1// SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause)
2/* af_can.c - Protocol family CAN core module
3 *            (used by different CAN protocol modules)
4 *
5 * Copyright (c) 2002-2017 Volkswagen Group Electronic Research
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of Volkswagen nor the names of its contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * Alternatively, provided that this notice is retained in full, this
21 * software may be distributed under the terms of the GNU General
22 * Public License ("GPL") version 2, in which case the provisions of the
23 * GPL apply INSTEAD OF those given above.
24 *
25 * The provided data structures and external interfaces from this code
26 * are not restricted to be used by modules with a GPL compatible license.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
39 * DAMAGE.
40 *
41 */
42
43#include <linux/module.h>
44#include <linux/stddef.h>
45#include <linux/init.h>
46#include <linux/kmod.h>
47#include <linux/slab.h>
48#include <linux/list.h>
49#include <linux/spinlock.h>
50#include <linux/rcupdate.h>
51#include <linux/uaccess.h>
52#include <linux/net.h>
53#include <linux/netdevice.h>
54#include <linux/socket.h>
55#include <linux/if_ether.h>
56#include <linux/if_arp.h>
57#include <linux/skbuff.h>
58#include <linux/can.h>
59#include <linux/can/core.h>
60#include <linux/can/skb.h>
61#include <linux/can/can-ml.h>
62#include <linux/ratelimit.h>
63#include <net/net_namespace.h>
64#include <net/sock.h>
65
66#include "af_can.h"
67
68MODULE_DESCRIPTION("Controller Area Network PF_CAN core");
69MODULE_LICENSE("Dual BSD/GPL");
70MODULE_AUTHOR("Urs Thuermann <urs.thuermann@volkswagen.de>, "
71	      "Oliver Hartkopp <oliver.hartkopp@volkswagen.de>");
72
73MODULE_ALIAS_NETPROTO(PF_CAN);
74
75static int stats_timer __read_mostly = 1;
76module_param(stats_timer, int, 0444);
77MODULE_PARM_DESC(stats_timer, "enable timer for statistics (default:on)");
78
79static struct kmem_cache *rcv_cache __read_mostly;
80
81/* table of registered CAN protocols */
82static const struct can_proto __rcu *proto_tab[CAN_NPROTO] __read_mostly;
83static DEFINE_MUTEX(proto_tab_lock);
84
85static atomic_t skbcounter = ATOMIC_INIT(0);
86
87/* af_can socket functions */
88
89void can_sock_destruct(struct sock *sk)
90{
91	skb_queue_purge(&sk->sk_receive_queue);
92	skb_queue_purge(&sk->sk_error_queue);
93}
94EXPORT_SYMBOL(can_sock_destruct);
95
96static const struct can_proto *can_get_proto(int protocol)
97{
98	const struct can_proto *cp;
99
100	rcu_read_lock();
101	cp = rcu_dereference(proto_tab[protocol]);
102	if (cp && !try_module_get(cp->prot->owner))
103		cp = NULL;
104	rcu_read_unlock();
105
106	return cp;
107}
108
109static inline void can_put_proto(const struct can_proto *cp)
110{
111	module_put(cp->prot->owner);
112}
113
114static int can_create(struct net *net, struct socket *sock, int protocol,
115		      int kern)
116{
117	struct sock *sk;
118	const struct can_proto *cp;
119	int err = 0;
120
121	sock->state = SS_UNCONNECTED;
122
123	if (protocol < 0 || protocol >= CAN_NPROTO)
124		return -EINVAL;
125
126	cp = can_get_proto(protocol);
127
128#ifdef CONFIG_MODULES
129	if (!cp) {
130		/* try to load protocol module if kernel is modular */
131
132		err = request_module("can-proto-%d", protocol);
133
134		/* In case of error we only print a message but don't
135		 * return the error code immediately.  Below we will
136		 * return -EPROTONOSUPPORT
137		 */
138		if (err)
139			pr_err_ratelimited("can: request_module (can-proto-%d) failed.\n",
140					   protocol);
141
142		cp = can_get_proto(protocol);
143	}
144#endif
145
146	/* check for available protocol and correct usage */
147
148	if (!cp)
149		return -EPROTONOSUPPORT;
150
151	if (cp->type != sock->type) {
152		err = -EPROTOTYPE;
153		goto errout;
154	}
155
156	sock->ops = cp->ops;
157
158	sk = sk_alloc(net, PF_CAN, GFP_KERNEL, cp->prot, kern);
159	if (!sk) {
160		err = -ENOMEM;
161		goto errout;
162	}
163
164	sock_init_data(sock, sk);
165	sk->sk_destruct = can_sock_destruct;
166
167	if (sk->sk_prot->init)
168		err = sk->sk_prot->init(sk);
169
170	if (err) {
171		/* release sk on errors */
172		sock_orphan(sk);
173		sock_put(sk);
174	}
175
176 errout:
177	can_put_proto(cp);
178	return err;
179}
180
181/* af_can tx path */
182
183/**
184 * can_send - transmit a CAN frame (optional with local loopback)
185 * @skb: pointer to socket buffer with CAN frame in data section
186 * @loop: loopback for listeners on local CAN sockets (recommended default!)
