1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 *	AARP:		An implementation of the AppleTalk AARP protocol for
4 *			Ethernet 'ELAP'.
5 *
6 *		Alan Cox  <Alan.Cox@linux.org>
7 *
8 *	This doesn't fit cleanly with the IP arp. Potentially we can use
9 *	the generic neighbour discovery code to clean this up.
10 *
11 *	FIXME:
12 *		We ought to handle the retransmits with a single list and a
13 *	separate fast timer for when it is needed.
14 *		Use neighbour discovery code.
15 *		Token Ring Support.
16 *
17 *	References:
18 *		Inside AppleTalk (2nd Ed).
19 *	Fixes:
20 *		Jaume Grau	-	flush caches on AARP_PROBE
21 *		Rob Newberry	-	Added proxy AARP and AARP proc fs,
22 *					moved probing from DDP module.
23 *		Arnaldo C. Melo -	don't mangle rx packets
24 */
25
26#include <linux/if_arp.h>
27#include <linux/slab.h>
28#include <net/sock.h>
29#include <net/datalink.h>
30#include <net/psnap.h>
31#include <linux/atalk.h>
32#include <linux/delay.h>
33#include <linux/init.h>
34#include <linux/proc_fs.h>
35#include <linux/seq_file.h>
36#include <linux/export.h>
37#include <linux/etherdevice.h>
38
39int sysctl_aarp_expiry_time = AARP_EXPIRY_TIME;
40int sysctl_aarp_tick_time = AARP_TICK_TIME;
41int sysctl_aarp_retransmit_limit = AARP_RETRANSMIT_LIMIT;
42int sysctl_aarp_resolve_time = AARP_RESOLVE_TIME;
43
44/* Lists of aarp entries */
45/**
46 *	struct aarp_entry - AARP entry
47 *	@last_sent: Last time we xmitted the aarp request
48 *	@packet_queue: Queue of frames wait for resolution
49 *	@status: Used for proxy AARP
50 *	@expires_at: Entry expiry time
51 *	@target_addr: DDP Address
52 *	@dev:  Device to use
53 *	@hwaddr:  Physical i/f address of target/router
54 *	@xmit_count:  When this hits 10 we give up
55 *	@next: Next entry in chain
56 */
57struct aarp_entry {
58	/* These first two are only used for unresolved entries */
59	unsigned long		last_sent;
60	struct sk_buff_head	packet_queue;
61	int			status;
62	unsigned long		expires_at;
63	struct atalk_addr	target_addr;
64	struct net_device	*dev;
65	char			hwaddr[ETH_ALEN];
66	unsigned short		xmit_count;
67	struct aarp_entry	*next;
68};
69
70/* Hashed list of resolved, unresolved and proxy entries */
71static struct aarp_entry *resolved[AARP_HASH_SIZE];
72static struct aarp_entry *unresolved[AARP_HASH_SIZE];
73static struct aarp_entry *proxies[AARP_HASH_SIZE];
74static int unresolved_count;
75
76/* One lock protects it all. */
77static DEFINE_RWLOCK(aarp_lock);
78
79/* Used to walk the list and purge/kick entries.  */
80static struct timer_list aarp_timer;
81
82/*
83 *	Delete an aarp queue
84 *
85 *	Must run under aarp_lock.
86 */
87static void __aarp_expire(struct aarp_entry *a)
88{
89	skb_queue_purge(&a->packet_queue);
90	kfree(a);
91}
92
93/*
94 *	Send an aarp queue entry request
95 *
96 *	Must run under aarp_lock.
