1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 *  linux/mm/nommu.c
4 *
5 *  Replacement code for mm functions to support CPU's that don't
6 *  have any form of memory management unit (thus no virtual memory).
7 *
8 *  See Documentation/admin-guide/mm/nommu-mmap.rst
9 *
10 *  Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
11 *  Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
12 *  Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
13 *  Copyright (c) 2002      Greg Ungerer <gerg@snapgear.com>
14 *  Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org>
15 */
16
17#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18
19#include <linux/export.h>
20#include <linux/mm.h>
21#include <linux/sched/mm.h>
22#include <linux/mman.h>
23#include <linux/swap.h>
24#include <linux/file.h>
25#include <linux/highmem.h>
26#include <linux/pagemap.h>
27#include <linux/slab.h>
28#include <linux/vmalloc.h>
29#include <linux/backing-dev.h>
30#include <linux/compiler.h>
31#include <linux/mount.h>
32#include <linux/personality.h>
33#include <linux/security.h>
34#include <linux/syscalls.h>
35#include <linux/audit.h>
36#include <linux/printk.h>
37
38#include <linux/uaccess.h>
39#include <linux/uio.h>
40#include <asm/tlb.h>
41#include <asm/tlbflush.h>
42#include <asm/mmu_context.h>
43#include "internal.h"
44
45void *high_memory;
46EXPORT_SYMBOL(high_memory);
47struct page *mem_map;
48unsigned long max_mapnr;
49EXPORT_SYMBOL(max_mapnr);
50unsigned long highest_memmap_pfn;
51int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
52int heap_stack_gap = 0;
53
54atomic_long_t mmap_pages_allocated;
55
56EXPORT_SYMBOL(mem_map);
57
58/* list of mapped, potentially shareable regions */
59static struct kmem_cache *vm_region_jar;
60struct rb_root nommu_region_tree = RB_ROOT;
61DECLARE_RWSEM(nommu_region_sem);
62
63const struct vm_operations_struct generic_file_vm_ops = {
64};
65
66/*
67 * Return the total memory allocated for this pointer, not
68 * just what the caller asked for.
69 *
70 * Doesn't have to be accurate, i.e. may have races.
71 */
72unsigned int kobjsize(const void *objp)
73{
74	struct page *page;
75
76	/*
77	 * If the object we have should not have ksize performed on it,
78	 * return size of 0
79	 */
80	if (!objp || !virt_addr_valid(objp))
81		return 0;
82
83	page = virt_to_head_page(objp);
84
85	/*
86	 * If the allocator sets PageSlab, we know the pointer came from
87	 * kmalloc().
88	 */
89	if (PageSlab(page))
90		return ksize(objp);
91
92	/*
93	 * If it's not a compound page, see if we have a matching VMA
94	 * region. This test is intentionally done in reverse order,
95	 * so if there's no VMA, we still fall through and hand back
96	 * PAGE_SIZE for 0-order pages.
97	 */
98	if (!PageCompound(page)) {
99		struct vm_area_struct *vma;
100
101		vma = find_vma(current->mm, (unsigned long)objp);
102		if (vma)
103			return vma->vm_end - vma->vm_start;
104	}
105
106	/*
107	 * The ksize() function is only guaranteed to work for pointers
108	 * returned by kmalloc(). So handle arbitrary pointers here.
109	 */
110	return page_size(page);
111}
112
113/**
114 * follow_pfn - look up PFN at a user virtual address
115 * @vma: memory mapping
116 * @address: user virtual address
117 * @pfn: location to store found PFN
118 *
119 * Only IO mappings and raw PFN mappings are allowed.
120 *
121 * Returns zero and the pfn at @pfn on success, -ve otherwise.
122 */
123int follow_pfn(struct vm_area_struct *vma, unsigned long address,
124	unsigned long *pfn)
125{
126	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
127		return -EINVAL;
128
129	*pfn = address >> PAGE_SHIFT;
130	return 0;
131}
132EXPORT_SYMBOL(follow_pfn);
133
134void vfree(const void *addr)
135{
136	kfree(addr);
137}
138EXPORT_SYMBOL(vfree);
139
140void *__vmalloc(unsigned long size, gfp_t gfp_mask)
141{
142	/*
143	 *  You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
144	 * returns only a logical address.
145	 */
146	return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
147}
148EXPORT_SYMBOL(__vmalloc);
149
150void *__vmalloc_node_range(unsigned long size, unsigned long align,
151		unsigned long start, unsigned long end, gfp_t gfp_mask,
152		pgprot_t prot, unsigned long vm_flags, int node,
153		const void *caller)
154{
155	return __vmalloc(size, gfp_mask);
156}
157
158void *__vmalloc_node(unsigned long size, unsigned long align, gfp_t gfp_mask,
159		int node, const void *caller)
160{
161	return __vmalloc(size, gfp_mask);
162}
163
164static void *__vmalloc_user_flags(unsigned long size, gfp_t flags)
165{
166	void *ret;
167
168	ret = __vmalloc(size, flags);
169	if (ret) {
170		struct vm_area_struct *vma;
171
172		mmap_write_lock(current->mm);
173		vma = find_vma(current->mm, (unsigned long)ret);
174		if (vma)
175			vm_flags_set(vma, VM_USERMAP);
176		mmap_write_unlock(current->mm);
177	}
178
179	return ret;
180}
181
182void *vmalloc_user(unsigned long size)
183{
184	return __vmalloc_user_flags(size, GFP_KERNEL | __GFP_ZERO);
185}
186EXPORT_SYMBOL(vmalloc_user);
187
188struct page *vmalloc_to_page(const void *addr)
189{
190	return virt_to_page(addr);
191}
192EXPORT_SYMBOL(vmalloc_to_page);
193
194unsigned long vmalloc_to_pfn(const void *addr)
195{
196	return page_to_pfn(virt_to_page(addr));
197}
198EXPORT_SYMBOL(vmalloc_to_pfn);
199
200long vread_iter(struct iov_iter *iter, const char *addr, size_t count)
201{
202	/* Don't allow overflow */
203	if ((unsigned long) addr + count < count)
204		count = -(unsigned long) addr;
205
206	return copy_to_iter(addr, count, iter);
207}
208
209/*
210 *	vmalloc  -  allocate virtually contiguous memory
211 *
212 *	@size:		allocation size
213 *
214 *	Allocate enough pages to cover @size from the page level
215 *	allocator and map them into contiguous kernel virtual space.
216 *
217 *	For tight control over page level allocator and protection flags
218 *	use __vmalloc() instead.
219 */
220void *vmalloc(unsigned long size)
221{
222	return __vmalloc(size, GFP_KERNEL);
223}
224EXPORT_SYMBOL(vmalloc);
225
226void *vmalloc_huge(unsigned long size, gfp_t gfp_mask) __weak __alias(__vmalloc);
227
228/*
229 *	vzalloc - allocate virtually contiguous memory with zero fill
230 *
231 *	@size:		allocation size
232 *
233 *	Allocate enough pages to cover @size from the page level
234 *	allocator and map them into contiguous kernel virtual space.
235 *	The memory allocated is set to zero.
236 *
237 *	For tight control over page level allocator and protection flags
238 *	use __vmalloc() instead.