187 *
188 * Due to the loopback this routine must not be called from hardirq context.
189 *
190 * Return:
191 *  0 on success
192 *  -ENETDOWN when the selected interface is down
193 *  -ENOBUFS on full driver queue (see net_xmit_errno())
194 *  -ENOMEM when local loopback failed at calling skb_clone()
195 *  -EPERM when trying to send on a non-CAN interface
196 *  -EMSGSIZE CAN frame size is bigger than CAN interface MTU
197 *  -EINVAL when the skb->data does not contain a valid CAN frame
198 */
199int can_send(struct sk_buff *skb, int loop)
200{
201	struct sk_buff *newskb = NULL;
202	struct can_pkg_stats *pkg_stats = dev_net(skb->dev)->can.pkg_stats;
203	int err = -EINVAL;
204
205	if (can_is_canxl_skb(skb)) {
206		skb->protocol = htons(ETH_P_CANXL);
207	} else if (can_is_can_skb(skb)) {
208		skb->protocol = htons(ETH_P_CAN);
209	} else if (can_is_canfd_skb(skb)) {
210		struct canfd_frame *cfd = (struct canfd_frame *)skb->data;
211
212		skb->protocol = htons(ETH_P_CANFD);
213
214		/* set CAN FD flag for CAN FD frames by default */
215		cfd->flags |= CANFD_FDF;
216	} else {
217		goto inval_skb;
218	}
219
220	/* Make sure the CAN frame can pass the selected CAN netdevice. */
221	if (unlikely(skb->len > skb->dev->mtu)) {
222		err = -EMSGSIZE;
223		goto inval_skb;
224	}
225
226	if (unlikely(skb->dev->type != ARPHRD_CAN)) {
227		err = -EPERM;
228		goto inval_skb;
229	}
230
231	if (unlikely(!(skb->dev->flags & IFF_UP))) {
232		err = -ENETDOWN;
233		goto inval_skb;
234	}
235
236	skb->ip_summed = CHECKSUM_UNNECESSARY;
237
238	skb_reset_mac_header(skb);
239	skb_reset_network_header(skb);
240	skb_reset_transport_header(skb);
241
242	if (loop) {
243		/* local loopback of sent CAN frames */
244
245		/* indication for the CAN driver: do loopback */
246		skb->pkt_type = PACKET_LOOPBACK;
247
248		/* The reference to the originating sock may be required
249		 * by the receiving socket to check whether the frame is
250		 * its own. Example: can_raw sockopt CAN_RAW_RECV_OWN_MSGS
251		 * Therefore we have to ensure that skb->sk remains the
252		 * reference to the originating sock by restoring skb->sk
253		 * after each skb_clone() or skb_orphan() usage.
254		 */
255
256		if (!(skb->dev->flags & IFF_ECHO)) {
257			/* If the interface is not capable to do loopback
258			 * itself, we do it here.