97 */
98static void __aarp_send_query(struct aarp_entry *a)
99{
100	static unsigned char aarp_eth_multicast[ETH_ALEN] =
101					{ 0x09, 0x00, 0x07, 0xFF, 0xFF, 0xFF };
102	struct net_device *dev = a->dev;
103	struct elapaarp *eah;
104	int len = dev->hard_header_len + sizeof(*eah) + aarp_dl->header_length;
105	struct sk_buff *skb = alloc_skb(len, GFP_ATOMIC);
106	struct atalk_addr *sat = atalk_find_dev_addr(dev);
107
108	if (!skb)
109		return;
110
111	if (!sat) {
112		kfree_skb(skb);
113		return;
114	}
115
116	/* Set up the buffer */
117	skb_reserve(skb, dev->hard_header_len + aarp_dl->header_length);
118	skb_reset_network_header(skb);
119	skb_reset_transport_header(skb);
120	skb_put(skb, sizeof(*eah));
121	skb->protocol    = htons(ETH_P_ATALK);
122	skb->dev	 = dev;
123	eah		 = aarp_hdr(skb);
124
125	/* Set up the ARP */
126	eah->hw_type	 = htons(AARP_HW_TYPE_ETHERNET);
127	eah->pa_type	 = htons(ETH_P_ATALK);
128	eah->hw_len	 = ETH_ALEN;
129	eah->pa_len	 = AARP_PA_ALEN;
130	eah->function	 = htons(AARP_REQUEST);
131
132	ether_addr_copy(eah->hw_src, dev->dev_addr);
133
134	eah->pa_src_zero = 0;
135	eah->pa_src_net	 = sat->s_net;
136	eah->pa_src_node = sat->s_node;
137
138	eth_zero_addr(eah->hw_dst);
139
140	eah->pa_dst_zero = 0;
141	eah->pa_dst_net	 = a->target_addr.s_net;
142	eah->pa_dst_node = a->target_addr.s_node;
143
144	/* Send it */
145	aarp_dl->request(aarp_dl, skb, aarp_eth_multicast);
146	/* Update the sending count */
147	a->xmit_count++;
148	a->last_sent = jiffies;
149}
150
151/* This runs under aarp_lock and in softint context, so only atomic memory
152 * allocations can be used. */
153static void aarp_send_reply(struct net_device *dev, struct atalk_addr *us,
154			    struct atalk_addr *them, unsigned char *sha)
155{
156	struct elapaarp *eah;
157	int len = dev->hard_header_len + sizeof(*eah) + aarp_dl->header_length;
158	struct sk_buff *skb = alloc_skb(len, GFP_ATOMIC);
159
160	if (!skb)
161		return;
162
163	/* Set up the buffer */
164	skb_reserve(skb, dev->hard_header_len + aarp_dl->header_length);
165	skb_reset_network_header(skb);
166	skb_reset_transport_header(skb);
167	skb_put(skb, sizeof(*eah));
168	skb->protocol    = htons(ETH_P_ATALK);
169	skb->dev	 = dev;
170	eah		 = aarp_hdr(skb);
171
172	/* Set up the ARP */
173	eah->hw_type	 = htons(AARP_HW_TYPE_ETHERNET);
174	eah->pa_type	 = htons(ETH_P_ATALK);
175	eah->hw_len	 = ETH_ALEN;
176	eah->pa_len	 = AARP_PA_ALEN;
177	eah->function	 = htons(AARP_REPLY);
178
179	ether_addr_copy(eah->hw_src, dev->dev_addr);
180
181	eah->pa_src_zero = 0;
182	eah->pa_src_net	 = us->s_net;
183	eah->pa_src_node = us->s_node;
184
185	if (!sha)
186		eth_zero_addr(eah->hw_dst);
187	else
188		ether_addr_copy(eah->hw_dst, sha);
189
190	eah->pa_dst_zero = 0;
191	eah->pa_dst_net	 = them->s_net;
192	eah->pa_dst_node = them->s_node;
193
194	/* Send it */
195	aarp_dl->request(aarp_dl, skb, sha);
196}
197
198/*
199 *	Send probe frames. Called from aarp_probe_network and
200 *	aarp_proxy_probe_network.
201 */
202
203static void aarp_send_probe(struct net_device *dev, struct atalk_addr *us)
204{
205	struct elapaarp *eah;
206	int len = dev->hard_header_len + sizeof(*eah) + aarp_dl->header_length;
207	struct sk_buff *skb = alloc_skb(len, GFP_ATOMIC);
208	static unsigned char aarp_eth_multicast[ETH_ALEN] =
209					{ 0x09, 0x00, 0x07, 0xFF, 0xFF, 0xFF };
210
211	if (!skb)
212		return;
213
214	/* Set up the buffer */
215	skb_reserve(skb, dev->hard_header_len + aarp_dl->header_length);
216	skb_reset_network_header(skb);
217	skb_reset_transport_header(skb);
218	skb_put(skb, sizeof(*eah));
219	skb->protocol    = htons(ETH_P_ATALK);
220	skb->dev	 = dev;
221	eah		 = aarp_hdr(skb);
222
223	/* Set up the ARP */
224	eah->hw_type	 = htons(AARP_HW_TYPE_ETHERNET);
225	eah->pa_type	 = htons(ETH_P_ATALK);
226	eah->hw_len	 = ETH_ALEN;
227	eah->pa_len	 = AARP_PA_ALEN;
228	eah->function	 = htons(AARP_PROBE);
229
230	ether_addr_copy(eah->hw_src, dev->dev_addr);
231
232	eah->pa_src_zero = 0;
233	eah->pa_src_net	 = us->s_net;
234	eah->pa_src_node = us->s_node;
235
236	eth_zero_addr(eah->hw_dst);
237
238	eah->pa_dst_zero = 0;
239	eah->pa_dst_net	 = us->s_net;
240	eah->pa_dst_node = us->s_node;
241
242	/* Send it */
243	aarp_dl->request(aarp_dl, skb, aarp_eth_multicast);
244}
245
246/*
247 *	Handle an aarp timer expire
248 *
249 *	Must run under the aarp_lock.
