1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 *  linux/mm/memory_hotplug.c
4 *
5 *  Copyright (C)
6 */
7
8#include <linux/stddef.h>
9#include <linux/mm.h>
10#include <linux/sched/signal.h>
11#include <linux/swap.h>
12#include <linux/interrupt.h>
13#include <linux/pagemap.h>
14#include <linux/compiler.h>
15#include <linux/export.h>
16#include <linux/writeback.h>
17#include <linux/slab.h>
18#include <linux/sysctl.h>
19#include <linux/cpu.h>
20#include <linux/memory.h>
21#include <linux/memremap.h>
22#include <linux/memory_hotplug.h>
23#include <linux/vmalloc.h>
24#include <linux/ioport.h>
25#include <linux/delay.h>
26#include <linux/migrate.h>
27#include <linux/page-isolation.h>
28#include <linux/pfn.h>
29#include <linux/suspend.h>
30#include <linux/mm_inline.h>
31#include <linux/firmware-map.h>
32#include <linux/stop_machine.h>
33#include <linux/hugetlb.h>
34#include <linux/memblock.h>
35#include <linux/compaction.h>
36#include <linux/rmap.h>
37#include <linux/module.h>
38
39#include <asm/tlbflush.h>
40
41#include "internal.h"
42#include "shuffle.h"
43
44enum {
45	MEMMAP_ON_MEMORY_DISABLE = 0,
46	MEMMAP_ON_MEMORY_ENABLE,
47	MEMMAP_ON_MEMORY_FORCE,
48};
49
50static int memmap_mode __read_mostly = MEMMAP_ON_MEMORY_DISABLE;
51
52static inline unsigned long memory_block_memmap_size(void)
53{
54	return PHYS_PFN(memory_block_size_bytes()) * sizeof(struct page);
55}
56
57static inline unsigned long memory_block_memmap_on_memory_pages(void)
58{
59	unsigned long nr_pages = PFN_UP(memory_block_memmap_size());
60
61	/*
62	 * In "forced" memmap_on_memory mode, we add extra pages to align the
63	 * vmemmap size to cover full pageblocks. That way, we can add memory
64	 * even if the vmemmap size is not properly aligned, however, we might waste
65	 * memory.
66	 */
67	if (memmap_mode == MEMMAP_ON_MEMORY_FORCE)
68		return pageblock_align(nr_pages);
69	return nr_pages;
70}
71
72#ifdef CONFIG_MHP_MEMMAP_ON_MEMORY
73/*
74 * memory_hotplug.memmap_on_memory parameter
75 */
76static int set_memmap_mode(const char *val, const struct kernel_param *kp)
77{
78	int ret, mode;
79	bool enabled;
80
81	if (sysfs_streq(val, "force") ||  sysfs_streq(val, "FORCE")) {
82		mode = MEMMAP_ON_MEMORY_FORCE;
83	} else {
84		ret = kstrtobool(val, &enabled);
85		if (ret < 0)
86			return ret;
87		if (enabled)
88			mode = MEMMAP_ON_MEMORY_ENABLE;
89		else
90			mode = MEMMAP_ON_MEMORY_DISABLE;
91	}
92	*((int *)kp->arg) = mode;
93	if (mode == MEMMAP_ON_MEMORY_FORCE) {
94		unsigned long memmap_pages = memory_block_memmap_on_memory_pages();
95
96		pr_info_once("Memory hotplug will waste %ld pages in each memory block\n",
97			     memmap_pages - PFN_UP(memory_block_memmap_size()));
98	}
99	return 0;
100}
101
102static int get_memmap_mode(char *buffer, const struct kernel_param *kp)
103{
104	int mode = *((int *)kp->arg);
105
106	if (mode == MEMMAP_ON_MEMORY_FORCE)
107		return sprintf(buffer, "force\n");
108	return sprintf(buffer, "%c\n", mode ? 'Y' : 'N');
109}
110
111static const struct kernel_param_ops memmap_mode_ops = {
112	.set = set_memmap_mode,
113	.get = get_memmap_mode,
114};
115module_param_cb(memmap_on_memory, &memmap_mode_ops, &memmap_mode, 0444);