259			 */
260			newskb = skb_clone(skb, GFP_ATOMIC);
261			if (!newskb) {
262				kfree_skb(skb);
263				return -ENOMEM;
264			}
265
266			can_skb_set_owner(newskb, skb->sk);
267			newskb->ip_summed = CHECKSUM_UNNECESSARY;
268			newskb->pkt_type = PACKET_BROADCAST;
269		}
270	} else {
271		/* indication for the CAN driver: no loopback required */
272		skb->pkt_type = PACKET_HOST;
273	}
274
275	/* send to netdevice */
276	err = dev_queue_xmit(skb);
277	if (err > 0)
278		err = net_xmit_errno(err);
279
280	if (err) {
281		kfree_skb(newskb);
282		return err;
283	}
284
285	if (newskb)
286		netif_rx(newskb);
287
288	/* update statistics */
289	pkg_stats->tx_frames++;
290	pkg_stats->tx_frames_delta++;
291
292	return 0;
293
294inval_skb:
295	kfree_skb(skb);
296	return err;
297}
298EXPORT_SYMBOL(can_send);
299
300/* af_can rx path */
301
302static struct can_dev_rcv_lists *can_dev_rcv_lists_find(struct net *net,
303							struct net_device *dev)
304{
305	if (dev) {
306		struct can_ml_priv *can_ml = can_get_ml_priv(dev);
307		return &can_ml->dev_rcv_lists;
308	} else {
309		return net->can.rx_alldev_list;
310	}
311}
312
313/**
314 * effhash - hash function for 29 bit CAN identifier reduction
315 * @can_id: 29 bit CAN identifier
316 *
317 * Description:
318 *  To reduce the linear traversal in one linked list of _single_ EFF CAN
319 *  frame subscriptions the 29 bit identifier is mapped to 10 bits.
320 *  (see CAN_EFF_RCV_HASH_BITS definition)
321 *
322 * Return:
323 *  Hash value from 0x000 - 0x3FF ( enforced by CAN_EFF_RCV_HASH_BITS mask )
324 */
325static unsigned int effhash(canid_t can_id)
326{
327	unsigned int hash;
328
329	hash = can_id;
330	hash ^= can_id >> CAN_EFF_RCV_HASH_BITS;
331	hash ^= can_id >> (2 * CAN_EFF_RCV_HASH_BITS);
332
333	return hash & ((1 << CAN_EFF_RCV_HASH_BITS) - 1);
334}
335
336/**
337 * can_rcv_list_find - determine optimal filterlist inside device filter struct
338 * @can_id: pointer to CAN identifier of a given can_filter
339 * @mask: pointer to CAN mask of a given can_filter
340 * @dev_rcv_lists: pointer to the device filter struct
341 *
342 * Description:
343 *  Returns the optimal filterlist to reduce the filter handling in the
344 *  receive path. This function is called by service functions that need
345 *  to register or unregister a can_filter in the filter lists.
346 *
347 *  A filter matches in general, when
348 *
349 *          <received_can_id> & mask == can_id & mask
350 *
351 *  so every bit set in the mask (even CAN_EFF_FLAG, CAN_RTR_FLAG) describe
352 *  relevant bits for the filter.
353 *
354 *  The filter can be inverted (CAN_INV_FILTER bit set in can_id) or it can
355 *  filter for error messages (CAN_ERR_FLAG bit set in mask). For error msg
356 *  frames there is a special filterlist and a special rx path filter handling.
357 *
358 * Return:
359 *  Pointer to optimal filterlist for the given can_id/mask pair.
360 *  Consistency checked mask.
361 *  Reduced can_id to have a preprocessed filter compare value.