250 */
251
252static void __aarp_expire_timer(struct aarp_entry **n)
253{
254	struct aarp_entry *t;
255
256	while (*n)
257		/* Expired ? */
258		if (time_after(jiffies, (*n)->expires_at)) {
259			t = *n;
260			*n = (*n)->next;
261			__aarp_expire(t);
262		} else
263			n = &((*n)->next);
264}
265
266/*
267 *	Kick all pending requests 5 times a second.
268 *
269 *	Must run under the aarp_lock.
270 */
271static void __aarp_kick(struct aarp_entry **n)
272{
273	struct aarp_entry *t;
274
275	while (*n)
276		/* Expired: if this will be the 11th tx, we delete instead. */
277		if ((*n)->xmit_count >= sysctl_aarp_retransmit_limit) {
278			t = *n;
279			*n = (*n)->next;
280			__aarp_expire(t);
281		} else {
282			__aarp_send_query(*n);
283			n = &((*n)->next);
284		}
285}
286
287/*
288 *	A device has gone down. Take all entries referring to the device
289 *	and remove them.
290 *
291 *	Must run under the aarp_lock.
292 */
293static void __aarp_expire_device(struct aarp_entry **n, struct net_device *dev)
294{
295	struct aarp_entry *t;
296
297	while (*n)
298		if ((*n)->dev == dev) {
299			t = *n;
300			*n = (*n)->next;
301			__aarp_expire(t);
302		} else
303			n = &((*n)->next);
304}
305
306/* Handle the timer event */
307static void aarp_expire_timeout(struct timer_list *unused)
308{
309	int ct;
310
311	write_lock_bh(&aarp_lock);
312
313	for (ct = 0; ct < AARP_HASH_SIZE; ct++) {
314		__aarp_expire_timer(&resolved[ct]);
315		__aarp_kick(&unresolved[ct]);
316		__aarp_expire_timer(&unresolved[ct]);
317		__aarp_expire_timer(&proxies[ct]);
318	}
319
320	write_unlock_bh(&aarp_lock);
321	mod_timer(&aarp_timer, jiffies +
322			       (unresolved_count ? sysctl_aarp_tick_time :
323				sysctl_aarp_expiry_time));
324}
325
326/* Network device notifier chain handler. */
327static int aarp_device_event(struct notifier_block *this, unsigned long event,
328			     void *ptr)
329{
330	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
331	int ct;
332
333	if (!net_eq(dev_net(dev), &init_net))
334		return NOTIFY_DONE;
335
336	if (event == NETDEV_DOWN) {
337		write_lock_bh(&aarp_lock);
338
339		for (ct = 0; ct < AARP_HASH_SIZE; ct++) {
340			__aarp_expire_device(&resolved[ct], dev);
341			__aarp_expire_device(&unresolved[ct], dev);
342			__aarp_expire_device(&proxies[ct], dev);
343		}
344
345		write_unlock_bh(&aarp_lock);
346	}
347	return NOTIFY_DONE;
348}
349
350/* Expire all entries in a hash chain */
351static void __aarp_expire_all(struct aarp_entry **n)
352{
353	struct aarp_entry *t;
354
355	while (*n) {
356		t = *n;
357		*n = (*n)->next;
358		__aarp_expire(t);
359	}
360}
361
362/* Cleanup all hash chains -- module unloading */
363static void aarp_purge(void)
364{
365	int ct;
366
367	write_lock_bh(&aarp_lock);
368	for (ct = 0; ct < AARP_HASH_SIZE; ct++) {
369		__aarp_expire_all(&resolved[ct]);
370		__aarp_expire_all(&unresolved[ct]);
371		__aarp_expire_all(&proxies[ct]);
372	}
373	write_unlock_bh(&aarp_lock);
374}
375
376/*
377 *	Create a new aarp entry.  This must use GFP_ATOMIC because it
378 *	runs while holding spinlocks.
