1/*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 *		 2000 Transmeta Corp.
6 *		 2000-2001 Christoph Rohland
7 *		 2000-2001 SAP AG
8 *		 2002 Red Hat Inc.
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
21 * This file is released under the GPL.
22 */
23
24#include <linux/fs.h>
25#include <linux/init.h>
26#include <linux/vfs.h>
27#include <linux/mount.h>
28#include <linux/ramfs.h>
29#include <linux/pagemap.h>
30#include <linux/file.h>
31#include <linux/fileattr.h>
32#include <linux/mm.h>
33#include <linux/random.h>
34#include <linux/sched/signal.h>
35#include <linux/export.h>
36#include <linux/shmem_fs.h>
37#include <linux/swap.h>
38#include <linux/uio.h>
39#include <linux/hugetlb.h>
40#include <linux/fs_parser.h>
41#include <linux/swapfile.h>
42#include <linux/iversion.h>
43#include "swap.h"
44
45static struct vfsmount *shm_mnt __ro_after_init;
46
47#ifdef CONFIG_SHMEM
48/*
49 * This virtual memory filesystem is heavily based on the ramfs. It
50 * extends ramfs by the ability to use swap and honor resource limits
51 * which makes it a completely usable filesystem.
52 */
53
54#include <linux/xattr.h>
55#include <linux/exportfs.h>
56#include <linux/posix_acl.h>
57#include <linux/posix_acl_xattr.h>
58#include <linux/mman.h>
59#include <linux/string.h>
60#include <linux/slab.h>
61#include <linux/backing-dev.h>
62#include <linux/writeback.h>
63#include <linux/pagevec.h>
64#include <linux/percpu_counter.h>
65#include <linux/falloc.h>
66#include <linux/splice.h>
67#include <linux/security.h>
68#include <linux/swapops.h>
69#include <linux/mempolicy.h>
70#include <linux/namei.h>
71#include <linux/ctype.h>
72#include <linux/migrate.h>
73#include <linux/highmem.h>
74#include <linux/seq_file.h>
75#include <linux/magic.h>
76#include <linux/syscalls.h>
77#include <linux/fcntl.h>
78#include <uapi/linux/memfd.h>
79#include <linux/rmap.h>
80#include <linux/uuid.h>
81#include <linux/quotaops.h>
82#include <linux/rcupdate_wait.h>
83
84#include <linux/uaccess.h>
85
86#include "internal.h"
87
88#define BLOCKS_PER_PAGE  (PAGE_SIZE/512)
89#define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
90
91/* Pretend that each entry is of this size in directory's i_size */
92#define BOGO_DIRENT_SIZE 20
93
94/* Pretend that one inode + its dentry occupy this much memory */
95#define BOGO_INODE_SIZE 1024
96
97/* Symlink up to this size is kmalloc'ed instead of using a swappable page */
98#define SHORT_SYMLINK_LEN 128
99
100/*
101 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
102 * inode->i_private (with i_rwsem making sure that it has only one user at
103 * a time): we would prefer not to enlarge the shmem inode just for that.
104 */
105struct shmem_falloc {
106	wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
107	pgoff_t start;		/* start of range currently being fallocated */
108	pgoff_t next;		/* the next page offset to be fallocated */
109	pgoff_t nr_falloced;	/* how many new pages have been fallocated */
110	pgoff_t nr_unswapped;	/* how often writepage refused to swap out */
111};
112
113struct shmem_options {
114	unsigned long long blocks;
115	unsigned long long inodes;
116	struct mempolicy *mpol;
117	kuid_t uid;
118	kgid_t gid;
119	umode_t mode;
120	bool full_inums;
121	int huge;
122	int seen;
123	bool noswap;
124	unsigned short quota_types;
125	struct shmem_quota_limits qlimits;
126#define SHMEM_SEEN_BLOCKS 1
127#define SHMEM_SEEN_INODES 2
128#define SHMEM_SEEN_HUGE 4
129#define SHMEM_SEEN_INUMS 8
130#define SHMEM_SEEN_NOSWAP 16
131#define SHMEM_SEEN_QUOTA 32
132};
133
134#ifdef CONFIG_TMPFS
135static unsigned long shmem_default_max_blocks(void)
136{
137	return totalram_pages() / 2;
138}
139
140static unsigned long shmem_default_max_inodes(void)
141{
142	unsigned long nr_pages = totalram_pages();
143
144	return min3(nr_pages - totalhigh_pages(), nr_pages / 2,
145			ULONG_MAX / BOGO_INODE_SIZE);
146}
147#endif
148
149static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
150			struct folio **foliop, enum sgp_type sgp, gfp_t gfp,
151			struct mm_struct *fault_mm, vm_fault_t *fault_type);
152
153static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
154{
155	return sb->s_fs_info;
156}
157
158/*
159 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
160 * for shared memory and for shared anonymous (/dev/zero) mappings
161 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
162 * consistent with the pre-accounting of private mappings ...
163 */
164static inline int shmem_acct_size(unsigned long flags, loff_t size)
165{
166	return (flags & VM_NORESERVE) ?
167		0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
168}
169
170static inline void shmem_unacct_size(unsigned long flags, loff_t size)
171{
172	if (!(flags & VM_NORESERVE))
173		vm_unacct_memory(VM_ACCT(size));
174}
175
176static inline int shmem_reacct_size(unsigned long flags,
177		loff_t oldsize, loff_t newsize)
178{
179	if (!(flags & VM_NORESERVE)) {
180		if (VM_ACCT(newsize) > VM_ACCT(oldsize))
181			return security_vm_enough_memory_mm(current->mm,
182					VM_ACCT(newsize) - VM_ACCT(oldsize));
183		else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
184			vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
185	}
186	return 0;
187}
188
189/*
190 * ... whereas tmpfs objects are accounted incrementally as
191 * pages are allocated, in order to allow large sparse files.
192 * shmem_get_folio reports shmem_acct_blocks failure as -ENOSPC not -ENOMEM,
193 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
194 */
195static inline int shmem_acct_blocks(unsigned long flags, long pages)
196{
197	if (!(flags & VM_NORESERVE))
198		return 0;
199
200	return security_vm_enough_memory_mm(current->mm,
201			pages * VM_ACCT(PAGE_SIZE));
202}
203
204static inline void shmem_unacct_blocks(unsigned long flags, long pages)
205{
206	if (flags & VM_NORESERVE)
207		vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
208}
209
210static int shmem_inode_acct_blocks(struct inode *inode, long pages)
211{
212	struct shmem_inode_info *info = SHMEM_I(inode);
213	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
214	int err = -ENOSPC;
215
216	if (shmem_acct_blocks(info->flags, pages))
217		return err;
218
219	might_sleep();	/* when quotas */
220	if (sbinfo->max_blocks) {
221		if (!percpu_counter_limited_add(&sbinfo->used_blocks,
222						sbinfo->max_blocks, pages))
223			goto unacct;
224
225		err = dquot_alloc_block_nodirty(inode, pages);
226		if (err) {
227			percpu_counter_sub(&sbinfo->used_blocks, pages);
228			goto unacct;
229		}
230	} else {
231		err = dquot_alloc_block_nodirty(inode, pages);
232		if (err)
233			goto unacct;
234	}
235
236	return 0;
237
238unacct:
239	shmem_unacct_blocks(info->flags, pages);
240	return err;
241}
242
243static void shmem_inode_unacct_blocks(struct inode *inode, long pages)
244{
245	struct shmem_inode_info *info = SHMEM_I(inode);
246	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
247
248	might_sleep();	/* when quotas */
249	dquot_free_block_nodirty(inode, pages);
250
251	if (sbinfo->max_blocks)
252		percpu_counter_sub(&sbinfo->used_blocks, pages);
253	shmem_unacct_blocks(info->flags, pages);
254}
255
256static const struct super_operations shmem_ops;
257static const struct address_space_operations shmem_aops;
258static const struct file_operations shmem_file_operations;
259static const struct inode_operations shmem_inode_operations;
260static const struct inode_operations shmem_dir_inode_operations;
261static const struct inode_operations shmem_special_inode_operations;
262static const struct vm_operations_struct shmem_vm_ops;
263static const struct vm_operations_struct shmem_anon_vm_ops;
264static struct file_system_type shmem_fs_type;
265
266bool shmem_mapping(struct address_space *mapping)
267{
268	return mapping->a_ops == &shmem_aops;
269}
270EXPORT_SYMBOL_GPL(shmem_mapping);
271
272bool vma_is_anon_shmem(struct vm_area_struct *vma)
273{
274	return vma->vm_ops == &shmem_anon_vm_ops;
275}
276
277bool vma_is_shmem(struct vm_area_struct *vma)
278{
279	return vma_is_anon_shmem(vma) || vma->vm_ops == &shmem_vm_ops;
280}
281
282static LIST_HEAD(shmem_swaplist);
283static DEFINE_MUTEX(shmem_swaplist_mutex);
284
285#ifdef CONFIG_TMPFS_QUOTA
286
287static int shmem_enable_quotas(struct super_block *sb,
288			       unsigned short quota_types)
289{
290	int type, err = 0;
291
292	sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
293	for (type = 0; type < SHMEM_MAXQUOTAS; type++) {
294		if (!(quota_types & (1 << type)))
295			continue;
296		err = dquot_load_quota_sb(sb, type, QFMT_SHMEM,
297					  DQUOT_USAGE_ENABLED |
298					  DQUOT_LIMITS_ENABLED);
299		if (err)
300			goto out_err;
301	}
302	return 0;
303
304out_err:
305	pr_warn("tmpfs: failed to enable quota tracking (type=%d, err=%d)\n",
306		type, err);
307	for (type--; type >= 0; type--)
308		dquot_quota_off(sb, type);
309	return err;
310}
311
312static void shmem_disable_quotas(struct super_block *sb)
313{
314	int type;
315
316	for (type = 0; type < SHMEM_MAXQUOTAS; type++)
317		dquot_quota_off(sb, type);
318}
319
320static struct dquot __rcu **shmem_get_dquots(struct inode *inode)
321{
322	return SHMEM_I(inode)->i_dquot;
323}
324#endif /* CONFIG_TMPFS_QUOTA */
325
326/*
327 * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
328 * produces a novel ino for the newly allocated inode.
329 *
330 * It may also be called when making a hard link to permit the space needed by
331 * each dentry. However, in that case, no new inode number is needed since that
332 * internally draws from another pool of inode numbers (currently global
333 * get_next_ino()). This case is indicated by passing NULL as inop.
334 */
335#define SHMEM_INO_BATCH 1024
336static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
337{
338	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
339	ino_t ino;
340
341	if (!(sb->s_flags & SB_KERNMOUNT)) {
342		raw_spin_lock(&sbinfo->stat_lock);
343		if (sbinfo->max_inodes) {
344			if (sbinfo->free_ispace < BOGO_INODE_SIZE) {
345				raw_spin_unlock(&sbinfo->stat_lock);
346				return -ENOSPC;
347			}
348			sbinfo->free_ispace -= BOGO_INODE_SIZE;
349		}
350		if (inop) {
351			ino = sbinfo->next_ino++;
352			if (unlikely(is_zero_ino(ino)))
353				ino = sbinfo->next_ino++;
354			if (unlikely(!sbinfo->full_inums &&
355				     ino > UINT_MAX)) {
356				/*
357				 * Emulate get_next_ino uint wraparound for
358				 * compatibility
359				 */
360				if (IS_ENABLED(CONFIG_64BIT))
361					pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n",
362						__func__, MINOR(sb->s_dev));
363				sbinfo->next_ino = 1;
364				ino = sbinfo->next_ino++;
365			}
366			*inop = ino;
367		}
368		raw_spin_unlock(&sbinfo->stat_lock);
369	} else if (inop) {
370		/*
371		 * __shmem_file_setup, one of our callers, is lock-free: it
372		 * doesn't hold stat_lock in shmem_reserve_inode since
373		 * max_inodes is always 0, and is called from potentially
374		 * unknown contexts. As such, use a per-cpu batched allocator
375		 * which doesn't require the per-sb stat_lock unless we are at
376		 * the batch boundary.
377		 *
378		 * We don't need to worry about inode{32,64} since SB_KERNMOUNT
379		 * shmem mounts are not exposed to userspace, so we don't need
380		 * to worry about things like glibc compatibility.
381		 */
382		ino_t *next_ino;
383
384		next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
385		ino = *next_ino;
386		if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
387			raw_spin_lock(&sbinfo->stat_lock);
388			ino = sbinfo->next_ino;
389			sbinfo->next_ino += SHMEM_INO_BATCH;
390			raw_spin_unlock(&sbinfo->stat_lock);
391			if (unlikely(is_zero_ino(ino)))
392				ino++;
393		}
394		*inop = ino;
395		*next_ino = ++ino;
396		put_cpu();
397	}
398
399	return 0;
400}
401
402static void shmem_free_inode(struct super_block *sb, size_t freed_ispace)
403{
404	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
405	if (sbinfo->max_inodes) {
406		raw_spin_lock(&sbinfo->stat_lock);
407		sbinfo->free_ispace += BOGO_INODE_SIZE + freed_ispace;
408		raw_spin_unlock(&sbinfo->stat_lock);
409	}
410}
411
412/**
413 * shmem_recalc_inode - recalculate the block usage of an inode
414 * @inode: inode to recalc
415 * @alloced: the change in number of pages allocated to inode
416 * @swapped: the change in number of pages swapped from inode
417 *
418 * We have to calculate the free blocks since the mm can drop
419 * undirtied hole pages behind our back.
420 *
421 * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
422 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
423 */
424static void shmem_recalc_inode(struct inode *inode, long alloced, long swapped)
425{
426	struct shmem_inode_info *info = SHMEM_I(inode);
427	long freed;
428
429	spin_lock(&info->lock);
430	info->alloced += alloced;
431	info->swapped += swapped;
432	freed = info->alloced - info->swapped -
433		READ_ONCE(inode->i_mapping->nrpages);
434	/*
435	 * Special case: whereas normally shmem_recalc_inode() is called
436	 * after i_mapping->nrpages has already been adjusted (up or down),
437	 * shmem_writepage() has to raise swapped before nrpages is lowered -
438	 * to stop a racing shmem_recalc_inode() from thinking that a page has
439	 * been freed.  Compensate here, to avoid the need for a followup call.
440	 */
441	if (swapped > 0)
442		freed += swapped;
443	if (freed > 0)
444		info->alloced -= freed;
445	spin_unlock(&info->lock);
446
447	/* The quota case may block */
448	if (freed > 0)
449		shmem_inode_unacct_blocks(inode, freed);
450}
451
452bool shmem_charge(struct inode *inode, long pages)
453{
454	struct address_space *mapping = inode->i_mapping;
455
456	if (shmem_inode_acct_blocks(inode, pages))
457		return false;
458
459	/* nrpages adjustment first, then shmem_recalc_inode() when balanced */
460	xa_lock_irq(&mapping->i_pages);
461	mapping->nrpages += pages;
462	xa_unlock_irq(&mapping->i_pages);
463
464	shmem_recalc_inode(inode, pages, 0);
465	return true;
466}
467
468void shmem_uncharge(struct inode *inode, long pages)
469{
470	/* pages argument is currently unused: keep it to help debugging */
471	/* nrpages adjustment done by __filemap_remove_folio() or caller */
472
473	shmem_recalc_inode(inode, 0, 0);
474}
475
476/*
477 * Replace item expected in xarray by a new item, while holding xa_lock.
478 */
479static int shmem_replace_entry(struct address_space *mapping,
480			pgoff_t index, void *expected, void *replacement)
481{
482	XA_STATE(xas, &mapping->i_pages, index);
483	void *item;
484
485	VM_BUG_ON(!expected);
486	VM_BUG_ON(!replacement);
487	item = xas_load(&xas);
488	if (item != expected)
489		return -ENOENT;
490	xas_store(&xas, replacement);
491	return 0;
492}
493
494/*
495 * Sometimes, before we decide whether to proceed or to fail, we must check
496 * that an entry was not already brought back from swap by a racing thread.
497 *
498 * Checking page is not enough: by the time a SwapCache page is locked, it
499 * might be reused, and again be SwapCache, using the same swap as before.
500 */
501static bool shmem_confirm_swap(struct address_space *mapping,
502			       pgoff_t index, swp_entry_t swap)
503{
504	return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
505}
506
507/*
508 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
509 *
510 * SHMEM_HUGE_NEVER:
511 *	disables huge pages for the mount;
512 * SHMEM_HUGE_ALWAYS:
513 *	enables huge pages for the mount;
514 * SHMEM_HUGE_WITHIN_SIZE:
515 *	only allocate huge pages if the page will be fully within i_size,
516 *	also respect fadvise()/madvise() hints;
517 * SHMEM_HUGE_ADVISE:
518 *	only allocate huge pages if requested with fadvise()/madvise();
519 */
520
521#define SHMEM_HUGE_NEVER	0
522#define SHMEM_HUGE_ALWAYS	1
523#define SHMEM_HUGE_WITHIN_SIZE	2
524#define SHMEM_HUGE_ADVISE	3
525
526/*
527 * Special values.
528 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
529 *
530 * SHMEM_HUGE_DENY:
531 *	disables huge on shm_mnt and all mounts, for emergency use;
532 * SHMEM_HUGE_FORCE:
533 *	enables huge on shm_mnt and all mounts, w/o needing option, for testing;
534 *
535 */
536#define SHMEM_HUGE_DENY		(-1)
537#define SHMEM_HUGE_FORCE	(-2)
538
539#ifdef CONFIG_TRANSPARENT_HUGEPAGE
540/* ifdef here to avoid bloating shmem.o when not necessary */
541
542static int shmem_huge __read_mostly = SHMEM_HUGE_NEVER;
543
544bool shmem_is_huge(struct inode *inode, pgoff_t index, bool shmem_huge_force,
545		   struct mm_struct *mm, unsigned long vm_flags)
546{
547	loff_t i_size;
548
549	if (!S_ISREG(inode->i_mode))
550		return false;
551	if (mm && ((vm_flags & VM_NOHUGEPAGE) || test_bit(MMF_DISABLE_THP, &mm->flags)))
552		return false;
553	if (shmem_huge == SHMEM_HUGE_DENY)
554		return false;
555	if (shmem_huge_force || shmem_huge == SHMEM_HUGE_FORCE)
556		return true;
557
558	switch (SHMEM_SB(inode->i_sb)->huge) {
559	case SHMEM_HUGE_ALWAYS:
560		return true;
561	case SHMEM_HUGE_WITHIN_SIZE:
562		index = round_up(index + 1, HPAGE_PMD_NR);
563		i_size = round_up(i_size_read(inode), PAGE_SIZE);
564		if (i_size >> PAGE_SHIFT >= index)
565			return true;
566		fallthrough;
567	case SHMEM_HUGE_ADVISE:
568		if (mm && (vm_flags & VM_HUGEPAGE))
569			return true;
570		fallthrough;
571	default:
572		return false;
573	}
574}
575
576#if defined(CONFIG_SYSFS)
577static int shmem_parse_huge(const char *str)
578{
579	if (!strcmp(str, "never"))
580		return SHMEM_HUGE_NEVER;
581	if (!strcmp(str, "always"))
582		return SHMEM_HUGE_ALWAYS;
583	if (!strcmp(str, "within_size"))
584		return SHMEM_HUGE_WITHIN_SIZE;
585	if (!strcmp(str, "advise"))
586		return SHMEM_HUGE_ADVISE;
587	if (!strcmp(str, "deny"))
588		return SHMEM_HUGE_DENY;
589	if (!strcmp(str, "force"))
590		return SHMEM_HUGE_FORCE;
591	return -EINVAL;
592}
593#endif
594
595#if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
596static const char *shmem_format_huge(int huge)
597{
598	switch (huge) {
599	case SHMEM_HUGE_NEVER:
600		return "never";
601	case SHMEM_HUGE_ALWAYS:
602		return "always";
603	case SHMEM_HUGE_WITHIN_SIZE:
604		return "within_size";
605	case SHMEM_HUGE_ADVISE:
606		return "advise";
607	case SHMEM_HUGE_DENY:
608		return "deny";
609	case SHMEM_HUGE_FORCE:
610		return "force";
611	default:
612		VM_BUG_ON(1);
613		return "bad_val";
614	}
615}
616#endif
617
618static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
619		struct shrink_control *sc, unsigned long nr_to_split)
620{
621	LIST_HEAD(list), *pos, *next;
622	LIST_HEAD(to_remove);
623	struct inode *inode;
624	struct shmem_inode_info *info;
625	struct folio *folio;
626	unsigned long batch = sc ? sc->nr_to_scan : 128;
627	int split = 0;
628
629	if (list_empty(&sbinfo->shrinklist))
630		return SHRINK_STOP;
631
632	spin_lock(&sbinfo->shrinklist_lock);
633	list_for_each_safe(pos, next, &sbinfo->shrinklist) {
634		info = list_entry(pos, struct shmem_inode_info, shrinklist);
635
636		/* pin the inode */
637		inode = igrab(&info->vfs_inode);
638
639		/* inode is about to be evicted */
640		if (!inode) {
641			list_del_init(&info->shrinklist);
642			goto next;
643		}
644
645		/* Check if there's anything to gain */
646		if (round_up(inode->i_size, PAGE_SIZE) ==
647				round_up(inode->i_size, HPAGE_PMD_SIZE)) {
648			list_move(&info->shrinklist, &to_remove);
649			goto next;
650		}
651
652		list_move(&info->shrinklist, &list);
653next:
654		sbinfo->shrinklist_len--;
655		if (!--batch)
656			break;
657	}
658	spin_unlock(&sbinfo->shrinklist_lock);
659
660	list_for_each_safe(pos, next, &to_remove) {
661		info = list_entry(pos, struct shmem_inode_info, shrinklist);
662		inode = &info->vfs_inode;
663		list_del_init(&info->shrinklist);
664		iput(inode);
665	}
666
667	list_for_each_safe(pos, next, &list) {
668		int ret;
669		pgoff_t index;
670
671		info = list_entry(pos, struct shmem_inode_info, shrinklist);
672		inode = &info->vfs_inode;
673
674		if (nr_to_split && split >= nr_to_split)
675			goto move_back;
676
677		index = (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT;
678		folio = filemap_get_folio(inode->i_mapping, index);
679		if (IS_ERR(folio))
680			goto drop;
681
682		/* No huge page at the end of the file: nothing to split */
683		if (!folio_test_large(folio)) {
684			folio_put(folio);
685			goto drop;
686		}
687
688		/*
689		 * Move the inode on the list back to shrinklist if we failed
690		 * to lock the page at this time.