362 */
363static struct hlist_head *can_rcv_list_find(canid_t *can_id, canid_t *mask,
364					    struct can_dev_rcv_lists *dev_rcv_lists)
365{
366	canid_t inv = *can_id & CAN_INV_FILTER; /* save flag before masking */
367
368	/* filter for error message frames in extra filterlist */
369	if (*mask & CAN_ERR_FLAG) {
370		/* clear CAN_ERR_FLAG in filter entry */
371		*mask &= CAN_ERR_MASK;
372		return &dev_rcv_lists->rx[RX_ERR];
373	}
374
375	/* with cleared CAN_ERR_FLAG we have a simple mask/value filterpair */
376
377#define CAN_EFF_RTR_FLAGS (CAN_EFF_FLAG | CAN_RTR_FLAG)
378
379	/* ensure valid values in can_mask for 'SFF only' frame filtering */
380	if ((*mask & CAN_EFF_FLAG) && !(*can_id & CAN_EFF_FLAG))
381		*mask &= (CAN_SFF_MASK | CAN_EFF_RTR_FLAGS);
382
383	/* reduce condition testing at receive time */
384	*can_id &= *mask;
385
386	/* inverse can_id/can_mask filter */
387	if (inv)
388		return &dev_rcv_lists->rx[RX_INV];
389
390	/* mask == 0 => no condition testing at receive time */
391	if (!(*mask))
392		return &dev_rcv_lists->rx[RX_ALL];
393
394	/* extra filterlists for the subscription of a single non-RTR can_id */
395	if (((*mask & CAN_EFF_RTR_FLAGS) == CAN_EFF_RTR_FLAGS) &&
396	    !(*can_id & CAN_RTR_FLAG)) {
397		if (*can_id & CAN_EFF_FLAG) {
398			if (*mask == (CAN_EFF_MASK | CAN_EFF_RTR_FLAGS))
399				return &dev_rcv_lists->rx_eff[effhash(*can_id)];
400		} else {
401			if (*mask == (CAN_SFF_MASK | CAN_EFF_RTR_FLAGS))
402				return &dev_rcv_lists->rx_sff[*can_id];
403		}
404	}
405
406	/* default: filter via can_id/can_mask */
407	return &dev_rcv_lists->rx[RX_FIL];
408}
409
410/**
411 * can_rx_register - subscribe CAN frames from a specific interface
412 * @net: the applicable net namespace
413 * @dev: pointer to netdevice (NULL => subscribe from 'all' CAN devices list)
414 * @can_id: CAN identifier (see description)
415 * @mask: CAN mask (see description)
416 * @func: callback function on filter match
417 * @data: returned parameter for callback function
418 * @ident: string for calling module identification
419 * @sk: socket pointer (might be NULL)
420 *
421 * Description:
422 *  Invokes the callback function with the received sk_buff and the given
423 *  parameter 'data' on a matching receive filter. A filter matches, when
424 *
425 *          <received_can_id> & mask == can_id & mask
426 *
427 *  The filter can be inverted (CAN_INV_FILTER bit set in can_id) or it can
428 *  filter for error message frames (CAN_ERR_FLAG bit set in mask).
429 *
430 *  The provided pointer to the sk_buff is guaranteed to be valid as long as
431 *  the callback function is running. The callback function must *not* free
432 *  the given sk_buff while processing it's task. When the given sk_buff is
433 *  needed after the end of the callback function it must be cloned inside
434 *  the callback function with skb_clone().