379 */
380static struct aarp_entry *aarp_alloc(void)
381{
382	struct aarp_entry *a = kmalloc(sizeof(*a), GFP_ATOMIC);
383
384	if (a)
385		skb_queue_head_init(&a->packet_queue);
386	return a;
387}
388
389/*
390 * Find an entry. We might return an expired but not yet purged entry. We
391 * don't care as it will do no harm.
392 *
393 * This must run under the aarp_lock.
394 */
395static struct aarp_entry *__aarp_find_entry(struct aarp_entry *list,
396					    struct net_device *dev,
397					    struct atalk_addr *sat)
398{
399	while (list) {
400		if (list->target_addr.s_net == sat->s_net &&
401		    list->target_addr.s_node == sat->s_node &&
402		    list->dev == dev)
403			break;
404		list = list->next;
405	}
406
407	return list;
408}
409
410/* Called from the DDP code, and thus must be exported. */
411void aarp_proxy_remove(struct net_device *dev, struct atalk_addr *sa)
412{
413	int hash = sa->s_node % (AARP_HASH_SIZE - 1);
414	struct aarp_entry *a;
415
416	write_lock_bh(&aarp_lock);
417
418	a = __aarp_find_entry(proxies[hash], dev, sa);
419	if (a)
420		a->expires_at = jiffies - 1;
421
422	write_unlock_bh(&aarp_lock);
423}
424
425/* This must run under aarp_lock. */
426static struct atalk_addr *__aarp_proxy_find(struct net_device *dev,
427					    struct atalk_addr *sa)
428{
429	int hash = sa->s_node % (AARP_HASH_SIZE - 1);
430	struct aarp_entry *a = __aarp_find_entry(proxies[hash], dev, sa);
431
432	return a ? sa : NULL;
433}
434
435/*
436 * Probe a Phase 1 device or a device that requires its Net:Node to
437 * be set via an ioctl.
438 */
439static void aarp_send_probe_phase1(struct atalk_iface *iface)
440{
441	struct ifreq atreq;
442	struct sockaddr_at *sa = (struct sockaddr_at *)&atreq.ifr_addr;
443	const struct net_device_ops *ops = iface->dev->netdev_ops;
444
445	sa->sat_addr.s_node = iface->address.s_node;
446	sa->sat_addr.s_net = ntohs(iface->address.s_net);
447
448	/* We pass the Net:Node to the drivers/cards by a Device ioctl. */
449	if (!(ops->ndo_do_ioctl(iface->dev, &atreq, SIOCSIFADDR))) {
450		ops->ndo_do_ioctl(iface->dev, &atreq, SIOCGIFADDR);
451		if (iface->address.s_net != htons(sa->sat_addr.s_net) ||
452		    iface->address.s_node != sa->sat_addr.s_node)
453			iface->status |= ATIF_PROBE_FAIL;
454
455		iface->address.s_net  = htons(sa->sat_addr.s_net);
456		iface->address.s_node = sa->sat_addr.s_node;
457	}
458}
459
460
461void aarp_probe_network(struct atalk_iface *atif)
462{
463	if (atif->dev->type == ARPHRD_LOCALTLK ||
464	    atif->dev->type == ARPHRD_PPP)
465		aarp_send_probe_phase1(atif);
466	else {
467		unsigned int count;
468
469		for (count = 0; count < AARP_RETRANSMIT_LIMIT; count++) {
470			aarp_send_probe(atif->dev, &atif->address);
471
472			/* Defer 1/10th */
473			msleep(100);
474
475			if (atif->status & ATIF_PROBE_FAIL)
476				break;
477		}
478	}
479}
480
481int aarp_proxy_probe_network(struct atalk_iface *atif, struct atalk_addr *sa)
482{
483	int hash, retval = -EPROTONOSUPPORT;
484	struct aarp_entry *entry;
485	unsigned int count;
486
487	/*
488	 * we don't currently support LocalTalk or PPP for proxy AARP;
489	 * if someone wants to try and add it, have fun
490	 */
491	if (atif->dev->type == ARPHRD_LOCALTLK ||
492	    atif->dev->type == ARPHRD_PPP)
493		goto out;
494
495	/*
496	 * create a new AARP entry with the flags set to be published --
497	 * we need this one to hang around even if it's in use
498	 */
499	entry = aarp_alloc();
500	retval = -ENOMEM;
501	if (!entry)
502		goto out;
503
504	entry->expires_at = -1;
505	entry->status = ATIF_PROBE;
506	entry->target_addr.s_node = sa->s_node;
507	entry->target_addr.s_net = sa->s_net;
508	entry->dev = atif->dev;
509
510	write_lock_bh(&aarp_lock);
511
512	hash = sa->s_node % (AARP_HASH_SIZE - 1);
513	entry->next = proxies[hash];
514	proxies[hash] = entry;
