
11014	else
11015		synchronize_rcu();
11016}
11017EXPORT_SYMBOL(synchronize_net);
11018
11019/**
11020 *	unregister_netdevice_queue - remove device from the kernel
11021 *	@dev: device
11022 *	@head: list
11023 *
11024 *	This function shuts down a device interface and removes it
11025 *	from the kernel tables.
11026 *	If head not NULL, device is queued to be unregistered later.
11027 *
11028 *	Callers must hold the rtnl semaphore.  You may want
11029 *	unregister_netdev() instead of this.
11030 */
11031
11032void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
11033{
11034	ASSERT_RTNL();
11035
11036	if (head) {
11037		list_move_tail(&dev->unreg_list, head);
11038	} else {
11039		LIST_HEAD(single);
11040
11041		list_add(&dev->unreg_list, &single);
11042		unregister_netdevice_many(&single);
11043	}
11044}
11045EXPORT_SYMBOL(unregister_netdevice_queue);
11046
11047void unregister_netdevice_many_notify(struct list_head *head,
11048				      u32 portid, const struct nlmsghdr *nlh)
11049{
11050	struct net_device *dev, *tmp;
11051	LIST_HEAD(close_head);
11052	int cnt = 0;
11053
11054	BUG_ON(dev_boot_phase);
11055	ASSERT_RTNL();
11056
11057	if (list_empty(head))
11058		return;
11059
11060	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
11061		/* Some devices call without registering
11062		 * for initialization unwind. Remove those
11063		 * devices and proceed with the remaining.
11064		 */
11065		if (dev->reg_state == NETREG_UNINITIALIZED) {
11066			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
11067				 dev->name, dev);
11068
11069			WARN_ON(1);
11070			list_del(&dev->unreg_list);
11071			continue;
11072		}
11073		dev->dismantle = true;
11074		BUG_ON(dev->reg_state != NETREG_REGISTERED);
11075	}
11076
11077	/* If device is running, close it first. */
11078	list_for_each_entry(dev, head, unreg_list)
11079		list_add_tail(&dev->close_list, &close_head);
11080	dev_close_many(&close_head, true);
11081
11082	list_for_each_entry(dev, head, unreg_list) {
11083		/* And unlink it from device chain. */
11084		unlist_netdevice(dev);
11085		WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERING);
11086	}
11087	flush_all_backlogs();
11088
11089	synchronize_net();
11090
11091	list_for_each_entry(dev, head, unreg_list) {
11092		struct sk_buff *skb = NULL;
11093
11094		/* Shutdown queueing discipline. */
11095		dev_shutdown(dev);
11096		dev_tcx_uninstall(dev);
11097		dev_xdp_uninstall(dev);
11098		bpf_dev_bound_netdev_unregister(dev);
11099
11100		netdev_offload_xstats_disable_all(dev);
11101
11102		/* Notify protocols, that we are about to destroy
11103		 * this device. They should clean all the things.
11104		 */
11105		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11106
11107		if (!dev->rtnl_link_ops ||
11108		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
11109			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
11110						     GFP_KERNEL, NULL, 0,
11111						     portid, nlh);
11112
11113		/*
11114		 *	Flush the unicast and multicast chains
11115		 */
11116		dev_uc_flush(dev);
11117		dev_mc_flush(dev);
11118
11119		netdev_name_node_alt_flush(dev);
11120		netdev_name_node_free(dev->name_node);
11121
11122		call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
11123
11124		if (dev->netdev_ops->ndo_uninit)
11125			dev->netdev_ops->ndo_uninit(dev);
11126
11127		if (skb)
11128			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL, portid, nlh);
11129
11130		/* Notifier chain MUST detach us all upper devices. */
11131		WARN_ON(netdev_has_any_upper_dev(dev));
11132		WARN_ON(netdev_has_any_lower_dev(dev));
11133
11134		/* Remove entries from kobject tree */
11135		netdev_unregister_kobject(dev);
11136#ifdef CONFIG_XPS
11137		/* Remove XPS queueing entries */
11138		netif_reset_xps_queues_gt(dev, 0);
11139#endif
11140	}
11141
11142	synchronize_net();
11143
11144	list_for_each_entry(dev, head, unreg_list) {
11145		netdev_put(dev, &dev->dev_registered_tracker);
11146		net_set_todo(dev);
11147		cnt++;
11148	}
11149	atomic_add(cnt, &dev_unreg_count);
11150
11151	list_del(head);
11152}
11153
11154/**
11155 *	unregister_netdevice_many - unregister many devices
11156 *	@head: list of devices
11157 *
11158 *  Note: As most callers use a stack allocated list_head,
11159 *  we force a list_del() to make sure stack wont be corrupted later.