435 *
436 * Return:
437 *  0 on success
438 *  -ENOMEM on missing cache mem to create subscription entry
439 *  -ENODEV unknown device
440 */
441int can_rx_register(struct net *net, struct net_device *dev, canid_t can_id,
442		    canid_t mask, void (*func)(struct sk_buff *, void *),
443		    void *data, char *ident, struct sock *sk)
444{
445	struct receiver *rcv;
446	struct hlist_head *rcv_list;
447	struct can_dev_rcv_lists *dev_rcv_lists;
448	struct can_rcv_lists_stats *rcv_lists_stats = net->can.rcv_lists_stats;
449
450	/* insert new receiver  (dev,canid,mask) -> (func,data) */
451
452	if (dev && (dev->type != ARPHRD_CAN || !can_get_ml_priv(dev)))
453		return -ENODEV;
454
455	if (dev && !net_eq(net, dev_net(dev)))
456		return -ENODEV;
457
458	rcv = kmem_cache_alloc(rcv_cache, GFP_KERNEL);
459	if (!rcv)
460		return -ENOMEM;
461
462	spin_lock_bh(&net->can.rcvlists_lock);
463
464	dev_rcv_lists = can_dev_rcv_lists_find(net, dev);
465	rcv_list = can_rcv_list_find(&can_id, &mask, dev_rcv_lists);
466
467	rcv->can_id = can_id;
468	rcv->mask = mask;
469	rcv->matches = 0;
470	rcv->func = func;
471	rcv->data = data;
472	rcv->ident = ident;
473	rcv->sk = sk;
474
475	hlist_add_head_rcu(&rcv->list, rcv_list);
476	dev_rcv_lists->entries++;
477
478	rcv_lists_stats->rcv_entries++;
479	rcv_lists_stats->rcv_entries_max = max(rcv_lists_stats->rcv_entries_max,
480					       rcv_lists_stats->rcv_entries);
481	spin_unlock_bh(&net->can.rcvlists_lock);
482
483	return 0;
484}
485EXPORT_SYMBOL(can_rx_register);
486
487/* can_rx_delete_receiver - rcu callback for single receiver entry removal */
488static void can_rx_delete_receiver(struct rcu_head *rp)
489{
490	struct receiver *rcv = container_of(rp, struct receiver, rcu);
491	struct sock *sk = rcv->sk;
492
493	kmem_cache_free(rcv_cache, rcv);
494	if (sk)
495		sock_put(sk);
496}
497
498/**
499 * can_rx_unregister - unsubscribe CAN frames from a specific interface
500 * @net: the applicable net namespace
501 * @dev: pointer to netdevice (NULL => unsubscribe from 'all' CAN devices list)
502 * @can_id: CAN identifier
503 * @mask: CAN mask
504 * @func: callback function on filter match
505 * @data: returned parameter for callback function
506 *
507 * Description:
508 *  Removes subscription entry depending on given (subscription) values.
509 */
510void can_rx_unregister(struct net *net, struct net_device *dev, canid_t can_id,
511		       canid_t mask, void (*func)(struct sk_buff *, void *),
512		       void *data)
513{
514	struct receiver *rcv = NULL;
515	struct hlist_head *rcv_list;
516	struct can_rcv_lists_stats *rcv_lists_stats = net->can.rcv_lists_stats;
517	struct can_dev_rcv_lists *dev_rcv_lists;
518
519	if (dev && dev->type != ARPHRD_CAN)
520		return;
521
522	if (dev && !net_eq(net, dev_net(dev)))
523		return;
524
525	spin_lock_bh(&net->can.rcvlists_lock);
526
527	dev_rcv_lists = can_dev_rcv_lists_find(net, dev);
528	rcv_list = can_rcv_list_find(&can_id, &mask, dev_rcv_lists);
529
530	/* Search the receiver list for the item to delete.  This should
531	 * exist, since no receiver may be unregistered that hasn't
532	 * been registered before.
533	 */
534	hlist_for_each_entry_rcu(rcv, rcv_list, list) {
535		if (rcv->can_id == can_id && rcv->mask == mask &&
536		    rcv->func == func && rcv->data == data)
537			break;
538	}
539
540	/* Check for bugs in CAN protocol implementations using af_can.c:
541	 * 'rcv' will be NULL if no matching list item was found for removal.
542	 * As this case may potentially happen when closing a socket while
543	 * the notifier for removing the CAN netdev is running we just print
544	 * a warning here.