239 */
240void *vzalloc(unsigned long size)
241{
242	return __vmalloc(size, GFP_KERNEL | __GFP_ZERO);
243}
244EXPORT_SYMBOL(vzalloc);
245
246/**
247 * vmalloc_node - allocate memory on a specific node
248 * @size:	allocation size
249 * @node:	numa node
250 *
251 * Allocate enough pages to cover @size from the page level
252 * allocator and map them into contiguous kernel virtual space.
253 *
254 * For tight control over page level allocator and protection flags
255 * use __vmalloc() instead.
256 */
257void *vmalloc_node(unsigned long size, int node)
258{
259	return vmalloc(size);
260}
261EXPORT_SYMBOL(vmalloc_node);
262
263/**
264 * vzalloc_node - allocate memory on a specific node with zero fill
265 * @size:	allocation size
266 * @node:	numa node
267 *
268 * Allocate enough pages to cover @size from the page level
269 * allocator and map them into contiguous kernel virtual space.
270 * The memory allocated is set to zero.
271 *
272 * For tight control over page level allocator and protection flags
273 * use __vmalloc() instead.
274 */
275void *vzalloc_node(unsigned long size, int node)
276{
277	return vzalloc(size);
278}
279EXPORT_SYMBOL(vzalloc_node);
280
281/**
282 * vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
283 *	@size:		allocation size
284 *
285 *	Allocate enough 32bit PA addressable pages to cover @size from the
286 *	page level allocator and map them into contiguous kernel virtual space.
287 */
288void *vmalloc_32(unsigned long size)
289{
290	return __vmalloc(size, GFP_KERNEL);
291}
292EXPORT_SYMBOL(vmalloc_32);
293
294/**
295 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
296 *	@size:		allocation size
297 *
298 * The resulting memory area is 32bit addressable and zeroed so it can be
299 * mapped to userspace without leaking data.
300 *
301 * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
302 * remap_vmalloc_range() are permissible.
303 */
304void *vmalloc_32_user(unsigned long size)
305{
306	/*
307	 * We'll have to sort out the ZONE_DMA bits for 64-bit,
308	 * but for now this can simply use vmalloc_user() directly.
309	 */
310	return vmalloc_user(size);
311}
312EXPORT_SYMBOL(vmalloc_32_user);
313
314void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
315{
316	BUG();
317	return NULL;
318}
319EXPORT_SYMBOL(vmap);
320
321void vunmap(const void *addr)
322{
323	BUG();
324}
325EXPORT_SYMBOL(vunmap);
326
327void *vm_map_ram(struct page **pages, unsigned int count, int node)
328{
329	BUG();
330	return NULL;
331}
332EXPORT_SYMBOL(vm_map_ram);
333
334void vm_unmap_ram(const void *mem, unsigned int count)
335{
336	BUG();
337}
338EXPORT_SYMBOL(vm_unmap_ram);
339
340void vm_unmap_aliases(void)
341{
342}
343EXPORT_SYMBOL_GPL(vm_unmap_aliases);
344
345void free_vm_area(struct vm_struct *area)
346{
347	BUG();
348}
349EXPORT_SYMBOL_GPL(free_vm_area);
350
351int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
352		   struct page *page)
353{
354	return -EINVAL;
355}
356EXPORT_SYMBOL(vm_insert_page);
357
358int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
359			unsigned long num)
360{
361	return -EINVAL;
362}
363EXPORT_SYMBOL(vm_map_pages);
364
365int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
366				unsigned long num)
367{
368	return -EINVAL;
369}
370EXPORT_SYMBOL(vm_map_pages_zero);
371
372/*
373 *  sys_brk() for the most part doesn't need the global kernel
374 *  lock, except when an application is doing something nasty
375 *  like trying to un-brk an area that has already been mapped
376 *  to a regular file.  in this case, the unmapping will need
377 *  to invoke file system routines that need the global lock.
378 */
379SYSCALL_DEFINE1(brk, unsigned long, brk)
380{
381	struct mm_struct *mm = current->mm;
382
383	if (brk < mm->start_brk || brk > mm->context.end_brk)
384		return mm->brk;
385
386	if (mm->brk == brk)
387		return mm->brk;
388
389	/*
390	 * Always allow shrinking brk
391	 */
392	if (brk <= mm->brk) {
393		mm->brk = brk;
394		return brk;
395	}
396
397	/*
398	 * Ok, looks good - let it rip.
399	 */
400	flush_icache_user_range(mm->brk, brk);
401	return mm->brk = brk;
402}
403
404/*
405 * initialise the percpu counter for VM and region record slabs
406 */
407void __init mmap_init(void)
408{
409	int ret;
410
411	ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
412	VM_BUG_ON(ret);
413	vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC|SLAB_ACCOUNT);
414}
415
416/*
417 * validate the region tree
418 * - the caller must hold the region lock
419 */
420#ifdef CONFIG_DEBUG_NOMMU_REGIONS
421static noinline void validate_nommu_regions(void)
422{
423	struct vm_region *region, *last;
424	struct rb_node *p, *lastp;
425
426	lastp = rb_first(&nommu_region_tree);
427	if (!lastp)
428		return;
429
430	last = rb_entry(lastp, struct vm_region, vm_rb);
431	BUG_ON(last->vm_end <= last->vm_start);
432	BUG_ON(last->vm_top < last->vm_end);
433
434	while ((p = rb_next(lastp))) {
435		region = rb_entry(p, struct vm_region, vm_rb);
436		last = rb_entry(lastp, struct vm_region, vm_rb);
437
438		BUG_ON(region->vm_end <= region->vm_start);
439		BUG_ON(region->vm_top < region->vm_end);
440		BUG_ON(region->vm_start < last->vm_top);
441
442		lastp = p;
443	}
444}
445#else
446static void validate_nommu_regions(void)
447{
448}
449#endif
450
451/*
452 * add a region into the global tree
453 */
454static void add_nommu_region(struct vm_region *region)
455{
456	struct vm_region *pregion;
457	struct rb_node **p, *parent;
458
459	validate_nommu_regions();
460
461	parent = NULL;
462	p = &nommu_region_tree.rb_node;
463	while (*p) {
464		parent = *p;
465		pregion = rb_entry(parent, struct vm_region, vm_rb);
466		if (region->vm_start < pregion->vm_start)
467			p = &(*p)->rb_left;
468		else if (region->vm_start > pregion->vm_start)
469			p = &(*p)->rb_right;
470		else if (pregion == region)
471			return;
472		else
473			BUG();
474	}
475
476	rb_link_node(&region->vm_rb, parent, p);
477	rb_insert_color(&region->vm_rb, &nommu_region_tree);
478
479	validate_nommu_regions();
480}
481
482/*
483 * delete a region from the global tree
484 */
485static void delete_nommu_region(struct vm_region *region)
486{
487	BUG_ON(!nommu_region_tree.rb_node);
488
489	validate_nommu_regions();