116MODULE_PARM_DESC(memmap_on_memory, "Enable memmap on memory for memory hotplug\n"
117		 "With value \"force\" it could result in memory wastage due "
118		 "to memmap size limitations (Y/N/force)");
119
120static inline bool mhp_memmap_on_memory(void)
121{
122	return memmap_mode != MEMMAP_ON_MEMORY_DISABLE;
123}
124#else
125static inline bool mhp_memmap_on_memory(void)
126{
127	return false;
128}
129#endif
130
131enum {
132	ONLINE_POLICY_CONTIG_ZONES = 0,
133	ONLINE_POLICY_AUTO_MOVABLE,
134};
135
136static const char * const online_policy_to_str[] = {
137	[ONLINE_POLICY_CONTIG_ZONES] = "contig-zones",
138	[ONLINE_POLICY_AUTO_MOVABLE] = "auto-movable",
139};
140
141static int set_online_policy(const char *val, const struct kernel_param *kp)
142{
143	int ret = sysfs_match_string(online_policy_to_str, val);
144
145	if (ret < 0)
146		return ret;
147	*((int *)kp->arg) = ret;
148	return 0;
149}
150
151static int get_online_policy(char *buffer, const struct kernel_param *kp)
152{
153	return sprintf(buffer, "%s\n", online_policy_to_str[*((int *)kp->arg)]);
154}
155
156/*
157 * memory_hotplug.online_policy: configure online behavior when onlining without
158 * specifying a zone (MMOP_ONLINE)
159 *
160 * "contig-zones": keep zone contiguous
161 * "auto-movable": online memory to ZONE_MOVABLE if the configuration
162 *                 (auto_movable_ratio, auto_movable_numa_aware) allows for it
163 */
164static int online_policy __read_mostly = ONLINE_POLICY_CONTIG_ZONES;
165static const struct kernel_param_ops online_policy_ops = {
166	.set = set_online_policy,
167	.get = get_online_policy,
168};
169module_param_cb(online_policy, &online_policy_ops, &online_policy, 0644);
170MODULE_PARM_DESC(online_policy,
171		"Set the online policy (\"contig-zones\", \"auto-movable\") "
172		"Default: \"contig-zones\"");
173
174/*
175 * memory_hotplug.auto_movable_ratio: specify maximum MOVABLE:KERNEL ratio
176 *
177 * The ratio represent an upper limit and the kernel might decide to not
178 * online some memory to ZONE_MOVABLE -- e.g., because hotplugged KERNEL memory
179 * doesn't allow for more MOVABLE memory.
180 */
181static unsigned int auto_movable_ratio __read_mostly = 301;
182module_param(auto_movable_ratio, uint, 0644);
183MODULE_PARM_DESC(auto_movable_ratio,
184		"Set the maximum ratio of MOVABLE:KERNEL memory in the system "
185		"in percent for \"auto-movable\" online policy. Default: 301");
186
187/*
188 * memory_hotplug.auto_movable_numa_aware: consider numa node stats
189 */
190#ifdef CONFIG_NUMA
191static bool auto_movable_numa_aware __read_mostly = true;
192module_param(auto_movable_numa_aware, bool, 0644);
193MODULE_PARM_DESC(auto_movable_numa_aware,
194		"Consider numa node stats in addition to global stats in "
195		"\"auto-movable\" online policy. Default: true");
196#endif /* CONFIG_NUMA */
197
198/*
199 * online_page_callback contains pointer to current page onlining function.
200 * Initially it is generic_online_page(). If it is required it could be
201 * changed by calling set_online_page_callback() for callback registration
202 * and restore_online_page_callback() for generic callback restore.