691		 *
692		 * Waiting for the lock may lead to deadlock in the
693		 * reclaim path.
694		 */
695		if (!folio_trylock(folio)) {
696			folio_put(folio);
697			goto move_back;
698		}
699
700		ret = split_folio(folio);
701		folio_unlock(folio);
702		folio_put(folio);
703
704		/* If split failed move the inode on the list back to shrinklist */
705		if (ret)
706			goto move_back;
707
708		split++;
709drop:
710		list_del_init(&info->shrinklist);
711		goto put;
712move_back:
713		/*
714		 * Make sure the inode is either on the global list or deleted
715		 * from any local list before iput() since it could be deleted
716		 * in another thread once we put the inode (then the local list
717		 * is corrupted).
718		 */
719		spin_lock(&sbinfo->shrinklist_lock);
720		list_move(&info->shrinklist, &sbinfo->shrinklist);
721		sbinfo->shrinklist_len++;
722		spin_unlock(&sbinfo->shrinklist_lock);
723put:
724		iput(inode);
725	}
726
727	return split;
728}
729
730static long shmem_unused_huge_scan(struct super_block *sb,
731		struct shrink_control *sc)
732{
733	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
734
735	if (!READ_ONCE(sbinfo->shrinklist_len))
736		return SHRINK_STOP;
737
738	return shmem_unused_huge_shrink(sbinfo, sc, 0);
739}
740
741static long shmem_unused_huge_count(struct super_block *sb,
742		struct shrink_control *sc)
743{
744	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
745	return READ_ONCE(sbinfo->shrinklist_len);
746}
747#else /* !CONFIG_TRANSPARENT_HUGEPAGE */
748
749#define shmem_huge SHMEM_HUGE_DENY
750
751static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
752		struct shrink_control *sc, unsigned long nr_to_split)
753{
754	return 0;
755}
756#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
757
758/*
759 * Somewhat like filemap_add_folio, but error if expected item has gone.
760 */
761static int shmem_add_to_page_cache(struct folio *folio,
762				   struct address_space *mapping,
763				   pgoff_t index, void *expected, gfp_t gfp)
764{
765	XA_STATE_ORDER(xas, &mapping->i_pages, index, folio_order(folio));
766	long nr = folio_nr_pages(folio);
767
768	VM_BUG_ON_FOLIO(index != round_down(index, nr), folio);
769	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
770	VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio);
771	VM_BUG_ON(expected && folio_test_large(folio));
772
773	folio_ref_add(folio, nr);
774	folio->mapping = mapping;
775	folio->index = index;
776
777	gfp &= GFP_RECLAIM_MASK;
778	folio_throttle_swaprate(folio, gfp);
779
780	do {
781		xas_lock_irq(&xas);
782		if (expected != xas_find_conflict(&xas)) {
783			xas_set_err(&xas, -EEXIST);
784			goto unlock;
785		}
786		if (expected && xas_find_conflict(&xas)) {
787			xas_set_err(&xas, -EEXIST);
788			goto unlock;
789		}
790		xas_store(&xas, folio);
791		if (xas_error(&xas))
792			goto unlock;
793		if (folio_test_pmd_mappable(folio))
794			__lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, nr);
795		__lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr);
796		__lruvec_stat_mod_folio(folio, NR_SHMEM, nr);
797		mapping->nrpages += nr;
798unlock:
799		xas_unlock_irq(&xas);
800	} while (xas_nomem(&xas, gfp));
801
802	if (xas_error(&xas)) {
803		folio->mapping = NULL;
804		folio_ref_sub(folio, nr);
805		return xas_error(&xas);
806	}
807
808	return 0;
809}
810
811/*
812 * Somewhat like filemap_remove_folio, but substitutes swap for @folio.
813 */
814static void shmem_delete_from_page_cache(struct folio *folio, void *radswap)
815{
816	struct address_space *mapping = folio->mapping;
817	long nr = folio_nr_pages(folio);
818	int error;
819
820	xa_lock_irq(&mapping->i_pages);
821	error = shmem_replace_entry(mapping, folio->index, folio, radswap);
822	folio->mapping = NULL;
823	mapping->nrpages -= nr;
824	__lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr);
825	__lruvec_stat_mod_folio(folio, NR_SHMEM, -nr);
826	xa_unlock_irq(&mapping->i_pages);
827	folio_put(folio);
828	BUG_ON(error);
829}
830
831/*
832 * Remove swap entry from page cache, free the swap and its page cache.
833 */
834static int shmem_free_swap(struct address_space *mapping,
835			   pgoff_t index, void *radswap)
836{
837	void *old;
838
839	old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
840	if (old != radswap)
841		return -ENOENT;
842	free_swap_and_cache(radix_to_swp_entry(radswap));
843	return 0;
844}
845
846/*
847 * Determine (in bytes) how many of the shmem object's pages mapped by the
848 * given offsets are swapped out.
849 *
850 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
851 * as long as the inode doesn't go away and racy results are not a problem.
852 */
853unsigned long shmem_partial_swap_usage(struct address_space *mapping,
854						pgoff_t start, pgoff_t end)
855{
856	XA_STATE(xas, &mapping->i_pages, start);
857	struct page *page;
858	unsigned long swapped = 0;
859	unsigned long max = end - 1;
860
861	rcu_read_lock();
862	xas_for_each(&xas, page, max) {
863		if (xas_retry(&xas, page))
864			continue;
865		if (xa_is_value(page))
866			swapped++;
867		if (xas.xa_index == max)
868			break;
869		if (need_resched()) {
870			xas_pause(&xas);
871			cond_resched_rcu();
872		}
873	}
874	rcu_read_unlock();
875
876	return swapped << PAGE_SHIFT;
877}
878
879/*
880 * Determine (in bytes) how many of the shmem object's pages mapped by the
881 * given vma is swapped out.
882 *
883 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
884 * as long as the inode doesn't go away and racy results are not a problem.
885 */
886unsigned long shmem_swap_usage(struct vm_area_struct *vma)
887{
888	struct inode *inode = file_inode(vma->vm_file);
889	struct shmem_inode_info *info = SHMEM_I(inode);
890	struct address_space *mapping = inode->i_mapping;
891	unsigned long swapped;
892
893	/* Be careful as we don't hold info->lock */
894	swapped = READ_ONCE(info->swapped);
895
896	/*
897	 * The easier cases are when the shmem object has nothing in swap, or
898	 * the vma maps it whole. Then we can simply use the stats that we
899	 * already track.
900	 */
901	if (!swapped)
902		return 0;
903
904	if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
905		return swapped << PAGE_SHIFT;
906
907	/* Here comes the more involved part */
908	return shmem_partial_swap_usage(mapping, vma->vm_pgoff,
909					vma->vm_pgoff + vma_pages(vma));
910}
911
912/*
913 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
914 */
915void shmem_unlock_mapping(struct address_space *mapping)
916{
917	struct folio_batch fbatch;
918	pgoff_t index = 0;
919
920	folio_batch_init(&fbatch);
921	/*
922	 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
923	 */
924	while (!mapping_unevictable(mapping) &&
925	       filemap_get_folios(mapping, &index, ~0UL, &fbatch)) {
926		check_move_unevictable_folios(&fbatch);
927		folio_batch_release(&fbatch);
928		cond_resched();
929	}
930}
931
932static struct folio *shmem_get_partial_folio(struct inode *inode, pgoff_t index)
933{
934	struct folio *folio;
935
936	/*
937	 * At first avoid shmem_get_folio(,,,SGP_READ): that fails
938	 * beyond i_size, and reports fallocated folios as holes.
939	 */
940	folio = filemap_get_entry(inode->i_mapping, index);
941	if (!folio)
942		return folio;
943	if (!xa_is_value(folio)) {
944		folio_lock(folio);
945		if (folio->mapping == inode->i_mapping)
946			return folio;
947		/* The folio has been swapped out */
948		folio_unlock(folio);
949		folio_put(folio);
950	}
951	/*
952	 * But read a folio back from swap if any of it is within i_size
953	 * (although in some cases this is just a waste of time).
954	 */
955	folio = NULL;
956	shmem_get_folio(inode, index, &folio, SGP_READ);
957	return folio;
958}
959
960/*
961 * Remove range of pages and swap entries from page cache, and free them.
962 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
963 */
964static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
965								 bool unfalloc)
966{
967	struct address_space *mapping = inode->i_mapping;
968	struct shmem_inode_info *info = SHMEM_I(inode);
969	pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
970	pgoff_t end = (lend + 1) >> PAGE_SHIFT;
971	struct folio_batch fbatch;
972	pgoff_t indices[PAGEVEC_SIZE];
973	struct folio *folio;
974	bool same_folio;
975	long nr_swaps_freed = 0;
976	pgoff_t index;
977	int i;
978
979	if (lend == -1)
980		end = -1;	/* unsigned, so actually very big */
981
982	if (info->fallocend > start && info->fallocend <= end && !unfalloc)
983		info->fallocend = start;
984
985	folio_batch_init(&fbatch);
986	index = start;
987	while (index < end && find_lock_entries(mapping, &index, end - 1,
988			&fbatch, indices)) {
989		for (i = 0; i < folio_batch_count(&fbatch); i++) {
990			folio = fbatch.folios[i];
991
992			if (xa_is_value(folio)) {
993				if (unfalloc)
994					continue;
995				nr_swaps_freed += !shmem_free_swap(mapping,
996							indices[i], folio);
997				continue;
998			}
999
1000			if (!unfalloc || !folio_test_uptodate(folio))
1001				truncate_inode_folio(mapping, folio);
1002			folio_unlock(folio);
1003		}
1004		folio_batch_remove_exceptionals(&fbatch);
1005		folio_batch_release(&fbatch);
1006		cond_resched();
1007	}
1008
1009	/*
1010	 * When undoing a failed fallocate, we want none of the partial folio
1011	 * zeroing and splitting below, but shall want to truncate the whole
1012	 * folio when !uptodate indicates that it was added by this fallocate,
1013	 * even when [lstart, lend] covers only a part of the folio.
1014	 */
1015	if (unfalloc)
1016		goto whole_folios;
1017
1018	same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT);
1019	folio = shmem_get_partial_folio(inode, lstart >> PAGE_SHIFT);
1020	if (folio) {
1021		same_folio = lend < folio_pos(folio) + folio_size(folio);
1022		folio_mark_dirty(folio);
1023		if (!truncate_inode_partial_folio(folio, lstart, lend)) {
1024			start = folio_next_index(folio);
1025			if (same_folio)
1026				end = folio->index;
1027		}
1028		folio_unlock(folio);
1029		folio_put(folio);
1030		folio = NULL;
1031	}
1032
1033	if (!same_folio)
1034		folio = shmem_get_partial_folio(inode, lend >> PAGE_SHIFT);
1035	if (folio) {
1036		folio_mark_dirty(folio);
1037		if (!truncate_inode_partial_folio(folio, lstart, lend))
1038			end = folio->index;
1039		folio_unlock(folio);
1040		folio_put(folio);
1041	}
1042
1043whole_folios:
1044
1045	index = start;
1046	while (index < end) {
1047		cond_resched();
1048
1049		if (!find_get_entries(mapping, &index, end - 1, &fbatch,
1050				indices)) {
1051			/* If all gone or hole-punch or unfalloc, we're done */
1052			if (index == start || end != -1)
1053				break;
1054			/* But if truncating, restart to make sure all gone */
1055			index = start;
1056			continue;
1057		}
1058		for (i = 0; i < folio_batch_count(&fbatch); i++) {
1059			folio = fbatch.folios[i];
1060
1061			if (xa_is_value(folio)) {
1062				if (unfalloc)
1063					continue;
1064				if (shmem_free_swap(mapping, indices[i], folio)) {
1065					/* Swap was replaced by page: retry */
1066					index = indices[i];
1067					break;
1068				}
1069				nr_swaps_freed++;
1070				continue;
1071			}
1072
1073			folio_lock(folio);
1074
1075			if (!unfalloc || !folio_test_uptodate(folio)) {
1076				if (folio_mapping(folio) != mapping) {
1077					/* Page was replaced by swap: retry */
1078					folio_unlock(folio);
1079					index = indices[i];
1080					break;
1081				}
1082				VM_BUG_ON_FOLIO(folio_test_writeback(folio),
1083						folio);
1084
1085				if (!folio_test_large(folio)) {
1086					truncate_inode_folio(mapping, folio);
1087				} else if (truncate_inode_partial_folio(folio, lstart, lend)) {
1088					/*
1089					 * If we split a page, reset the loop so
1090					 * that we pick up the new sub pages.
1091					 * Otherwise the THP was entirely
1092					 * dropped or the target range was
1093					 * zeroed, so just continue the loop as
1094					 * is.
1095					 */
1096					if (!folio_test_large(folio)) {
1097						folio_unlock(folio);
1098						index = start;
1099						break;
1100					}
1101				}
1102			}
1103			folio_unlock(folio);
1104		}
1105		folio_batch_remove_exceptionals(&fbatch);
1106		folio_batch_release(&fbatch);
1107	}
1108
1109	shmem_recalc_inode(inode, 0, -nr_swaps_freed);
1110}
1111
1112void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
1113{
1114	shmem_undo_range(inode, lstart, lend, false);
1115	inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
1116	inode_inc_iversion(inode);
1117}
1118EXPORT_SYMBOL_GPL(shmem_truncate_range);
1119
1120static int shmem_getattr(struct mnt_idmap *idmap,
1121			 const struct path *path, struct kstat *stat,
1122			 u32 request_mask, unsigned int query_flags)
1123{
1124	struct inode *inode = path->dentry->d_inode;
1125	struct shmem_inode_info *info = SHMEM_I(inode);
1126
1127	if (info->alloced - info->swapped != inode->i_mapping->nrpages)
1128		shmem_recalc_inode(inode, 0, 0);
1129
1130	if (info->fsflags & FS_APPEND_FL)
1131		stat->attributes |= STATX_ATTR_APPEND;
1132	if (info->fsflags & FS_IMMUTABLE_FL)
1133		stat->attributes |= STATX_ATTR_IMMUTABLE;
1134	if (info->fsflags & FS_NODUMP_FL)
1135		stat->attributes |= STATX_ATTR_NODUMP;
1136	stat->attributes_mask |= (STATX_ATTR_APPEND |
1137			STATX_ATTR_IMMUTABLE |
1138			STATX_ATTR_NODUMP);
1139	generic_fillattr(idmap, request_mask, inode, stat);
1140
1141	if (shmem_is_huge(inode, 0, false, NULL, 0))
1142		stat->blksize = HPAGE_PMD_SIZE;
1143
1144	if (request_mask & STATX_BTIME) {
1145		stat->result_mask |= STATX_BTIME;
1146		stat->btime.tv_sec = info->i_crtime.tv_sec;
1147		stat->btime.tv_nsec = info->i_crtime.tv_nsec;
1148	}
1149
1150	return 0;
1151}
1152
1153static int shmem_setattr(struct mnt_idmap *idmap,
1154			 struct dentry *dentry, struct iattr *attr)
1155{
1156	struct inode *inode = d_inode(dentry);
1157	struct shmem_inode_info *info = SHMEM_I(inode);
1158	int error;
1159	bool update_mtime = false;
1160	bool update_ctime = true;
1161
1162	error = setattr_prepare(idmap, dentry, attr);
1163	if (error)
1164		return error;
1165
1166	if ((info->seals & F_SEAL_EXEC) && (attr->ia_valid & ATTR_MODE)) {
1167		if ((inode->i_mode ^ attr->ia_mode) & 0111) {
1168			return -EPERM;
1169		}
1170	}
1171
1172	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1173		loff_t oldsize = inode->i_size;
1174		loff_t newsize = attr->ia_size;
1175
1176		/* protected by i_rwsem */
1177		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1178		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1179			return -EPERM;
1180
1181		if (newsize != oldsize) {
1182			error = shmem_reacct_size(SHMEM_I(inode)->flags,
1183					oldsize, newsize);
1184			if (error)
1185				return error;
1186			i_size_write(inode, newsize);
1187			update_mtime = true;
1188		} else {
1189			update_ctime = false;
1190		}
1191		if (newsize <= oldsize) {
1192			loff_t holebegin = round_up(newsize, PAGE_SIZE);
1193			if (oldsize > holebegin)
1194				unmap_mapping_range(inode->i_mapping,
1195							holebegin, 0, 1);
1196			if (info->alloced)
1197				shmem_truncate_range(inode,
1198							newsize, (loff_t)-1);
1199			/* unmap again to remove racily COWed private pages */
1200			if (oldsize > holebegin)
1201				unmap_mapping_range(inode->i_mapping,
1202							holebegin, 0, 1);
1203		}
1204	}
1205
1206	if (is_quota_modification(idmap, inode, attr)) {
1207		error = dquot_initialize(inode);
1208		if (error)
1209			return error;
1210	}
1211
1212	/* Transfer quota accounting */
1213	if (i_uid_needs_update(idmap, attr, inode) ||
1214	    i_gid_needs_update(idmap, attr, inode)) {
1215		error = dquot_transfer(idmap, inode, attr);
1216		if (error)
1217			return error;
1218	}
1219
1220	setattr_copy(idmap, inode, attr);
1221	if (attr->ia_valid & ATTR_MODE)
1222		error = posix_acl_chmod(idmap, dentry, inode->i_mode);
1223	if (!error && update_ctime) {
1224		inode_set_ctime_current(inode);
1225		if (update_mtime)
1226			inode_set_mtime_to_ts(inode, inode_get_ctime(inode));
1227		inode_inc_iversion(inode);
1228	}
1229	return error;
1230}
1231
1232static void shmem_evict_inode(struct inode *inode)
1233{
1234	struct shmem_inode_info *info = SHMEM_I(inode);
1235	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1236	size_t freed = 0;
1237
1238	if (shmem_mapping(inode->i_mapping)) {
1239		shmem_unacct_size(info->flags, inode->i_size);
1240		inode->i_size = 0;
1241		mapping_set_exiting(inode->i_mapping);
1242		shmem_truncate_range(inode, 0, (loff_t)-1);
1243		if (!list_empty(&info->shrinklist)) {
1244			spin_lock(&sbinfo->shrinklist_lock);
1245			if (!list_empty(&info->shrinklist)) {
1246				list_del_init(&info->shrinklist);
1247				sbinfo->shrinklist_len--;
1248			}
1249			spin_unlock(&sbinfo->shrinklist_lock);
1250		}
1251		while (!list_empty(&info->swaplist)) {
1252			/* Wait while shmem_unuse() is scanning this inode... */
1253			wait_var_event(&info->stop_eviction,
1254				       !atomic_read(&info->stop_eviction));
1255			mutex_lock(&shmem_swaplist_mutex);
1256			/* ...but beware of the race if we peeked too early */
1257			if (!atomic_read(&info->stop_eviction))
1258				list_del_init(&info->swaplist);
1259			mutex_unlock(&shmem_swaplist_mutex);
1260		}
1261	}
1262
1263	simple_xattrs_free(&info->xattrs, sbinfo->max_inodes ? &freed : NULL);
1264	shmem_free_inode(inode->i_sb, freed);
1265	WARN_ON(inode->i_blocks);
1266	clear_inode(inode);
1267#ifdef CONFIG_TMPFS_QUOTA
1268	dquot_free_inode(inode);
1269	dquot_drop(inode);
1270#endif
1271}
1272
1273static int shmem_find_swap_entries(struct address_space *mapping,
1274				   pgoff_t start, struct folio_batch *fbatch,
1275				   pgoff_t *indices, unsigned int type)
1276{
1277	XA_STATE(xas, &mapping->i_pages, start);
1278	struct folio *folio;
1279	swp_entry_t entry;
1280
1281	rcu_read_lock();
1282	xas_for_each(&xas, folio, ULONG_MAX) {
1283		if (xas_retry(&xas, folio))
1284			continue;
1285
1286		if (!xa_is_value(folio))
1287			continue;
1288
1289		entry = radix_to_swp_entry(folio);
1290		/*
1291		 * swapin error entries can be found in the mapping. But they're
1292		 * deliberately ignored here as we've done everything we can do.
1293		 */
1294		if (swp_type(entry) != type)
1295			continue;
1296
1297		indices[folio_batch_count(fbatch)] = xas.xa_index;
1298		if (!folio_batch_add(fbatch, folio))
1299			break;
1300
1301		if (need_resched()) {
1302			xas_pause(&xas);
1303			cond_resched_rcu();
1304		}
1305	}
1306	rcu_read_unlock();
1307
1308	return xas.xa_index;
1309}
1310
1311/*
1312 * Move the swapped pages for an inode to page cache. Returns the count
1313 * of pages swapped in, or the error in case of failure.