490	rb_erase(&region->vm_rb, &nommu_region_tree);
491	validate_nommu_regions();
492}
493
494/*
495 * free a contiguous series of pages
496 */
497static void free_page_series(unsigned long from, unsigned long to)
498{
499	for (; from < to; from += PAGE_SIZE) {
500		struct page *page = virt_to_page((void *)from);
501
502		atomic_long_dec(&mmap_pages_allocated);
503		put_page(page);
504	}
505}
506
507/*
508 * release a reference to a region
509 * - the caller must hold the region semaphore for writing, which this releases
510 * - the region may not have been added to the tree yet, in which case vm_top
511 *   will equal vm_start
512 */
513static void __put_nommu_region(struct vm_region *region)
514	__releases(nommu_region_sem)
515{
516	BUG_ON(!nommu_region_tree.rb_node);
517
518	if (--region->vm_usage == 0) {
519		if (region->vm_top > region->vm_start)
520			delete_nommu_region(region);
521		up_write(&nommu_region_sem);
522
523		if (region->vm_file)
524			fput(region->vm_file);
525
526		/* IO memory and memory shared directly out of the pagecache
527		 * from ramfs/tmpfs mustn't be released here */
528		if (region->vm_flags & VM_MAPPED_COPY)
529			free_page_series(region->vm_start, region->vm_top);
530		kmem_cache_free(vm_region_jar, region);
531	} else {
532		up_write(&nommu_region_sem);
533	}
534}
535
536/*
537 * release a reference to a region
538 */
539static void put_nommu_region(struct vm_region *region)
540{
541	down_write(&nommu_region_sem);
542	__put_nommu_region(region);
543}
544
545static void setup_vma_to_mm(struct vm_area_struct *vma, struct mm_struct *mm)
546{
547	vma->vm_mm = mm;
548
549	/* add the VMA to the mapping */
550	if (vma->vm_file) {
551		struct address_space *mapping = vma->vm_file->f_mapping;
552
553		i_mmap_lock_write(mapping);
554		flush_dcache_mmap_lock(mapping);
555		vma_interval_tree_insert(vma, &mapping->i_mmap);
556		flush_dcache_mmap_unlock(mapping);
557		i_mmap_unlock_write(mapping);
558	}
559}
560
561static void cleanup_vma_from_mm(struct vm_area_struct *vma)
562{
563	vma->vm_mm->map_count--;
564	/* remove the VMA from the mapping */
565	if (vma->vm_file) {
566		struct address_space *mapping;
567		mapping = vma->vm_file->f_mapping;
568
569		i_mmap_lock_write(mapping);
570		flush_dcache_mmap_lock(mapping);
571		vma_interval_tree_remove(vma, &mapping->i_mmap);
572		flush_dcache_mmap_unlock(mapping);
573		i_mmap_unlock_write(mapping);
574	}
575}
576
577/*
578 * delete a VMA from its owning mm_struct and address space
579 */
580static int delete_vma_from_mm(struct vm_area_struct *vma)
581{
582	VMA_ITERATOR(vmi, vma->vm_mm, vma->vm_start);
583
584	vma_iter_config(&vmi, vma->vm_start, vma->vm_end);
585	if (vma_iter_prealloc(&vmi, vma)) {
586		pr_warn("Allocation of vma tree for process %d failed\n",
587		       current->pid);
588		return -ENOMEM;
589	}
590	cleanup_vma_from_mm(vma);
591
592	/* remove from the MM's tree and list */
593	vma_iter_clear(&vmi);
594	return 0;
595}
596/*
597 * destroy a VMA record
598 */
599static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
600{
601	if (vma->vm_ops && vma->vm_ops->close)
602		vma->vm_ops->close(vma);
603	if (vma->vm_file)
604		fput(vma->vm_file);
605	put_nommu_region(vma->vm_region);
606	vm_area_free(vma);
607}
608
609struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
610					     unsigned long start_addr,
611					     unsigned long end_addr)
612{
613	unsigned long index = start_addr;
614
615	mmap_assert_locked(mm);
616	return mt_find(&mm->mm_mt, &index, end_addr - 1);
617}
618EXPORT_SYMBOL(find_vma_intersection);
619
620/*
621 * look up the first VMA in which addr resides, NULL if none
622 * - should be called with mm->mmap_lock at least held readlocked
623 */
624struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
625{
626	VMA_ITERATOR(vmi, mm, addr);
627
628	return vma_iter_load(&vmi);
629}
630EXPORT_SYMBOL(find_vma);
631
632/*
633 * At least xtensa ends up having protection faults even with no
634 * MMU.. No stack expansion, at least.
635 */
636struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm,
637			unsigned long addr, struct pt_regs *regs)
638{
639	struct vm_area_struct *vma;
640
641	mmap_read_lock(mm);
642	vma = vma_lookup(mm, addr);
643	if (!vma)
644		mmap_read_unlock(mm);
645	return vma;
646}
647
648/*
649 * expand a stack to a given address
650 * - not supported under NOMMU conditions
651 */
652int expand_stack_locked(struct vm_area_struct *vma, unsigned long addr)
653{
654	return -ENOMEM;
655}
656
657struct vm_area_struct *expand_stack(struct mm_struct *mm, unsigned long addr)
658{
659	mmap_read_unlock(mm);
660	return NULL;
661}
662
663/*
664 * look up the first VMA exactly that exactly matches addr
665 * - should be called with mm->mmap_lock at least held readlocked
666 */
667static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
668					     unsigned long addr,
669					     unsigned long len)
670{
671	struct vm_area_struct *vma;
672	unsigned long end = addr + len;
673	VMA_ITERATOR(vmi, mm, addr);
674
675	vma = vma_iter_load(&vmi);
676	if (!vma)
677		return NULL;
678	if (vma->vm_start != addr)
679		return NULL;
680	if (vma->vm_end != end)
681		return NULL;
682
683	return vma;
684}
685
686/*
687 * determine whether a mapping should be permitted and, if so, what sort of
688 * mapping we're capable of supporting
689 */
690static int validate_mmap_request(struct file *file,
691				 unsigned long addr,
692				 unsigned long len,
693				 unsigned long prot,
694				 unsigned long flags,
695				 unsigned long pgoff,
696				 unsigned long *_capabilities)
697{
698	unsigned long capabilities, rlen;
699	int ret;
700
701	/* do the simple checks first */
702	if (flags & MAP_FIXED)
703		return -EINVAL;
704
705	if ((flags & MAP_TYPE) != MAP_PRIVATE &&
706	    (flags & MAP_TYPE) != MAP_SHARED)
707		return -EINVAL;
708
709	if (!len)
710		return -EINVAL;
711
712	/* Careful about overflows.. */
713	rlen = PAGE_ALIGN(len);
714	if (!rlen || rlen > TASK_SIZE)
715		return -ENOMEM;
716
717	/* offset overflow? */
718	if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
719		return -EOVERFLOW;
720
721	if (file) {
722		/* files must support mmap */
723		if (!file->f_op->mmap)