11160 */
11161void unregister_netdevice_many(struct list_head *head)
11162{
11163	unregister_netdevice_many_notify(head, 0, NULL);
11164}
11165EXPORT_SYMBOL(unregister_netdevice_many);
11166
11167/**
11168 *	unregister_netdev - remove device from the kernel
11169 *	@dev: device
11170 *
11171 *	This function shuts down a device interface and removes it
11172 *	from the kernel tables.
11173 *
11174 *	This is just a wrapper for unregister_netdevice that takes
11175 *	the rtnl semaphore.  In general you want to use this and not
11176 *	unregister_netdevice.
11177 */
11178void unregister_netdev(struct net_device *dev)
11179{
11180	rtnl_lock();
11181	unregister_netdevice(dev);
11182	rtnl_unlock();
11183}
11184EXPORT_SYMBOL(unregister_netdev);
11185
11186/**
11187 *	__dev_change_net_namespace - move device to different nethost namespace
11188 *	@dev: device
11189 *	@net: network namespace
11190 *	@pat: If not NULL name pattern to try if the current device name
11191 *	      is already taken in the destination network namespace.
11192 *	@new_ifindex: If not zero, specifies device index in the target
11193 *	              namespace.
11194 *
11195 *	This function shuts down a device interface and moves it
11196 *	to a new network namespace. On success 0 is returned, on
11197 *	a failure a netagive errno code is returned.
11198 *
11199 *	Callers must hold the rtnl semaphore.
11200 */
11201
11202int __dev_change_net_namespace(struct net_device *dev, struct net *net,
11203			       const char *pat, int new_ifindex)
11204{
11205	struct netdev_name_node *name_node;
11206	struct net *net_old = dev_net(dev);
11207	char new_name[IFNAMSIZ] = {};
11208	int err, new_nsid;
11209
11210	ASSERT_RTNL();
11211
11212	/* Don't allow namespace local devices to be moved. */
11213	err = -EINVAL;
11214	if (dev->features & NETIF_F_NETNS_LOCAL)
11215		goto out;
11216
11217	/* Ensure the device has been registrered */
11218	if (dev->reg_state != NETREG_REGISTERED)
11219		goto out;
11220
11221	/* Get out if there is nothing todo */
11222	err = 0;
11223	if (net_eq(net_old, net))
11224		goto out;
11225
11226	/* Pick the destination device name, and ensure
11227	 * we can use it in the destination network namespace.
11228	 */
11229	err = -EEXIST;
11230	if (netdev_name_in_use(net, dev->name)) {
11231		/* We get here if we can't use the current device name */
11232		if (!pat)
11233			goto out;
11234		err = dev_prep_valid_name(net, dev, pat, new_name, EEXIST);
11235		if (err < 0)
11236			goto out;
11237	}
11238	/* Check that none of the altnames conflicts. */
11239	err = -EEXIST;
11240	netdev_for_each_altname(dev, name_node)
11241		if (netdev_name_in_use(net, name_node->name))
11242			goto out;
11243
11244	/* Check that new_ifindex isn't used yet. */
11245	if (new_ifindex) {
11246		err = dev_index_reserve(net, new_ifindex);
11247		if (err < 0)
11248			goto out;
11249	} else {
11250		/* If there is an ifindex conflict assign a new one */
11251		err = dev_index_reserve(net, dev->ifindex);
11252		if (err == -EBUSY)
11253			err = dev_index_reserve(net, 0);
11254		if (err < 0)
11255			goto out;
11256		new_ifindex = err;
11257	}
11258
11259	/*
11260	 * And now a mini version of register_netdevice unregister_netdevice.
