1// SPDX-License-Identifier: GPL-2.0
2/*
3 * linux/mm/page_isolation.c
4 */
5
6#include <linux/mm.h>
7#include <linux/page-isolation.h>
8#include <linux/pageblock-flags.h>
9#include <linux/memory.h>
10#include <linux/hugetlb.h>
11#include <linux/page_owner.h>
12#include <linux/migrate.h>
13#include "internal.h"
14
15#define CREATE_TRACE_POINTS
16#include <trace/events/page_isolation.h>
17
18/*
19 * This function checks whether the range [start_pfn, end_pfn) includes
20 * unmovable pages or not. The range must fall into a single pageblock and
21 * consequently belong to a single zone.
22 *
23 * PageLRU check without isolation or lru_lock could race so that
24 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
25 * check without lock_page also may miss some movable non-lru pages at
26 * race condition. So you can't expect this function should be exact.
27 *
28 * Returns a page without holding a reference. If the caller wants to
29 * dereference that page (e.g., dumping), it has to make sure that it
30 * cannot get removed (e.g., via memory unplug) concurrently.
31 *
32 */
33static struct page *has_unmovable_pages(unsigned long start_pfn, unsigned long end_pfn,
34				int migratetype, int flags)
35{
36	struct page *page = pfn_to_page(start_pfn);
37	struct zone *zone = page_zone(page);
38	unsigned long pfn;
39
40	VM_BUG_ON(pageblock_start_pfn(start_pfn) !=
41		  pageblock_start_pfn(end_pfn - 1));
42
43	if (is_migrate_cma_page(page)) {
44		/*
45		 * CMA allocations (alloc_contig_range) really need to mark
46		 * isolate CMA pageblocks even when they are not movable in fact
47		 * so consider them movable here.
48		 */
49		if (is_migrate_cma(migratetype))
50			return NULL;
51
52		return page;
53	}
54
55	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
56		page = pfn_to_page(pfn);
57
58		/*
59		 * Both, bootmem allocations and memory holes are marked
60		 * PG_reserved and are unmovable. We can even have unmovable
61		 * allocations inside ZONE_MOVABLE, for example when
62		 * specifying "movablecore".
63		 */
64		if (PageReserved(page))
65			return page;
66
67		/*
68		 * If the zone is movable and we have ruled out all reserved
69		 * pages then it should be reasonably safe to assume the rest
70		 * is movable.
71		 */
72		if (zone_idx(zone) == ZONE_MOVABLE)
73			continue;
74
75		/*
76		 * Hugepages are not in LRU lists, but they're movable.
77		 * THPs are on the LRU, but need to be counted as #small pages.
78		 * We need not scan over tail pages because we don't
79		 * handle each tail page individually in migration.
80		 */
81		if (PageHuge(page) || PageTransCompound(page)) {
82			struct folio *folio = page_folio(page);
83			unsigned int skip_pages;
84
85			if (PageHuge(page)) {
86				if (!hugepage_migration_supported(folio_hstate(folio)))
87					return page;
88			} else if (!folio_test_lru(folio) && !__folio_test_movable(folio)) {
89				return page;
90			}
91
92			skip_pages = folio_nr_pages(folio) - folio_page_idx(folio, page);
93			pfn += skip_pages - 1;
94			continue;
95		}
96
97		/*
98		 * We can't use page_count without pin a page
99		 * because another CPU can free compound page.
100		 * This check already skips compound tails of THP
101		 * because their page->_refcount is zero at all time.
102		 */
103		if (!page_ref_count(page)) {
104			if (PageBuddy(page))
105				pfn += (1 << buddy_order(page)) - 1;
106			continue;
107		}
108
109		/*
110		 * The HWPoisoned page may be not in buddy system, and
111		 * page_count() is not 0.
112		 */
113		if ((flags & MEMORY_OFFLINE) && PageHWPoison(page))
114			continue;
115
116		/*
117		 * We treat all PageOffline() pages as movable when offlining
118		 * to give drivers a chance to decrement their reference count
119		 * in MEM_GOING_OFFLINE in order to indicate that these pages
120		 * can be offlined as there are no direct references anymore.
121		 * For actually unmovable PageOffline() where the driver does
122		 * not support this, we will fail later when trying to actually
123		 * move these pages that still have a reference count > 0.