545	 */
546	if (!rcv) {
547		pr_warn("can: receive list entry not found for dev %s, id %03X, mask %03X\n",
548			DNAME(dev), can_id, mask);
549		goto out;
550	}
551
552	hlist_del_rcu(&rcv->list);
553	dev_rcv_lists->entries--;
554
555	if (rcv_lists_stats->rcv_entries > 0)
556		rcv_lists_stats->rcv_entries--;
557
558 out:
559	spin_unlock_bh(&net->can.rcvlists_lock);
560
561	/* schedule the receiver item for deletion */
562	if (rcv) {
563		if (rcv->sk)
564			sock_hold(rcv->sk);
565		call_rcu(&rcv->rcu, can_rx_delete_receiver);
566	}
567}
568EXPORT_SYMBOL(can_rx_unregister);
569
570static inline void deliver(struct sk_buff *skb, struct receiver *rcv)
571{
572	rcv->func(skb, rcv->data);
573	rcv->matches++;
574}
575
576static int can_rcv_filter(struct can_dev_rcv_lists *dev_rcv_lists, struct sk_buff *skb)
577{
578	struct receiver *rcv;
579	int matches = 0;
580	struct can_frame *cf = (struct can_frame *)skb->data;
581	canid_t can_id = cf->can_id;
582
583	if (dev_rcv_lists->entries == 0)
584		return 0;
585
586	if (can_id & CAN_ERR_FLAG) {
587		/* check for error message frame entries only */
588		hlist_for_each_entry_rcu(rcv, &dev_rcv_lists->rx[RX_ERR], list) {
589			if (can_id & rcv->mask) {
590				deliver(skb, rcv);
591				matches++;
592			}
593		}
594		return matches;
595	}
596
597	/* check for unfiltered entries */
598	hlist_for_each_entry_rcu(rcv, &dev_rcv_lists->rx[RX_ALL], list) {
599		deliver(skb, rcv);
600		matches++;
601	}
602
603	/* check for can_id/mask entries */
604	hlist_for_each_entry_rcu(rcv, &dev_rcv_lists->rx[RX_FIL], list) {
605		if ((can_id & rcv->mask) == rcv->can_id) {
606			deliver(skb, rcv);
607			matches++;
608		}
609	}
610
611	/* check for inverted can_id/mask entries */
612	hlist_for_each_entry_rcu(rcv, &dev_rcv_lists->rx[RX_INV], list) {
613		if ((can_id & rcv->mask) != rcv->can_id) {
614			deliver(skb, rcv);
615			matches++;
616		}
617	}
618
619	/* check filterlists for single non-RTR can_ids */
620	if (can_id & CAN_RTR_FLAG)
621		return matches;
622
623	if (can_id & CAN_EFF_FLAG) {
624		hlist_for_each_entry_rcu(rcv, &dev_rcv_lists->rx_eff[effhash(can_id)], list) {
625			if (rcv->can_id == can_id) {
626				deliver(skb, rcv);
627				matches++;
628			}
629		}
630	} else {
631		can_id &= CAN_SFF_MASK;
632		hlist_for_each_entry_rcu(rcv, &dev_rcv_lists->rx_sff[can_id], list) {
633			deliver(skb, rcv);
634			matches++;
635		}
636	}
637
638	return matches;
639}
640
641static void can_receive(struct sk_buff *skb, struct net_device *dev)
642{
643	struct can_dev_rcv_lists *dev_rcv_lists;
644	struct net *net = dev_net(dev);
645	struct can_pkg_stats *pkg_stats = net->can.pkg_stats;
646	int matches;
647
648	/* update statistics */
649	pkg_stats->rx_frames++;
650	pkg_stats->rx_frames_delta++;
651
652	/* create non-zero unique skb identifier together with *skb */
653	while (!(can_skb_prv(skb)->skbcnt))
654		can_skb_prv(skb)->skbcnt = atomic_inc_return(&skbcounter);
655
656	rcu_read_lock();
657
658	/* deliver the packet to sockets listening on all devices */
659	matches = can_rcv_filter(net->can.rx_alldev_list, skb);
660
661	/* find receive list for this device */
662	dev_rcv_lists = can_dev_rcv_lists_find(net, dev);
663	matches += can_rcv_filter(dev_rcv_lists, skb);
664
665	rcu_read_unlock();
666
667	/* consume the skbuff allocated by the netdevice driver */
668	consume_skb(skb);