11261	 */
11262
11263	/* If device is running close it first. */
11264	dev_close(dev);
11265
11266	/* And unlink it from device chain */
11267	unlist_netdevice(dev);
11268
11269	synchronize_net();
11270
11271	/* Shutdown queueing discipline. */
11272	dev_shutdown(dev);
11273
11274	/* Notify protocols, that we are about to destroy
11275	 * this device. They should clean all the things.
11276	 *
11277	 * Note that dev->reg_state stays at NETREG_REGISTERED.
11278	 * This is wanted because this way 8021q and macvlan know
11279	 * the device is just moving and can keep their slaves up.
11280	 */
11281	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11282	rcu_barrier();
11283
11284	new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
11285
11286	rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
11287			    new_ifindex);
11288
11289	/*
11290	 *	Flush the unicast and multicast chains
11291	 */
11292	dev_uc_flush(dev);
11293	dev_mc_flush(dev);
11294
11295	/* Send a netdev-removed uevent to the old namespace */
11296	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
11297	netdev_adjacent_del_links(dev);
11298
11299	/* Move per-net netdevice notifiers that are following the netdevice */
11300	move_netdevice_notifiers_dev_net(dev, net);
11301
11302	/* Actually switch the network namespace */
11303	dev_net_set(dev, net);
11304	dev->ifindex = new_ifindex;
11305
11306	if (new_name[0]) /* Rename the netdev to prepared name */
11307		strscpy(dev->name, new_name, IFNAMSIZ);
11308
11309	/* Fixup kobjects */
11310	dev_set_uevent_suppress(&dev->dev, 1);
11311	err = device_rename(&dev->dev, dev->name);
11312	dev_set_uevent_suppress(&dev->dev, 0);
11313	WARN_ON(err);
11314
11315	/* Send a netdev-add uevent to the new namespace */
11316	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
11317	netdev_adjacent_add_links(dev);
11318
11319	/* Adapt owner in case owning user namespace of target network
11320	 * namespace is different from the original one.
11321	 */
11322	err = netdev_change_owner(dev, net_old, net);
11323	WARN_ON(err);
11324
11325	/* Add the device back in the hashes */
11326	list_netdevice(dev);
11327
11328	/* Notify protocols, that a new device appeared. */
11329	call_netdevice_notifiers(NETDEV_REGISTER, dev);
11330
11331	/*
11332	 *	Prevent userspace races by waiting until the network
11333	 *	device is fully setup before sending notifications.
11334	 */
11335	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
11336
11337	synchronize_net();
11338	err = 0;
11339out:
11340	return err;
11341}
11342EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
11343
11344static int dev_cpu_dead(unsigned int oldcpu)
11345{
11346	struct sk_buff **list_skb;
11347	struct sk_buff *skb;
11348	unsigned int cpu;
11349	struct softnet_data *sd, *oldsd, *remsd = NULL;
11350
11351	local_irq_disable();
11352	cpu = smp_processor_id();
11353	sd = &per_cpu(softnet_data, cpu);
11354	oldsd = &per_cpu(softnet_data, oldcpu);
11355
11356	/* Find end of our completion_queue. */
11357	list_skb = &sd->completion_queue;
11358	while (*list_skb)
11359		list_skb = &(*list_skb)->next;
11360	/* Append completion queue from offline CPU. */
11361	*list_skb = oldsd->completion_queue;
11362	oldsd->completion_queue = NULL;
11363
11364	/* Append output queue from offline CPU. */
11365	if (oldsd->output_queue) {
11366		*sd->output_queue_tailp = oldsd->output_queue;
11367		sd->output_queue_tailp = oldsd->output_queue_tailp;
11368		oldsd->output_queue = NULL;
11369		oldsd->output_queue_tailp = &oldsd->output_queue;
11370	}
11371	/* Append NAPI poll list from offline CPU, with one exception :
11372	 * process_backlog() must be called by cpu owning percpu backlog.