724			return -ENODEV;
725
726		/* work out if what we've got could possibly be shared
727		 * - we support chardevs that provide their own "memory"
728		 * - we support files/blockdevs that are memory backed
729		 */
730		if (file->f_op->mmap_capabilities) {
731			capabilities = file->f_op->mmap_capabilities(file);
732		} else {
733			/* no explicit capabilities set, so assume some
734			 * defaults */
735			switch (file_inode(file)->i_mode & S_IFMT) {
736			case S_IFREG:
737			case S_IFBLK:
738				capabilities = NOMMU_MAP_COPY;
739				break;
740
741			case S_IFCHR:
742				capabilities =
743					NOMMU_MAP_DIRECT |
744					NOMMU_MAP_READ |
745					NOMMU_MAP_WRITE;
746				break;
747
748			default:
749				return -EINVAL;
750			}
751		}
752
753		/* eliminate any capabilities that we can't support on this
754		 * device */
755		if (!file->f_op->get_unmapped_area)
756			capabilities &= ~NOMMU_MAP_DIRECT;
757		if (!(file->f_mode & FMODE_CAN_READ))
758			capabilities &= ~NOMMU_MAP_COPY;
759
760		/* The file shall have been opened with read permission. */
761		if (!(file->f_mode & FMODE_READ))
762			return -EACCES;
763
764		if (flags & MAP_SHARED) {
765			/* do checks for writing, appending and locking */
766			if ((prot & PROT_WRITE) &&
767			    !(file->f_mode & FMODE_WRITE))
768				return -EACCES;
769
770			if (IS_APPEND(file_inode(file)) &&
771			    (file->f_mode & FMODE_WRITE))
772				return -EACCES;
773
774			if (!(capabilities & NOMMU_MAP_DIRECT))
775				return -ENODEV;
776
777			/* we mustn't privatise shared mappings */
778			capabilities &= ~NOMMU_MAP_COPY;
779		} else {
780			/* we're going to read the file into private memory we
781			 * allocate */
782			if (!(capabilities & NOMMU_MAP_COPY))
783				return -ENODEV;
784
785			/* we don't permit a private writable mapping to be
786			 * shared with the backing device */
787			if (prot & PROT_WRITE)
788				capabilities &= ~NOMMU_MAP_DIRECT;
789		}
790
791		if (capabilities & NOMMU_MAP_DIRECT) {
792			if (((prot & PROT_READ)  && !(capabilities & NOMMU_MAP_READ))  ||
793			    ((prot & PROT_WRITE) && !(capabilities & NOMMU_MAP_WRITE)) ||
794			    ((prot & PROT_EXEC)  && !(capabilities & NOMMU_MAP_EXEC))
795			    ) {
796				capabilities &= ~NOMMU_MAP_DIRECT;
797				if (flags & MAP_SHARED) {
798					pr_warn("MAP_SHARED not completely supported on !MMU\n");
799					return -EINVAL;
800				}
801			}
802		}
803
804		/* handle executable mappings and implied executable
805		 * mappings */
806		if (path_noexec(&file->f_path)) {
807			if (prot & PROT_EXEC)
808				return -EPERM;
809		} else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
810			/* handle implication of PROT_EXEC by PROT_READ */
811			if (current->personality & READ_IMPLIES_EXEC) {
812				if (capabilities & NOMMU_MAP_EXEC)
813					prot |= PROT_EXEC;
814			}
815		} else if ((prot & PROT_READ) &&
816			 (prot & PROT_EXEC) &&
817			 !(capabilities & NOMMU_MAP_EXEC)
818			 ) {
819			/* backing file is not executable, try to copy */
820			capabilities &= ~NOMMU_MAP_DIRECT;
821		}
822	} else {
823		/* anonymous mappings are always memory backed and can be
824		 * privately mapped
825		 */
826		capabilities = NOMMU_MAP_COPY;
827
828		/* handle PROT_EXEC implication by PROT_READ */
829		if ((prot & PROT_READ) &&
830		    (current->personality & READ_IMPLIES_EXEC))
831			prot |= PROT_EXEC;
832	}
833
834	/* allow the security API to have its say */
835	ret = security_mmap_addr(addr);
836	if (ret < 0)
837		return ret;
838
839	/* looks okay */
840	*_capabilities = capabilities;
841	return 0;
842}
843
844/*
845 * we've determined that we can make the mapping, now translate what we
846 * now know into VMA flags
847 */
848static unsigned long determine_vm_flags(struct file *file,
849					unsigned long prot,
850					unsigned long flags,
851					unsigned long capabilities)
852{
853	unsigned long vm_flags;
854
855	vm_flags = calc_vm_prot_bits(prot, 0) | calc_vm_flag_bits(flags);
856
857	if (!file) {
858		/*
859		 * MAP_ANONYMOUS. MAP_SHARED is mapped to MAP_PRIVATE, because
860		 * there is no fork().
861		 */
862		vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
863	} else if (flags & MAP_PRIVATE) {
864		/* MAP_PRIVATE file mapping */
865		if (capabilities & NOMMU_MAP_DIRECT)
866			vm_flags |= (capabilities & NOMMU_VMFLAGS);
867		else
868			vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
869
870		if (!(prot & PROT_WRITE) && !current->ptrace)
871			/*
872			 * R/O private file mapping which cannot be used to
873			 * modify memory, especially also not via active ptrace
874			 * (e.g., set breakpoints) or later by upgrading
875			 * permissions (no mprotect()). We can try overlaying
876			 * the file mapping, which will work e.g., on chardevs,
877			 * ramfs/tmpfs/shmfs and romfs/cramf.
878			 */
879			vm_flags |= VM_MAYOVERLAY;
880	} else {
881		/* MAP_SHARED file mapping: NOMMU_MAP_DIRECT is set. */
882		vm_flags |= VM_SHARED | VM_MAYSHARE |
883			    (capabilities & NOMMU_VMFLAGS);
884	}
885
886	return vm_flags;
887}
888
889/*
890 * set up a shared mapping on a file (the driver or filesystem provides and
891 * pins the storage)
892 */
893static int do_mmap_shared_file(struct vm_area_struct *vma)
894{
895	int ret;
896
897	ret = call_mmap(vma->vm_file, vma);
898	if (ret == 0) {
899		vma->vm_region->vm_top = vma->vm_region->vm_end;
900		return 0;
901	}
902	if (ret != -ENOSYS)
903		return ret;
904
905	/* getting -ENOSYS indicates that direct mmap isn't possible (as
906	 * opposed to tried but failed) so we can only give a suitable error as
907	 * it's not possible to make a private copy if MAP_SHARED was given */
908	return -ENODEV;
909}
910
911/*
912 * set up a private mapping or an anonymous shared mapping
913 */
914static int do_mmap_private(struct vm_area_struct *vma,
915			   struct vm_region *region,
916			   unsigned long len,
917			   unsigned long capabilities)
918{
919	unsigned long total, point;
920	void *base;
921	int ret, order;
922
923	/*
924	 * Invoke the file's mapping function so that it can keep track of
925	 * shared mappings on devices or memory. VM_MAYOVERLAY will be set if
926	 * it may attempt to share, which will make is_nommu_shared_mapping()
927	 * happy.