1314 */
1315static int shmem_unuse_swap_entries(struct inode *inode,
1316		struct folio_batch *fbatch, pgoff_t *indices)
1317{
1318	int i = 0;
1319	int ret = 0;
1320	int error = 0;
1321	struct address_space *mapping = inode->i_mapping;
1322
1323	for (i = 0; i < folio_batch_count(fbatch); i++) {
1324		struct folio *folio = fbatch->folios[i];
1325
1326		if (!xa_is_value(folio))
1327			continue;
1328		error = shmem_swapin_folio(inode, indices[i], &folio, SGP_CACHE,
1329					mapping_gfp_mask(mapping), NULL, NULL);
1330		if (error == 0) {
1331			folio_unlock(folio);
1332			folio_put(folio);
1333			ret++;
1334		}
1335		if (error == -ENOMEM)
1336			break;
1337		error = 0;
1338	}
1339	return error ? error : ret;
1340}
1341
1342/*
1343 * If swap found in inode, free it and move page from swapcache to filecache.
1344 */
1345static int shmem_unuse_inode(struct inode *inode, unsigned int type)
1346{
1347	struct address_space *mapping = inode->i_mapping;
1348	pgoff_t start = 0;
1349	struct folio_batch fbatch;
1350	pgoff_t indices[PAGEVEC_SIZE];
1351	int ret = 0;
1352
1353	do {
1354		folio_batch_init(&fbatch);
1355		shmem_find_swap_entries(mapping, start, &fbatch, indices, type);
1356		if (folio_batch_count(&fbatch) == 0) {
1357			ret = 0;
1358			break;
1359		}
1360
1361		ret = shmem_unuse_swap_entries(inode, &fbatch, indices);
1362		if (ret < 0)
1363			break;
1364
1365		start = indices[folio_batch_count(&fbatch) - 1];
1366	} while (true);
1367
1368	return ret;
1369}
1370
1371/*
1372 * Read all the shared memory data that resides in the swap
1373 * device 'type' back into memory, so the swap device can be
1374 * unused.
1375 */
1376int shmem_unuse(unsigned int type)
1377{
1378	struct shmem_inode_info *info, *next;
1379	int error = 0;
1380
1381	if (list_empty(&shmem_swaplist))
1382		return 0;
1383
1384	mutex_lock(&shmem_swaplist_mutex);
1385	list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1386		if (!info->swapped) {
1387			list_del_init(&info->swaplist);
1388			continue;
1389		}
1390		/*
1391		 * Drop the swaplist mutex while searching the inode for swap;
1392		 * but before doing so, make sure shmem_evict_inode() will not
1393		 * remove placeholder inode from swaplist, nor let it be freed
1394		 * (igrab() would protect from unlink, but not from unmount).
1395		 */
1396		atomic_inc(&info->stop_eviction);
1397		mutex_unlock(&shmem_swaplist_mutex);
1398
1399		error = shmem_unuse_inode(&info->vfs_inode, type);
1400		cond_resched();
1401
1402		mutex_lock(&shmem_swaplist_mutex);
1403		next = list_next_entry(info, swaplist);
1404		if (!info->swapped)
1405			list_del_init(&info->swaplist);
1406		if (atomic_dec_and_test(&info->stop_eviction))
1407			wake_up_var(&info->stop_eviction);
1408		if (error)
1409			break;
1410	}
1411	mutex_unlock(&shmem_swaplist_mutex);
1412
1413	return error;
1414}
1415
1416/*
1417 * Move the page from the page cache to the swap cache.
1418 */
1419static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1420{
1421	struct folio *folio = page_folio(page);
1422	struct address_space *mapping = folio->mapping;
1423	struct inode *inode = mapping->host;
1424	struct shmem_inode_info *info = SHMEM_I(inode);
1425	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1426	swp_entry_t swap;
1427	pgoff_t index;
1428
1429	/*
1430	 * Our capabilities prevent regular writeback or sync from ever calling
1431	 * shmem_writepage; but a stacking filesystem might use ->writepage of
1432	 * its underlying filesystem, in which case tmpfs should write out to
1433	 * swap only in response to memory pressure, and not for the writeback
1434	 * threads or sync.
1435	 */
1436	if (WARN_ON_ONCE(!wbc->for_reclaim))
1437		goto redirty;
1438
1439	if (WARN_ON_ONCE((info->flags & VM_LOCKED) || sbinfo->noswap))
1440		goto redirty;
1441
1442	if (!total_swap_pages)
1443		goto redirty;
1444
1445	/*
1446	 * If /sys/kernel/mm/transparent_hugepage/shmem_enabled is "always" or
1447	 * "force", drivers/gpu/drm/i915/gem/i915_gem_shmem.c gets huge pages,
1448	 * and its shmem_writeback() needs them to be split when swapping.
1449	 */
1450	if (folio_test_large(folio)) {
1451		/* Ensure the subpages are still dirty */
1452		folio_test_set_dirty(folio);
1453		if (split_huge_page(page) < 0)
1454			goto redirty;
1455		folio = page_folio(page);
1456		folio_clear_dirty(folio);
1457	}
1458
1459	index = folio->index;
1460
1461	/*
1462	 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1463	 * value into swapfile.c, the only way we can correctly account for a
1464	 * fallocated folio arriving here is now to initialize it and write it.
1465	 *
1466	 * That's okay for a folio already fallocated earlier, but if we have
1467	 * not yet completed the fallocation, then (a) we want to keep track
1468	 * of this folio in case we have to undo it, and (b) it may not be a
1469	 * good idea to continue anyway, once we're pushing into swap.  So
1470	 * reactivate the folio, and let shmem_fallocate() quit when too many.
1471	 */
1472	if (!folio_test_uptodate(folio)) {
1473		if (inode->i_private) {
1474			struct shmem_falloc *shmem_falloc;
1475			spin_lock(&inode->i_lock);
1476			shmem_falloc = inode->i_private;
1477			if (shmem_falloc &&
1478			    !shmem_falloc->waitq &&
1479			    index >= shmem_falloc->start &&
1480			    index < shmem_falloc->next)
1481				shmem_falloc->nr_unswapped++;
1482			else
1483				shmem_falloc = NULL;
1484			spin_unlock(&inode->i_lock);
1485			if (shmem_falloc)
1486				goto redirty;
1487		}
1488		folio_zero_range(folio, 0, folio_size(folio));
1489		flush_dcache_folio(folio);
1490		folio_mark_uptodate(folio);
1491	}
1492
1493	swap = folio_alloc_swap(folio);
1494	if (!swap.val)
1495		goto redirty;
1496
1497	/*
1498	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1499	 * if it's not already there.  Do it now before the folio is
1500	 * moved to swap cache, when its pagelock no longer protects
1501	 * the inode from eviction.  But don't unlock the mutex until
1502	 * we've incremented swapped, because shmem_unuse_inode() will
1503	 * prune a !swapped inode from the swaplist under this mutex.
1504	 */
1505	mutex_lock(&shmem_swaplist_mutex);
1506	if (list_empty(&info->swaplist))
1507		list_add(&info->swaplist, &shmem_swaplist);
1508
1509	if (add_to_swap_cache(folio, swap,
1510			__GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN,
1511			NULL) == 0) {
1512		shmem_recalc_inode(inode, 0, 1);
1513		swap_shmem_alloc(swap);
1514		shmem_delete_from_page_cache(folio, swp_to_radix_entry(swap));
1515
1516		mutex_unlock(&shmem_swaplist_mutex);
1517		BUG_ON(folio_mapped(folio));
1518		return swap_writepage(&folio->page, wbc);
1519	}
1520
1521	mutex_unlock(&shmem_swaplist_mutex);
1522	put_swap_folio(folio, swap);
1523redirty:
1524	folio_mark_dirty(folio);
1525	if (wbc->for_reclaim)
1526		return AOP_WRITEPAGE_ACTIVATE;	/* Return with folio locked */
1527	folio_unlock(folio);
1528	return 0;
1529}
1530
1531#if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1532static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1533{
1534	char buffer[64];
1535
1536	if (!mpol || mpol->mode == MPOL_DEFAULT)
1537		return;		/* show nothing */
1538
1539	mpol_to_str(buffer, sizeof(buffer), mpol);
1540
1541	seq_printf(seq, ",mpol=%s", buffer);
1542}
1543
1544static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1545{
1546	struct mempolicy *mpol = NULL;
1547	if (sbinfo->mpol) {
1548		raw_spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
1549		mpol = sbinfo->mpol;
1550		mpol_get(mpol);
1551		raw_spin_unlock(&sbinfo->stat_lock);
1552	}
1553	return mpol;
1554}
1555#else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1556static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1557{
1558}
1559static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1560{
1561	return NULL;
1562}
1563#endif /* CONFIG_NUMA && CONFIG_TMPFS */
1564
1565static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info,
1566			pgoff_t index, unsigned int order, pgoff_t *ilx);
1567
1568static struct folio *shmem_swapin_cluster(swp_entry_t swap, gfp_t gfp,
1569			struct shmem_inode_info *info, pgoff_t index)
1570{
1571	struct mempolicy *mpol;
1572	pgoff_t ilx;
1573	struct folio *folio;
1574
1575	mpol = shmem_get_pgoff_policy(info, index, 0, &ilx);
1576	folio = swap_cluster_readahead(swap, gfp, mpol, ilx);
1577	mpol_cond_put(mpol);
1578
1579	return folio;
1580}
1581
1582/*
1583 * Make sure huge_gfp is always more limited than limit_gfp.
1584 * Some of the flags set permissions, while others set limitations.
1585 */
1586static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp)
1587{
1588	gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM;
1589	gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY;
1590	gfp_t zoneflags = limit_gfp & GFP_ZONEMASK;
1591	gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK);
1592
1593	/* Allow allocations only from the originally specified zones. */
1594	result |= zoneflags;
1595
1596	/*
1597	 * Minimize the result gfp by taking the union with the deny flags,
1598	 * and the intersection of the allow flags.
1599	 */
1600	result |= (limit_gfp & denyflags);
1601	result |= (huge_gfp & limit_gfp) & allowflags;
1602
1603	return result;
1604}
1605
1606static struct folio *shmem_alloc_hugefolio(gfp_t gfp,
1607		struct shmem_inode_info *info, pgoff_t index)
1608{
1609	struct mempolicy *mpol;
1610	pgoff_t ilx;
1611	struct page *page;
1612
1613	mpol = shmem_get_pgoff_policy(info, index, HPAGE_PMD_ORDER, &ilx);
1614	page = alloc_pages_mpol(gfp, HPAGE_PMD_ORDER, mpol, ilx, numa_node_id());
1615	mpol_cond_put(mpol);
1616
1617	return page_rmappable_folio(page);
1618}
1619
1620static struct folio *shmem_alloc_folio(gfp_t gfp,
1621		struct shmem_inode_info *info, pgoff_t index)
1622{
1623	struct mempolicy *mpol;
1624	pgoff_t ilx;
1625	struct page *page;
1626
1627	mpol = shmem_get_pgoff_policy(info, index, 0, &ilx);
1628	page = alloc_pages_mpol(gfp, 0, mpol, ilx, numa_node_id());
1629	mpol_cond_put(mpol);
1630
1631	return (struct folio *)page;
1632}
1633
1634static struct folio *shmem_alloc_and_add_folio(gfp_t gfp,
1635		struct inode *inode, pgoff_t index,
1636		struct mm_struct *fault_mm, bool huge)
1637{
1638	struct address_space *mapping = inode->i_mapping;
1639	struct shmem_inode_info *info = SHMEM_I(inode);
1640	struct folio *folio;
1641	long pages;
1642	int error;
1643
1644	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1645		huge = false;
1646
1647	if (huge) {
1648		pages = HPAGE_PMD_NR;
1649		index = round_down(index, HPAGE_PMD_NR);
1650
1651		/*
1652		 * Check for conflict before waiting on a huge allocation.
1653		 * Conflict might be that a huge page has just been allocated
1654		 * and added to page cache by a racing thread, or that there
1655		 * is already at least one small page in the huge extent.
1656		 * Be careful to retry when appropriate, but not forever!
1657		 * Elsewhere -EEXIST would be the right code, but not here.
1658		 */
1659		if (xa_find(&mapping->i_pages, &index,
1660				index + HPAGE_PMD_NR - 1, XA_PRESENT))
1661			return ERR_PTR(-E2BIG);
1662
1663		folio = shmem_alloc_hugefolio(gfp, info, index);
1664		if (!folio)
1665			count_vm_event(THP_FILE_FALLBACK);
1666	} else {
1667		pages = 1;
1668		folio = shmem_alloc_folio(gfp, info, index);
1669	}
1670	if (!folio)
1671		return ERR_PTR(-ENOMEM);
1672
1673	__folio_set_locked(folio);
1674	__folio_set_swapbacked(folio);
1675
1676	gfp &= GFP_RECLAIM_MASK;
1677	error = mem_cgroup_charge(folio, fault_mm, gfp);
1678	if (error) {
1679		if (xa_find(&mapping->i_pages, &index,
1680				index + pages - 1, XA_PRESENT)) {
1681			error = -EEXIST;
1682		} else if (huge) {
1683			count_vm_event(THP_FILE_FALLBACK);
1684			count_vm_event(THP_FILE_FALLBACK_CHARGE);
1685		}
1686		goto unlock;
1687	}
1688
1689	error = shmem_add_to_page_cache(folio, mapping, index, NULL, gfp);
1690	if (error)
1691		goto unlock;
1692
1693	error = shmem_inode_acct_blocks(inode, pages);
1694	if (error) {
1695		struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1696		long freed;
1697		/*
1698		 * Try to reclaim some space by splitting a few
1699		 * large folios beyond i_size on the filesystem.
1700		 */
1701		shmem_unused_huge_shrink(sbinfo, NULL, 2);
1702		/*
1703		 * And do a shmem_recalc_inode() to account for freed pages:
1704		 * except our folio is there in cache, so not quite balanced.
1705		 */
1706		spin_lock(&info->lock);
1707		freed = pages + info->alloced - info->swapped -
1708			READ_ONCE(mapping->nrpages);
1709		if (freed > 0)
1710			info->alloced -= freed;
1711		spin_unlock(&info->lock);
1712		if (freed > 0)
1713			shmem_inode_unacct_blocks(inode, freed);
1714		error = shmem_inode_acct_blocks(inode, pages);
1715		if (error) {
1716			filemap_remove_folio(folio);
1717			goto unlock;
1718		}
1719	}
1720
1721	shmem_recalc_inode(inode, pages, 0);
1722	folio_add_lru(folio);
1723	return folio;
1724
1725unlock:
1726	folio_unlock(folio);
1727	folio_put(folio);
1728	return ERR_PTR(error);
1729}
1730
1731/*
1732 * When a page is moved from swapcache to shmem filecache (either by the
1733 * usual swapin of shmem_get_folio_gfp(), or by the less common swapoff of
1734 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1735 * ignorance of the mapping it belongs to.  If that mapping has special
1736 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1737 * we may need to copy to a suitable page before moving to filecache.
1738 *
1739 * In a future release, this may well be extended to respect cpuset and
1740 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1741 * but for now it is a simple matter of zone.
1742 */
1743static bool shmem_should_replace_folio(struct folio *folio, gfp_t gfp)
1744{
1745	return folio_zonenum(folio) > gfp_zone(gfp);
1746}
1747
1748static int shmem_replace_folio(struct folio **foliop, gfp_t gfp,
1749				struct shmem_inode_info *info, pgoff_t index)
1750{
1751	struct folio *old, *new;
1752	struct address_space *swap_mapping;
1753	swp_entry_t entry;
1754	pgoff_t swap_index;
1755	int error;
1756
1757	old = *foliop;
1758	entry = old->swap;
1759	swap_index = swp_offset(entry);
1760	swap_mapping = swap_address_space(entry);
1761
1762	/*
1763	 * We have arrived here because our zones are constrained, so don't
1764	 * limit chance of success by further cpuset and node constraints.
1765	 */
1766	gfp &= ~GFP_CONSTRAINT_MASK;
1767	VM_BUG_ON_FOLIO(folio_test_large(old), old);
1768	new = shmem_alloc_folio(gfp, info, index);
1769	if (!new)
1770		return -ENOMEM;
1771
1772	folio_get(new);
1773	folio_copy(new, old);
1774	flush_dcache_folio(new);
1775
1776	__folio_set_locked(new);
1777	__folio_set_swapbacked(new);
1778	folio_mark_uptodate(new);
1779	new->swap = entry;
1780	folio_set_swapcache(new);
1781
1782	/*
1783	 * Our caller will very soon move newpage out of swapcache, but it's
1784	 * a nice clean interface for us to replace oldpage by newpage there.
1785	 */
1786	xa_lock_irq(&swap_mapping->i_pages);
1787	error = shmem_replace_entry(swap_mapping, swap_index, old, new);
1788	if (!error) {
1789		mem_cgroup_migrate(old, new);
1790		__lruvec_stat_mod_folio(new, NR_FILE_PAGES, 1);
1791		__lruvec_stat_mod_folio(new, NR_SHMEM, 1);
1792		__lruvec_stat_mod_folio(old, NR_FILE_PAGES, -1);
1793		__lruvec_stat_mod_folio(old, NR_SHMEM, -1);
1794	}
1795	xa_unlock_irq(&swap_mapping->i_pages);
1796
1797	if (unlikely(error)) {
1798		/*
1799		 * Is this possible?  I think not, now that our callers check
1800		 * both PageSwapCache and page_private after getting page lock;
1801		 * but be defensive.  Reverse old to newpage for clear and free.
1802		 */
1803		old = new;
1804	} else {
1805		folio_add_lru(new);
1806		*foliop = new;
1807	}
1808
1809	folio_clear_swapcache(old);
1810	old->private = NULL;
1811
1812	folio_unlock(old);
1813	folio_put_refs(old, 2);
1814	return error;
1815}
1816
1817static void shmem_set_folio_swapin_error(struct inode *inode, pgoff_t index,
1818					 struct folio *folio, swp_entry_t swap)
1819{
1820	struct address_space *mapping = inode->i_mapping;
1821	swp_entry_t swapin_error;
1822	void *old;
1823
1824	swapin_error = make_poisoned_swp_entry();
1825	old = xa_cmpxchg_irq(&mapping->i_pages, index,
1826			     swp_to_radix_entry(swap),
1827			     swp_to_radix_entry(swapin_error), 0);
1828	if (old != swp_to_radix_entry(swap))
1829		return;
1830
1831	folio_wait_writeback(folio);
1832	delete_from_swap_cache(folio);
1833	/*
1834	 * Don't treat swapin error folio as alloced. Otherwise inode->i_blocks
1835	 * won't be 0 when inode is released and thus trigger WARN_ON(i_blocks)
1836	 * in shmem_evict_inode().
1837	 */
1838	shmem_recalc_inode(inode, -1, -1);
1839	swap_free(swap);
1840}
1841
1842/*
1843 * Swap in the folio pointed to by *foliop.
1844 * Caller has to make sure that *foliop contains a valid swapped folio.
1845 * Returns 0 and the folio in foliop if success. On failure, returns the
1846 * error code and NULL in *foliop.
1847 */
1848static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
1849			     struct folio **foliop, enum sgp_type sgp,
1850			     gfp_t gfp, struct mm_struct *fault_mm,
1851			     vm_fault_t *fault_type)
1852{
1853	struct address_space *mapping = inode->i_mapping;
1854	struct shmem_inode_info *info = SHMEM_I(inode);
1855	struct swap_info_struct *si;
1856	struct folio *folio = NULL;
1857	swp_entry_t swap;
1858	int error;
1859
1860	VM_BUG_ON(!*foliop || !xa_is_value(*foliop));
1861	swap = radix_to_swp_entry(*foliop);
1862	*foliop = NULL;
1863
1864	if (is_poisoned_swp_entry(swap))
1865		return -EIO;
1866
1867	si = get_swap_device(swap);
1868	if (!si) {
1869		if (!shmem_confirm_swap(mapping, index, swap))
1870			return -EEXIST;
1871		else
1872			return -EINVAL;
1873	}
1874
1875	/* Look it up and read it in.. */
1876	folio = swap_cache_get_folio(swap, NULL, 0);
1877	if (!folio) {
1878		/* Or update major stats only when swapin succeeds?? */
1879		if (fault_type) {
1880			*fault_type |= VM_FAULT_MAJOR;
1881			count_vm_event(PGMAJFAULT);
1882			count_memcg_event_mm(fault_mm, PGMAJFAULT);
1883		}
1884		/* Here we actually start the io */
1885		folio = shmem_swapin_cluster(swap, gfp, info, index);
1886		if (!folio) {
1887			error = -ENOMEM;
1888			goto failed;
1889		}
1890	}
1891
1892	/* We have to do this with folio locked to prevent races */
1893	folio_lock(folio);
1894	if (!folio_test_swapcache(folio) ||
1895	    folio->swap.val != swap.val ||
1896	    !shmem_confirm_swap(mapping, index, swap)) {
1897		error = -EEXIST;
1898		goto unlock;
1899	}
1900	if (!folio_test_uptodate(folio)) {
1901		error = -EIO;
1902		goto failed;
1903	}
1904	folio_wait_writeback(folio);
1905
1906	/*
1907	 * Some architectures may have to restore extra metadata to the
1908	 * folio after reading from swap.