11373	 * We properly handle process_queue & input_pkt_queue later.
11374	 */
11375	while (!list_empty(&oldsd->poll_list)) {
11376		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
11377							    struct napi_struct,
11378							    poll_list);
11379
11380		list_del_init(&napi->poll_list);
11381		if (napi->poll == process_backlog)
11382			napi->state = 0;
11383		else
11384			____napi_schedule(sd, napi);
11385	}
11386
11387	raise_softirq_irqoff(NET_TX_SOFTIRQ);
11388	local_irq_enable();
11389
11390#ifdef CONFIG_RPS
11391	remsd = oldsd->rps_ipi_list;
11392	oldsd->rps_ipi_list = NULL;
11393#endif
11394	/* send out pending IPI's on offline CPU */
11395	net_rps_send_ipi(remsd);
11396
11397	/* Process offline CPU's input_pkt_queue */
11398	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
11399		netif_rx(skb);
11400		input_queue_head_incr(oldsd);
11401	}
11402	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
11403		netif_rx(skb);
11404		input_queue_head_incr(oldsd);
11405	}
11406
11407	return 0;
11408}
11409
11410/**
11411 *	netdev_increment_features - increment feature set by one
11412 *	@all: current feature set
11413 *	@one: new feature set
11414 *	@mask: mask feature set
11415 *
11416 *	Computes a new feature set after adding a device with feature set
11417 *	@one to the master device with current feature set @all.  Will not
11418 *	enable anything that is off in @mask. Returns the new feature set.
11419 */
11420netdev_features_t netdev_increment_features(netdev_features_t all,
11421	netdev_features_t one, netdev_features_t mask)
11422{
11423	if (mask & NETIF_F_HW_CSUM)
11424		mask |= NETIF_F_CSUM_MASK;
11425	mask |= NETIF_F_VLAN_CHALLENGED;
11426
11427	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11428	all &= one | ~NETIF_F_ALL_FOR_ALL;
11429
11430	/* If one device supports hw checksumming, set for all. */
11431	if (all & NETIF_F_HW_CSUM)
11432		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11433
11434	return all;
11435}
11436EXPORT_SYMBOL(netdev_increment_features);
11437
11438static struct hlist_head * __net_init netdev_create_hash(void)
11439{
11440	int i;
11441	struct hlist_head *hash;
11442
11443	hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11444	if (hash != NULL)
11445		for (i = 0; i < NETDEV_HASHENTRIES; i++)
11446			INIT_HLIST_HEAD(&hash[i]);
11447
11448	return hash;
11449}
11450
11451/* Initialize per network namespace state */
11452static int __net_init netdev_init(struct net *net)
11453{
11454	BUILD_BUG_ON(GRO_HASH_BUCKETS >
11455		     8 * sizeof_field(struct napi_struct, gro_bitmask));
11456
11457	INIT_LIST_HEAD(&net->dev_base_head);
11458
11459	net->dev_name_head = netdev_create_hash();
11460	if (net->dev_name_head == NULL)
11461		goto err_name;
11462
11463	net->dev_index_head = netdev_create_hash();
11464	if (net->dev_index_head == NULL)
11465		goto err_idx;
11466
11467	xa_init_flags(&net->dev_by_index, XA_FLAGS_ALLOC1);
11468
11469	RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11470
11471	return 0;
11472
11473err_idx:
11474	kfree(net->dev_name_head);
11475err_name:
11476	return -ENOMEM;
11477}
11478
11479/**
11480 *	netdev_drivername - network driver for the device
11481 *	@dev: network device
11482 *
11483 *	Determine network driver for device.