515
516	for (count = 0; count < AARP_RETRANSMIT_LIMIT; count++) {
517		aarp_send_probe(atif->dev, sa);
518
519		/* Defer 1/10th */
520		write_unlock_bh(&aarp_lock);
521		msleep(100);
522		write_lock_bh(&aarp_lock);
523
524		if (entry->status & ATIF_PROBE_FAIL)
525			break;
526	}
527
528	if (entry->status & ATIF_PROBE_FAIL) {
529		entry->expires_at = jiffies - 1; /* free the entry */
530		retval = -EADDRINUSE; /* return network full */
531	} else { /* clear the probing flag */
532		entry->status &= ~ATIF_PROBE;
533		retval = 1;
534	}
535
536	write_unlock_bh(&aarp_lock);
537out:
538	return retval;
539}
540
541/* Send a DDP frame */
542int aarp_send_ddp(struct net_device *dev, struct sk_buff *skb,
543		  struct atalk_addr *sa, void *hwaddr)
544{
545	static char ddp_eth_multicast[ETH_ALEN] =
546		{ 0x09, 0x00, 0x07, 0xFF, 0xFF, 0xFF };
547	int hash;
548	struct aarp_entry *a;
549
550	skb_reset_network_header(skb);
551
552	/* Check for LocalTalk first */
553	if (dev->type == ARPHRD_LOCALTLK) {
554		struct atalk_addr *at = atalk_find_dev_addr(dev);
555		struct ddpehdr *ddp = (struct ddpehdr *)skb->data;
556		int ft = 2;
557
558		/*
559		 * Compressible ?
560		 *
561		 * IFF: src_net == dest_net == device_net
562		 * (zero matches anything)
563		 */
564
565		if ((!ddp->deh_snet || at->s_net == ddp->deh_snet) &&
566		    (!ddp->deh_dnet || at->s_net == ddp->deh_dnet)) {
567			skb_pull(skb, sizeof(*ddp) - 4);
568
569			/*
570			 *	The upper two remaining bytes are the port
571			 *	numbers	we just happen to need. Now put the
572			 *	length in the lower two.
573			 */
574			*((__be16 *)skb->data) = htons(skb->len);
575			ft = 1;
576		}
577		/*
578		 * Nice and easy. No AARP type protocols occur here so we can
579		 * just shovel it out with a 3 byte LLAP header
580		 */
581
582		skb_push(skb, 3);
583		skb->data[0] = sa->s_node;
584		skb->data[1] = at->s_node;
585		skb->data[2] = ft;
586		skb->dev     = dev;
587		goto sendit;
588	}
589
590	/* On a PPP link we neither compress nor aarp.  */
591	if (dev->type == ARPHRD_PPP) {
592		skb->protocol = htons(ETH_P_PPPTALK);
593		skb->dev = dev;
594		goto sendit;
595	}
596
597	/* Non ELAP we cannot do. */
598	if (dev->type != ARPHRD_ETHER)
599		goto free_it;
600
601	skb->dev = dev;
602	skb->protocol = htons(ETH_P_ATALK);
603	hash = sa->s_node % (AARP_HASH_SIZE - 1);
604
605	/* Do we have a resolved entry? */
606	if (sa->s_node == ATADDR_BCAST) {
607		/* Send it */
608		ddp_dl->request(ddp_dl, skb, ddp_eth_multicast);
609		goto sent;
610	}
611
612	write_lock_bh(&aarp_lock);
613	a = __aarp_find_entry(resolved[hash], dev, sa);
614
615	if (a) { /* Return 1 and fill in the address */
616		a->expires_at = jiffies + (sysctl_aarp_expiry_time * 10);
617		ddp_dl->request(ddp_dl, skb, a->hwaddr);
618		write_unlock_bh(&aarp_lock);
619		goto sent;
620	}
621
622	/* Do we have an unresolved entry: This is the less common path */
623	a = __aarp_find_entry(unresolved[hash], dev, sa);
624	if (a) { /* Queue onto the unresolved queue */
625		skb_queue_tail(&a->packet_queue, skb);
626		goto out_unlock;
627	}
628
629	/* Allocate a new entry */
630	a = aarp_alloc();
631	if (!a) {
632		/* Whoops slipped... good job it's an unreliable protocol 8) */
633		write_unlock_bh(&aarp_lock);
634		goto free_it;
635	}
636
637	/* Set up the queue */
638	skb_queue_tail(&a->packet_queue, skb);
639	a->expires_at	 = jiffies + sysctl_aarp_resolve_time;
640	a->dev		 = dev;
641	a->next		 = unresolved[hash];
642	a->target_addr	 = *sa;
643	a->xmit_count	 = 0;
644	unresolved[hash] = a;
645	unresolved_count++;
646
647	/* Send an initial request for the address */
648	__aarp_send_query(a);
649
650	/*
651	 * Switch to fast timer if needed (That is if this is the first
652	 * unresolved entry to get added)
653	 */
654
655	if (unresolved_count == 1)