124		 * (false negatives in this function only)
125		 */
126		if ((flags & MEMORY_OFFLINE) && PageOffline(page))
127			continue;
128
129		if (__PageMovable(page) || PageLRU(page))
130			continue;
131
132		/*
133		 * If there are RECLAIMABLE pages, we need to check
134		 * it.  But now, memory offline itself doesn't call
135		 * shrink_node_slabs() and it still to be fixed.
136		 */
137		return page;
138	}
139	return NULL;
140}
141
142/*
143 * This function set pageblock migratetype to isolate if no unmovable page is
144 * present in [start_pfn, end_pfn). The pageblock must intersect with
145 * [start_pfn, end_pfn).
146 */
147static int set_migratetype_isolate(struct page *page, int migratetype, int isol_flags,
148			unsigned long start_pfn, unsigned long end_pfn)
149{
150	struct zone *zone = page_zone(page);
151	struct page *unmovable;
152	unsigned long flags;
153	unsigned long check_unmovable_start, check_unmovable_end;
154
155	spin_lock_irqsave(&zone->lock, flags);
156
157	/*
158	 * We assume the caller intended to SET migrate type to isolate.
159	 * If it is already set, then someone else must have raced and
160	 * set it before us.
161	 */
162	if (is_migrate_isolate_page(page)) {
163		spin_unlock_irqrestore(&zone->lock, flags);
164		return -EBUSY;
165	}
166
167	/*
168	 * FIXME: Now, memory hotplug doesn't call shrink_slab() by itself.
169	 * We just check MOVABLE pages.
170	 *
171	 * Pass the intersection of [start_pfn, end_pfn) and the page's pageblock
172	 * to avoid redundant checks.
173	 */
174	check_unmovable_start = max(page_to_pfn(page), start_pfn);
175	check_unmovable_end = min(pageblock_end_pfn(page_to_pfn(page)),
176				  end_pfn);
177
178	unmovable = has_unmovable_pages(check_unmovable_start, check_unmovable_end,
179			migratetype, isol_flags);
180	if (!unmovable) {
181		unsigned long nr_pages;
182		int mt = get_pageblock_migratetype(page);
183
184		set_pageblock_migratetype(page, MIGRATE_ISOLATE);
185		zone->nr_isolate_pageblock++;
186		nr_pages = move_freepages_block(zone, page, MIGRATE_ISOLATE,
187									NULL);
188
189		__mod_zone_freepage_state(zone, -nr_pages, mt);
190		spin_unlock_irqrestore(&zone->lock, flags);
191		return 0;
192	}
193
194	spin_unlock_irqrestore(&zone->lock, flags);
195	if (isol_flags & REPORT_FAILURE) {
196		/*
197		 * printk() with zone->lock held will likely trigger a
198		 * lockdep splat, so defer it here.
199		 */
200		dump_page(unmovable, "unmovable page");
201	}
202
203	return -EBUSY;
204}
205
206static void unset_migratetype_isolate(struct page *page, int migratetype)
207{
208	struct zone *zone;
209	unsigned long flags, nr_pages;
210	bool isolated_page = false;
211	unsigned int order;
212	struct page *buddy;
213
214	zone = page_zone(page);
215	spin_lock_irqsave(&zone->lock, flags);
216	if (!is_migrate_isolate_page(page))
217		goto out;
218
219	/*
220	 * Because freepage with more than pageblock_order on isolated
221	 * pageblock is restricted to merge due to freepage counting problem,
222	 * it is possible that there is free buddy page.
223	 * move_freepages_block() doesn't care of merge so we need other
224	 * approach in order to merge them. Isolation and free will make
225	 * these pages to be merged.
226	 */
227	if (PageBuddy(page)) {
228		order = buddy_order(page);
229		if (order >= pageblock_order && order < MAX_PAGE_ORDER) {
230			buddy = find_buddy_page_pfn(page, page_to_pfn(page),
231						    order, NULL);
232			if (buddy && !is_migrate_isolate_page(buddy)) {
233				isolated_page = !!__isolate_free_page(page, order);
234				/*
235				 * Isolating a free page in an isolated pageblock
236				 * is expected to always work as watermarks don't
237				 * apply here.
238				 */
239				VM_WARN_ON(!isolated_page);
240			}
241		}
242	}
243
244	/*
245	 * If we isolate freepage with more than pageblock_order, there
246	 * should be no freepage in the range, so we could avoid costly
247	 * pageblock scanning for freepage moving.