928	 */
929	if (capabilities & NOMMU_MAP_DIRECT) {
930		ret = call_mmap(vma->vm_file, vma);
931		/* shouldn't return success if we're not sharing */
932		if (WARN_ON_ONCE(!is_nommu_shared_mapping(vma->vm_flags)))
933			ret = -ENOSYS;
934		if (ret == 0) {
935			vma->vm_region->vm_top = vma->vm_region->vm_end;
936			return 0;
937		}
938		if (ret != -ENOSYS)
939			return ret;
940
941		/* getting an ENOSYS error indicates that direct mmap isn't
942		 * possible (as opposed to tried but failed) so we'll try to
943		 * make a private copy of the data and map that instead */
944	}
945
946
947	/* allocate some memory to hold the mapping
948	 * - note that this may not return a page-aligned address if the object
949	 *   we're allocating is smaller than a page
950	 */
951	order = get_order(len);
952	total = 1 << order;
953	point = len >> PAGE_SHIFT;
954
955	/* we don't want to allocate a power-of-2 sized page set */
956	if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages)
957		total = point;
958
959	base = alloc_pages_exact(total << PAGE_SHIFT, GFP_KERNEL);
960	if (!base)
961		goto enomem;
962
963	atomic_long_add(total, &mmap_pages_allocated);
964
965	vm_flags_set(vma, VM_MAPPED_COPY);
966	region->vm_flags = vma->vm_flags;
967	region->vm_start = (unsigned long) base;
968	region->vm_end   = region->vm_start + len;
969	region->vm_top   = region->vm_start + (total << PAGE_SHIFT);
970
971	vma->vm_start = region->vm_start;
972	vma->vm_end   = region->vm_start + len;
973
974	if (vma->vm_file) {
975		/* read the contents of a file into the copy */
976		loff_t fpos;
977
978		fpos = vma->vm_pgoff;
979		fpos <<= PAGE_SHIFT;
980
981		ret = kernel_read(vma->vm_file, base, len, &fpos);
982		if (ret < 0)
983			goto error_free;
984
985		/* clear the last little bit */
986		if (ret < len)
987			memset(base + ret, 0, len - ret);
988
989	} else {
990		vma_set_anonymous(vma);
991	}
992
993	return 0;
994
995error_free:
996	free_page_series(region->vm_start, region->vm_top);
997	region->vm_start = vma->vm_start = 0;
998	region->vm_end   = vma->vm_end = 0;
999	region->vm_top   = 0;
1000	return ret;
1001
1002enomem:
1003	pr_err("Allocation of length %lu from process %d (%s) failed\n",
1004	       len, current->pid, current->comm);
1005	show_mem();
1006	return -ENOMEM;
1007}
1008
1009/*
1010 * handle mapping creation for uClinux
1011 */
1012unsigned long do_mmap(struct file *file,
1013			unsigned long addr,
1014			unsigned long len,
1015			unsigned long prot,
1016			unsigned long flags,
1017			vm_flags_t vm_flags,
1018			unsigned long pgoff,
1019			unsigned long *populate,
1020			struct list_head *uf)
1021{
1022	struct vm_area_struct *vma;
1023	struct vm_region *region;
1024	struct rb_node *rb;
1025	unsigned long capabilities, result;
1026	int ret;
1027	VMA_ITERATOR(vmi, current->mm, 0);
1028
1029	*populate = 0;
1030
1031	/* decide whether we should attempt the mapping, and if so what sort of
1032	 * mapping */
1033	ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1034				    &capabilities);
1035	if (ret < 0)
1036		return ret;
1037
1038	/* we ignore the address hint */
1039	addr = 0;
1040	len = PAGE_ALIGN(len);
1041
1042	/* we've determined that we can make the mapping, now translate what we
1043	 * now know into VMA flags */
1044	vm_flags |= determine_vm_flags(file, prot, flags, capabilities);
1045
1046
1047	/* we're going to need to record the mapping */
1048	region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1049	if (!region)
1050		goto error_getting_region;
1051
1052	vma = vm_area_alloc(current->mm);
1053	if (!vma)
1054		goto error_getting_vma;
1055
1056	region->vm_usage = 1;
1057	region->vm_flags = vm_flags;
1058	region->vm_pgoff = pgoff;
1059
1060	vm_flags_init(vma, vm_flags);
1061	vma->vm_pgoff = pgoff;
1062
1063	if (file) {
1064		region->vm_file = get_file(file);
1065		vma->vm_file = get_file(file);
1066	}
1067
1068	down_write(&nommu_region_sem);
1069
1070	/* if we want to share, we need to check for regions created by other
1071	 * mmap() calls that overlap with our proposed mapping
1072	 * - we can only share with a superset match on most regular files
1073	 * - shared mappings on character devices and memory backed files are
1074	 *   permitted to overlap inexactly as far as we are concerned for in
1075	 *   these cases, sharing is handled in the driver or filesystem rather
1076	 *   than here
1077	 */
1078	if (is_nommu_shared_mapping(vm_flags)) {
1079		struct vm_region *pregion;
1080		unsigned long pglen, rpglen, pgend, rpgend, start;
1081
1082		pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1083		pgend = pgoff + pglen;
1084
1085		for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1086			pregion = rb_entry(rb, struct vm_region, vm_rb);
1087
1088			if (!is_nommu_shared_mapping(pregion->vm_flags))
1089				continue;
1090
1091			/* search for overlapping mappings on the same file */
1092			if (file_inode(pregion->vm_file) !=
1093			    file_inode(file))
1094				continue;
1095
1096			if (pregion->vm_pgoff >= pgend)
1097				continue;
1098
1099			rpglen = pregion->vm_end - pregion->vm_start;
1100			rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1101			rpgend = pregion->vm_pgoff + rpglen;
1102			if (pgoff >= rpgend)
1103				continue;
1104
1105			/* handle inexactly overlapping matches between
1106			 * mappings */
1107			if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1108			    !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1109				/* new mapping is not a subset of the region */
1110				if (!(capabilities & NOMMU_MAP_DIRECT))
1111					goto sharing_violation;
1112				continue;
1113			}
1114
1115			/* we've found a region we can share */
1116			pregion->vm_usage++;
1117			vma->vm_region = pregion;
1118			start = pregion->vm_start;
1119			start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1120			vma->vm_start = start;
1121			vma->vm_end = start + len;
1122
1123			if (pregion->vm_flags & VM_MAPPED_COPY)
1124				vm_flags_set(vma, VM_MAPPED_COPY);
1125			else {
1126				ret = do_mmap_shared_file(vma);
1127				if (ret < 0) {
1128					vma->vm_region = NULL;
1129					vma->vm_start = 0;
1130					vma->vm_end = 0;
1131					pregion->vm_usage--;
1132					pregion = NULL;
1133					goto error_just_free;
1134				}
1135			}
1136			fput(region->vm_file);
1137			kmem_cache_free(vm_region_jar, region);
1138			region = pregion;
1139			result = start;
1140			goto share;
1141		}
1142
1143		/* obtain the address at which to make a shared mapping