656		mod_timer(&aarp_timer, jiffies + sysctl_aarp_tick_time);
657
658	/* Now finally, it is safe to drop the lock. */
659out_unlock:
660	write_unlock_bh(&aarp_lock);
661
662	/* Tell the ddp layer we have taken over for this frame. */
663	goto sent;
664
665sendit:
666	if (skb->sk)
667		skb->priority = READ_ONCE(skb->sk->sk_priority);
668	if (dev_queue_xmit(skb))
669		goto drop;
670sent:
671	return NET_XMIT_SUCCESS;
672free_it:
673	kfree_skb(skb);
674drop:
675	return NET_XMIT_DROP;
676}
677EXPORT_SYMBOL(aarp_send_ddp);
678
679/*
680 *	An entry in the aarp unresolved queue has become resolved. Send
681 *	all the frames queued under it.
682 *
683 *	Must run under aarp_lock.
684 */
685static void __aarp_resolved(struct aarp_entry **list, struct aarp_entry *a,
686			    int hash)
687{
688	struct sk_buff *skb;
689
690	while (*list)
691		if (*list == a) {
692			unresolved_count--;
693			*list = a->next;
694
695			/* Move into the resolved list */
696			a->next = resolved[hash];
697			resolved[hash] = a;
698
699			/* Kick frames off */
700			while ((skb = skb_dequeue(&a->packet_queue)) != NULL) {
701				a->expires_at = jiffies +
702						sysctl_aarp_expiry_time * 10;
703				ddp_dl->request(ddp_dl, skb, a->hwaddr);
704			}
705		} else
706			list = &((*list)->next);
707}
708
709/*
710 *	This is called by the SNAP driver whenever we see an AARP SNAP
711 *	frame. We currently only support Ethernet.
712 */
713static int aarp_rcv(struct sk_buff *skb, struct net_device *dev,
714		    struct packet_type *pt, struct net_device *orig_dev)
715{
716	struct elapaarp *ea = aarp_hdr(skb);
717	int hash, ret = 0;
718	__u16 function;
719	struct aarp_entry *a;
720	struct atalk_addr sa, *ma, da;
721	struct atalk_iface *ifa;
722
723	if (!net_eq(dev_net(dev), &init_net))
724		goto out0;
725
726	/* We only do Ethernet SNAP AARP. */
727	if (dev->type != ARPHRD_ETHER)
728		goto out0;
729
730	/* Frame size ok? */
731	if (!skb_pull(skb, sizeof(*ea)))
732		goto out0;
733
734	function = ntohs(ea->function);
735
736	/* Sanity check fields. */
737	if (function < AARP_REQUEST || function > AARP_PROBE ||
738	    ea->hw_len != ETH_ALEN || ea->pa_len != AARP_PA_ALEN ||
739	    ea->pa_src_zero || ea->pa_dst_zero)
740		goto out0;
741
742	/* Looks good. */
743	hash = ea->pa_src_node % (AARP_HASH_SIZE - 1);
744
745	/* Build an address. */
746	sa.s_node = ea->pa_src_node;
747	sa.s_net = ea->pa_src_net;
748
749	/* Process the packet. Check for replies of me. */
750	ifa = atalk_find_dev(dev);
751	if (!ifa)
752		goto out1;
753
754	if (ifa->status & ATIF_PROBE &&
755	    ifa->address.s_node == ea->pa_dst_node &&
756	    ifa->address.s_net == ea->pa_dst_net) {
757		ifa->status |= ATIF_PROBE_FAIL; /* Fail the probe (in use) */
758		goto out1;
759	}
760
761	/* Check for replies of proxy AARP entries */
762	da.s_node = ea->pa_dst_node;
763	da.s_net  = ea->pa_dst_net;
764
765	write_lock_bh(&aarp_lock);
766	a = __aarp_find_entry(proxies[hash], dev, &da);
767
768	if (a && a->status & ATIF_PROBE) {
769		a->status |= ATIF_PROBE_FAIL;
770		/*
771		 * we do not respond to probe or request packets of
772		 * this address while we are probing this address
773		 */
774		goto unlock;
775	}
776
777	switch (function) {
778	case AARP_REPLY:
779		if (!unresolved_count)	/* Speed up */
780			break;
781
782		/* Find the entry.  */
783		a = __aarp_find_entry(unresolved[hash], dev, &sa);
784		if (!a || dev != a->dev)
785			break;
786
787		/* We can fill one in - this is good. */
788		ether_addr_copy(a->hwaddr, ea->hw_src);
789		__aarp_resolved(&unresolved[hash], a, hash);
790		if (!unresolved_count)
791			mod_timer(&aarp_timer,
792				  jiffies + sysctl_aarp_expiry_time);
793		break;
794
795	case AARP_REQUEST:
796	case AARP_PROBE:
797
798		/*
799		 * If it is my address set ma to my address and reply.