1909	 */
1910	arch_swap_restore(swap, folio);
1911
1912	if (shmem_should_replace_folio(folio, gfp)) {
1913		error = shmem_replace_folio(&folio, gfp, info, index);
1914		if (error)
1915			goto failed;
1916	}
1917
1918	error = shmem_add_to_page_cache(folio, mapping, index,
1919					swp_to_radix_entry(swap), gfp);
1920	if (error)
1921		goto failed;
1922
1923	shmem_recalc_inode(inode, 0, -1);
1924
1925	if (sgp == SGP_WRITE)
1926		folio_mark_accessed(folio);
1927
1928	delete_from_swap_cache(folio);
1929	folio_mark_dirty(folio);
1930	swap_free(swap);
1931	put_swap_device(si);
1932
1933	*foliop = folio;
1934	return 0;
1935failed:
1936	if (!shmem_confirm_swap(mapping, index, swap))
1937		error = -EEXIST;
1938	if (error == -EIO)
1939		shmem_set_folio_swapin_error(inode, index, folio, swap);
1940unlock:
1941	if (folio) {
1942		folio_unlock(folio);
1943		folio_put(folio);
1944	}
1945	put_swap_device(si);
1946
1947	return error;
1948}
1949
1950/*
1951 * shmem_get_folio_gfp - find page in cache, or get from swap, or allocate
1952 *
1953 * If we allocate a new one we do not mark it dirty. That's up to the
1954 * vm. If we swap it in we mark it dirty since we also free the swap
1955 * entry since a page cannot live in both the swap and page cache.
1956 *
1957 * vmf and fault_type are only supplied by shmem_fault: otherwise they are NULL.
1958 */
1959static int shmem_get_folio_gfp(struct inode *inode, pgoff_t index,
1960		struct folio **foliop, enum sgp_type sgp, gfp_t gfp,
1961		struct vm_fault *vmf, vm_fault_t *fault_type)
1962{
1963	struct vm_area_struct *vma = vmf ? vmf->vma : NULL;
1964	struct mm_struct *fault_mm;
1965	struct folio *folio;
1966	int error;
1967	bool alloced;
1968
1969	if (WARN_ON_ONCE(!shmem_mapping(inode->i_mapping)))
1970		return -EINVAL;
1971
1972	if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1973		return -EFBIG;
1974repeat:
1975	if (sgp <= SGP_CACHE &&
1976	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode))
1977		return -EINVAL;
1978
1979	alloced = false;
1980	fault_mm = vma ? vma->vm_mm : NULL;
1981
1982	folio = filemap_get_entry(inode->i_mapping, index);
1983	if (folio && vma && userfaultfd_minor(vma)) {
1984		if (!xa_is_value(folio))
1985			folio_put(folio);
1986		*fault_type = handle_userfault(vmf, VM_UFFD_MINOR);
1987		return 0;
1988	}
1989
1990	if (xa_is_value(folio)) {
1991		error = shmem_swapin_folio(inode, index, &folio,
1992					   sgp, gfp, fault_mm, fault_type);
1993		if (error == -EEXIST)
1994			goto repeat;
1995
1996		*foliop = folio;
1997		return error;
1998	}
1999
2000	if (folio) {
2001		folio_lock(folio);
2002
2003		/* Has the folio been truncated or swapped out? */
2004		if (unlikely(folio->mapping != inode->i_mapping)) {
2005			folio_unlock(folio);
2006			folio_put(folio);
2007			goto repeat;
2008		}
2009		if (sgp == SGP_WRITE)
2010			folio_mark_accessed(folio);
2011		if (folio_test_uptodate(folio))
2012			goto out;
2013		/* fallocated folio */
2014		if (sgp != SGP_READ)
2015			goto clear;
2016		folio_unlock(folio);
2017		folio_put(folio);
2018	}
2019
2020	/*
2021	 * SGP_READ: succeed on hole, with NULL folio, letting caller zero.
2022	 * SGP_NOALLOC: fail on hole, with NULL folio, letting caller fail.
2023	 */
2024	*foliop = NULL;
2025	if (sgp == SGP_READ)
2026		return 0;
2027	if (sgp == SGP_NOALLOC)
2028		return -ENOENT;
2029
2030	/*
2031	 * Fast cache lookup and swap lookup did not find it: allocate.
2032	 */
2033
2034	if (vma && userfaultfd_missing(vma)) {
2035		*fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
2036		return 0;
2037	}
2038
2039	if (shmem_is_huge(inode, index, false, fault_mm,
2040			  vma ? vma->vm_flags : 0)) {
2041		gfp_t huge_gfp;
2042
2043		huge_gfp = vma_thp_gfp_mask(vma);
2044		huge_gfp = limit_gfp_mask(huge_gfp, gfp);
2045		folio = shmem_alloc_and_add_folio(huge_gfp,
2046				inode, index, fault_mm, true);
2047		if (!IS_ERR(folio)) {
2048			count_vm_event(THP_FILE_ALLOC);
2049			goto alloced;
2050		}
2051		if (PTR_ERR(folio) == -EEXIST)
2052			goto repeat;
2053	}
2054
2055	folio = shmem_alloc_and_add_folio(gfp, inode, index, fault_mm, false);
2056	if (IS_ERR(folio)) {
2057		error = PTR_ERR(folio);
2058		if (error == -EEXIST)
2059			goto repeat;
2060		folio = NULL;
2061		goto unlock;
2062	}
2063
2064alloced:
2065	alloced = true;
2066	if (folio_test_pmd_mappable(folio) &&
2067	    DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
2068					folio_next_index(folio) - 1) {
2069		struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2070		struct shmem_inode_info *info = SHMEM_I(inode);
2071		/*
2072		 * Part of the large folio is beyond i_size: subject
2073		 * to shrink under memory pressure.
2074		 */
2075		spin_lock(&sbinfo->shrinklist_lock);
2076		/*
2077		 * _careful to defend against unlocked access to
2078		 * ->shrink_list in shmem_unused_huge_shrink()
2079		 */
2080		if (list_empty_careful(&info->shrinklist)) {
2081			list_add_tail(&info->shrinklist,
2082				      &sbinfo->shrinklist);
2083			sbinfo->shrinklist_len++;
2084		}
2085		spin_unlock(&sbinfo->shrinklist_lock);
2086	}
2087
2088	if (sgp == SGP_WRITE)
2089		folio_set_referenced(folio);
2090	/*
2091	 * Let SGP_FALLOC use the SGP_WRITE optimization on a new folio.
2092	 */
2093	if (sgp == SGP_FALLOC)
2094		sgp = SGP_WRITE;
2095clear:
2096	/*
2097	 * Let SGP_WRITE caller clear ends if write does not fill folio;
2098	 * but SGP_FALLOC on a folio fallocated earlier must initialize
2099	 * it now, lest undo on failure cancel our earlier guarantee.
2100	 */
2101	if (sgp != SGP_WRITE && !folio_test_uptodate(folio)) {
2102		long i, n = folio_nr_pages(folio);
2103
2104		for (i = 0; i < n; i++)
2105			clear_highpage(folio_page(folio, i));
2106		flush_dcache_folio(folio);
2107		folio_mark_uptodate(folio);
2108	}
2109
2110	/* Perhaps the file has been truncated since we checked */
2111	if (sgp <= SGP_CACHE &&
2112	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
2113		error = -EINVAL;
2114		goto unlock;
2115	}
2116out:
2117	*foliop = folio;
2118	return 0;
2119
2120	/*
2121	 * Error recovery.
2122	 */
2123unlock:
2124	if (alloced)
2125		filemap_remove_folio(folio);
2126	shmem_recalc_inode(inode, 0, 0);
2127	if (folio) {
2128		folio_unlock(folio);
2129		folio_put(folio);
2130	}
2131	return error;
2132}
2133
2134/**
2135 * shmem_get_folio - find, and lock a shmem folio.
2136 * @inode:	inode to search
2137 * @index:	the page index.
2138 * @foliop:	pointer to the folio if found
2139 * @sgp:	SGP_* flags to control behavior
2140 *
2141 * Looks up the page cache entry at @inode & @index.  If a folio is
2142 * present, it is returned locked with an increased refcount.
2143 *
2144 * If the caller modifies data in the folio, it must call folio_mark_dirty()
2145 * before unlocking the folio to ensure that the folio is not reclaimed.
2146 * There is no need to reserve space before calling folio_mark_dirty().
2147 *
2148 * When no folio is found, the behavior depends on @sgp:
2149 *  - for SGP_READ, *@foliop is %NULL and 0 is returned
2150 *  - for SGP_NOALLOC, *@foliop is %NULL and -ENOENT is returned
2151 *  - for all other flags a new folio is allocated, inserted into the
2152 *    page cache and returned locked in @foliop.
2153 *
2154 * Context: May sleep.
2155 * Return: 0 if successful, else a negative error code.
2156 */
2157int shmem_get_folio(struct inode *inode, pgoff_t index, struct folio **foliop,
2158		enum sgp_type sgp)
2159{
2160	return shmem_get_folio_gfp(inode, index, foliop, sgp,
2161			mapping_gfp_mask(inode->i_mapping), NULL, NULL);
2162}
2163EXPORT_SYMBOL_GPL(shmem_get_folio);
2164
2165/*
2166 * This is like autoremove_wake_function, but it removes the wait queue
2167 * entry unconditionally - even if something else had already woken the
2168 * target.
2169 */
2170static int synchronous_wake_function(wait_queue_entry_t *wait,
2171			unsigned int mode, int sync, void *key)
2172{
2173	int ret = default_wake_function(wait, mode, sync, key);
2174	list_del_init(&wait->entry);
2175	return ret;
2176}
2177
2178/*
2179 * Trinity finds that probing a hole which tmpfs is punching can
2180 * prevent the hole-punch from ever completing: which in turn
2181 * locks writers out with its hold on i_rwsem.  So refrain from
2182 * faulting pages into the hole while it's being punched.  Although
2183 * shmem_undo_range() does remove the additions, it may be unable to
2184 * keep up, as each new page needs its own unmap_mapping_range() call,
2185 * and the i_mmap tree grows ever slower to scan if new vmas are added.
2186 *
2187 * It does not matter if we sometimes reach this check just before the
2188 * hole-punch begins, so that one fault then races with the punch:
2189 * we just need to make racing faults a rare case.
2190 *
2191 * The implementation below would be much simpler if we just used a
2192 * standard mutex or completion: but we cannot take i_rwsem in fault,
2193 * and bloating every shmem inode for this unlikely case would be sad.
2194 */
2195static vm_fault_t shmem_falloc_wait(struct vm_fault *vmf, struct inode *inode)
2196{
2197	struct shmem_falloc *shmem_falloc;
2198	struct file *fpin = NULL;
2199	vm_fault_t ret = 0;
2200
2201	spin_lock(&inode->i_lock);
2202	shmem_falloc = inode->i_private;
2203	if (shmem_falloc &&
2204	    shmem_falloc->waitq &&
2205	    vmf->pgoff >= shmem_falloc->start &&
2206	    vmf->pgoff < shmem_falloc->next) {
2207		wait_queue_head_t *shmem_falloc_waitq;
2208		DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2209
2210		ret = VM_FAULT_NOPAGE;
2211		fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2212		shmem_falloc_waitq = shmem_falloc->waitq;
2213		prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2214				TASK_UNINTERRUPTIBLE);
2215		spin_unlock(&inode->i_lock);
2216		schedule();
2217
2218		/*
2219		 * shmem_falloc_waitq points into the shmem_fallocate()
2220		 * stack of the hole-punching task: shmem_falloc_waitq
2221		 * is usually invalid by the time we reach here, but
2222		 * finish_wait() does not dereference it in that case;
2223		 * though i_lock needed lest racing with wake_up_all().
2224		 */
2225		spin_lock(&inode->i_lock);
2226		finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2227	}
2228	spin_unlock(&inode->i_lock);
2229	if (fpin) {
2230		fput(fpin);
2231		ret = VM_FAULT_RETRY;
2232	}
2233	return ret;
2234}
2235
2236static vm_fault_t shmem_fault(struct vm_fault *vmf)
2237{
2238	struct inode *inode = file_inode(vmf->vma->vm_file);
2239	gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
2240	struct folio *folio = NULL;
2241	vm_fault_t ret = 0;
2242	int err;
2243
2244	/*
2245	 * Trinity finds that probing a hole which tmpfs is punching can
2246	 * prevent the hole-punch from ever completing: noted in i_private.
2247	 */
2248	if (unlikely(inode->i_private)) {
2249		ret = shmem_falloc_wait(vmf, inode);
2250		if (ret)
2251			return ret;
2252	}
2253
2254	WARN_ON_ONCE(vmf->page != NULL);
2255	err = shmem_get_folio_gfp(inode, vmf->pgoff, &folio, SGP_CACHE,
2256				  gfp, vmf, &ret);
2257	if (err)
2258		return vmf_error(err);
2259	if (folio) {
2260		vmf->page = folio_file_page(folio, vmf->pgoff);
2261		ret |= VM_FAULT_LOCKED;
2262	}
2263	return ret;
2264}
2265
2266unsigned long shmem_get_unmapped_area(struct file *file,
2267				      unsigned long uaddr, unsigned long len,
2268				      unsigned long pgoff, unsigned long flags)
2269{
2270	unsigned long (*get_area)(struct file *,
2271		unsigned long, unsigned long, unsigned long, unsigned long);
2272	unsigned long addr;
2273	unsigned long offset;
2274	unsigned long inflated_len;
2275	unsigned long inflated_addr;
2276	unsigned long inflated_offset;
2277
2278	if (len > TASK_SIZE)
2279		return -ENOMEM;
2280
2281	get_area = current->mm->get_unmapped_area;
2282	addr = get_area(file, uaddr, len, pgoff, flags);
2283
2284	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
2285		return addr;
2286	if (IS_ERR_VALUE(addr))
2287		return addr;
2288	if (addr & ~PAGE_MASK)
2289		return addr;
2290	if (addr > TASK_SIZE - len)
2291		return addr;
2292
2293	if (shmem_huge == SHMEM_HUGE_DENY)
2294		return addr;
2295	if (len < HPAGE_PMD_SIZE)
2296		return addr;
2297	if (flags & MAP_FIXED)
2298		return addr;
2299	/*
2300	 * Our priority is to support MAP_SHARED mapped hugely;
2301	 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2302	 * But if caller specified an address hint and we allocated area there
2303	 * successfully, respect that as before.
2304	 */
2305	if (uaddr == addr)
2306		return addr;
2307
2308	if (shmem_huge != SHMEM_HUGE_FORCE) {
2309		struct super_block *sb;
2310
2311		if (file) {
2312			VM_BUG_ON(file->f_op != &shmem_file_operations);
2313			sb = file_inode(file)->i_sb;
2314		} else {
2315			/*
2316			 * Called directly from mm/mmap.c, or drivers/char/mem.c
2317			 * for "/dev/zero", to create a shared anonymous object.
2318			 */
2319			if (IS_ERR(shm_mnt))
2320				return addr;
2321			sb = shm_mnt->mnt_sb;
2322		}
2323		if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2324			return addr;
2325	}
2326
2327	offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2328	if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2329		return addr;
2330	if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2331		return addr;
2332
2333	inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2334	if (inflated_len > TASK_SIZE)
2335		return addr;
2336	if (inflated_len < len)
2337		return addr;
2338
2339	inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags);
2340	if (IS_ERR_VALUE(inflated_addr))
2341		return addr;
2342	if (inflated_addr & ~PAGE_MASK)
2343		return addr;
2344
2345	inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2346	inflated_addr += offset - inflated_offset;
2347	if (inflated_offset > offset)
2348		inflated_addr += HPAGE_PMD_SIZE;
2349
2350	if (inflated_addr > TASK_SIZE - len)
2351		return addr;
2352	return inflated_addr;
2353}
2354
2355#ifdef CONFIG_NUMA
2356static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2357{
2358	struct inode *inode = file_inode(vma->vm_file);
2359	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2360}
2361
2362static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2363					  unsigned long addr, pgoff_t *ilx)
2364{
2365	struct inode *inode = file_inode(vma->vm_file);
2366	pgoff_t index;
2367
2368	/*
2369	 * Bias interleave by inode number to distribute better across nodes;
2370	 * but this interface is independent of which page order is used, so
2371	 * supplies only that bias, letting caller apply the offset (adjusted
2372	 * by page order, as in shmem_get_pgoff_policy() and get_vma_policy()).
2373	 */
2374	*ilx = inode->i_ino;
2375	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2376	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2377}
2378
2379static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info,
2380			pgoff_t index, unsigned int order, pgoff_t *ilx)
2381{
2382	struct mempolicy *mpol;
2383
2384	/* Bias interleave by inode number to distribute better across nodes */
2385	*ilx = info->vfs_inode.i_ino + (index >> order);
2386
2387	mpol = mpol_shared_policy_lookup(&info->policy, index);
2388	return mpol ? mpol : get_task_policy(current);
2389}
2390#else
2391static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info,
2392			pgoff_t index, unsigned int order, pgoff_t *ilx)
2393{
2394	*ilx = 0;
2395	return NULL;
2396}
2397#endif /* CONFIG_NUMA */
2398
2399int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
2400{
2401	struct inode *inode = file_inode(file);
2402	struct shmem_inode_info *info = SHMEM_I(inode);
2403	int retval = -ENOMEM;
2404
2405	/*
2406	 * What serializes the accesses to info->flags?
2407	 * ipc_lock_object() when called from shmctl_do_lock(),
2408	 * no serialization needed when called from shm_destroy().
2409	 */
2410	if (lock && !(info->flags & VM_LOCKED)) {
2411		if (!user_shm_lock(inode->i_size, ucounts))
2412			goto out_nomem;
2413		info->flags |= VM_LOCKED;
2414		mapping_set_unevictable(file->f_mapping);
2415	}
2416	if (!lock && (info->flags & VM_LOCKED) && ucounts) {
2417		user_shm_unlock(inode->i_size, ucounts);
2418		info->flags &= ~VM_LOCKED;
2419		mapping_clear_unevictable(file->f_mapping);
2420	}
2421	retval = 0;
2422
2423out_nomem:
2424	return retval;
2425}
2426
2427static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2428{
2429	struct inode *inode = file_inode(file);
2430	struct shmem_inode_info *info = SHMEM_I(inode);
2431	int ret;
2432
2433	ret = seal_check_write(info->seals, vma);
2434	if (ret)
2435		return ret;
2436
2437	/* arm64 - allow memory tagging on RAM-based files */
2438	vm_flags_set(vma, VM_MTE_ALLOWED);
2439
2440	file_accessed(file);
2441	/* This is anonymous shared memory if it is unlinked at the time of mmap */
2442	if (inode->i_nlink)
2443		vma->vm_ops = &shmem_vm_ops;
2444	else
2445		vma->vm_ops = &shmem_anon_vm_ops;
2446	return 0;
2447}
2448
2449static int shmem_file_open(struct inode *inode, struct file *file)
2450{
2451	file->f_mode |= FMODE_CAN_ODIRECT;
2452	return generic_file_open(inode, file);
2453}
2454
2455#ifdef CONFIG_TMPFS_XATTR
2456static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2457
2458/*
2459 * chattr's fsflags are unrelated to extended attributes,
2460 * but tmpfs has chosen to enable them under the same config option.
2461 */
2462static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags)
2463{
2464	unsigned int i_flags = 0;
2465
2466	if (fsflags & FS_NOATIME_FL)
2467		i_flags |= S_NOATIME;
2468	if (fsflags & FS_APPEND_FL)
2469		i_flags |= S_APPEND;
2470	if (fsflags & FS_IMMUTABLE_FL)
2471		i_flags |= S_IMMUTABLE;
2472	/*
2473	 * But FS_NODUMP_FL does not require any action in i_flags.
2474	 */
2475	inode_set_flags(inode, i_flags, S_NOATIME | S_APPEND | S_IMMUTABLE);
2476}
2477#else
2478static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags)
2479{
2480}
2481#define shmem_initxattrs NULL
2482#endif
2483
2484static struct offset_ctx *shmem_get_offset_ctx(struct inode *inode)
2485{
2486	return &SHMEM_I(inode)->dir_offsets;
2487}
2488
2489static struct inode *__shmem_get_inode(struct mnt_idmap *idmap,
2490					     struct super_block *sb,
2491					     struct inode *dir, umode_t mode,
2492					     dev_t dev, unsigned long flags)
2493{
2494	struct inode *inode;
2495	struct shmem_inode_info *info;
2496	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2497	ino_t ino;
2498	int err;
2499
2500	err = shmem_reserve_inode(sb, &ino);
2501	if (err)
2502		return ERR_PTR(err);
2503
2504	inode = new_inode(sb);
2505	if (!inode) {
2506		shmem_free_inode(sb, 0);
2507		return ERR_PTR(-ENOSPC);
2508	}
2509
2510	inode->i_ino = ino;
2511	inode_init_owner(idmap, inode, dir, mode);
2512	inode->i_blocks = 0;
2513	simple_inode_init_ts(inode);
2514	inode->i_generation = get_random_u32();
2515	info = SHMEM_I(inode);
2516	memset(info, 0, (char *)inode - (char *)info);
2517	spin_lock_init(&info->lock);
2518	atomic_set(&info->stop_eviction, 0);
2519	info->seals = F_SEAL_SEAL;
2520	info->flags = flags & VM_NORESERVE;
2521	info->i_crtime = inode_get_mtime(inode);
2522	info->fsflags = (dir == NULL) ? 0 :
2523		SHMEM_I(dir)->fsflags & SHMEM_FL_INHERITED;
2524	if (info->fsflags)
2525		shmem_set_inode_flags(inode, info->fsflags);
2526	INIT_LIST_HEAD(&info->shrinklist);
2527	INIT_LIST_HEAD(&info->swaplist);
2528	simple_xattrs_init(&info->xattrs);
2529	cache_no_acl(inode);
2530	if (sbinfo->noswap)
2531		mapping_set_unevictable(inode->i_mapping);
2532	mapping_set_large_folios(inode->i_mapping);
2533
2534	switch (mode & S_IFMT) {
2535	default:
2536		inode->i_op = &shmem_special_inode_operations;
2537		init_special_inode(inode, mode, dev);
2538		break;
2539	case S_IFREG:
2540		inode->i_mapping->a_ops = &shmem_aops;
2541		inode->i_op = &shmem_inode_operations;
2542		inode->i_fop = &shmem_file_operations;
2543		mpol_shared_policy_init(&info->policy,
2544					 shmem_get_sbmpol(sbinfo));
2545		break;
2546	case S_IFDIR:
2547		inc_nlink(inode);
2548		/* Some things misbehave if size == 0 on a directory */
2549		inode->i_size = 2 * BOGO_DIRENT_SIZE;
2550		inode->i_op = &shmem_dir_inode_operations;
2551		inode->i_fop = &simple_offset_dir_operations;
2552		simple_offset_init(shmem_get_offset_ctx(inode));
2553		break;
2554	case S_IFLNK:
2555		/*
2556		 * Must not load anything in the rbtree,
2557		 * mpol_free_shared_policy will not be called.