669
670	if (matches > 0) {
671		pkg_stats->matches++;
672		pkg_stats->matches_delta++;
673	}
674}
675
676static int can_rcv(struct sk_buff *skb, struct net_device *dev,
677		   struct packet_type *pt, struct net_device *orig_dev)
678{
679	if (unlikely(dev->type != ARPHRD_CAN || !can_get_ml_priv(dev) || !can_is_can_skb(skb))) {
680		pr_warn_once("PF_CAN: dropped non conform CAN skbuff: dev type %d, len %d\n",
681			     dev->type, skb->len);
682
683		kfree_skb(skb);
684		return NET_RX_DROP;
685	}
686
687	can_receive(skb, dev);
688	return NET_RX_SUCCESS;
689}
690
691static int canfd_rcv(struct sk_buff *skb, struct net_device *dev,
692		     struct packet_type *pt, struct net_device *orig_dev)
693{
694	if (unlikely(dev->type != ARPHRD_CAN || !can_get_ml_priv(dev) || !can_is_canfd_skb(skb))) {
695		pr_warn_once("PF_CAN: dropped non conform CAN FD skbuff: dev type %d, len %d\n",
696			     dev->type, skb->len);
697
698		kfree_skb(skb);
699		return NET_RX_DROP;
700	}
701
702	can_receive(skb, dev);
703	return NET_RX_SUCCESS;
704}
705
706static int canxl_rcv(struct sk_buff *skb, struct net_device *dev,
707		     struct packet_type *pt, struct net_device *orig_dev)
708{
709	if (unlikely(dev->type != ARPHRD_CAN || !can_get_ml_priv(dev) || !can_is_canxl_skb(skb))) {
710		pr_warn_once("PF_CAN: dropped non conform CAN XL skbuff: dev type %d, len %d\n",
711			     dev->type, skb->len);
712
713		kfree_skb(skb);
714		return NET_RX_DROP;
715	}
716
717	can_receive(skb, dev);
718	return NET_RX_SUCCESS;
719}
720
721/* af_can protocol functions */
722
723/**
724 * can_proto_register - register CAN transport protocol
725 * @cp: pointer to CAN protocol structure
726 *
727 * Return:
728 *  0 on success
729 *  -EINVAL invalid (out of range) protocol number
730 *  -EBUSY  protocol already in use
731 *  -ENOBUF if proto_register() fails
732 */
733int can_proto_register(const struct can_proto *cp)
734{
735	int proto = cp->protocol;
736	int err = 0;
737
738	if (proto < 0 || proto >= CAN_NPROTO) {
739		pr_err("can: protocol number %d out of range\n", proto);
740		return -EINVAL;
741	}
742
743	err = proto_register(cp->prot, 0);
744	if (err < 0)
745		return err;
746
747	mutex_lock(&proto_tab_lock);
748
749	if (rcu_access_pointer(proto_tab[proto])) {
750		pr_err("can: protocol %d already registered\n", proto);
751		err = -EBUSY;
752	} else {
753		RCU_INIT_POINTER(proto_tab[proto], cp);
754	}
755
756	mutex_unlock(&proto_tab_lock);
757
758	if (err < 0)
759		proto_unregister(cp->prot);
760
761	return err;
762}
763EXPORT_SYMBOL(can_proto_register);
764
765/**
766 * can_proto_unregister - unregister CAN transport protocol
767 * @cp: pointer to CAN protocol structure
768 */
769void can_proto_unregister(const struct can_proto *cp)
770{
771	int proto = cp->protocol;
772
773	mutex_lock(&proto_tab_lock);
774	BUG_ON(rcu_access_pointer(proto_tab[proto]) != cp);
775	RCU_INIT_POINTER(proto_tab[proto], NULL);
776	mutex_unlock(&proto_tab_lock);
777
778	synchronize_rcu();
779
780	proto_unregister(cp->prot);
781}
782EXPORT_SYMBOL(can_proto_unregister);
783
784static int can_pernet_init(struct net *net)
785{
786	spin_lock_init(&net->can.rcvlists_lock);
787	net->can.rx_alldev_list =
788		kzalloc(sizeof(*net->can.rx_alldev_list), GFP_KERNEL);
789	if (!net->can.rx_alldev_list)
790		goto out;