800		 * We can treat probe and request the same.  Probe
801		 * simply means we shouldn't cache the querying host,
802		 * as in a probe they are proposing an address not
803		 * using one.
804		 *
805		 * Support for proxy-AARP added. We check if the
806		 * address is one of our proxies before we toss the
807		 * packet out.
808		 */
809
810		sa.s_node = ea->pa_dst_node;
811		sa.s_net  = ea->pa_dst_net;
812
813		/* See if we have a matching proxy. */
814		ma = __aarp_proxy_find(dev, &sa);
815		if (!ma)
816			ma = &ifa->address;
817		else { /* We need to make a copy of the entry. */
818			da.s_node = sa.s_node;
819			da.s_net = sa.s_net;
820			ma = &da;
821		}
822
823		if (function == AARP_PROBE) {
824			/*
825			 * A probe implies someone trying to get an
826			 * address. So as a precaution flush any
827			 * entries we have for this address.
828			 */
829			a = __aarp_find_entry(resolved[sa.s_node %
830						       (AARP_HASH_SIZE - 1)],
831					      skb->dev, &sa);
832
833			/*
834			 * Make it expire next tick - that avoids us
835			 * getting into a probe/flush/learn/probe/
836			 * flush/learn cycle during probing of a slow
837			 * to respond host addr.
838			 */
839			if (a) {
840				a->expires_at = jiffies - 1;
841				mod_timer(&aarp_timer, jiffies +
842					  sysctl_aarp_tick_time);
843			}
844		}
845
846		if (sa.s_node != ma->s_node)
847			break;
848
849		if (sa.s_net && ma->s_net && sa.s_net != ma->s_net)
850			break;
851
852		sa.s_node = ea->pa_src_node;
853		sa.s_net = ea->pa_src_net;
854
855		/* aarp_my_address has found the address to use for us.
856		 */
857		aarp_send_reply(dev, ma, &sa, ea->hw_src);
858		break;
859	}
860
861unlock:
862	write_unlock_bh(&aarp_lock);
863out1:
864	ret = 1;
865out0:
866	kfree_skb(skb);
867	return ret;
868}
869
870static struct notifier_block aarp_notifier = {
871	.notifier_call = aarp_device_event,
872};
873
874static unsigned char aarp_snap_id[] = { 0x00, 0x00, 0x00, 0x80, 0xF3 };
875
876int __init aarp_proto_init(void)
877{
878	int rc;
879
880	aarp_dl = register_snap_client(aarp_snap_id, aarp_rcv);
881	if (!aarp_dl) {
882		printk(KERN_CRIT "Unable to register AARP with SNAP.\n");
883		return -ENOMEM;
884	}
885	timer_setup(&aarp_timer, aarp_expire_timeout, 0);
886	aarp_timer.expires  = jiffies + sysctl_aarp_expiry_time;
887	add_timer(&aarp_timer);
888	rc = register_netdevice_notifier(&aarp_notifier);
889	if (rc) {
890		del_timer_sync(&aarp_timer);
891		unregister_snap_client(aarp_dl);
892	}
893	return rc;
894}
895
896/* Remove the AARP entries associated with a device. */
897void aarp_device_down(struct net_device *dev)
898{
899	int ct;
900
901	write_lock_bh(&aarp_lock);
902
903	for (ct = 0; ct < AARP_HASH_SIZE; ct++) {
904		__aarp_expire_device(&resolved[ct], dev);
905		__aarp_expire_device(&unresolved[ct], dev);
906		__aarp_expire_device(&proxies[ct], dev);
907	}
908
909	write_unlock_bh(&aarp_lock);
910}
911
912#ifdef CONFIG_PROC_FS
913/*
914 * Get the aarp entry that is in the chain described
915 * by the iterator.