2558		 */
2559		mpol_shared_policy_init(&info->policy, NULL);
2560		break;
2561	}
2562
2563	lockdep_annotate_inode_mutex_key(inode);
2564	return inode;
2565}
2566
2567#ifdef CONFIG_TMPFS_QUOTA
2568static struct inode *shmem_get_inode(struct mnt_idmap *idmap,
2569				     struct super_block *sb, struct inode *dir,
2570				     umode_t mode, dev_t dev, unsigned long flags)
2571{
2572	int err;
2573	struct inode *inode;
2574
2575	inode = __shmem_get_inode(idmap, sb, dir, mode, dev, flags);
2576	if (IS_ERR(inode))
2577		return inode;
2578
2579	err = dquot_initialize(inode);
2580	if (err)
2581		goto errout;
2582
2583	err = dquot_alloc_inode(inode);
2584	if (err) {
2585		dquot_drop(inode);
2586		goto errout;
2587	}
2588	return inode;
2589
2590errout:
2591	inode->i_flags |= S_NOQUOTA;
2592	iput(inode);
2593	return ERR_PTR(err);
2594}
2595#else
2596static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap,
2597				     struct super_block *sb, struct inode *dir,
2598				     umode_t mode, dev_t dev, unsigned long flags)
2599{
2600	return __shmem_get_inode(idmap, sb, dir, mode, dev, flags);
2601}
2602#endif /* CONFIG_TMPFS_QUOTA */
2603
2604#ifdef CONFIG_USERFAULTFD
2605int shmem_mfill_atomic_pte(pmd_t *dst_pmd,
2606			   struct vm_area_struct *dst_vma,
2607			   unsigned long dst_addr,
2608			   unsigned long src_addr,
2609			   uffd_flags_t flags,
2610			   struct folio **foliop)
2611{
2612	struct inode *inode = file_inode(dst_vma->vm_file);
2613	struct shmem_inode_info *info = SHMEM_I(inode);
2614	struct address_space *mapping = inode->i_mapping;
2615	gfp_t gfp = mapping_gfp_mask(mapping);
2616	pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2617	void *page_kaddr;
2618	struct folio *folio;
2619	int ret;
2620	pgoff_t max_off;
2621
2622	if (shmem_inode_acct_blocks(inode, 1)) {
2623		/*
2624		 * We may have got a page, returned -ENOENT triggering a retry,
2625		 * and now we find ourselves with -ENOMEM. Release the page, to
2626		 * avoid a BUG_ON in our caller.
2627		 */
2628		if (unlikely(*foliop)) {
2629			folio_put(*foliop);
2630			*foliop = NULL;
2631		}
2632		return -ENOMEM;
2633	}
2634
2635	if (!*foliop) {
2636		ret = -ENOMEM;
2637		folio = shmem_alloc_folio(gfp, info, pgoff);
2638		if (!folio)
2639			goto out_unacct_blocks;
2640
2641		if (uffd_flags_mode_is(flags, MFILL_ATOMIC_COPY)) {
2642			page_kaddr = kmap_local_folio(folio, 0);
2643			/*
2644			 * The read mmap_lock is held here.  Despite the
2645			 * mmap_lock being read recursive a deadlock is still
2646			 * possible if a writer has taken a lock.  For example:
2647			 *
2648			 * process A thread 1 takes read lock on own mmap_lock
2649			 * process A thread 2 calls mmap, blocks taking write lock
2650			 * process B thread 1 takes page fault, read lock on own mmap lock
2651			 * process B thread 2 calls mmap, blocks taking write lock
2652			 * process A thread 1 blocks taking read lock on process B
2653			 * process B thread 1 blocks taking read lock on process A
2654			 *
2655			 * Disable page faults to prevent potential deadlock
2656			 * and retry the copy outside the mmap_lock.
2657			 */
2658			pagefault_disable();
2659			ret = copy_from_user(page_kaddr,
2660					     (const void __user *)src_addr,
2661					     PAGE_SIZE);
2662			pagefault_enable();
2663			kunmap_local(page_kaddr);
2664
2665			/* fallback to copy_from_user outside mmap_lock */
2666			if (unlikely(ret)) {
2667				*foliop = folio;
2668				ret = -ENOENT;
2669				/* don't free the page */
2670				goto out_unacct_blocks;
2671			}
2672
2673			flush_dcache_folio(folio);
2674		} else {		/* ZEROPAGE */
2675			clear_user_highpage(&folio->page, dst_addr);
2676		}
2677	} else {
2678		folio = *foliop;
2679		VM_BUG_ON_FOLIO(folio_test_large(folio), folio);
2680		*foliop = NULL;
2681	}
2682
2683	VM_BUG_ON(folio_test_locked(folio));
2684	VM_BUG_ON(folio_test_swapbacked(folio));
2685	__folio_set_locked(folio);
2686	__folio_set_swapbacked(folio);
2687	__folio_mark_uptodate(folio);
2688
2689	ret = -EFAULT;
2690	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2691	if (unlikely(pgoff >= max_off))
2692		goto out_release;
2693
2694	ret = mem_cgroup_charge(folio, dst_vma->vm_mm, gfp);
2695	if (ret)
2696		goto out_release;
2697	ret = shmem_add_to_page_cache(folio, mapping, pgoff, NULL, gfp);
2698	if (ret)
2699		goto out_release;
2700
2701	ret = mfill_atomic_install_pte(dst_pmd, dst_vma, dst_addr,
2702				       &folio->page, true, flags);
2703	if (ret)
2704		goto out_delete_from_cache;
2705
2706	shmem_recalc_inode(inode, 1, 0);
2707	folio_unlock(folio);
2708	return 0;
2709out_delete_from_cache:
2710	filemap_remove_folio(folio);
2711out_release:
2712	folio_unlock(folio);
2713	folio_put(folio);
2714out_unacct_blocks:
2715	shmem_inode_unacct_blocks(inode, 1);
2716	return ret;
2717}
2718#endif /* CONFIG_USERFAULTFD */
2719
2720#ifdef CONFIG_TMPFS
2721static const struct inode_operations shmem_symlink_inode_operations;
2722static const struct inode_operations shmem_short_symlink_operations;
2723
2724static int
2725shmem_write_begin(struct file *file, struct address_space *mapping,
2726			loff_t pos, unsigned len,
2727			struct page **pagep, void **fsdata)
2728{
2729	struct inode *inode = mapping->host;
2730	struct shmem_inode_info *info = SHMEM_I(inode);
2731	pgoff_t index = pos >> PAGE_SHIFT;
2732	struct folio *folio;
2733	int ret = 0;
2734
2735	/* i_rwsem is held by caller */
2736	if (unlikely(info->seals & (F_SEAL_GROW |
2737				   F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2738		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
2739			return -EPERM;
2740		if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2741			return -EPERM;
2742	}
2743
2744	ret = shmem_get_folio(inode, index, &folio, SGP_WRITE);
2745	if (ret)
2746		return ret;
2747
2748	*pagep = folio_file_page(folio, index);
2749	if (PageHWPoison(*pagep)) {
2750		folio_unlock(folio);
2751		folio_put(folio);
2752		*pagep = NULL;
2753		return -EIO;
2754	}
2755
2756	return 0;
2757}
2758
2759static int
2760shmem_write_end(struct file *file, struct address_space *mapping,
2761			loff_t pos, unsigned len, unsigned copied,
2762			struct page *page, void *fsdata)
2763{
2764	struct folio *folio = page_folio(page);
2765	struct inode *inode = mapping->host;
2766
2767	if (pos + copied > inode->i_size)
2768		i_size_write(inode, pos + copied);
2769
2770	if (!folio_test_uptodate(folio)) {
2771		if (copied < folio_size(folio)) {
2772			size_t from = offset_in_folio(folio, pos);
2773			folio_zero_segments(folio, 0, from,
2774					from + copied, folio_size(folio));
2775		}
2776		folio_mark_uptodate(folio);
2777	}
2778	folio_mark_dirty(folio);
2779	folio_unlock(folio);
2780	folio_put(folio);
2781
2782	return copied;
2783}
2784
2785static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2786{
2787	struct file *file = iocb->ki_filp;
2788	struct inode *inode = file_inode(file);
2789	struct address_space *mapping = inode->i_mapping;
2790	pgoff_t index;
2791	unsigned long offset;
2792	int error = 0;
2793	ssize_t retval = 0;
2794	loff_t *ppos = &iocb->ki_pos;
2795
2796	index = *ppos >> PAGE_SHIFT;
2797	offset = *ppos & ~PAGE_MASK;
2798
2799	for (;;) {
2800		struct folio *folio = NULL;
2801		struct page *page = NULL;
2802		pgoff_t end_index;
2803		unsigned long nr, ret;
2804		loff_t i_size = i_size_read(inode);
2805
2806		end_index = i_size >> PAGE_SHIFT;
2807		if (index > end_index)
2808			break;
2809		if (index == end_index) {
2810			nr = i_size & ~PAGE_MASK;
2811			if (nr <= offset)
2812				break;
2813		}
2814
2815		error = shmem_get_folio(inode, index, &folio, SGP_READ);
2816		if (error) {
2817			if (error == -EINVAL)
2818				error = 0;
2819			break;
2820		}
2821		if (folio) {
2822			folio_unlock(folio);
2823
2824			page = folio_file_page(folio, index);
2825			if (PageHWPoison(page)) {
2826				folio_put(folio);
2827				error = -EIO;
2828				break;
2829			}
2830		}
2831
2832		/*
2833		 * We must evaluate after, since reads (unlike writes)
2834		 * are called without i_rwsem protection against truncate
2835		 */
2836		nr = PAGE_SIZE;
2837		i_size = i_size_read(inode);
2838		end_index = i_size >> PAGE_SHIFT;
2839		if (index == end_index) {
2840			nr = i_size & ~PAGE_MASK;
2841			if (nr <= offset) {
2842				if (folio)
2843					folio_put(folio);
2844				break;
2845			}
2846		}
2847		nr -= offset;
2848
2849		if (folio) {
2850			/*
2851			 * If users can be writing to this page using arbitrary
2852			 * virtual addresses, take care about potential aliasing
2853			 * before reading the page on the kernel side.
2854			 */
2855			if (mapping_writably_mapped(mapping))
2856				flush_dcache_page(page);
2857			/*
2858			 * Mark the page accessed if we read the beginning.
2859			 */
2860			if (!offset)
2861				folio_mark_accessed(folio);
2862			/*
2863			 * Ok, we have the page, and it's up-to-date, so
2864			 * now we can copy it to user space...
2865			 */
2866			ret = copy_page_to_iter(page, offset, nr, to);
2867			folio_put(folio);
2868
2869		} else if (user_backed_iter(to)) {
2870			/*
2871			 * Copy to user tends to be so well optimized, but
2872			 * clear_user() not so much, that it is noticeably
2873			 * faster to copy the zero page instead of clearing.
2874			 */
2875			ret = copy_page_to_iter(ZERO_PAGE(0), offset, nr, to);
2876		} else {
2877			/*
2878			 * But submitting the same page twice in a row to
2879			 * splice() - or others? - can result in confusion:
2880			 * so don't attempt that optimization on pipes etc.
2881			 */
2882			ret = iov_iter_zero(nr, to);
2883		}
2884
2885		retval += ret;
2886		offset += ret;
2887		index += offset >> PAGE_SHIFT;
2888		offset &= ~PAGE_MASK;
2889
2890		if (!iov_iter_count(to))
2891			break;
2892		if (ret < nr) {
2893			error = -EFAULT;
2894			break;
2895		}
2896		cond_resched();
2897	}
2898
2899	*ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2900	file_accessed(file);
2901	return retval ? retval : error;
2902}
2903
2904static ssize_t shmem_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2905{
2906	struct file *file = iocb->ki_filp;
2907	struct inode *inode = file->f_mapping->host;
2908	ssize_t ret;
2909
2910	inode_lock(inode);
2911	ret = generic_write_checks(iocb, from);
2912	if (ret <= 0)
2913		goto unlock;
2914	ret = file_remove_privs(file);
2915	if (ret)
2916		goto unlock;
2917	ret = file_update_time(file);
2918	if (ret)
2919		goto unlock;
2920	ret = generic_perform_write(iocb, from);
2921unlock:
2922	inode_unlock(inode);
2923	return ret;
2924}
2925
2926static bool zero_pipe_buf_get(struct pipe_inode_info *pipe,
2927			      struct pipe_buffer *buf)
2928{
2929	return true;
2930}
2931
2932static void zero_pipe_buf_release(struct pipe_inode_info *pipe,
2933				  struct pipe_buffer *buf)
2934{
2935}
2936
2937static bool zero_pipe_buf_try_steal(struct pipe_inode_info *pipe,
2938				    struct pipe_buffer *buf)
2939{
2940	return false;
2941}
2942
2943static const struct pipe_buf_operations zero_pipe_buf_ops = {
2944	.release	= zero_pipe_buf_release,
2945	.try_steal	= zero_pipe_buf_try_steal,
2946	.get		= zero_pipe_buf_get,
2947};
2948
2949static size_t splice_zeropage_into_pipe(struct pipe_inode_info *pipe,
2950					loff_t fpos, size_t size)
2951{
2952	size_t offset = fpos & ~PAGE_MASK;
2953
2954	size = min_t(size_t, size, PAGE_SIZE - offset);
2955
2956	if (!pipe_full(pipe->head, pipe->tail, pipe->max_usage)) {
2957		struct pipe_buffer *buf = pipe_head_buf(pipe);
2958
2959		*buf = (struct pipe_buffer) {
2960			.ops	= &zero_pipe_buf_ops,
2961			.page	= ZERO_PAGE(0),
2962			.offset	= offset,
2963			.len	= size,
2964		};
2965		pipe->head++;
2966	}
2967
2968	return size;
2969}
2970
2971static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
2972				      struct pipe_inode_info *pipe,
2973				      size_t len, unsigned int flags)
2974{
2975	struct inode *inode = file_inode(in);
2976	struct address_space *mapping = inode->i_mapping;
2977	struct folio *folio = NULL;
2978	size_t total_spliced = 0, used, npages, n, part;
2979	loff_t isize;
2980	int error = 0;
2981
2982	/* Work out how much data we can actually add into the pipe */
2983	used = pipe_occupancy(pipe->head, pipe->tail);
2984	npages = max_t(ssize_t, pipe->max_usage - used, 0);
2985	len = min_t(size_t, len, npages * PAGE_SIZE);
2986
2987	do {
2988		if (*ppos >= i_size_read(inode))
2989			break;
2990
2991		error = shmem_get_folio(inode, *ppos / PAGE_SIZE, &folio,
2992					SGP_READ);
2993		if (error) {
2994			if (error == -EINVAL)
2995				error = 0;
2996			break;
2997		}
2998		if (folio) {
2999			folio_unlock(folio);
3000
3001			if (folio_test_hwpoison(folio) ||
3002			    (folio_test_large(folio) &&
3003			     folio_test_has_hwpoisoned(folio))) {
3004				error = -EIO;
3005				break;
3006			}
3007		}
3008
3009		/*
3010		 * i_size must be checked after we know the pages are Uptodate.
3011		 *
3012		 * Checking i_size after the check allows us to calculate
3013		 * the correct value for "nr", which means the zero-filled
3014		 * part of the page is not copied back to userspace (unless
3015		 * another truncate extends the file - this is desired though).
3016		 */
3017		isize = i_size_read(inode);
3018		if (unlikely(*ppos >= isize))
3019			break;
3020		part = min_t(loff_t, isize - *ppos, len);
3021
3022		if (folio) {
3023			/*
3024			 * If users can be writing to this page using arbitrary
3025			 * virtual addresses, take care about potential aliasing
3026			 * before reading the page on the kernel side.
3027			 */
3028			if (mapping_writably_mapped(mapping))
3029				flush_dcache_folio(folio);
3030			folio_mark_accessed(folio);
3031			/*
3032			 * Ok, we have the page, and it's up-to-date, so we can
3033			 * now splice it into the pipe.
3034			 */
3035			n = splice_folio_into_pipe(pipe, folio, *ppos, part);
3036			folio_put(folio);
3037			folio = NULL;
3038		} else {
3039			n = splice_zeropage_into_pipe(pipe, *ppos, part);
3040		}
3041
3042		if (!n)
3043			break;
3044		len -= n;
3045		total_spliced += n;
3046		*ppos += n;
3047		in->f_ra.prev_pos = *ppos;
3048		if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
3049			break;
3050
3051		cond_resched();
3052	} while (len);
3053
3054	if (folio)
3055		folio_put(folio);
3056
3057	file_accessed(in);
3058	return total_spliced ? total_spliced : error;
3059}
3060
3061static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
3062{
3063	struct address_space *mapping = file->f_mapping;
3064	struct inode *inode = mapping->host;
3065
3066	if (whence != SEEK_DATA && whence != SEEK_HOLE)
3067		return generic_file_llseek_size(file, offset, whence,
3068					MAX_LFS_FILESIZE, i_size_read(inode));
3069	if (offset < 0)
3070		return -ENXIO;
3071
3072	inode_lock(inode);
3073	/* We're holding i_rwsem so we can access i_size directly */
3074	offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence);
3075	if (offset >= 0)
3076		offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
3077	inode_unlock(inode);
3078	return offset;
3079}
3080
3081static long shmem_fallocate(struct file *file, int mode, loff_t offset,
3082							 loff_t len)
3083{
3084	struct inode *inode = file_inode(file);
3085	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3086	struct shmem_inode_info *info = SHMEM_I(inode);
3087	struct shmem_falloc shmem_falloc;
3088	pgoff_t start, index, end, undo_fallocend;
3089	int error;
3090
3091	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
3092		return -EOPNOTSUPP;
3093
3094	inode_lock(inode);
3095
3096	if (mode & FALLOC_FL_PUNCH_HOLE) {
3097		struct address_space *mapping = file->f_mapping;
3098		loff_t unmap_start = round_up(offset, PAGE_SIZE);
3099		loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
3100		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
3101
3102		/* protected by i_rwsem */
3103		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
3104			error = -EPERM;
3105			goto out;
3106		}
3107
3108		shmem_falloc.waitq = &shmem_falloc_waitq;
3109		shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
3110		shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
3111		spin_lock(&inode->i_lock);
3112		inode->i_private = &shmem_falloc;
3113		spin_unlock(&inode->i_lock);
3114
3115		if ((u64)unmap_end > (u64)unmap_start)
3116			unmap_mapping_range(mapping, unmap_start,
3117					    1 + unmap_end - unmap_start, 0);
3118		shmem_truncate_range(inode, offset, offset + len - 1);
3119		/* No need to unmap again: hole-punching leaves COWed pages */
3120
3121		spin_lock(&inode->i_lock);
3122		inode->i_private = NULL;
3123		wake_up_all(&shmem_falloc_waitq);
3124		WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
3125		spin_unlock(&inode->i_lock);
3126		error = 0;
3127		goto out;
3128	}
3129
3130	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
3131	error = inode_newsize_ok(inode, offset + len);
3132	if (error)
3133		goto out;
3134
3135	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
3136		error = -EPERM;
3137		goto out;
3138	}
3139
3140	start = offset >> PAGE_SHIFT;
3141	end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
3142	/* Try to avoid a swapstorm if len is impossible to satisfy */
3143	if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
3144		error = -ENOSPC;
3145		goto out;
3146	}
3147
3148	shmem_falloc.waitq = NULL;
3149	shmem_falloc.start = start;
3150	shmem_falloc.next  = start;
3151	shmem_falloc.nr_falloced = 0;
3152	shmem_falloc.nr_unswapped = 0;
3153	spin_lock(&inode->i_lock);
3154	inode->i_private = &shmem_falloc;
3155	spin_unlock(&inode->i_lock);
3156
3157	/*
3158	 * info->fallocend is only relevant when huge pages might be
3159	 * involved: to prevent split_huge_page() freeing fallocated
3160	 * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size.
3161	 */
3162	undo_fallocend = info->fallocend;
3163	if (info->fallocend < end)
3164		info->fallocend = end;
3165
3166	for (index = start; index < end; ) {
3167		struct folio *folio;
3168
3169		/*
3170		 * Good, the fallocate(2) manpage permits EINTR: we may have
3171		 * been interrupted because we are using up too much memory.