203 */
204
205static online_page_callback_t online_page_callback = generic_online_page;
206static DEFINE_MUTEX(online_page_callback_lock);
207
208DEFINE_STATIC_PERCPU_RWSEM(mem_hotplug_lock);
209
210void get_online_mems(void)
211{
212	percpu_down_read(&mem_hotplug_lock);
213}
214
215void put_online_mems(void)
216{
217	percpu_up_read(&mem_hotplug_lock);
218}
219
220bool movable_node_enabled = false;
221
222#ifndef CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE
223int mhp_default_online_type = MMOP_OFFLINE;
224#else
225int mhp_default_online_type = MMOP_ONLINE;
226#endif
227
228static int __init setup_memhp_default_state(char *str)
229{
230	const int online_type = mhp_online_type_from_str(str);
231
232	if (online_type >= 0)
233		mhp_default_online_type = online_type;
234
235	return 1;
236}
237__setup("memhp_default_state=", setup_memhp_default_state);
238
239void mem_hotplug_begin(void)
240{
241	cpus_read_lock();
242	percpu_down_write(&mem_hotplug_lock);
243}
244
245void mem_hotplug_done(void)
246{
247	percpu_up_write(&mem_hotplug_lock);
248	cpus_read_unlock();
249}
250
251u64 max_mem_size = U64_MAX;
252
253/* add this memory to iomem resource */
254static struct resource *register_memory_resource(u64 start, u64 size,
255						 const char *resource_name)
256{
257	struct resource *res;
258	unsigned long flags =  IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
259
260	if (strcmp(resource_name, "System RAM"))
261		flags |= IORESOURCE_SYSRAM_DRIVER_MANAGED;
262
263	if (!mhp_range_allowed(start, size, true))
264		return ERR_PTR(-E2BIG);
265
266	/*
267	 * Make sure value parsed from 'mem=' only restricts memory adding
268	 * while booting, so that memory hotplug won't be impacted. Please
269	 * refer to document of 'mem=' in kernel-parameters.txt for more
270	 * details.
271	 */
272	if (start + size > max_mem_size && system_state < SYSTEM_RUNNING)
273		return ERR_PTR(-E2BIG);
274
275	/*
276	 * Request ownership of the new memory range.  This might be
277	 * a child of an existing resource that was present but
278	 * not marked as busy.
279	 */
280	res = __request_region(&iomem_resource, start, size,
281			       resource_name, flags);
282
283	if (!res) {
284		pr_debug("Unable to reserve System RAM region: %016llx->%016llx\n",
285				start, start + size);
286		return ERR_PTR(-EEXIST);
287	}
288	return res;
289}
290
291static void release_memory_resource(struct resource *res)
292{
293	if (!res)
294		return;
295	release_resource(res);
296	kfree(res);
297}
298
299static int check_pfn_span(unsigned long pfn, unsigned long nr_pages)
300{
301	/*
302	 * Disallow all operations smaller than a sub-section and only
303	 * allow operations smaller than a section for
304	 * SPARSEMEM_VMEMMAP. Note that check_hotplug_memory_range()
305	 * enforces a larger memory_block_size_bytes() granularity for
306	 * memory that will be marked online, so this check should only
307	 * fire for direct arch_{add,remove}_memory() users outside of
308	 * add_memory_resource().
309	 */
310	unsigned long min_align;
311
312	if (IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP))
313		min_align = PAGES_PER_SUBSECTION;
314	else
315		min_align = PAGES_PER_SECTION;
316	if (!IS_ALIGNED(pfn | nr_pages, min_align))
317		return -EINVAL;
318	return 0;
319}
320
321/*
322 * Return page for the valid pfn only if the page is online. All pfn
323 * walkers which rely on the fully initialized page->flags and others
324 * should use this rather than pfn_valid && pfn_to_page
325 */
326struct page *pfn_to_online_page(unsigned long pfn)
327{
328	unsigned long nr = pfn_to_section_nr(pfn);
329	struct dev_pagemap *pgmap;
330	struct mem_section *ms;
331
332	if (nr >= NR_MEM_SECTIONS)
333		return NULL;
334
335	ms = __nr_to_section(nr);
336	if (!online_section(ms))
337		return NULL;
338
339	/*
340	 * Save some code text when online_section() +
341	 * pfn_section_valid() are sufficient.
342	 */
343	if (IS_ENABLED(CONFIG_HAVE_ARCH_PFN_VALID) && !pfn_valid(pfn))
344		return NULL;
345
346	if (!pfn_section_valid(ms, pfn))
347		return NULL;
348
349	if (!online_device_section(ms))
350		return pfn_to_page(pfn);
351
352	/*
353	 * Slowpath: when ZONE_DEVICE collides with
354	 * ZONE_{NORMAL,MOVABLE} within the same section some pfns in
355	 * the section may be 'offline' but 'valid'. Only
356	 * get_dev_pagemap() can determine sub-section online status.