248	 *
249	 * We didn't actually touch any of the isolated pages, so place them
250	 * to the tail of the freelist. This is an optimization for memory
251	 * onlining - just onlined memory won't immediately be considered for
252	 * allocation.
253	 */
254	if (!isolated_page) {
255		nr_pages = move_freepages_block(zone, page, migratetype, NULL);
256		__mod_zone_freepage_state(zone, nr_pages, migratetype);
257	}
258	set_pageblock_migratetype(page, migratetype);
259	if (isolated_page)
260		__putback_isolated_page(page, order, migratetype);
261	zone->nr_isolate_pageblock--;
262out:
263	spin_unlock_irqrestore(&zone->lock, flags);
264}
265
266static inline struct page *
267__first_valid_page(unsigned long pfn, unsigned long nr_pages)
268{
269	int i;
270
271	for (i = 0; i < nr_pages; i++) {
272		struct page *page;
273
274		page = pfn_to_online_page(pfn + i);
275		if (!page)
276			continue;
277		return page;
278	}
279	return NULL;
280}
281
282/**
283 * isolate_single_pageblock() -- tries to isolate a pageblock that might be
284 * within a free or in-use page.
285 * @boundary_pfn:		pageblock-aligned pfn that a page might cross
286 * @flags:			isolation flags
287 * @gfp_flags:			GFP flags used for migrating pages
288 * @isolate_before:	isolate the pageblock before the boundary_pfn
289 * @skip_isolation:	the flag to skip the pageblock isolation in second
290 *			isolate_single_pageblock()
291 * @migratetype:	migrate type to set in error recovery.
292 *
293 * Free and in-use pages can be as big as MAX_PAGE_ORDER and contain more than one
294 * pageblock. When not all pageblocks within a page are isolated at the same
295 * time, free page accounting can go wrong. For example, in the case of
296 * MAX_PAGE_ORDER = pageblock_order + 1, a MAX_PAGE_ORDER page has two
297 * pagelbocks.
298 * [      MAX_PAGE_ORDER         ]
299 * [  pageblock0  |  pageblock1  ]
300 * When either pageblock is isolated, if it is a free page, the page is not
301 * split into separate migratetype lists, which is supposed to; if it is an
302 * in-use page and freed later, __free_one_page() does not split the free page
303 * either. The function handles this by splitting the free page or migrating
304 * the in-use page then splitting the free page.
305 */
306static int isolate_single_pageblock(unsigned long boundary_pfn, int flags,
307			gfp_t gfp_flags, bool isolate_before, bool skip_isolation,
308			int migratetype)
309{
310	unsigned long start_pfn;
311	unsigned long isolate_pageblock;
312	unsigned long pfn;
313	struct zone *zone;
314	int ret;
315
316	VM_BUG_ON(!pageblock_aligned(boundary_pfn));
317
318	if (isolate_before)
319		isolate_pageblock = boundary_pfn - pageblock_nr_pages;
320	else
321		isolate_pageblock = boundary_pfn;
322
323	/*
324	 * scan at the beginning of MAX_ORDER_NR_PAGES aligned range to avoid
325	 * only isolating a subset of pageblocks from a bigger than pageblock
326	 * free or in-use page. Also make sure all to-be-isolated pageblocks
327	 * are within the same zone.
328	 */
329	zone  = page_zone(pfn_to_page(isolate_pageblock));
330	start_pfn  = max(ALIGN_DOWN(isolate_pageblock, MAX_ORDER_NR_PAGES),
331				      zone->zone_start_pfn);
332
333	if (skip_isolation) {
334		int mt __maybe_unused = get_pageblock_migratetype(pfn_to_page(isolate_pageblock));
335
336		VM_BUG_ON(!is_migrate_isolate(mt));
337	} else {
338		ret = set_migratetype_isolate(pfn_to_page(isolate_pageblock), migratetype,
339				flags, isolate_pageblock, isolate_pageblock + pageblock_nr_pages);
340
341		if (ret)
342			return ret;
343	}
344
345	/*
346	 * Bail out early when the to-be-isolated pageblock does not form
347	 * a free or in-use page across boundary_pfn:
348	 *
349	 * 1. isolate before boundary_pfn: the page after is not online
350	 * 2. isolate after boundary_pfn: the page before is not online
351	 *
352	 * This also ensures correctness. Without it, when isolate after
353	 * boundary_pfn and [start_pfn, boundary_pfn) are not online,
354	 * __first_valid_page() will return unexpected NULL in the for loop
355	 * below.