3172		 */
3173		if (signal_pending(current))
3174			error = -EINTR;
3175		else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
3176			error = -ENOMEM;
3177		else
3178			error = shmem_get_folio(inode, index, &folio,
3179						SGP_FALLOC);
3180		if (error) {
3181			info->fallocend = undo_fallocend;
3182			/* Remove the !uptodate folios we added */
3183			if (index > start) {
3184				shmem_undo_range(inode,
3185				    (loff_t)start << PAGE_SHIFT,
3186				    ((loff_t)index << PAGE_SHIFT) - 1, true);
3187			}
3188			goto undone;
3189		}
3190
3191		/*
3192		 * Here is a more important optimization than it appears:
3193		 * a second SGP_FALLOC on the same large folio will clear it,
3194		 * making it uptodate and un-undoable if we fail later.
3195		 */
3196		index = folio_next_index(folio);
3197		/* Beware 32-bit wraparound */
3198		if (!index)
3199			index--;
3200
3201		/*
3202		 * Inform shmem_writepage() how far we have reached.
3203		 * No need for lock or barrier: we have the page lock.
3204		 */
3205		if (!folio_test_uptodate(folio))
3206			shmem_falloc.nr_falloced += index - shmem_falloc.next;
3207		shmem_falloc.next = index;
3208
3209		/*
3210		 * If !uptodate, leave it that way so that freeable folios
3211		 * can be recognized if we need to rollback on error later.
3212		 * But mark it dirty so that memory pressure will swap rather
3213		 * than free the folios we are allocating (and SGP_CACHE folios
3214		 * might still be clean: we now need to mark those dirty too).
3215		 */
3216		folio_mark_dirty(folio);
3217		folio_unlock(folio);
3218		folio_put(folio);
3219		cond_resched();
3220	}
3221
3222	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
3223		i_size_write(inode, offset + len);
3224undone:
3225	spin_lock(&inode->i_lock);
3226	inode->i_private = NULL;
3227	spin_unlock(&inode->i_lock);
3228out:
3229	if (!error)
3230		file_modified(file);
3231	inode_unlock(inode);
3232	return error;
3233}
3234
3235static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
3236{
3237	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
3238
3239	buf->f_type = TMPFS_MAGIC;
3240	buf->f_bsize = PAGE_SIZE;
3241	buf->f_namelen = NAME_MAX;
3242	if (sbinfo->max_blocks) {
3243		buf->f_blocks = sbinfo->max_blocks;
3244		buf->f_bavail =
3245		buf->f_bfree  = sbinfo->max_blocks -
3246				percpu_counter_sum(&sbinfo->used_blocks);
3247	}
3248	if (sbinfo->max_inodes) {
3249		buf->f_files = sbinfo->max_inodes;
3250		buf->f_ffree = sbinfo->free_ispace / BOGO_INODE_SIZE;
3251	}
3252	/* else leave those fields 0 like simple_statfs */
3253
3254	buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b);
3255
3256	return 0;
3257}
3258
3259/*
3260 * File creation. Allocate an inode, and we're done..
3261 */
3262static int
3263shmem_mknod(struct mnt_idmap *idmap, struct inode *dir,
3264	    struct dentry *dentry, umode_t mode, dev_t dev)
3265{
3266	struct inode *inode;
3267	int error;
3268
3269	inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, dev, VM_NORESERVE);
3270	if (IS_ERR(inode))
3271		return PTR_ERR(inode);
3272
3273	error = simple_acl_create(dir, inode);
3274	if (error)
3275		goto out_iput;
3276	error = security_inode_init_security(inode, dir, &dentry->d_name,
3277					     shmem_initxattrs, NULL);
3278	if (error && error != -EOPNOTSUPP)
3279		goto out_iput;
3280
3281	error = simple_offset_add(shmem_get_offset_ctx(dir), dentry);
3282	if (error)
3283		goto out_iput;
3284
3285	dir->i_size += BOGO_DIRENT_SIZE;
3286	inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir));
3287	inode_inc_iversion(dir);
3288	d_instantiate(dentry, inode);
3289	dget(dentry); /* Extra count - pin the dentry in core */
3290	return error;
3291
3292out_iput:
3293	iput(inode);
3294	return error;
3295}
3296
3297static int
3298shmem_tmpfile(struct mnt_idmap *idmap, struct inode *dir,
3299	      struct file *file, umode_t mode)
3300{
3301	struct inode *inode;
3302	int error;
3303
3304	inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, 0, VM_NORESERVE);
3305	if (IS_ERR(inode)) {
3306		error = PTR_ERR(inode);
3307		goto err_out;
3308	}
3309	error = security_inode_init_security(inode, dir, NULL,
3310					     shmem_initxattrs, NULL);
3311	if (error && error != -EOPNOTSUPP)
3312		goto out_iput;
3313	error = simple_acl_create(dir, inode);
3314	if (error)
3315		goto out_iput;
3316	d_tmpfile(file, inode);
3317
3318err_out:
3319	return finish_open_simple(file, error);
3320out_iput:
3321	iput(inode);
3322	return error;
3323}
3324
3325static int shmem_mkdir(struct mnt_idmap *idmap, struct inode *dir,
3326		       struct dentry *dentry, umode_t mode)
3327{
3328	int error;
3329
3330	error = shmem_mknod(idmap, dir, dentry, mode | S_IFDIR, 0);
3331	if (error)
3332		return error;
3333	inc_nlink(dir);
3334	return 0;
3335}
3336
3337static int shmem_create(struct mnt_idmap *idmap, struct inode *dir,
3338			struct dentry *dentry, umode_t mode, bool excl)
3339{
3340	return shmem_mknod(idmap, dir, dentry, mode | S_IFREG, 0);
3341}
3342
3343/*
3344 * Link a file..
3345 */
3346static int shmem_link(struct dentry *old_dentry, struct inode *dir,
3347		      struct dentry *dentry)
3348{
3349	struct inode *inode = d_inode(old_dentry);
3350	int ret = 0;
3351
3352	/*
3353	 * No ordinary (disk based) filesystem counts links as inodes;
3354	 * but each new link needs a new dentry, pinning lowmem, and
3355	 * tmpfs dentries cannot be pruned until they are unlinked.
3356	 * But if an O_TMPFILE file is linked into the tmpfs, the
3357	 * first link must skip that, to get the accounting right.
3358	 */
3359	if (inode->i_nlink) {
3360		ret = shmem_reserve_inode(inode->i_sb, NULL);
3361		if (ret)
3362			goto out;
3363	}
3364
3365	ret = simple_offset_add(shmem_get_offset_ctx(dir), dentry);
3366	if (ret) {
3367		if (inode->i_nlink)
3368			shmem_free_inode(inode->i_sb, 0);
3369		goto out;
3370	}
3371
3372	dir->i_size += BOGO_DIRENT_SIZE;
3373	inode_set_mtime_to_ts(dir,
3374			      inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode)));
3375	inode_inc_iversion(dir);
3376	inc_nlink(inode);
3377	ihold(inode);	/* New dentry reference */
3378	dget(dentry);	/* Extra pinning count for the created dentry */
3379	d_instantiate(dentry, inode);
3380out:
3381	return ret;
3382}
3383
3384static int shmem_unlink(struct inode *dir, struct dentry *dentry)
3385{
3386	struct inode *inode = d_inode(dentry);
3387
3388	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
3389		shmem_free_inode(inode->i_sb, 0);
3390
3391	simple_offset_remove(shmem_get_offset_ctx(dir), dentry);
3392
3393	dir->i_size -= BOGO_DIRENT_SIZE;
3394	inode_set_mtime_to_ts(dir,
3395			      inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode)));
3396	inode_inc_iversion(dir);
3397	drop_nlink(inode);
3398	dput(dentry);	/* Undo the count from "create" - does all the work */
3399	return 0;
3400}
3401
3402static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
3403{
3404	if (!simple_offset_empty(dentry))
3405		return -ENOTEMPTY;
3406
3407	drop_nlink(d_inode(dentry));
3408	drop_nlink(dir);
3409	return shmem_unlink(dir, dentry);
3410}
3411
3412static int shmem_whiteout(struct mnt_idmap *idmap,
3413			  struct inode *old_dir, struct dentry *old_dentry)
3414{
3415	struct dentry *whiteout;
3416	int error;
3417
3418	whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3419	if (!whiteout)
3420		return -ENOMEM;
3421
3422	error = shmem_mknod(idmap, old_dir, whiteout,
3423			    S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3424	dput(whiteout);
3425	if (error)
3426		return error;
3427
3428	/*
3429	 * Cheat and hash the whiteout while the old dentry is still in
3430	 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3431	 *
3432	 * d_lookup() will consistently find one of them at this point,
3433	 * not sure which one, but that isn't even important.
3434	 */
3435	d_rehash(whiteout);
3436	return 0;
3437}
3438
3439/*
3440 * The VFS layer already does all the dentry stuff for rename,
3441 * we just have to decrement the usage count for the target if
3442 * it exists so that the VFS layer correctly free's it when it
3443 * gets overwritten.
3444 */
3445static int shmem_rename2(struct mnt_idmap *idmap,
3446			 struct inode *old_dir, struct dentry *old_dentry,
3447			 struct inode *new_dir, struct dentry *new_dentry,
3448			 unsigned int flags)
3449{
3450	struct inode *inode = d_inode(old_dentry);
3451	int they_are_dirs = S_ISDIR(inode->i_mode);
3452	int error;
3453
3454	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3455		return -EINVAL;
3456
3457	if (flags & RENAME_EXCHANGE)
3458		return simple_offset_rename_exchange(old_dir, old_dentry,
3459						     new_dir, new_dentry);
3460
3461	if (!simple_offset_empty(new_dentry))
3462		return -ENOTEMPTY;
3463
3464	if (flags & RENAME_WHITEOUT) {
3465		error = shmem_whiteout(idmap, old_dir, old_dentry);
3466		if (error)
3467			return error;
3468	}
3469
3470	simple_offset_remove(shmem_get_offset_ctx(old_dir), old_dentry);
3471	error = simple_offset_add(shmem_get_offset_ctx(new_dir), old_dentry);
3472	if (error)
3473		return error;
3474
3475	if (d_really_is_positive(new_dentry)) {
3476		(void) shmem_unlink(new_dir, new_dentry);
3477		if (they_are_dirs) {
3478			drop_nlink(d_inode(new_dentry));
3479			drop_nlink(old_dir);
3480		}
3481	} else if (they_are_dirs) {
3482		drop_nlink(old_dir);
3483		inc_nlink(new_dir);
3484	}
3485
3486	old_dir->i_size -= BOGO_DIRENT_SIZE;
3487	new_dir->i_size += BOGO_DIRENT_SIZE;
3488	simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
3489	inode_inc_iversion(old_dir);
3490	inode_inc_iversion(new_dir);
3491	return 0;
3492}
3493
3494static int shmem_symlink(struct mnt_idmap *idmap, struct inode *dir,
3495			 struct dentry *dentry, const char *symname)
3496{
3497	int error;
3498	int len;
3499	struct inode *inode;
3500	struct folio *folio;
3501
3502	len = strlen(symname) + 1;
3503	if (len > PAGE_SIZE)
3504		return -ENAMETOOLONG;
3505
3506	inode = shmem_get_inode(idmap, dir->i_sb, dir, S_IFLNK | 0777, 0,
3507				VM_NORESERVE);
3508	if (IS_ERR(inode))
3509		return PTR_ERR(inode);
3510
3511	error = security_inode_init_security(inode, dir, &dentry->d_name,
3512					     shmem_initxattrs, NULL);
3513	if (error && error != -EOPNOTSUPP)
3514		goto out_iput;
3515
3516	error = simple_offset_add(shmem_get_offset_ctx(dir), dentry);
3517	if (error)
3518		goto out_iput;
3519
3520	inode->i_size = len-1;
3521	if (len <= SHORT_SYMLINK_LEN) {
3522		inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3523		if (!inode->i_link) {
3524			error = -ENOMEM;
3525			goto out_remove_offset;
3526		}
3527		inode->i_op = &shmem_short_symlink_operations;
3528	} else {
3529		inode_nohighmem(inode);
3530		inode->i_mapping->a_ops = &shmem_aops;
3531		error = shmem_get_folio(inode, 0, &folio, SGP_WRITE);
3532		if (error)
3533			goto out_remove_offset;
3534		inode->i_op = &shmem_symlink_inode_operations;
3535		memcpy(folio_address(folio), symname, len);
3536		folio_mark_uptodate(folio);
3537		folio_mark_dirty(folio);
3538		folio_unlock(folio);
3539		folio_put(folio);
3540	}
3541	dir->i_size += BOGO_DIRENT_SIZE;
3542	inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir));
3543	inode_inc_iversion(dir);
3544	d_instantiate(dentry, inode);
3545	dget(dentry);
3546	return 0;
3547
3548out_remove_offset:
3549	simple_offset_remove(shmem_get_offset_ctx(dir), dentry);
3550out_iput:
3551	iput(inode);
3552	return error;
3553}
3554
3555static void shmem_put_link(void *arg)
3556{
3557	folio_mark_accessed(arg);
3558	folio_put(arg);
3559}
3560
3561static const char *shmem_get_link(struct dentry *dentry, struct inode *inode,
3562				  struct delayed_call *done)
3563{
3564	struct folio *folio = NULL;
3565	int error;
3566
3567	if (!dentry) {
3568		folio = filemap_get_folio(inode->i_mapping, 0);
3569		if (IS_ERR(folio))
3570			return ERR_PTR(-ECHILD);
3571		if (PageHWPoison(folio_page(folio, 0)) ||
3572		    !folio_test_uptodate(folio)) {
3573			folio_put(folio);
3574			return ERR_PTR(-ECHILD);
3575		}
3576	} else {
3577		error = shmem_get_folio(inode, 0, &folio, SGP_READ);
3578		if (error)
3579			return ERR_PTR(error);
3580		if (!folio)
3581			return ERR_PTR(-ECHILD);
3582		if (PageHWPoison(folio_page(folio, 0))) {
3583			folio_unlock(folio);
3584			folio_put(folio);
3585			return ERR_PTR(-ECHILD);
3586		}
3587		folio_unlock(folio);
3588	}
3589	set_delayed_call(done, shmem_put_link, folio);
3590	return folio_address(folio);
3591}
3592
3593#ifdef CONFIG_TMPFS_XATTR
3594
3595static int shmem_fileattr_get(struct dentry *dentry, struct fileattr *fa)
3596{
3597	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3598
3599	fileattr_fill_flags(fa, info->fsflags & SHMEM_FL_USER_VISIBLE);
3600
3601	return 0;
3602}
3603
3604static int shmem_fileattr_set(struct mnt_idmap *idmap,
3605			      struct dentry *dentry, struct fileattr *fa)
3606{
3607	struct inode *inode = d_inode(dentry);
3608	struct shmem_inode_info *info = SHMEM_I(inode);
3609
3610	if (fileattr_has_fsx(fa))
3611		return -EOPNOTSUPP;
3612	if (fa->flags & ~SHMEM_FL_USER_MODIFIABLE)
3613		return -EOPNOTSUPP;
3614
3615	info->fsflags = (info->fsflags & ~SHMEM_FL_USER_MODIFIABLE) |
3616		(fa->flags & SHMEM_FL_USER_MODIFIABLE);
3617
3618	shmem_set_inode_flags(inode, info->fsflags);
3619	inode_set_ctime_current(inode);
3620	inode_inc_iversion(inode);
3621	return 0;
3622}
3623
3624/*
3625 * Superblocks without xattr inode operations may get some security.* xattr
3626 * support from the LSM "for free". As soon as we have any other xattrs
3627 * like ACLs, we also need to implement the security.* handlers at
3628 * filesystem level, though.
3629 */
3630
3631/*
3632 * Callback for security_inode_init_security() for acquiring xattrs.