11484 */
11485const char *netdev_drivername(const struct net_device *dev)
11486{
11487	const struct device_driver *driver;
11488	const struct device *parent;
11489	const char *empty = "";
11490
11491	parent = dev->dev.parent;
11492	if (!parent)
11493		return empty;
11494
11495	driver = parent->driver;
11496	if (driver && driver->name)
11497		return driver->name;
11498	return empty;
11499}
11500
11501static void __netdev_printk(const char *level, const struct net_device *dev,
11502			    struct va_format *vaf)
11503{
11504	if (dev && dev->dev.parent) {
11505		dev_printk_emit(level[1] - '0',
11506				dev->dev.parent,
11507				"%s %s %s%s: %pV",
11508				dev_driver_string(dev->dev.parent),
11509				dev_name(dev->dev.parent),
11510				netdev_name(dev), netdev_reg_state(dev),
11511				vaf);
11512	} else if (dev) {
11513		printk("%s%s%s: %pV",
11514		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
11515	} else {
11516		printk("%s(NULL net_device): %pV", level, vaf);
11517	}
11518}
11519
11520void netdev_printk(const char *level, const struct net_device *dev,
11521		   const char *format, ...)
11522{
11523	struct va_format vaf;
11524	va_list args;
11525
11526	va_start(args, format);
11527
11528	vaf.fmt = format;
11529	vaf.va = &args;
11530
11531	__netdev_printk(level, dev, &vaf);
11532
11533	va_end(args);
11534}
11535EXPORT_SYMBOL(netdev_printk);
11536
11537#define define_netdev_printk_level(func, level)			\
11538void func(const struct net_device *dev, const char *fmt, ...)	\
11539{								\
11540	struct va_format vaf;					\
11541	va_list args;						\
11542								\
11543	va_start(args, fmt);					\
11544								\
11545	vaf.fmt = fmt;						\
11546	vaf.va = &args;						\
11547								\
11548	__netdev_printk(level, dev, &vaf);			\
11549								\
11550	va_end(args);						\
11551}								\
11552EXPORT_SYMBOL(func);
11553
11554define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11555define_netdev_printk_level(netdev_alert, KERN_ALERT);
11556define_netdev_printk_level(netdev_crit, KERN_CRIT);
11557define_netdev_printk_level(netdev_err, KERN_ERR);
11558define_netdev_printk_level(netdev_warn, KERN_WARNING);
11559define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11560define_netdev_printk_level(netdev_info, KERN_INFO);
11561
11562static void __net_exit netdev_exit(struct net *net)
11563{
11564	kfree(net->dev_name_head);
11565	kfree(net->dev_index_head);
11566	xa_destroy(&net->dev_by_index);
11567	if (net != &init_net)
11568		WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11569}
11570
11571static struct pernet_operations __net_initdata netdev_net_ops = {
11572	.init = netdev_init,
11573	.exit = netdev_exit,
11574};
11575
11576static void __net_exit default_device_exit_net(struct net *net)
11577{
11578	struct netdev_name_node *name_node, *tmp;
11579	struct net_device *dev, *aux;
11580	/*
11581	 * Push all migratable network devices back to the
11582	 * initial network namespace
11583	 */
11584	ASSERT_RTNL();
11585	for_each_netdev_safe(net, dev, aux) {
11586		int err;
11587		char fb_name[IFNAMSIZ];
11588
11589		/* Ignore unmoveable devices (i.e. loopback) */
11590		if (dev->features & NETIF_F_NETNS_LOCAL)
11591			continue;
11592
11593		/* Leave virtual devices for the generic cleanup */
11594		if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
11595			continue;
11596
11597		/* Push remaining network devices to init_net */
11598		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11599		if (netdev_name_in_use(&init_net, fb_name))
11600			snprintf(fb_name, IFNAMSIZ, "dev%%d");
11601
11602		netdev_for_each_altname_safe(dev, name_node, tmp)
11603			if (netdev_name_in_use(&init_net, name_node->name))
11604				__netdev_name_node_alt_destroy(name_node);
11605
11606		err = dev_change_net_namespace(dev, &init_net, fb_name);
11607		if (err) {
11608			pr_emerg("%s: failed to move %s to init_net: %d\n",
11609				 __func__, dev->name, err);
11610			BUG();
11611		}
11612	}
11613}
11614
11615static void __net_exit default_device_exit_batch(struct list_head *net_list)
11616{
11617	/* At exit all network devices most be removed from a network
11618	 * namespace.  Do this in the reverse order of registration.