356	 */
357	if (isolate_before) {
358		if (!pfn_to_online_page(boundary_pfn))
359			return 0;
360	} else {
361		if (!pfn_to_online_page(boundary_pfn - 1))
362			return 0;
363	}
364
365	for (pfn = start_pfn; pfn < boundary_pfn;) {
366		struct page *page = __first_valid_page(pfn, boundary_pfn - pfn);
367
368		VM_BUG_ON(!page);
369		pfn = page_to_pfn(page);
370		/*
371		 * start_pfn is MAX_ORDER_NR_PAGES aligned, if there is any
372		 * free pages in [start_pfn, boundary_pfn), its head page will
373		 * always be in the range.
374		 */
375		if (PageBuddy(page)) {
376			int order = buddy_order(page);
377
378			if (pfn + (1UL << order) > boundary_pfn) {
379				/* free page changed before split, check it again */
380				if (split_free_page(page, order, boundary_pfn - pfn))
381					continue;
382			}
383
384			pfn += 1UL << order;
385			continue;
386		}
387		/*
388		 * migrate compound pages then let the free page handling code
389		 * above do the rest. If migration is not possible, just fail.
390		 */
391		if (PageCompound(page)) {
392			struct page *head = compound_head(page);
393			unsigned long head_pfn = page_to_pfn(head);
394			unsigned long nr_pages = compound_nr(head);
395
396			if (head_pfn + nr_pages <= boundary_pfn) {
397				pfn = head_pfn + nr_pages;
398				continue;
399			}
400#if defined CONFIG_COMPACTION || defined CONFIG_CMA
401			/*
402			 * hugetlb, lru compound (THP), and movable compound pages
403			 * can be migrated. Otherwise, fail the isolation.
404			 */
405			if (PageHuge(page) || PageLRU(page) || __PageMovable(page)) {
406				int order;
407				unsigned long outer_pfn;
408				int page_mt = get_pageblock_migratetype(page);
409				bool isolate_page = !is_migrate_isolate_page(page);
410				struct compact_control cc = {
411					.nr_migratepages = 0,
412					.order = -1,
413					.zone = page_zone(pfn_to_page(head_pfn)),
414					.mode = MIGRATE_SYNC,
415					.ignore_skip_hint = true,
416					.no_set_skip_hint = true,
417					.gfp_mask = gfp_flags,
418					.alloc_contig = true,
419				};
420				INIT_LIST_HEAD(&cc.migratepages);
421
422				/*
423				 * XXX: mark the page as MIGRATE_ISOLATE so that
424				 * no one else can grab the freed page after migration.
425				 * Ideally, the page should be freed as two separate
426				 * pages to be added into separate migratetype free
427				 * lists.
428				 */
429				if (isolate_page) {
430					ret = set_migratetype_isolate(page, page_mt,
431						flags, head_pfn, head_pfn + nr_pages);
432					if (ret)
433						goto failed;
434				}
435
436				ret = __alloc_contig_migrate_range(&cc, head_pfn,
437							head_pfn + nr_pages, page_mt);
438
439				/*
440				 * restore the page's migratetype so that it can
441				 * be split into separate migratetype free lists
442				 * later.
443				 */
444				if (isolate_page)
445					unset_migratetype_isolate(page, page_mt);
446
447				if (ret)
448					goto failed;
449				/*
450				 * reset pfn to the head of the free page, so
451				 * that the free page handling code above can split
452				 * the free page to the right migratetype list.
453				 *
454				 * head_pfn is not used here as a hugetlb page order
455				 * can be bigger than MAX_PAGE_ORDER, but after it is
456				 * freed, the free page order is not. Use pfn within
457				 * the range to find the head of the free page.
458				 */
459				order = 0;
460				outer_pfn = pfn;
461				while (!PageBuddy(pfn_to_page(outer_pfn))) {
462					/* stop if we cannot find the free page */
463					if (++order > MAX_PAGE_ORDER)
464						goto failed;
465					outer_pfn &= ~0UL << order;
466				}
467				pfn = outer_pfn;
468				continue;
469			} else
470#endif
471				goto failed;
472		}
473
474		pfn++;
475	}
476	return 0;
477failed:
478	/* restore the original migratetype */
479	if (!skip_isolation)
480		unset_migratetype_isolate(pfn_to_page(isolate_pageblock), migratetype);
481	return -EBUSY;
482}
483
484/**
485 * start_isolate_page_range() - mark page range MIGRATE_ISOLATE
486 * @start_pfn:		The first PFN of the range to be isolated.