3633 */
3634static int shmem_initxattrs(struct inode *inode,
3635			    const struct xattr *xattr_array, void *fs_info)
3636{
3637	struct shmem_inode_info *info = SHMEM_I(inode);
3638	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3639	const struct xattr *xattr;
3640	struct simple_xattr *new_xattr;
3641	size_t ispace = 0;
3642	size_t len;
3643
3644	if (sbinfo->max_inodes) {
3645		for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3646			ispace += simple_xattr_space(xattr->name,
3647				xattr->value_len + XATTR_SECURITY_PREFIX_LEN);
3648		}
3649		if (ispace) {
3650			raw_spin_lock(&sbinfo->stat_lock);
3651			if (sbinfo->free_ispace < ispace)
3652				ispace = 0;
3653			else
3654				sbinfo->free_ispace -= ispace;
3655			raw_spin_unlock(&sbinfo->stat_lock);
3656			if (!ispace)
3657				return -ENOSPC;
3658		}
3659	}
3660
3661	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3662		new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3663		if (!new_xattr)
3664			break;
3665
3666		len = strlen(xattr->name) + 1;
3667		new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3668					  GFP_KERNEL_ACCOUNT);
3669		if (!new_xattr->name) {
3670			kvfree(new_xattr);
3671			break;
3672		}
3673
3674		memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3675		       XATTR_SECURITY_PREFIX_LEN);
3676		memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3677		       xattr->name, len);
3678
3679		simple_xattr_add(&info->xattrs, new_xattr);
3680	}
3681
3682	if (xattr->name != NULL) {
3683		if (ispace) {
3684			raw_spin_lock(&sbinfo->stat_lock);
3685			sbinfo->free_ispace += ispace;
3686			raw_spin_unlock(&sbinfo->stat_lock);
3687		}
3688		simple_xattrs_free(&info->xattrs, NULL);
3689		return -ENOMEM;
3690	}
3691
3692	return 0;
3693}
3694
3695static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3696				   struct dentry *unused, struct inode *inode,
3697				   const char *name, void *buffer, size_t size)
3698{
3699	struct shmem_inode_info *info = SHMEM_I(inode);
3700
3701	name = xattr_full_name(handler, name);
3702	return simple_xattr_get(&info->xattrs, name, buffer, size);
3703}
3704
3705static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3706				   struct mnt_idmap *idmap,
3707				   struct dentry *unused, struct inode *inode,
3708				   const char *name, const void *value,
3709				   size_t size, int flags)
3710{
3711	struct shmem_inode_info *info = SHMEM_I(inode);
3712	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3713	struct simple_xattr *old_xattr;
3714	size_t ispace = 0;
3715
3716	name = xattr_full_name(handler, name);
3717	if (value && sbinfo->max_inodes) {
3718		ispace = simple_xattr_space(name, size);
3719		raw_spin_lock(&sbinfo->stat_lock);
3720		if (sbinfo->free_ispace < ispace)
3721			ispace = 0;
3722		else
3723			sbinfo->free_ispace -= ispace;
3724		raw_spin_unlock(&sbinfo->stat_lock);
3725		if (!ispace)
3726			return -ENOSPC;
3727	}
3728
3729	old_xattr = simple_xattr_set(&info->xattrs, name, value, size, flags);
3730	if (!IS_ERR(old_xattr)) {
3731		ispace = 0;
3732		if (old_xattr && sbinfo->max_inodes)
3733			ispace = simple_xattr_space(old_xattr->name,
3734						    old_xattr->size);
3735		simple_xattr_free(old_xattr);
3736		old_xattr = NULL;
3737		inode_set_ctime_current(inode);
3738		inode_inc_iversion(inode);
3739	}
3740	if (ispace) {
3741		raw_spin_lock(&sbinfo->stat_lock);
3742		sbinfo->free_ispace += ispace;
3743		raw_spin_unlock(&sbinfo->stat_lock);
3744	}
3745	return PTR_ERR(old_xattr);
3746}
3747
3748static const struct xattr_handler shmem_security_xattr_handler = {
3749	.prefix = XATTR_SECURITY_PREFIX,
3750	.get = shmem_xattr_handler_get,
3751	.set = shmem_xattr_handler_set,
3752};
3753
3754static const struct xattr_handler shmem_trusted_xattr_handler = {
3755	.prefix = XATTR_TRUSTED_PREFIX,
3756	.get = shmem_xattr_handler_get,
3757	.set = shmem_xattr_handler_set,
3758};
3759
3760static const struct xattr_handler shmem_user_xattr_handler = {
3761	.prefix = XATTR_USER_PREFIX,
3762	.get = shmem_xattr_handler_get,
3763	.set = shmem_xattr_handler_set,
3764};
3765
3766static const struct xattr_handler * const shmem_xattr_handlers[] = {
3767	&shmem_security_xattr_handler,
3768	&shmem_trusted_xattr_handler,
3769	&shmem_user_xattr_handler,
3770	NULL
3771};
3772
3773static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3774{
3775	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3776	return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3777}
3778#endif /* CONFIG_TMPFS_XATTR */
3779
3780static const struct inode_operations shmem_short_symlink_operations = {
3781	.getattr	= shmem_getattr,
3782	.setattr	= shmem_setattr,
3783	.get_link	= simple_get_link,
3784#ifdef CONFIG_TMPFS_XATTR
3785	.listxattr	= shmem_listxattr,
3786#endif
3787};
3788
3789static const struct inode_operations shmem_symlink_inode_operations = {
3790	.getattr	= shmem_getattr,
3791	.setattr	= shmem_setattr,
3792	.get_link	= shmem_get_link,
3793#ifdef CONFIG_TMPFS_XATTR
3794	.listxattr	= shmem_listxattr,
3795#endif
3796};
3797
3798static struct dentry *shmem_get_parent(struct dentry *child)
3799{
3800	return ERR_PTR(-ESTALE);
3801}
3802
3803static int shmem_match(struct inode *ino, void *vfh)
3804{
3805	__u32 *fh = vfh;
3806	__u64 inum = fh[2];
3807	inum = (inum << 32) | fh[1];
3808	return ino->i_ino == inum && fh[0] == ino->i_generation;
3809}
3810
3811/* Find any alias of inode, but prefer a hashed alias */
3812static struct dentry *shmem_find_alias(struct inode *inode)
3813{
3814	struct dentry *alias = d_find_alias(inode);
3815
3816	return alias ?: d_find_any_alias(inode);
3817}
3818
3819static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3820		struct fid *fid, int fh_len, int fh_type)
3821{
3822	struct inode *inode;
3823	struct dentry *dentry = NULL;
3824	u64 inum;
3825
3826	if (fh_len < 3)
3827		return NULL;
3828
3829	inum = fid->raw[2];
3830	inum = (inum << 32) | fid->raw[1];
3831
3832	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3833			shmem_match, fid->raw);
3834	if (inode) {
3835		dentry = shmem_find_alias(inode);
3836		iput(inode);
3837	}
3838
3839	return dentry;
3840}
3841
3842static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3843				struct inode *parent)
3844{
3845	if (*len < 3) {
3846		*len = 3;
3847		return FILEID_INVALID;
3848	}
3849
3850	if (inode_unhashed(inode)) {
3851		/* Unfortunately insert_inode_hash is not idempotent,
3852		 * so as we hash inodes here rather than at creation
3853		 * time, we need a lock to ensure we only try
3854		 * to do it once
3855		 */
3856		static DEFINE_SPINLOCK(lock);
3857		spin_lock(&lock);
3858		if (inode_unhashed(inode))
3859			__insert_inode_hash(inode,
3860					    inode->i_ino + inode->i_generation);
3861		spin_unlock(&lock);
3862	}
3863
3864	fh[0] = inode->i_generation;
3865	fh[1] = inode->i_ino;
3866	fh[2] = ((__u64)inode->i_ino) >> 32;
3867
3868	*len = 3;
3869	return 1;
3870}
3871
3872static const struct export_operations shmem_export_ops = {
3873	.get_parent     = shmem_get_parent,
3874	.encode_fh      = shmem_encode_fh,
3875	.fh_to_dentry	= shmem_fh_to_dentry,
3876};
3877
3878enum shmem_param {
3879	Opt_gid,
3880	Opt_huge,
3881	Opt_mode,
3882	Opt_mpol,
3883	Opt_nr_blocks,
3884	Opt_nr_inodes,
3885	Opt_size,
3886	Opt_uid,
3887	Opt_inode32,
3888	Opt_inode64,
3889	Opt_noswap,
3890	Opt_quota,
3891	Opt_usrquota,
3892	Opt_grpquota,
3893	Opt_usrquota_block_hardlimit,
3894	Opt_usrquota_inode_hardlimit,
3895	Opt_grpquota_block_hardlimit,
3896	Opt_grpquota_inode_hardlimit,
3897};
3898
3899static const struct constant_table shmem_param_enums_huge[] = {
3900	{"never",	SHMEM_HUGE_NEVER },
3901	{"always",	SHMEM_HUGE_ALWAYS },
3902	{"within_size",	SHMEM_HUGE_WITHIN_SIZE },
3903	{"advise",	SHMEM_HUGE_ADVISE },
3904	{}
3905};
3906
3907const struct fs_parameter_spec shmem_fs_parameters[] = {
3908	fsparam_u32   ("gid",		Opt_gid),
3909	fsparam_enum  ("huge",		Opt_huge,  shmem_param_enums_huge),
3910	fsparam_u32oct("mode",		Opt_mode),
3911	fsparam_string("mpol",		Opt_mpol),
3912	fsparam_string("nr_blocks",	Opt_nr_blocks),
3913	fsparam_string("nr_inodes",	Opt_nr_inodes),
3914	fsparam_string("size",		Opt_size),
3915	fsparam_u32   ("uid",		Opt_uid),
3916	fsparam_flag  ("inode32",	Opt_inode32),
3917	fsparam_flag  ("inode64",	Opt_inode64),
3918	fsparam_flag  ("noswap",	Opt_noswap),
3919#ifdef CONFIG_TMPFS_QUOTA
3920	fsparam_flag  ("quota",		Opt_quota),
3921	fsparam_flag  ("usrquota",	Opt_usrquota),
3922	fsparam_flag  ("grpquota",	Opt_grpquota),
3923	fsparam_string("usrquota_block_hardlimit", Opt_usrquota_block_hardlimit),
3924	fsparam_string("usrquota_inode_hardlimit", Opt_usrquota_inode_hardlimit),
3925	fsparam_string("grpquota_block_hardlimit", Opt_grpquota_block_hardlimit),
3926	fsparam_string("grpquota_inode_hardlimit", Opt_grpquota_inode_hardlimit),
3927#endif
3928	{}
3929};
3930
3931static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
3932{
3933	struct shmem_options *ctx = fc->fs_private;
3934	struct fs_parse_result result;
3935	unsigned long long size;
3936	char *rest;
3937	int opt;
3938	kuid_t kuid;
3939	kgid_t kgid;
3940
3941	opt = fs_parse(fc, shmem_fs_parameters, param, &result);
3942	if (opt < 0)
3943		return opt;
3944
3945	switch (opt) {
3946	case Opt_size:
3947		size = memparse(param->string, &rest);
3948		if (*rest == '%') {
3949			size <<= PAGE_SHIFT;
3950			size *= totalram_pages();
3951			do_div(size, 100);
3952			rest++;
3953		}
3954		if (*rest)
3955			goto bad_value;
3956		ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
3957		ctx->seen |= SHMEM_SEEN_BLOCKS;
3958		break;
3959	case Opt_nr_blocks:
3960		ctx->blocks = memparse(param->string, &rest);
3961		if (*rest || ctx->blocks > LONG_MAX)
3962			goto bad_value;
3963		ctx->seen |= SHMEM_SEEN_BLOCKS;
3964		break;
3965	case Opt_nr_inodes:
3966		ctx->inodes = memparse(param->string, &rest);
3967		if (*rest || ctx->inodes > ULONG_MAX / BOGO_INODE_SIZE)
3968			goto bad_value;
3969		ctx->seen |= SHMEM_SEEN_INODES;
3970		break;
3971	case Opt_mode:
3972		ctx->mode = result.uint_32 & 07777;
3973		break;
3974	case Opt_uid:
3975		kuid = make_kuid(current_user_ns(), result.uint_32);
3976		if (!uid_valid(kuid))
3977			goto bad_value;
3978
3979		/*
3980		 * The requested uid must be representable in the
3981		 * filesystem's idmapping.
3982		 */
3983		if (!kuid_has_mapping(fc->user_ns, kuid))
3984			goto bad_value;
3985
3986		ctx->uid = kuid;
3987		break;
3988	case Opt_gid:
3989		kgid = make_kgid(current_user_ns(), result.uint_32);
3990		if (!gid_valid(kgid))
3991			goto bad_value;
3992
3993		/*
3994		 * The requested gid must be representable in the
3995		 * filesystem's idmapping.
3996		 */
3997		if (!kgid_has_mapping(fc->user_ns, kgid))
3998			goto bad_value;
3999
4000		ctx->gid = kgid;
4001		break;
4002	case Opt_huge:
4003		ctx->huge = result.uint_32;
4004		if (ctx->huge != SHMEM_HUGE_NEVER &&
4005		    !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
4006		      has_transparent_hugepage()))
4007			goto unsupported_parameter;
4008		ctx->seen |= SHMEM_SEEN_HUGE;
4009		break;
4010	case Opt_mpol:
4011		if (IS_ENABLED(CONFIG_NUMA)) {
4012			mpol_put(ctx->mpol);
4013			ctx->mpol = NULL;
4014			if (mpol_parse_str(param->string, &ctx->mpol))
4015				goto bad_value;
4016			break;
4017		}
4018		goto unsupported_parameter;
4019	case Opt_inode32:
4020		ctx->full_inums = false;
4021		ctx->seen |= SHMEM_SEEN_INUMS;
4022		break;
4023	case Opt_inode64:
4024		if (sizeof(ino_t) < 8) {
4025			return invalfc(fc,
4026				       "Cannot use inode64 with <64bit inums in kernel\n");
4027		}
4028		ctx->full_inums = true;
4029		ctx->seen |= SHMEM_SEEN_INUMS;
4030		break;
4031	case Opt_noswap:
4032		if ((fc->user_ns != &init_user_ns) || !capable(CAP_SYS_ADMIN)) {
4033			return invalfc(fc,
4034				       "Turning off swap in unprivileged tmpfs mounts unsupported");
4035		}
4036		ctx->noswap = true;
4037		ctx->seen |= SHMEM_SEEN_NOSWAP;
4038		break;
4039	case Opt_quota:
4040		if (fc->user_ns != &init_user_ns)
4041			return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported");
4042		ctx->seen |= SHMEM_SEEN_QUOTA;
4043		ctx->quota_types |= (QTYPE_MASK_USR | QTYPE_MASK_GRP);
4044		break;
4045	case Opt_usrquota:
4046		if (fc->user_ns != &init_user_ns)
4047			return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported");
4048		ctx->seen |= SHMEM_SEEN_QUOTA;
4049		ctx->quota_types |= QTYPE_MASK_USR;
4050		break;
4051	case Opt_grpquota:
4052		if (fc->user_ns != &init_user_ns)
4053			return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported");
4054		ctx->seen |= SHMEM_SEEN_QUOTA;
4055		ctx->quota_types |= QTYPE_MASK_GRP;
4056		break;
4057	case Opt_usrquota_block_hardlimit:
4058		size = memparse(param->string, &rest);
4059		if (*rest || !size)
4060			goto bad_value;
4061		if (size > SHMEM_QUOTA_MAX_SPC_LIMIT)
4062			return invalfc(fc,
4063				       "User quota block hardlimit too large.");
4064		ctx->qlimits.usrquota_bhardlimit = size;
4065		break;
4066	case Opt_grpquota_block_hardlimit:
4067		size = memparse(param->string, &rest);
4068		if (*rest || !size)
4069			goto bad_value;
4070		if (size > SHMEM_QUOTA_MAX_SPC_LIMIT)
4071			return invalfc(fc,
4072				       "Group quota block hardlimit too large.");
4073		ctx->qlimits.grpquota_bhardlimit = size;
4074		break;
4075	case Opt_usrquota_inode_hardlimit:
4076		size = memparse(param->string, &rest);
4077		if (*rest || !size)
4078			goto bad_value;
4079		if (size > SHMEM_QUOTA_MAX_INO_LIMIT)
4080			return invalfc(fc,
4081				       "User quota inode hardlimit too large.");
4082		ctx->qlimits.usrquota_ihardlimit = size;
4083		break;
4084	case Opt_grpquota_inode_hardlimit:
4085		size = memparse(param->string, &rest);
4086		if (*rest || !size)
4087			goto bad_value;
4088		if (size > SHMEM_QUOTA_MAX_INO_LIMIT)
4089			return invalfc(fc,
4090				       "Group quota inode hardlimit too large.");
4091		ctx->qlimits.grpquota_ihardlimit = size;
4092		break;
4093	}
4094	return 0;
4095
4096unsupported_parameter:
4097	return invalfc(fc, "Unsupported parameter '%s'", param->key);
4098bad_value:
4099	return invalfc(fc, "Bad value for '%s'", param->key);
4100}
4101
4102static int shmem_parse_options(struct fs_context *fc, void *data)
4103{
4104	char *options = data;
4105
4106	if (options) {
4107		int err = security_sb_eat_lsm_opts(options, &fc->security);
4108		if (err)
4109			return err;
4110	}
4111
4112	while (options != NULL) {
4113		char *this_char = options;
4114		for (;;) {
4115			/*
4116			 * NUL-terminate this option: unfortunately,
4117			 * mount options form a comma-separated list,
4118			 * but mpol's nodelist may also contain commas.
4119			 */
4120			options = strchr(options, ',');
4121			if (options == NULL)
4122				break;
4123			options++;
4124			if (!isdigit(*options)) {
4125				options[-1] = '\0';
4126				break;
4127			}
4128		}
4129		if (*this_char) {
4130			char *value = strchr(this_char, '=');
4131			size_t len = 0;
4132			int err;
4133
4134			if (value) {
4135				*value++ = '\0';
4136				len = strlen(value);
4137			}
4138			err = vfs_parse_fs_string(fc, this_char, value, len);
4139			if (err < 0)
4140				return err;
4141		}
4142	}
4143	return 0;
4144}
4145
4146/*
4147 * Reconfigure a shmem filesystem.
4148 */
4149static int shmem_reconfigure(struct fs_context *fc)
4150{
4151	struct shmem_options *ctx = fc->fs_private;
4152	struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
4153	unsigned long used_isp;
4154	struct mempolicy *mpol = NULL;
4155	const char *err;
4156
4157	raw_spin_lock(&sbinfo->stat_lock);
4158	used_isp = sbinfo->max_inodes * BOGO_INODE_SIZE - sbinfo->free_ispace;
4159
4160	if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
4161		if (!sbinfo->max_blocks) {
4162			err = "Cannot retroactively limit size";
4163			goto out;
4164		}
4165		if (percpu_counter_compare(&sbinfo->used_blocks,
4166					   ctx->blocks) > 0) {
4167			err = "Too small a size for current use";
4168			goto out;
4169		}
4170	}
4171	if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
4172		if (!sbinfo->max_inodes) {
4173			err = "Cannot retroactively limit inodes";
4174			goto out;
4175		}
4176		if (ctx->inodes * BOGO_INODE_SIZE < used_isp) {
4177			err = "Too few inodes for current use";
4178			goto out;
4179		}
4180	}
4181
4182	if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums &&
4183	    sbinfo->next_ino > UINT_MAX) {
4184		err = "Current inum too high to switch to 32-bit inums";
4185		goto out;
4186	}
4187	if ((ctx->seen & SHMEM_SEEN_NOSWAP) && ctx->noswap && !sbinfo->noswap) {
4188		err = "Cannot disable swap on remount";
4189		goto out;
4190	}
4191	if (!(ctx->seen & SHMEM_SEEN_NOSWAP) && !ctx->noswap && sbinfo->noswap) {
4192		err = "Cannot enable swap on remount if it was disabled on first mount";
4193		goto out;
4194	}
4195
4196	if (ctx->seen & SHMEM_SEEN_QUOTA &&
4197	    !sb_any_quota_loaded(fc->root->d_sb)) {
4198		err = "Cannot enable quota on remount";
4199		goto out;
4200	}
4201
4202#ifdef CONFIG_TMPFS_QUOTA
4203#define CHANGED_LIMIT(name)						\
4204	(ctx->qlimits.name## hardlimit &&				\
4205	(ctx->qlimits.name## hardlimit != sbinfo->qlimits.name## hardlimit))
4206
4207	if (CHANGED_LIMIT(usrquota_b) || CHANGED_LIMIT(usrquota_i) ||
4208	    CHANGED_LIMIT(grpquota_b) || CHANGED_LIMIT(grpquota_i)) {
4209		err = "Cannot change global quota limit on remount";
4210		goto out;
4211	}
4212#endif /* CONFIG_TMPFS_QUOTA */
4213
4214	if (ctx->seen & SHMEM_SEEN_HUGE)
4215		sbinfo->huge = ctx->huge;
4216	if (ctx->seen & SHMEM_SEEN_INUMS)
4217		sbinfo->full_inums = ctx->full_inums;
4218	if (ctx->seen & SHMEM_SEEN_BLOCKS)
4219		sbinfo->max_blocks  = ctx->blocks;
4220	if (ctx->seen & SHMEM_SEEN_INODES) {
4221		sbinfo->max_inodes  = ctx->inodes;
4222		sbinfo->free_ispace = ctx->inodes * BOGO_INODE_SIZE - used_isp;
4223	}
4224
4225	/*
4226	 * Preserve previous mempolicy unless mpol remount option was specified.
4227	 */
4228	if (ctx->mpol) {
4229		mpol = sbinfo->mpol;
4230		sbinfo->mpol = ctx->mpol;	/* transfers initial ref */
4231		ctx->mpol = NULL;
4232	}
4233
4234	if (ctx->noswap)
4235		sbinfo->noswap = true;
4236
4237	raw_spin_unlock(&sbinfo->stat_lock);
4238	mpol_put(mpol);
4239	return 0;
4240out:
4241	raw_spin_unlock(&sbinfo->stat_lock);
4242	return invalfc(fc, "%s", err);
4243}
4244
4245static int shmem_show_options(struct seq_file *seq, struct dentry *root)
4246{
4247	struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
4248	struct mempolicy *mpol;
4249
4250	if (sbinfo->max_blocks != shmem_default_max_blocks())
4251		seq_printf(seq, ",size=%luk", K(sbinfo->max_blocks));
4252	if (sbinfo->max_inodes != shmem_default_max_inodes())
4253		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
4254	if (sbinfo->mode != (0777 | S_ISVTX))
4255		seq_printf(seq, ",mode=%03ho", sbinfo->mode);
4256	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
4257		seq_printf(seq, ",uid=%u",
4258				from_kuid_munged(&init_user_ns, sbinfo->uid));
4259	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
4260		seq_printf(seq, ",gid=%u",
4261				from_kgid_munged(&init_user_ns, sbinfo->gid));
4262
4263	/*
4264	 * Showing inode{64,32} might be useful even if it's the system default,
4265	 * since then people don't have to resort to checking both here and
4266	 * /proc/config.gz to confirm 64-bit inums were successfully applied
4267	 * (which may not even exist if IKCONFIG_PROC isn't enabled).
4268	 *
4269	 * We hide it when inode64 isn't the default and we are using 32-bit
4270	 * inodes, since that probably just means the feature isn't even under
4271	 * consideration.
4272	 *
4273	 * As such:
4274	 *
4275	 *                     +-----------------+-----------------+
4276	 *                     | TMPFS_INODE64=y | TMPFS_INODE64=n |
4277	 *  +------------------+-----------------+-----------------+
4278	 *  | full_inums=true  | show            | show            |
4279	 *  | full_inums=false | show            | hide            |
4280	 *  +------------------+-----------------+-----------------+
4281	 *
4282	 */
4283	if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums)
4284		seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32));
4285#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4286	/* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
4287	if (sbinfo->huge)
4288		seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
4289#endif
4290	mpol = shmem_get_sbmpol(sbinfo);
4291	shmem_show_mpol(seq, mpol);
4292	mpol_put(mpol);
4293	if (sbinfo->noswap)
4294		seq_printf(seq, ",noswap");
4295#ifdef CONFIG_TMPFS_QUOTA
4296	if (sb_has_quota_active(root->d_sb, USRQUOTA))
4297		seq_printf(seq, ",usrquota");
4298	if (sb_has_quota_active(root->d_sb, GRPQUOTA))
4299		seq_printf(seq, ",grpquota");
4300	if (sbinfo->qlimits.usrquota_bhardlimit)
4301		seq_printf(seq, ",usrquota_block_hardlimit=%lld",
4302			   sbinfo->qlimits.usrquota_bhardlimit);
4303	if (sbinfo->qlimits.grpquota_bhardlimit)
4304		seq_printf(seq, ",grpquota_block_hardlimit=%lld",
4305			   sbinfo->qlimits.grpquota_bhardlimit);
4306	if (sbinfo->qlimits.usrquota_ihardlimit)
4307		seq_printf(seq, ",usrquota_inode_hardlimit=%lld",
4308			   sbinfo->qlimits.usrquota_ihardlimit);
4309	if (sbinfo->qlimits.grpquota_ihardlimit)
4310		seq_printf(seq, ",grpquota_inode_hardlimit=%lld",
4311			   sbinfo->qlimits.grpquota_ihardlimit);
4312#endif
4313	return 0;
4314}
4315
4316#endif /* CONFIG_TMPFS */
4317
4318static void shmem_put_super(struct super_block *sb)
4319{
4320	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
4321
4322#ifdef CONFIG_TMPFS_QUOTA
4323	shmem_disable_quotas(sb);
4324#endif
4325	free_percpu(sbinfo->ino_batch);
4326	percpu_counter_destroy(&sbinfo->used_blocks);
4327	mpol_put(sbinfo->mpol);
4328	kfree(sbinfo);
4329	sb->s_fs_info = NULL;
4330}
4331
4332static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
4333{
4334	struct shmem_options *ctx = fc->fs_private;
4335	struct inode *inode;
4336	struct shmem_sb_info *sbinfo;
4337	int error = -ENOMEM;
4338
4339	/* Round up to L1_CACHE_BYTES to resist false sharing */
4340	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
4341				L1_CACHE_BYTES), GFP_KERNEL);
4342	if (!sbinfo)
4343		return error;
4344
4345	sb->s_fs_info = sbinfo;
4346
4347#ifdef CONFIG_TMPFS
4348	/*
4349	 * Per default we only allow half of the physical ram per
4350	 * tmpfs instance, limiting inodes to one per page of lowmem;
4351	 * but the internal instance is left unlimited.