11619	 * Do this across as many network namespaces as possible to
11620	 * improve batching efficiency.
11621	 */
11622	struct net_device *dev;
11623	struct net *net;
11624	LIST_HEAD(dev_kill_list);
11625
11626	rtnl_lock();
11627	list_for_each_entry(net, net_list, exit_list) {
11628		default_device_exit_net(net);
11629		cond_resched();
11630	}
11631
11632	list_for_each_entry(net, net_list, exit_list) {
11633		for_each_netdev_reverse(net, dev) {
11634			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11635				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11636			else
11637				unregister_netdevice_queue(dev, &dev_kill_list);
11638		}
11639	}
11640	unregister_netdevice_many(&dev_kill_list);
11641	rtnl_unlock();
11642}
11643
11644static struct pernet_operations __net_initdata default_device_ops = {
11645	.exit_batch = default_device_exit_batch,
11646};
11647
11648static void __init net_dev_struct_check(void)
11649{
11650	/* TX read-mostly hotpath */
11651	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, priv_flags);
11652	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, netdev_ops);
11653	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, header_ops);
11654	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, _tx);
11655	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, real_num_tx_queues);
11656	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_size);
11657	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_ipv4_max_size);
11658	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_segs);
11659	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_partial_features);
11660	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, num_tc);
11661	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, mtu);
11662	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, needed_headroom);
11663	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tc_to_txq);
11664#ifdef CONFIG_XPS
11665	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, xps_maps);
11666#endif
11667#ifdef CONFIG_NETFILTER_EGRESS
11668	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, nf_hooks_egress);
11669#endif
11670#ifdef CONFIG_NET_XGRESS
11671	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tcx_egress);
11672#endif
11673	CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_tx, 160);
11674
11675	/* TXRX read-mostly hotpath */
11676	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, lstats);
11677	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, state);
11678	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, flags);
11679	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, hard_header_len);
11680	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, features);
11681	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, ip6_ptr);
11682	CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_txrx, 46);
11683
11684	/* RX read-mostly hotpath */
11685	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ptype_specific);
11686	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ifindex);
11687	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, real_num_rx_queues);
11688	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, _rx);
11689	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_flush_timeout);
11690	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, napi_defer_hard_irqs);
11691	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_max_size);
11692	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_ipv4_max_size);
11693	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler);
11694	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler_data);
11695	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, nd_net);
11696#ifdef CONFIG_NETPOLL
11697	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, npinfo);
11698#endif
11699#ifdef CONFIG_NET_XGRESS
11700	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, tcx_ingress);
11701#endif
11702	CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_rx, 104);
11703}
11704
11705/*
11706 *	Initialize the DEV module. At boot time this walks the device list and
11707 *	unhooks any devices that fail to initialise (normally hardware not
11708 *	present) and leaves us with a valid list of present and active devices.