791	net->can.pkg_stats = kzalloc(sizeof(*net->can.pkg_stats), GFP_KERNEL);
792	if (!net->can.pkg_stats)
793		goto out_free_rx_alldev_list;
794	net->can.rcv_lists_stats = kzalloc(sizeof(*net->can.rcv_lists_stats), GFP_KERNEL);
795	if (!net->can.rcv_lists_stats)
796		goto out_free_pkg_stats;
797
798	if (IS_ENABLED(CONFIG_PROC_FS)) {
799		/* the statistics are updated every second (timer triggered) */
800		if (stats_timer) {
801			timer_setup(&net->can.stattimer, can_stat_update,
802				    0);
803			mod_timer(&net->can.stattimer,
804				  round_jiffies(jiffies + HZ));
805		}
806		net->can.pkg_stats->jiffies_init = jiffies;
807		can_init_proc(net);
808	}
809
810	return 0;
811
812 out_free_pkg_stats:
813	kfree(net->can.pkg_stats);
814 out_free_rx_alldev_list:
815	kfree(net->can.rx_alldev_list);
816 out:
817	return -ENOMEM;
818}
819
820static void can_pernet_exit(struct net *net)
821{
822	if (IS_ENABLED(CONFIG_PROC_FS)) {
823		can_remove_proc(net);
824		if (stats_timer)
825			del_timer_sync(&net->can.stattimer);
826	}
827
828	kfree(net->can.rx_alldev_list);
829	kfree(net->can.pkg_stats);
830	kfree(net->can.rcv_lists_stats);
831}
832
833/* af_can module init/exit functions */
834
835static struct packet_type can_packet __read_mostly = {
836	.type = cpu_to_be16(ETH_P_CAN),
837	.func = can_rcv,
838};
839
840static struct packet_type canfd_packet __read_mostly = {
841	.type = cpu_to_be16(ETH_P_CANFD),
842	.func = canfd_rcv,
843};
844
845static struct packet_type canxl_packet __read_mostly = {
846	.type = cpu_to_be16(ETH_P_CANXL),
847	.func = canxl_rcv,
848};
849
850static const struct net_proto_family can_family_ops = {
851	.family = PF_CAN,
852	.create = can_create,
853	.owner  = THIS_MODULE,
854};
855
856static struct pernet_operations can_pernet_ops __read_mostly = {
857	.init = can_pernet_init,
858	.exit = can_pernet_exit,
859};
860
861static __init int can_init(void)
862{
863	int err;
864
865	/* check for correct padding to be able to use the structs similarly */
866	BUILD_BUG_ON(offsetof(struct can_frame, len) !=
867		     offsetof(struct canfd_frame, len) ||
868		     offsetof(struct can_frame, len) !=
869		     offsetof(struct canxl_frame, flags) ||
870		     offsetof(struct can_frame, data) !=
871		     offsetof(struct canfd_frame, data));
872
873	pr_info("can: controller area network core\n");
874
875	rcv_cache = kmem_cache_create("can_receiver", sizeof(struct receiver),
876				      0, 0, NULL);
877	if (!rcv_cache)
878		return -ENOMEM;
879
880	err = register_pernet_subsys(&can_pernet_ops);
881	if (err)
882		goto out_pernet;
883
884	/* protocol register */
885	err = sock_register(&can_family_ops);
886	if (err)
887		goto out_sock;
888
889	dev_add_pack(&can_packet);
890	dev_add_pack(&canfd_packet);
891	dev_add_pack(&canxl_packet);
892
893	return 0;
894
895out_sock:
896	unregister_pernet_subsys(&can_pernet_ops);
897out_pernet:
898	kmem_cache_destroy(rcv_cache);
899
900	return err;
901}
902
903static __exit void can_exit(void)
904{
905	/* protocol unregister */
906	dev_remove_pack(&canxl_packet);
907	dev_remove_pack(&canfd_packet);
908	dev_remove_pack(&can_packet);
909	sock_unregister(PF_CAN);
910
911	unregister_pernet_subsys(&can_pernet_ops);
912
913	rcu_barrier(); /* Wait for completion of call_rcu()'s */
914
915	kmem_cache_destroy(rcv_cache);
916}
917
918module_init(can_init);
919module_exit(can_exit);
920