1144		 * - this is the hook for quasi-memory character devices to
1145		 *   tell us the location of a shared mapping
1146		 */
1147		if (capabilities & NOMMU_MAP_DIRECT) {
1148			addr = file->f_op->get_unmapped_area(file, addr, len,
1149							     pgoff, flags);
1150			if (IS_ERR_VALUE(addr)) {
1151				ret = addr;
1152				if (ret != -ENOSYS)
1153					goto error_just_free;
1154
1155				/* the driver refused to tell us where to site
1156				 * the mapping so we'll have to attempt to copy
1157				 * it */
1158				ret = -ENODEV;
1159				if (!(capabilities & NOMMU_MAP_COPY))
1160					goto error_just_free;
1161
1162				capabilities &= ~NOMMU_MAP_DIRECT;
1163			} else {
1164				vma->vm_start = region->vm_start = addr;
1165				vma->vm_end = region->vm_end = addr + len;
1166			}
1167		}
1168	}
1169
1170	vma->vm_region = region;
1171
1172	/* set up the mapping
1173	 * - the region is filled in if NOMMU_MAP_DIRECT is still set
1174	 */
1175	if (file && vma->vm_flags & VM_SHARED)
1176		ret = do_mmap_shared_file(vma);
1177	else
1178		ret = do_mmap_private(vma, region, len, capabilities);
1179	if (ret < 0)
1180		goto error_just_free;
1181	add_nommu_region(region);
1182
1183	/* clear anonymous mappings that don't ask for uninitialized data */
1184	if (!vma->vm_file &&
1185	    (!IS_ENABLED(CONFIG_MMAP_ALLOW_UNINITIALIZED) ||
1186	     !(flags & MAP_UNINITIALIZED)))
1187		memset((void *)region->vm_start, 0,
1188		       region->vm_end - region->vm_start);
1189
1190	/* okay... we have a mapping; now we have to register it */
1191	result = vma->vm_start;
1192
1193	current->mm->total_vm += len >> PAGE_SHIFT;
1194
1195share:
1196	BUG_ON(!vma->vm_region);
1197	vma_iter_config(&vmi, vma->vm_start, vma->vm_end);
1198	if (vma_iter_prealloc(&vmi, vma))
1199		goto error_just_free;
1200
1201	setup_vma_to_mm(vma, current->mm);
1202	current->mm->map_count++;
1203	/* add the VMA to the tree */
1204	vma_iter_store(&vmi, vma);
1205
1206	/* we flush the region from the icache only when the first executable
1207	 * mapping of it is made  */
1208	if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) {
1209		flush_icache_user_range(region->vm_start, region->vm_end);
1210		region->vm_icache_flushed = true;
1211	}
1212
1213	up_write(&nommu_region_sem);
1214
1215	return result;
1216
1217error_just_free:
1218	up_write(&nommu_region_sem);
1219error:
1220	vma_iter_free(&vmi);
1221	if (region->vm_file)
1222		fput(region->vm_file);
1223	kmem_cache_free(vm_region_jar, region);
1224	if (vma->vm_file)
1225		fput(vma->vm_file);
1226	vm_area_free(vma);
1227	return ret;
1228
1229sharing_violation:
1230	up_write(&nommu_region_sem);
1231	pr_warn("Attempt to share mismatched mappings\n");
1232	ret = -EINVAL;
1233	goto error;
1234
1235error_getting_vma:
1236	kmem_cache_free(vm_region_jar, region);
1237	pr_warn("Allocation of vma for %lu byte allocation from process %d failed\n",
1238			len, current->pid);
1239	show_mem();
1240	return -ENOMEM;
1241
1242error_getting_region:
1243	pr_warn("Allocation of vm region for %lu byte allocation from process %d failed\n",
1244			len, current->pid);
1245	show_mem();
1246	return -ENOMEM;
1247}
1248
1249unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1250			      unsigned long prot, unsigned long flags,
1251			      unsigned long fd, unsigned long pgoff)
1252{
1253	struct file *file = NULL;
1254	unsigned long retval = -EBADF;
1255
1256	audit_mmap_fd(fd, flags);
1257	if (!(flags & MAP_ANONYMOUS)) {
1258		file = fget(fd);
1259		if (!file)
1260			goto out;
1261	}
1262
1263	retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1264
1265	if (file)
1266		fput(file);
1267out:
1268	return retval;
1269}
1270
1271SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1272		unsigned long, prot, unsigned long, flags,
1273		unsigned long, fd, unsigned long, pgoff)
1274{
1275	return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1276}
1277
1278#ifdef __ARCH_WANT_SYS_OLD_MMAP
1279struct mmap_arg_struct {
1280	unsigned long addr;
1281	unsigned long len;
1282	unsigned long prot;
1283	unsigned long flags;
1284	unsigned long fd;
1285	unsigned long offset;
1286};
1287
1288SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1289{
1290	struct mmap_arg_struct a;
1291
1292	if (copy_from_user(&a, arg, sizeof(a)))
1293		return -EFAULT;
1294	if (offset_in_page(a.offset))
1295		return -EINVAL;
1296
1297	return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1298			       a.offset >> PAGE_SHIFT);
1299}
1300#endif /* __ARCH_WANT_SYS_OLD_MMAP */
1301
1302/*
1303 * split a vma into two pieces at address 'addr', a new vma is allocated either
1304 * for the first part or the tail.
1305 */
1306static int split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma,
1307		     unsigned long addr, int new_below)
1308{
1309	struct vm_area_struct *new;
1310	struct vm_region *region;
1311	unsigned long npages;
1312	struct mm_struct *mm;
1313
1314	/* we're only permitted to split anonymous regions (these should have
1315	 * only a single usage on the region) */
1316	if (vma->vm_file)
1317		return -ENOMEM;
1318
1319	mm = vma->vm_mm;
1320	if (mm->map_count >= sysctl_max_map_count)
1321		return -ENOMEM;
1322
1323	region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1324	if (!region)
1325		return -ENOMEM;
1326
1327	new = vm_area_dup(vma);
1328	if (!new)
1329		goto err_vma_dup;
1330
1331	/* most fields are the same, copy all, and then fixup */
1332	*region = *vma->vm_region;
1333	new->vm_region = region;
1334
1335	npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1336
1337	if (new_below) {
1338		region->vm_top = region->vm_end = new->vm_end = addr;
1339	} else {
1340		region->vm_start = new->vm_start = addr;
1341		region->vm_pgoff = new->vm_pgoff += npages;
1342	}
1343
1344	vma_iter_config(vmi, new->vm_start, new->vm_end);
1345	if (vma_iter_prealloc(vmi, vma)) {
1346		pr_warn("Allocation of vma tree for process %d failed\n",
1347			current->pid);
1348		goto err_vmi_preallocate;
1349	}
1350
1351	if (new->vm_ops && new->vm_ops->open)
1352		new->vm_ops->open(new);
1353
1354	down_write(&nommu_region_sem);
1355	delete_nommu_region(vma->vm_region);
1356	if (new_below) {
1357		vma->vm_region->vm_start = vma->vm_start = addr;
1358		vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1359	} else {
1360		vma->vm_region->vm_end = vma->vm_end = addr;
1361		vma->vm_region->vm_top = addr;
1362	}
1363	add_nommu_region(vma->vm_region);
1364	add_nommu_region(new->vm_region);
1365	up_write(&nommu_region_sem);
1366
1367	setup_vma_to_mm(vma, mm);