487 * @end_pfn:		The last PFN of the range to be isolated.
488 * @migratetype:	Migrate type to set in error recovery.
489 * @flags:		The following flags are allowed (they can be combined in
490 *			a bit mask)
491 *			MEMORY_OFFLINE - isolate to offline (!allocate) memory
492 *					 e.g., skip over PageHWPoison() pages
493 *					 and PageOffline() pages.
494 *			REPORT_FAILURE - report details about the failure to
495 *			isolate the range
496 * @gfp_flags:		GFP flags used for migrating pages that sit across the
497 *			range boundaries.
498 *
499 * Making page-allocation-type to be MIGRATE_ISOLATE means free pages in
500 * the range will never be allocated. Any free pages and pages freed in the
501 * future will not be allocated again. If specified range includes migrate types
502 * other than MOVABLE or CMA, this will fail with -EBUSY. For isolating all
503 * pages in the range finally, the caller have to free all pages in the range.
504 * test_page_isolated() can be used for test it.
505 *
506 * The function first tries to isolate the pageblocks at the beginning and end
507 * of the range, since there might be pages across the range boundaries.
508 * Afterwards, it isolates the rest of the range.
509 *
510 * There is no high level synchronization mechanism that prevents two threads
511 * from trying to isolate overlapping ranges. If this happens, one thread
512 * will notice pageblocks in the overlapping range already set to isolate.
513 * This happens in set_migratetype_isolate, and set_migratetype_isolate
514 * returns an error. We then clean up by restoring the migration type on
515 * pageblocks we may have modified and return -EBUSY to caller. This
516 * prevents two threads from simultaneously working on overlapping ranges.
517 *
518 * Please note that there is no strong synchronization with the page allocator
519 * either. Pages might be freed while their page blocks are marked ISOLATED.
520 * A call to drain_all_pages() after isolation can flush most of them. However
521 * in some cases pages might still end up on pcp lists and that would allow
522 * for their allocation even when they are in fact isolated already. Depending
523 * on how strong of a guarantee the caller needs, zone_pcp_disable/enable()
524 * might be used to flush and disable pcplist before isolation and enable after
525 * unisolation.
526 *
527 * Return: 0 on success and -EBUSY if any part of range cannot be isolated.
528 */
529int start_isolate_page_range(unsigned long start_pfn, unsigned long end_pfn,
530			     int migratetype, int flags, gfp_t gfp_flags)
531{
532	unsigned long pfn;
533	struct page *page;
534	/* isolation is done at page block granularity */
535	unsigned long isolate_start = pageblock_start_pfn(start_pfn);
536	unsigned long isolate_end = pageblock_align(end_pfn);
537	int ret;
538	bool skip_isolation = false;
539
540	/* isolate [isolate_start, isolate_start + pageblock_nr_pages) pageblock */
541	ret = isolate_single_pageblock(isolate_start, flags, gfp_flags, false,
542			skip_isolation, migratetype);
543	if (ret)
544		return ret;
545
546	if (isolate_start == isolate_end - pageblock_nr_pages)
547		skip_isolation = true;
548
549	/* isolate [isolate_end - pageblock_nr_pages, isolate_end) pageblock */
550	ret = isolate_single_pageblock(isolate_end, flags, gfp_flags, true,
551			skip_isolation, migratetype);
552	if (ret) {
553		unset_migratetype_isolate(pfn_to_page(isolate_start), migratetype);
554		return ret;
555	}
556
557	/* skip isolated pageblocks at the beginning and end */
558	for (pfn = isolate_start + pageblock_nr_pages;
559	     pfn < isolate_end - pageblock_nr_pages;
560	     pfn += pageblock_nr_pages) {
561		page = __first_valid_page(pfn, pageblock_nr_pages);
562		if (page && set_migratetype_isolate(page, migratetype, flags,
563					start_pfn, end_pfn)) {
564			undo_isolate_page_range(isolate_start, pfn, migratetype);
565			unset_migratetype_isolate(
566				pfn_to_page(isolate_end - pageblock_nr_pages),
567				migratetype);
568			return -EBUSY;
569		}
570	}
571	return 0;
572}
573
574/**
575 * undo_isolate_page_range - undo effects of start_isolate_page_range()
576 * @start_pfn:		The first PFN of the isolated range
577 * @end_pfn:		The last PFN of the isolated range
578 * @migratetype:	New migrate type to set on the range
579 *
580 * This finds every MIGRATE_ISOLATE page block in the given range
581 * and switches it to @migratetype.