4352	 */
4353	if (!(sb->s_flags & SB_KERNMOUNT)) {
4354		if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
4355			ctx->blocks = shmem_default_max_blocks();
4356		if (!(ctx->seen & SHMEM_SEEN_INODES))
4357			ctx->inodes = shmem_default_max_inodes();
4358		if (!(ctx->seen & SHMEM_SEEN_INUMS))
4359			ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64);
4360		sbinfo->noswap = ctx->noswap;
4361	} else {
4362		sb->s_flags |= SB_NOUSER;
4363	}
4364	sb->s_export_op = &shmem_export_ops;
4365	sb->s_flags |= SB_NOSEC | SB_I_VERSION;
4366#else
4367	sb->s_flags |= SB_NOUSER;
4368#endif
4369	sbinfo->max_blocks = ctx->blocks;
4370	sbinfo->max_inodes = ctx->inodes;
4371	sbinfo->free_ispace = sbinfo->max_inodes * BOGO_INODE_SIZE;
4372	if (sb->s_flags & SB_KERNMOUNT) {
4373		sbinfo->ino_batch = alloc_percpu(ino_t);
4374		if (!sbinfo->ino_batch)
4375			goto failed;
4376	}
4377	sbinfo->uid = ctx->uid;
4378	sbinfo->gid = ctx->gid;
4379	sbinfo->full_inums = ctx->full_inums;
4380	sbinfo->mode = ctx->mode;
4381	sbinfo->huge = ctx->huge;
4382	sbinfo->mpol = ctx->mpol;
4383	ctx->mpol = NULL;
4384
4385	raw_spin_lock_init(&sbinfo->stat_lock);
4386	if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
4387		goto failed;
4388	spin_lock_init(&sbinfo->shrinklist_lock);
4389	INIT_LIST_HEAD(&sbinfo->shrinklist);
4390
4391	sb->s_maxbytes = MAX_LFS_FILESIZE;
4392	sb->s_blocksize = PAGE_SIZE;
4393	sb->s_blocksize_bits = PAGE_SHIFT;
4394	sb->s_magic = TMPFS_MAGIC;
4395	sb->s_op = &shmem_ops;
4396	sb->s_time_gran = 1;
4397#ifdef CONFIG_TMPFS_XATTR
4398	sb->s_xattr = shmem_xattr_handlers;
4399#endif
4400#ifdef CONFIG_TMPFS_POSIX_ACL
4401	sb->s_flags |= SB_POSIXACL;
4402#endif
4403	uuid_t uuid;
4404	uuid_gen(&uuid);
4405	super_set_uuid(sb, uuid.b, sizeof(uuid));
4406
4407#ifdef CONFIG_TMPFS_QUOTA
4408	if (ctx->seen & SHMEM_SEEN_QUOTA) {
4409		sb->dq_op = &shmem_quota_operations;
4410		sb->s_qcop = &dquot_quotactl_sysfile_ops;
4411		sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP;
4412
4413		/* Copy the default limits from ctx into sbinfo */
4414		memcpy(&sbinfo->qlimits, &ctx->qlimits,
4415		       sizeof(struct shmem_quota_limits));
4416
4417		if (shmem_enable_quotas(sb, ctx->quota_types))
4418			goto failed;
4419	}
4420#endif /* CONFIG_TMPFS_QUOTA */
4421
4422	inode = shmem_get_inode(&nop_mnt_idmap, sb, NULL,
4423				S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
4424	if (IS_ERR(inode)) {
4425		error = PTR_ERR(inode);
4426		goto failed;
4427	}
4428	inode->i_uid = sbinfo->uid;
4429	inode->i_gid = sbinfo->gid;
4430	sb->s_root = d_make_root(inode);
4431	if (!sb->s_root)
4432		goto failed;
4433	return 0;
4434
4435failed:
4436	shmem_put_super(sb);
4437	return error;
4438}
4439
4440static int shmem_get_tree(struct fs_context *fc)
4441{
4442	return get_tree_nodev(fc, shmem_fill_super);
4443}
4444
4445static void shmem_free_fc(struct fs_context *fc)
4446{
4447	struct shmem_options *ctx = fc->fs_private;
4448
4449	if (ctx) {
4450		mpol_put(ctx->mpol);
4451		kfree(ctx);
4452	}
4453}
4454
4455static const struct fs_context_operations shmem_fs_context_ops = {
4456	.free			= shmem_free_fc,
4457	.get_tree		= shmem_get_tree,
4458#ifdef CONFIG_TMPFS
4459	.parse_monolithic	= shmem_parse_options,
4460	.parse_param		= shmem_parse_one,
4461	.reconfigure		= shmem_reconfigure,
4462#endif
4463};
4464
4465static struct kmem_cache *shmem_inode_cachep __ro_after_init;
4466
4467static struct inode *shmem_alloc_inode(struct super_block *sb)
4468{
4469	struct shmem_inode_info *info;
4470	info = alloc_inode_sb(sb, shmem_inode_cachep, GFP_KERNEL);
4471	if (!info)
4472		return NULL;
4473	return &info->vfs_inode;
4474}
4475
4476static void shmem_free_in_core_inode(struct inode *inode)
4477{
4478	if (S_ISLNK(inode->i_mode))
4479		kfree(inode->i_link);
4480	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
4481}
4482
4483static void shmem_destroy_inode(struct inode *inode)
4484{
4485	if (S_ISREG(inode->i_mode))
4486		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
4487	if (S_ISDIR(inode->i_mode))
4488		simple_offset_destroy(shmem_get_offset_ctx(inode));
4489}
4490
4491static void shmem_init_inode(void *foo)
4492{
4493	struct shmem_inode_info *info = foo;
4494	inode_init_once(&info->vfs_inode);
4495}
4496
4497static void __init shmem_init_inodecache(void)
4498{
4499	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
4500				sizeof(struct shmem_inode_info),
4501				0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
4502}
4503
4504static void __init shmem_destroy_inodecache(void)
4505{
4506	kmem_cache_destroy(shmem_inode_cachep);
4507}
4508
4509/* Keep the page in page cache instead of truncating it */
4510static int shmem_error_remove_folio(struct address_space *mapping,
4511				   struct folio *folio)
4512{
4513	return 0;
4514}
4515
4516static const struct address_space_operations shmem_aops = {
4517	.writepage	= shmem_writepage,
4518	.dirty_folio	= noop_dirty_folio,
4519#ifdef CONFIG_TMPFS
4520	.write_begin	= shmem_write_begin,
4521	.write_end	= shmem_write_end,
4522#endif
4523#ifdef CONFIG_MIGRATION
4524	.migrate_folio	= migrate_folio,
4525#endif
4526	.error_remove_folio = shmem_error_remove_folio,
4527};
4528
4529static const struct file_operations shmem_file_operations = {
4530	.mmap		= shmem_mmap,
4531	.open		= shmem_file_open,
4532	.get_unmapped_area = shmem_get_unmapped_area,
4533#ifdef CONFIG_TMPFS
4534	.llseek		= shmem_file_llseek,
4535	.read_iter	= shmem_file_read_iter,
4536	.write_iter	= shmem_file_write_iter,
4537	.fsync		= noop_fsync,
4538	.splice_read	= shmem_file_splice_read,
4539	.splice_write	= iter_file_splice_write,
4540	.fallocate	= shmem_fallocate,
4541#endif
4542};
4543
4544static const struct inode_operations shmem_inode_operations = {
4545	.getattr	= shmem_getattr,
4546	.setattr	= shmem_setattr,
4547#ifdef CONFIG_TMPFS_XATTR
4548	.listxattr	= shmem_listxattr,
4549	.set_acl	= simple_set_acl,
4550	.fileattr_get	= shmem_fileattr_get,
4551	.fileattr_set	= shmem_fileattr_set,
4552#endif
4553};
4554
4555static const struct inode_operations shmem_dir_inode_operations = {
4556#ifdef CONFIG_TMPFS
4557	.getattr	= shmem_getattr,
4558	.create		= shmem_create,
4559	.lookup		= simple_lookup,
4560	.link		= shmem_link,
4561	.unlink		= shmem_unlink,
4562	.symlink	= shmem_symlink,
4563	.mkdir		= shmem_mkdir,
4564	.rmdir		= shmem_rmdir,
4565	.mknod		= shmem_mknod,
4566	.rename		= shmem_rename2,
4567	.tmpfile	= shmem_tmpfile,
4568	.get_offset_ctx	= shmem_get_offset_ctx,
4569#endif
4570#ifdef CONFIG_TMPFS_XATTR
4571	.listxattr	= shmem_listxattr,
4572	.fileattr_get	= shmem_fileattr_get,
4573	.fileattr_set	= shmem_fileattr_set,
4574#endif
4575#ifdef CONFIG_TMPFS_POSIX_ACL
4576	.setattr	= shmem_setattr,
4577	.set_acl	= simple_set_acl,
4578#endif
4579};
4580
4581static const struct inode_operations shmem_special_inode_operations = {
4582	.getattr	= shmem_getattr,
4583#ifdef CONFIG_TMPFS_XATTR
4584	.listxattr	= shmem_listxattr,
4585#endif
4586#ifdef CONFIG_TMPFS_POSIX_ACL
4587	.setattr	= shmem_setattr,
4588	.set_acl	= simple_set_acl,
4589#endif
4590};
4591
4592static const struct super_operations shmem_ops = {
4593	.alloc_inode	= shmem_alloc_inode,
4594	.free_inode	= shmem_free_in_core_inode,
4595	.destroy_inode	= shmem_destroy_inode,
4596#ifdef CONFIG_TMPFS
4597	.statfs		= shmem_statfs,
4598	.show_options	= shmem_show_options,
4599#endif
4600#ifdef CONFIG_TMPFS_QUOTA
4601	.get_dquots	= shmem_get_dquots,
4602#endif
4603	.evict_inode	= shmem_evict_inode,
4604	.drop_inode	= generic_delete_inode,
4605	.put_super	= shmem_put_super,
4606#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4607	.nr_cached_objects	= shmem_unused_huge_count,
4608	.free_cached_objects	= shmem_unused_huge_scan,
4609#endif
4610};
4611
4612static const struct vm_operations_struct shmem_vm_ops = {
4613	.fault		= shmem_fault,
4614	.map_pages	= filemap_map_pages,
4615#ifdef CONFIG_NUMA
4616	.set_policy     = shmem_set_policy,
4617	.get_policy     = shmem_get_policy,
4618#endif
4619};
4620
4621static const struct vm_operations_struct shmem_anon_vm_ops = {
4622	.fault		= shmem_fault,
4623	.map_pages	= filemap_map_pages,
4624#ifdef CONFIG_NUMA
4625	.set_policy     = shmem_set_policy,
4626	.get_policy     = shmem_get_policy,
4627#endif
4628};
4629
4630int shmem_init_fs_context(struct fs_context *fc)
4631{
4632	struct shmem_options *ctx;
4633
4634	ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
4635	if (!ctx)
4636		return -ENOMEM;
4637
4638	ctx->mode = 0777 | S_ISVTX;
4639	ctx->uid = current_fsuid();
4640	ctx->gid = current_fsgid();
4641
4642	fc->fs_private = ctx;
4643	fc->ops = &shmem_fs_context_ops;
4644	return 0;
4645}
4646
4647static struct file_system_type shmem_fs_type = {
4648	.owner		= THIS_MODULE,
4649	.name		= "tmpfs",
4650	.init_fs_context = shmem_init_fs_context,
4651#ifdef CONFIG_TMPFS
4652	.parameters	= shmem_fs_parameters,
4653#endif
4654	.kill_sb	= kill_litter_super,
4655	.fs_flags	= FS_USERNS_MOUNT | FS_ALLOW_IDMAP,
4656};
4657
4658void __init shmem_init(void)
4659{
4660	int error;
4661
4662	shmem_init_inodecache();
4663
4664#ifdef CONFIG_TMPFS_QUOTA
4665	error = register_quota_format(&shmem_quota_format);
4666	if (error < 0) {
4667		pr_err("Could not register quota format\n");
4668		goto out3;
4669	}
4670#endif
4671
4672	error = register_filesystem(&shmem_fs_type);
4673	if (error) {
4674		pr_err("Could not register tmpfs\n");
4675		goto out2;
4676	}
4677
4678	shm_mnt = kern_mount(&shmem_fs_type);
4679	if (IS_ERR(shm_mnt)) {
4680		error = PTR_ERR(shm_mnt);
4681		pr_err("Could not kern_mount tmpfs\n");
4682		goto out1;
4683	}
4684
4685#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4686	if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
4687		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4688	else
4689		shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */
4690#endif
4691	return;
4692
4693out1:
4694	unregister_filesystem(&shmem_fs_type);
4695out2:
4696#ifdef CONFIG_TMPFS_QUOTA
4697	unregister_quota_format(&shmem_quota_format);
4698out3:
4699#endif
4700	shmem_destroy_inodecache();
4701	shm_mnt = ERR_PTR(error);
4702}
4703
4704#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
4705static ssize_t shmem_enabled_show(struct kobject *kobj,
4706				  struct kobj_attribute *attr, char *buf)
4707{
4708	static const int values[] = {
4709		SHMEM_HUGE_ALWAYS,
4710		SHMEM_HUGE_WITHIN_SIZE,
4711		SHMEM_HUGE_ADVISE,
4712		SHMEM_HUGE_NEVER,
4713		SHMEM_HUGE_DENY,
4714		SHMEM_HUGE_FORCE,
4715	};
4716	int len = 0;
4717	int i;
4718
4719	for (i = 0; i < ARRAY_SIZE(values); i++) {
4720		len += sysfs_emit_at(buf, len,
4721				shmem_huge == values[i] ? "%s[%s]" : "%s%s",
4722				i ? " " : "", shmem_format_huge(values[i]));
4723	}
4724	len += sysfs_emit_at(buf, len, "\n");
4725
4726	return len;
4727}
4728
4729static ssize_t shmem_enabled_store(struct kobject *kobj,
4730		struct kobj_attribute *attr, const char *buf, size_t count)
4731{
4732	char tmp[16];
4733	int huge;
4734
4735	if (count + 1 > sizeof(tmp))
4736		return -EINVAL;
4737	memcpy(tmp, buf, count);
4738	tmp[count] = '\0';
4739	if (count && tmp[count - 1] == '\n')
4740		tmp[count - 1] = '\0';
4741
4742	huge = shmem_parse_huge(tmp);
4743	if (huge == -EINVAL)
4744		return -EINVAL;
4745	if (!has_transparent_hugepage() &&
4746			huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
4747		return -EINVAL;
4748
4749	shmem_huge = huge;
4750	if (shmem_huge > SHMEM_HUGE_DENY)
4751		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4752	return count;
4753}
4754
4755struct kobj_attribute shmem_enabled_attr = __ATTR_RW(shmem_enabled);
4756#endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
4757
4758#else /* !CONFIG_SHMEM */
4759
4760/*
4761 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4762 *
4763 * This is intended for small system where the benefits of the full
4764 * shmem code (swap-backed and resource-limited) are outweighed by
4765 * their complexity. On systems without swap this code should be
4766 * effectively equivalent, but much lighter weight.
4767 */
4768
4769static struct file_system_type shmem_fs_type = {
4770	.name		= "tmpfs",
4771	.init_fs_context = ramfs_init_fs_context,
4772	.parameters	= ramfs_fs_parameters,
4773	.kill_sb	= ramfs_kill_sb,
4774	.fs_flags	= FS_USERNS_MOUNT,
4775};
4776
4777void __init shmem_init(void)
4778{
4779	BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4780
4781	shm_mnt = kern_mount(&shmem_fs_type);
4782	BUG_ON(IS_ERR(shm_mnt));
4783}
4784
4785int shmem_unuse(unsigned int type)
4786{
4787	return 0;
4788}
4789
4790int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
4791{
4792	return 0;
4793}
4794
4795void shmem_unlock_mapping(struct address_space *mapping)
4796{
4797}
4798
4799#ifdef CONFIG_MMU
4800unsigned long shmem_get_unmapped_area(struct file *file,
4801				      unsigned long addr, unsigned long len,
4802				      unsigned long pgoff, unsigned long flags)
4803{
4804	return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4805}
4806#endif
4807
4808void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4809{
4810	truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4811}
4812EXPORT_SYMBOL_GPL(shmem_truncate_range);
4813
4814#define shmem_vm_ops				generic_file_vm_ops
4815#define shmem_anon_vm_ops			generic_file_vm_ops
4816#define shmem_file_operations			ramfs_file_operations
4817#define shmem_acct_size(flags, size)		0
4818#define shmem_unacct_size(flags, size)		do {} while (0)
4819
4820static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap,
4821				struct super_block *sb, struct inode *dir,
4822				umode_t mode, dev_t dev, unsigned long flags)
4823{
4824	struct inode *inode = ramfs_get_inode(sb, dir, mode, dev);
4825	return inode ? inode : ERR_PTR(-ENOSPC);
4826}
4827
4828#endif /* CONFIG_SHMEM */
4829
4830/* common code */
4831
4832static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name,
4833			loff_t size, unsigned long flags, unsigned int i_flags)
4834{
4835	struct inode *inode;
4836	struct file *res;
4837
4838	if (IS_ERR(mnt))
4839		return ERR_CAST(mnt);
4840
4841	if (size < 0 || size > MAX_LFS_FILESIZE)
4842		return ERR_PTR(-EINVAL);
4843
4844	if (shmem_acct_size(flags, size))
4845		return ERR_PTR(-ENOMEM);
4846
4847	if (is_idmapped_mnt(mnt))
4848		return ERR_PTR(-EINVAL);
4849
4850	inode = shmem_get_inode(&nop_mnt_idmap, mnt->mnt_sb, NULL,
4851				S_IFREG | S_IRWXUGO, 0, flags);
4852	if (IS_ERR(inode)) {
4853		shmem_unacct_size(flags, size);
4854		return ERR_CAST(inode);
4855	}
4856	inode->i_flags |= i_flags;
4857	inode->i_size = size;
4858	clear_nlink(inode);	/* It is unlinked */
4859	res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4860	if (!IS_ERR(res))
4861		res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
4862				&shmem_file_operations);
4863	if (IS_ERR(res))
4864		iput(inode);
4865	return res;
4866}
4867
4868/**
4869 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4870 * 	kernel internal.  There will be NO LSM permission checks against the
4871 * 	underlying inode.  So users of this interface must do LSM checks at a
4872 *	higher layer.  The users are the big_key and shm implementations.  LSM
4873 *	checks are provided at the key or shm level rather than the inode.
4874 * @name: name for dentry (to be seen in /proc/<pid>/maps
4875 * @size: size to be set for the file
4876 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4877 */
4878struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4879{
4880	return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
4881}
4882EXPORT_SYMBOL_GPL(shmem_kernel_file_setup);
4883
4884/**
4885 * shmem_file_setup - get an unlinked file living in tmpfs
4886 * @name: name for dentry (to be seen in /proc/<pid>/maps
4887 * @size: size to be set for the file
4888 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4889 */
4890struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4891{
4892	return __shmem_file_setup(shm_mnt, name, size, flags, 0);
4893}
4894EXPORT_SYMBOL_GPL(shmem_file_setup);
4895
4896/**
4897 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4898 * @mnt: the tmpfs mount where the file will be created
4899 * @name: name for dentry (to be seen in /proc/<pid>/maps
4900 * @size: size to be set for the file
4901 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4902 */
4903struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4904				       loff_t size, unsigned long flags)
4905{
4906	return __shmem_file_setup(mnt, name, size, flags, 0);
4907}
4908EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4909
4910/**
4911 * shmem_zero_setup - setup a shared anonymous mapping
4912 * @vma: the vma to be mmapped is prepared by do_mmap
4913 */
4914int shmem_zero_setup(struct vm_area_struct *vma)
4915{
4916	struct file *file;
4917	loff_t size = vma->vm_end - vma->vm_start;
4918
4919	/*
4920	 * Cloning a new file under mmap_lock leads to a lock ordering conflict
4921	 * between XFS directory reading and selinux: since this file is only
4922	 * accessible to the user through its mapping, use S_PRIVATE flag to
4923	 * bypass file security, in the same way as shmem_kernel_file_setup().
4924	 */
4925	file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
4926	if (IS_ERR(file))
4927		return PTR_ERR(file);
4928
4929	if (vma->vm_file)
4930		fput(vma->vm_file);
4931	vma->vm_file = file;
4932	vma->vm_ops = &shmem_anon_vm_ops;
4933
4934	return 0;
4935}
4936
4937/**
4938 * shmem_read_folio_gfp - read into page cache, using specified page allocation flags.
4939 * @mapping:	the folio's address_space
4940 * @index:	the folio index
4941 * @gfp:	the page allocator flags to use if allocating
4942 *
4943 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4944 * with any new page allocations done using the specified allocation flags.
4945 * But read_cache_page_gfp() uses the ->read_folio() method: which does not
4946 * suit tmpfs, since it may have pages in swapcache, and needs to find those
4947 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4948 *
4949 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4950 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4951 */
4952struct folio *shmem_read_folio_gfp(struct address_space *mapping,
4953		pgoff_t index, gfp_t gfp)
4954{
4955#ifdef CONFIG_SHMEM
4956	struct inode *inode = mapping->host;
4957	struct folio *folio;
4958	int error;
4959
4960	error = shmem_get_folio_gfp(inode, index, &folio, SGP_CACHE,
4961				    gfp, NULL, NULL);
4962	if (error)
4963		return ERR_PTR(error);
4964
4965	folio_unlock(folio);
4966	return folio;
4967#else
4968	/*
4969	 * The tiny !SHMEM case uses ramfs without swap
4970	 */
4971	return mapping_read_folio_gfp(mapping, index, gfp);
4972#endif
4973}
4974EXPORT_SYMBOL_GPL(shmem_read_folio_gfp);
4975
4976struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4977					 pgoff_t index, gfp_t gfp)
4978{
4979	struct folio *folio = shmem_read_folio_gfp(mapping, index, gfp);
4980	struct page *page;
4981
4982	if (IS_ERR(folio))
4983		return &folio->page;
4984
4985	page = folio_file_page(folio, index);
4986	if (PageHWPoison(page)) {
4987		folio_put(folio);
4988		return ERR_PTR(-EIO);
4989	}
4990
4991	return page;
4992}
4993EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
4994