1368	setup_vma_to_mm(new, mm);
1369	vma_iter_store(vmi, new);
1370	mm->map_count++;
1371	return 0;
1372
1373err_vmi_preallocate:
1374	vm_area_free(new);
1375err_vma_dup:
1376	kmem_cache_free(vm_region_jar, region);
1377	return -ENOMEM;
1378}
1379
1380/*
1381 * shrink a VMA by removing the specified chunk from either the beginning or
1382 * the end
1383 */
1384static int vmi_shrink_vma(struct vma_iterator *vmi,
1385		      struct vm_area_struct *vma,
1386		      unsigned long from, unsigned long to)
1387{
1388	struct vm_region *region;
1389
1390	/* adjust the VMA's pointers, which may reposition it in the MM's tree
1391	 * and list */
1392	if (from > vma->vm_start) {
1393		if (vma_iter_clear_gfp(vmi, from, vma->vm_end, GFP_KERNEL))
1394			return -ENOMEM;
1395		vma->vm_end = from;
1396	} else {
1397		if (vma_iter_clear_gfp(vmi, vma->vm_start, to, GFP_KERNEL))
1398			return -ENOMEM;
1399		vma->vm_start = to;
1400	}
1401
1402	/* cut the backing region down to size */
1403	region = vma->vm_region;
1404	BUG_ON(region->vm_usage != 1);
1405
1406	down_write(&nommu_region_sem);
1407	delete_nommu_region(region);
1408	if (from > region->vm_start) {
1409		to = region->vm_top;
1410		region->vm_top = region->vm_end = from;
1411	} else {
1412		region->vm_start = to;
1413	}
1414	add_nommu_region(region);
1415	up_write(&nommu_region_sem);
1416
1417	free_page_series(from, to);
1418	return 0;
1419}
1420
1421/*
1422 * release a mapping
1423 * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1424 *   VMA, though it need not cover the whole VMA
1425 */
1426int do_munmap(struct mm_struct *mm, unsigned long start, size_t len, struct list_head *uf)
1427{
1428	VMA_ITERATOR(vmi, mm, start);
1429	struct vm_area_struct *vma;
1430	unsigned long end;
1431	int ret = 0;
1432
1433	len = PAGE_ALIGN(len);
1434	if (len == 0)
1435		return -EINVAL;
1436
1437	end = start + len;
1438
1439	/* find the first potentially overlapping VMA */
1440	vma = vma_find(&vmi, end);
1441	if (!vma) {
1442		static int limit;
1443		if (limit < 5) {
1444			pr_warn("munmap of memory not mmapped by process %d (%s): 0x%lx-0x%lx\n",
1445					current->pid, current->comm,
1446					start, start + len - 1);
1447			limit++;
1448		}
1449		return -EINVAL;
1450	}
1451
1452	/* we're allowed to split an anonymous VMA but not a file-backed one */
1453	if (vma->vm_file) {
1454		do {
1455			if (start > vma->vm_start)
1456				return -EINVAL;
1457			if (end == vma->vm_end)
1458				goto erase_whole_vma;
1459			vma = vma_find(&vmi, end);
1460		} while (vma);
1461		return -EINVAL;
1462	} else {
1463		/* the chunk must be a subset of the VMA found */
1464		if (start == vma->vm_start && end == vma->vm_end)
1465			goto erase_whole_vma;
1466		if (start < vma->vm_start || end > vma->vm_end)
1467			return -EINVAL;
1468		if (offset_in_page(start))
1469			return -EINVAL;
1470		if (end != vma->vm_end && offset_in_page(end))
1471			return -EINVAL;
1472		if (start != vma->vm_start && end != vma->vm_end) {
1473			ret = split_vma(&vmi, vma, start, 1);
1474			if (ret < 0)
1475				return ret;
1476		}
1477		return vmi_shrink_vma(&vmi, vma, start, end);
1478	}
1479
1480erase_whole_vma:
1481	if (delete_vma_from_mm(vma))
1482		ret = -ENOMEM;
1483	else
1484		delete_vma(mm, vma);
1485	return ret;
1486}
1487
1488int vm_munmap(unsigned long addr, size_t len)
1489{
1490	struct mm_struct *mm = current->mm;
1491	int ret;
1492
1493	mmap_write_lock(mm);
1494	ret = do_munmap(mm, addr, len, NULL);
1495	mmap_write_unlock(mm);
1496	return ret;
1497}
1498EXPORT_SYMBOL(vm_munmap);
1499
1500SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1501{
1502	return vm_munmap(addr, len);
1503}
1504
1505/*
1506 * release all the mappings made in a process's VM space
1507 */
1508void exit_mmap(struct mm_struct *mm)
1509{
1510	VMA_ITERATOR(vmi, mm, 0);
1511	struct vm_area_struct *vma;
1512
1513	if (!mm)
1514		return;
1515
1516	mm->total_vm = 0;
1517
1518	/*
1519	 * Lock the mm to avoid assert complaining even though this is the only
1520	 * user of the mm
1521	 */
1522	mmap_write_lock(mm);
1523	for_each_vma(vmi, vma) {
1524		cleanup_vma_from_mm(vma);
1525		delete_vma(mm, vma);
1526		cond_resched();
1527	}
1528	__mt_destroy(&mm->mm_mt);
1529	mmap_write_unlock(mm);
1530}
1531
1532/*
1533 * expand (or shrink) an existing mapping, potentially moving it at the same
1534 * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1535 *
1536 * under NOMMU conditions, we only permit changing a mapping's size, and only
1537 * as long as it stays within the region allocated by do_mmap_private() and the
1538 * block is not shareable
1539 *
1540 * MREMAP_FIXED is not supported under NOMMU conditions
1541 */
1542static unsigned long do_mremap(unsigned long addr,
1543			unsigned long old_len, unsigned long new_len,
1544			unsigned long flags, unsigned long new_addr)
1545{
1546	struct vm_area_struct *vma;
1547
1548	/* insanity checks first */
1549	old_len = PAGE_ALIGN(old_len);
1550	new_len = PAGE_ALIGN(new_len);
1551	if (old_len == 0 || new_len == 0)
1552		return (unsigned long) -EINVAL;
1553
1554	if (offset_in_page(addr))
1555		return -EINVAL;
1556
1557	if (flags & MREMAP_FIXED && new_addr != addr)
1558		return (unsigned long) -EINVAL;
1559
1560	vma = find_vma_exact(current->mm, addr, old_len);
1561	if (!vma)
1562		return (unsigned long) -EINVAL;
1563
1564	if (vma->vm_end != vma->vm_start + old_len)
1565		return (unsigned long) -EFAULT;
1566
1567	if (is_nommu_shared_mapping(vma->vm_flags))
1568		return (unsigned long) -EPERM;
1569
1570	if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1571		return (unsigned long) -ENOMEM;
1572
1573	/* all checks complete - do it */
1574	vma->vm_end = vma->vm_start + new_len;
1575	return vma->vm_start;
1576}
1577
1578SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1579		unsigned long, new_len, unsigned long, flags,
1580		unsigned long, new_addr)
1581{
1582	unsigned long ret;
1583
1584	mmap_write_lock(current->mm);
1585	ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1586	mmap_write_unlock(current->mm);
1587	return ret;
1588}
1589
1590struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1591			 unsigned int foll_flags)
1592{
1593	return NULL;
1594}
1595
1596int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1597		unsigned long pfn, unsigned long size, pgprot_t prot)
1598{
1599	if (addr != (pfn << PAGE_SHIFT))
1600		return -EINVAL;
1601
1602	vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP);
1603	return 0;
1604}
1605EXPORT_SYMBOL(remap_pfn_range);