582 */
583void undo_isolate_page_range(unsigned long start_pfn, unsigned long end_pfn,
584			    int migratetype)
585{
586	unsigned long pfn;
587	struct page *page;
588	unsigned long isolate_start = pageblock_start_pfn(start_pfn);
589	unsigned long isolate_end = pageblock_align(end_pfn);
590
591	for (pfn = isolate_start;
592	     pfn < isolate_end;
593	     pfn += pageblock_nr_pages) {
594		page = __first_valid_page(pfn, pageblock_nr_pages);
595		if (!page || !is_migrate_isolate_page(page))
596			continue;
597		unset_migratetype_isolate(page, migratetype);
598	}
599}
600/*
601 * Test all pages in the range is free(means isolated) or not.
602 * all pages in [start_pfn...end_pfn) must be in the same zone.
603 * zone->lock must be held before call this.
604 *
605 * Returns the last tested pfn.
606 */
607static unsigned long
608__test_page_isolated_in_pageblock(unsigned long pfn, unsigned long end_pfn,
609				  int flags)
610{
611	struct page *page;
612
613	while (pfn < end_pfn) {
614		page = pfn_to_page(pfn);
615		if (PageBuddy(page))
616			/*
617			 * If the page is on a free list, it has to be on
618			 * the correct MIGRATE_ISOLATE freelist. There is no
619			 * simple way to verify that as VM_BUG_ON(), though.
620			 */
621			pfn += 1 << buddy_order(page);
622		else if ((flags & MEMORY_OFFLINE) && PageHWPoison(page))
623			/* A HWPoisoned page cannot be also PageBuddy */
624			pfn++;
625		else if ((flags & MEMORY_OFFLINE) && PageOffline(page) &&
626			 !page_count(page))
627			/*
628			 * The responsible driver agreed to skip PageOffline()
629			 * pages when offlining memory by dropping its
630			 * reference in MEM_GOING_OFFLINE.
631			 */
632			pfn++;
633		else
634			break;
635	}
636
637	return pfn;
638}
639
640/**
641 * test_pages_isolated - check if pageblocks in range are isolated
642 * @start_pfn:		The first PFN of the isolated range
643 * @end_pfn:		The first PFN *after* the isolated range
644 * @isol_flags:		Testing mode flags
645 *
646 * This tests if all in the specified range are free.
647 *
648 * If %MEMORY_OFFLINE is specified in @flags, it will consider
649 * poisoned and offlined pages free as well.
650 *
651 * Caller must ensure the requested range doesn't span zones.
652 *
653 * Returns 0 if true, -EBUSY if one or more pages are in use.
654 */
655int test_pages_isolated(unsigned long start_pfn, unsigned long end_pfn,
656			int isol_flags)
657{
658	unsigned long pfn, flags;
659	struct page *page;
660	struct zone *zone;
661	int ret;
662
663	/*
664	 * Note: pageblock_nr_pages != MAX_PAGE_ORDER. Then, chunks of free
665	 * pages are not aligned to pageblock_nr_pages.
666	 * Then we just check migratetype first.
667	 */
668	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
669		page = __first_valid_page(pfn, pageblock_nr_pages);
670		if (page && !is_migrate_isolate_page(page))
671			break;
672	}
673	page = __first_valid_page(start_pfn, end_pfn - start_pfn);
674	if ((pfn < end_pfn) || !page) {
675		ret = -EBUSY;
676		goto out;
677	}
678
679	/* Check all pages are free or marked as ISOLATED */
680	zone = page_zone(page);
681	spin_lock_irqsave(&zone->lock, flags);
682	pfn = __test_page_isolated_in_pageblock(start_pfn, end_pfn, isol_flags);
683	spin_unlock_irqrestore(&zone->lock, flags);
684
685	ret = pfn < end_pfn ? -EBUSY : 0;
686
687out:
688	trace_test_pages_isolated(start_pfn, end_pfn, pfn);
689
690	return ret;
691}
692