916 * If pos is set then skip till that index.
917 * pos = 1 is the first entry
918 */
919static struct aarp_entry *iter_next(struct aarp_iter_state *iter, loff_t *pos)
920{
921	int ct = iter->bucket;
922	struct aarp_entry **table = iter->table;
923	loff_t off = 0;
924	struct aarp_entry *entry;
925
926 rescan:
927	while (ct < AARP_HASH_SIZE) {
928		for (entry = table[ct]; entry; entry = entry->next) {
929			if (!pos || ++off == *pos) {
930				iter->table = table;
931				iter->bucket = ct;
932				return entry;
933			}
934		}
935		++ct;
936	}
937
938	if (table == resolved) {
939		ct = 0;
940		table = unresolved;
941		goto rescan;
942	}
943	if (table == unresolved) {
944		ct = 0;
945		table = proxies;
946		goto rescan;
947	}
948	return NULL;
949}
950
951static void *aarp_seq_start(struct seq_file *seq, loff_t *pos)
952	__acquires(aarp_lock)
953{
954	struct aarp_iter_state *iter = seq->private;
955
956	read_lock_bh(&aarp_lock);
957	iter->table     = resolved;
958	iter->bucket    = 0;
959
960	return *pos ? iter_next(iter, pos) : SEQ_START_TOKEN;
961}
962
963static void *aarp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
964{
965	struct aarp_entry *entry = v;
966	struct aarp_iter_state *iter = seq->private;
967
968	++*pos;
969
970	/* first line after header */
971	if (v == SEQ_START_TOKEN)
972		entry = iter_next(iter, NULL);
973
974	/* next entry in current bucket */
975	else if (entry->next)
976		entry = entry->next;
977
978	/* next bucket or table */
979	else {
980		++iter->bucket;
981		entry = iter_next(iter, NULL);
982	}
983	return entry;
984}
985
986static void aarp_seq_stop(struct seq_file *seq, void *v)
987	__releases(aarp_lock)
988{
989	read_unlock_bh(&aarp_lock);
990}
991
992static const char *dt2str(unsigned long ticks)
993{
994	static char buf[32];
995
996	sprintf(buf, "%ld.%02ld", ticks / HZ, ((ticks % HZ) * 100) / HZ);
997
998	return buf;
999}
1000
1001static int aarp_seq_show(struct seq_file *seq, void *v)
1002{
1003	struct aarp_iter_state *iter = seq->private;
1004	struct aarp_entry *entry = v;
1005	unsigned long now = jiffies;
1006
1007	if (v == SEQ_START_TOKEN)
1008		seq_puts(seq,
1009			 "Address  Interface   Hardware Address"
1010			 "   Expires LastSend  Retry Status\n");
1011	else {
1012		seq_printf(seq, "%04X:%02X  %-12s",
1013			   ntohs(entry->target_addr.s_net),
1014			   (unsigned int) entry->target_addr.s_node,
1015			   entry->dev ? entry->dev->name : "????");
1016		seq_printf(seq, "%pM", entry->hwaddr);
1017		seq_printf(seq, " %8s",
1018			   dt2str((long)entry->expires_at - (long)now));
1019		if (iter->table == unresolved)
1020			seq_printf(seq, " %8s %6hu",
1021				   dt2str(now - entry->last_sent),
1022				   entry->xmit_count);
1023		else
1024			seq_puts(seq, "                ");
1025		seq_printf(seq, " %s\n",
1026			   (iter->table == resolved) ? "resolved"
1027			   : (iter->table == unresolved) ? "unresolved"
1028			   : (iter->table == proxies) ? "proxies"
1029			   : "unknown");
1030	}
1031	return 0;
1032}
1033
1034const struct seq_operations aarp_seq_ops = {
1035	.start  = aarp_seq_start,
1036	.next   = aarp_seq_next,
1037	.stop   = aarp_seq_stop,
1038	.show   = aarp_seq_show,
1039};
1040#endif
1041
1042/* General module cleanup. Called from cleanup_module() in ddp.c. */
1043void aarp_cleanup_module(void)
1044{
1045	del_timer_sync(&aarp_timer);
1046	unregister_netdevice_notifier(&aarp_notifier);
1047	unregister_snap_client(aarp_dl);
1048	aarp_purge();
1049}
1050