1606
1607int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1608{
1609	unsigned long pfn = start >> PAGE_SHIFT;
1610	unsigned long vm_len = vma->vm_end - vma->vm_start;
1611
1612	pfn += vma->vm_pgoff;
1613	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1614}
1615EXPORT_SYMBOL(vm_iomap_memory);
1616
1617int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1618			unsigned long pgoff)
1619{
1620	unsigned int size = vma->vm_end - vma->vm_start;
1621
1622	if (!(vma->vm_flags & VM_USERMAP))
1623		return -EINVAL;
1624
1625	vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1626	vma->vm_end = vma->vm_start + size;
1627
1628	return 0;
1629}
1630EXPORT_SYMBOL(remap_vmalloc_range);
1631
1632vm_fault_t filemap_fault(struct vm_fault *vmf)
1633{
1634	BUG();
1635	return 0;
1636}
1637EXPORT_SYMBOL(filemap_fault);
1638
1639vm_fault_t filemap_map_pages(struct vm_fault *vmf,
1640		pgoff_t start_pgoff, pgoff_t end_pgoff)
1641{
1642	BUG();
1643	return 0;
1644}
1645EXPORT_SYMBOL(filemap_map_pages);
1646
1647static int __access_remote_vm(struct mm_struct *mm, unsigned long addr,
1648			      void *buf, int len, unsigned int gup_flags)
1649{
1650	struct vm_area_struct *vma;
1651	int write = gup_flags & FOLL_WRITE;
1652
1653	if (mmap_read_lock_killable(mm))
1654		return 0;
1655
1656	/* the access must start within one of the target process's mappings */
1657	vma = find_vma(mm, addr);
1658	if (vma) {
1659		/* don't overrun this mapping */
1660		if (addr + len >= vma->vm_end)
1661			len = vma->vm_end - addr;
1662
1663		/* only read or write mappings where it is permitted */
1664		if (write && vma->vm_flags & VM_MAYWRITE)
1665			copy_to_user_page(vma, NULL, addr,
1666					 (void *) addr, buf, len);
1667		else if (!write && vma->vm_flags & VM_MAYREAD)
1668			copy_from_user_page(vma, NULL, addr,
1669					    buf, (void *) addr, len);
1670		else
1671			len = 0;
1672	} else {
1673		len = 0;
1674	}
1675
1676	mmap_read_unlock(mm);
1677
1678	return len;
1679}
1680
1681/**
1682 * access_remote_vm - access another process' address space
1683 * @mm:		the mm_struct of the target address space
1684 * @addr:	start address to access
1685 * @buf:	source or destination buffer
1686 * @len:	number of bytes to transfer
1687 * @gup_flags:	flags modifying lookup behaviour
1688 *
1689 * The caller must hold a reference on @mm.
1690 */
1691int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1692		void *buf, int len, unsigned int gup_flags)
1693{
1694	return __access_remote_vm(mm, addr, buf, len, gup_flags);
1695}
1696
1697/*
1698 * Access another process' address space.
1699 * - source/target buffer must be kernel space
1700 */
1701int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len,
1702		unsigned int gup_flags)
1703{
1704	struct mm_struct *mm;
1705
1706	if (addr + len < addr)
1707		return 0;
1708
1709	mm = get_task_mm(tsk);
1710	if (!mm)
1711		return 0;
1712
1713	len = __access_remote_vm(mm, addr, buf, len, gup_flags);
1714
1715	mmput(mm);
1716	return len;
1717}
1718EXPORT_SYMBOL_GPL(access_process_vm);
1719
1720/**
1721 * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode
1722 * @inode: The inode to check
1723 * @size: The current filesize of the inode
1724 * @newsize: The proposed filesize of the inode
1725 *
1726 * Check the shared mappings on an inode on behalf of a shrinking truncate to
1727 * make sure that any outstanding VMAs aren't broken and then shrink the
1728 * vm_regions that extend beyond so that do_mmap() doesn't
1729 * automatically grant mappings that are too large.
1730 */
1731int nommu_shrink_inode_mappings(struct inode *inode, size_t size,
1732				size_t newsize)
1733{
1734	struct vm_area_struct *vma;
1735	struct vm_region *region;
1736	pgoff_t low, high;
1737	size_t r_size, r_top;
1738
1739	low = newsize >> PAGE_SHIFT;
1740	high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1741
1742	down_write(&nommu_region_sem);
1743	i_mmap_lock_read(inode->i_mapping);
1744
1745	/* search for VMAs that fall within the dead zone */
1746	vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, low, high) {
1747		/* found one - only interested if it's shared out of the page
1748		 * cache */
1749		if (vma->vm_flags & VM_SHARED) {
1750			i_mmap_unlock_read(inode->i_mapping);
1751			up_write(&nommu_region_sem);
1752			return -ETXTBSY; /* not quite true, but near enough */
1753		}
1754	}
1755
1756	/* reduce any regions that overlap the dead zone - if in existence,
1757	 * these will be pointed to by VMAs that don't overlap the dead zone
1758	 *
1759	 * we don't check for any regions that start beyond the EOF as there
1760	 * shouldn't be any
1761	 */
1762	vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, 0, ULONG_MAX) {
1763		if (!(vma->vm_flags & VM_SHARED))
1764			continue;
1765
1766		region = vma->vm_region;
1767		r_size = region->vm_top - region->vm_start;
1768		r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size;
1769
1770		if (r_top > newsize) {
1771			region->vm_top -= r_top - newsize;
1772			if (region->vm_end > region->vm_top)
1773				region->vm_end = region->vm_top;
1774		}
1775	}
1776
1777	i_mmap_unlock_read(inode->i_mapping);
1778	up_write(&nommu_region_sem);
1779	return 0;
1780}
1781
1782/*
1783 * Initialise sysctl_user_reserve_kbytes.
1784 *
1785 * This is intended to prevent a user from starting a single memory hogging
1786 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
1787 * mode.
1788 *
1789 * The default value is min(3% of free memory, 128MB)
1790 * 128MB is enough to recover with sshd/login, bash, and top/kill.
1791 */
1792static int __meminit init_user_reserve(void)
1793{
1794	unsigned long free_kbytes;
1795
1796	free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
1797
1798	sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
1799	return 0;
1800}
1801subsys_initcall(init_user_reserve);
1802
1803/*
1804 * Initialise sysctl_admin_reserve_kbytes.
1805 *
1806 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
1807 * to log in and kill a memory hogging process.
1808 *
1809 * Systems with more than 256MB will reserve 8MB, enough to recover
1810 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
1811 * only reserve 3% of free pages by default.
1812 */
1813static int __meminit init_admin_reserve(void)
1814{
1815	unsigned long free_kbytes;
1816
1817	free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
1818
1819	sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
1820	return 0;
1821}
1822subsys_initcall(init_admin_reserve);
1823