357	 */
358	pgmap = get_dev_pagemap(pfn, NULL);
359	put_dev_pagemap(pgmap);
360
361	/* The presence of a pgmap indicates ZONE_DEVICE offline pfn */
362	if (pgmap)
363		return NULL;
364
365	return pfn_to_page(pfn);
366}
367EXPORT_SYMBOL_GPL(pfn_to_online_page);
368
369int __ref __add_pages(int nid, unsigned long pfn, unsigned long nr_pages,
370		struct mhp_params *params)
371{
372	const unsigned long end_pfn = pfn + nr_pages;
373	unsigned long cur_nr_pages;
374	int err;
375	struct vmem_altmap *altmap = params->altmap;
376
377	if (WARN_ON_ONCE(!pgprot_val(params->pgprot)))
378		return -EINVAL;
379
380	VM_BUG_ON(!mhp_range_allowed(PFN_PHYS(pfn), nr_pages * PAGE_SIZE, false));
381
382	if (altmap) {
383		/*
384		 * Validate altmap is within bounds of the total request
385		 */
386		if (altmap->base_pfn != pfn
387				|| vmem_altmap_offset(altmap) > nr_pages) {
388			pr_warn_once("memory add fail, invalid altmap\n");
389			return -EINVAL;
390		}
391		altmap->alloc = 0;
392	}
393
394	if (check_pfn_span(pfn, nr_pages)) {
395		WARN(1, "Misaligned %s start: %#lx end: %#lx\n", __func__, pfn, pfn + nr_pages - 1);
396		return -EINVAL;
397	}
398
399	for (; pfn < end_pfn; pfn += cur_nr_pages) {
400		/* Select all remaining pages up to the next section boundary */
401		cur_nr_pages = min(end_pfn - pfn,
402				   SECTION_ALIGN_UP(pfn + 1) - pfn);
403		err = sparse_add_section(nid, pfn, cur_nr_pages, altmap,
404					 params->pgmap);
405		if (err)
406			break;
407		cond_resched();
408	}
409	vmemmap_populate_print_last();
410	return err;
411}
412
413/* find the smallest valid pfn in the range [start_pfn, end_pfn) */
414static unsigned long find_smallest_section_pfn(int nid, struct zone *zone,
415				     unsigned long start_pfn,
416				     unsigned long end_pfn)
417{
418	for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SUBSECTION) {
419		if (unlikely(!pfn_to_online_page(start_pfn)))
420			continue;
421
422		if (unlikely(pfn_to_nid(start_pfn) != nid))
423			continue;
424
425		if (zone != page_zone(pfn_to_page(start_pfn)))
426			continue;
427
428		return start_pfn;
429	}
430
431	return 0;
432}
433
434/* find the biggest valid pfn in the range [start_pfn, end_pfn). */
435static unsigned long find_biggest_section_pfn(int nid, struct zone *zone,
436				    unsigned long start_pfn,
437				    unsigned long end_pfn)
438{
439	unsigned long pfn;
440
441	/* pfn is the end pfn of a memory section. */
442	pfn = end_pfn - 1;
443	for (; pfn >= start_pfn; pfn -= PAGES_PER_SUBSECTION) {
444		if (unlikely(!pfn_to_online_page(pfn)))
445			continue;
446
447		if (unlikely(pfn_to_nid(pfn) != nid))
448			continue;
449
450		if (zone != page_zone(pfn_to_page(pfn)))
451			continue;
452
453		return pfn;
454	}
455
456	return 0;
457}
458
459static void shrink_zone_span(struct zone *zone, unsigned long start_pfn,
460			     unsigned long end_pfn)
461{
462	unsigned long pfn;
463	int nid = zone_to_nid(zone);
464
465	if (zone->zone_start_pfn == start_pfn) {
466		/*
467		 * If the section is smallest section in the zone, it need
468		 * shrink zone->zone_start_pfn and zone->zone_spanned_pages.
469		 * In this case, we find second smallest valid mem_section
470		 * for shrinking zone.
471		 */
472		pfn = find_smallest_section_pfn(nid, zone, end_pfn,
473						zone_end_pfn(zone));
474		if (pfn) {
475			zone->spanned_pages = zone_end_pfn(zone) - pfn;
476			zone->zone_start_pfn = pfn;
477		} else {
478			zone->zone_start_pfn = 0;
479			zone->spanned_pages = 0;
480		}
481	} else if (zone_end_pfn(zone) == end_pfn) {
482		/*
483		 * If the section is biggest section in the zone, it need
484		 * shrink zone->spanned_pages.
485		 * In this case, we find second biggest valid mem_section for
486		 * shrinking zone.