11709 *
11710 */
11711
11712/* We allocate 256 pages for each CPU if PAGE_SHIFT is 12 */
11713#define SYSTEM_PERCPU_PAGE_POOL_SIZE	((1 << 20) / PAGE_SIZE)
11714
11715static int net_page_pool_create(int cpuid)
11716{
11717#if IS_ENABLED(CONFIG_PAGE_POOL)
11718	struct page_pool_params page_pool_params = {
11719		.pool_size = SYSTEM_PERCPU_PAGE_POOL_SIZE,
11720		.flags = PP_FLAG_SYSTEM_POOL,
11721		.nid = NUMA_NO_NODE,
11722	};
11723	struct page_pool *pp_ptr;
11724
11725	pp_ptr = page_pool_create_percpu(&page_pool_params, cpuid);
11726	if (IS_ERR(pp_ptr))
11727		return -ENOMEM;
11728
11729	per_cpu(system_page_pool, cpuid) = pp_ptr;
11730#endif
11731	return 0;
11732}
11733
11734/*
11735 *       This is called single threaded during boot, so no need
11736 *       to take the rtnl semaphore.
11737 */
11738static int __init net_dev_init(void)
11739{
11740	int i, rc = -ENOMEM;
11741
11742	BUG_ON(!dev_boot_phase);
11743
11744	net_dev_struct_check();
11745
11746	if (dev_proc_init())
11747		goto out;
11748
11749	if (netdev_kobject_init())
11750		goto out;
11751
11752	for (i = 0; i < PTYPE_HASH_SIZE; i++)
11753		INIT_LIST_HEAD(&ptype_base[i]);
11754
11755	if (register_pernet_subsys(&netdev_net_ops))
11756		goto out;
11757
11758	/*
11759	 *	Initialise the packet receive queues.
11760	 */
11761
11762	for_each_possible_cpu(i) {
11763		struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11764		struct softnet_data *sd = &per_cpu(softnet_data, i);
11765
11766		INIT_WORK(flush, flush_backlog);
11767
11768		skb_queue_head_init(&sd->input_pkt_queue);
11769		skb_queue_head_init(&sd->process_queue);
11770#ifdef CONFIG_XFRM_OFFLOAD
11771		skb_queue_head_init(&sd->xfrm_backlog);
11772#endif
11773		INIT_LIST_HEAD(&sd->poll_list);
11774		sd->output_queue_tailp = &sd->output_queue;
11775#ifdef CONFIG_RPS
11776		INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
11777		sd->cpu = i;
11778#endif
11779		INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd);
11780		spin_lock_init(&sd->defer_lock);
11781
11782		init_gro_hash(&sd->backlog);
11783		sd->backlog.poll = process_backlog;
11784		sd->backlog.weight = weight_p;
11785
11786		if (net_page_pool_create(i))
11787			goto out;
11788	}
11789
11790	dev_boot_phase = 0;
11791
11792	/* The loopback device is special if any other network devices
11793	 * is present in a network namespace the loopback device must
11794	 * be present. Since we now dynamically allocate and free the
11795	 * loopback device ensure this invariant is maintained by
11796	 * keeping the loopback device as the first device on the
11797	 * list of network devices.  Ensuring the loopback devices
11798	 * is the first device that appears and the last network device
11799	 * that disappears.
11800	 */
11801	if (register_pernet_device(&loopback_net_ops))
11802		goto out;
11803
11804	if (register_pernet_device(&default_device_ops))
11805		goto out;
11806
11807	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11808	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11809
11810	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11811				       NULL, dev_cpu_dead);
11812	WARN_ON(rc < 0);
11813	rc = 0;
11814out:
11815	if (rc < 0) {
11816		for_each_possible_cpu(i) {
11817			struct page_pool *pp_ptr;
11818
11819			pp_ptr = per_cpu(system_page_pool, i);
11820			if (!pp_ptr)
11821				continue;
11822
11823			page_pool_destroy(pp_ptr);
11824			per_cpu(system_page_pool, i) = NULL;
11825		}
11826	}
11827
11828	return rc;
11829}
11830
11831subsys_initcall(net_dev_init);
11832