487		 */
488		pfn = find_biggest_section_pfn(nid, zone, zone->zone_start_pfn,
489					       start_pfn);
490		if (pfn)
491			zone->spanned_pages = pfn - zone->zone_start_pfn + 1;
492		else {
493			zone->zone_start_pfn = 0;
494			zone->spanned_pages = 0;
495		}
496	}
497}
498
499static void update_pgdat_span(struct pglist_data *pgdat)
500{
501	unsigned long node_start_pfn = 0, node_end_pfn = 0;
502	struct zone *zone;
503
504	for (zone = pgdat->node_zones;
505	     zone < pgdat->node_zones + MAX_NR_ZONES; zone++) {
506		unsigned long end_pfn = zone_end_pfn(zone);
507
508		/* No need to lock the zones, they can't change. */
509		if (!zone->spanned_pages)
510			continue;
511		if (!node_end_pfn) {
512			node_start_pfn = zone->zone_start_pfn;
513			node_end_pfn = end_pfn;
514			continue;
515		}
516
517		if (end_pfn > node_end_pfn)
518			node_end_pfn = end_pfn;
519		if (zone->zone_start_pfn < node_start_pfn)
520			node_start_pfn = zone->zone_start_pfn;
521	}
522
523	pgdat->node_start_pfn = node_start_pfn;
524	pgdat->node_spanned_pages = node_end_pfn - node_start_pfn;
525}
526
527void __ref remove_pfn_range_from_zone(struct zone *zone,
528				      unsigned long start_pfn,
529				      unsigned long nr_pages)
530{
531	const unsigned long end_pfn = start_pfn + nr_pages;
532	struct pglist_data *pgdat = zone->zone_pgdat;
533	unsigned long pfn, cur_nr_pages;
534
535	/* Poison struct pages because they are now uninitialized again. */
536	for (pfn = start_pfn; pfn < end_pfn; pfn += cur_nr_pages) {
537		cond_resched();
538
539		/* Select all remaining pages up to the next section boundary */
540		cur_nr_pages =
541			min(end_pfn - pfn, SECTION_ALIGN_UP(pfn + 1) - pfn);
542		page_init_poison(pfn_to_page(pfn),
543				 sizeof(struct page) * cur_nr_pages);
544	}
545
546	/*
547	 * Zone shrinking code cannot properly deal with ZONE_DEVICE. So
548	 * we will not try to shrink the zones - which is okay as
549	 * set_zone_contiguous() cannot deal with ZONE_DEVICE either way.
550	 */
551	if (zone_is_zone_device(zone))
552		return;
553
554	clear_zone_contiguous(zone);
555
556	shrink_zone_span(zone, start_pfn, start_pfn + nr_pages);
557	update_pgdat_span(pgdat);
558
559	set_zone_contiguous(zone);
560}
561
562/**
563 * __remove_pages() - remove sections of pages
564 * @pfn: starting pageframe (must be aligned to start of a section)
565 * @nr_pages: number of pages to remove (must be multiple of section size)
566 * @altmap: alternative device page map or %NULL if default memmap is used
567 *
568 * Generic helper function to remove section mappings and sysfs entries
569 * for the section of the memory we are removing. Caller needs to make
570 * sure that pages are marked reserved and zones are adjust properly by
571 * calling offline_pages().
572 */
573void __remove_pages(unsigned long pfn, unsigned long nr_pages,
574		    struct vmem_altmap *altmap)
575{
576	const unsigned long end_pfn = pfn + nr_pages;
577	unsigned long cur_nr_pages;
578
579	if (check_pfn_span(pfn, nr_pages)) {
580		WARN(1, "Misaligned %s start: %#lx end: %#lx\n", __func__, pfn, pfn + nr_pages - 1);
581		return;
582	}
583
584	for (; pfn < end_pfn; pfn += cur_nr_pages) {
585		cond_resched();
586		/* Select all remaining pages up to the next section boundary */
587		cur_nr_pages = min(end_pfn - pfn,
588				   SECTION_ALIGN_UP(pfn + 1) - pfn);
589		sparse_remove_section(pfn, cur_nr_pages, altmap);
590	}
591}
592
593int set_online_page_callback(online_page_callback_t callback)
594{
595	int rc = -EINVAL;
596
597	get_online_mems();
598	mutex_lock(&online_page_callback_lock);
599
600	if (online_page_callback == generic_online_page) {
601		online_page_callback = callback;
602		rc = 0;
603	}
604
605	mutex_unlock(&online_page_callback_lock);
606	put_online_mems();
607
608	return rc;
609}
610EXPORT_SYMBOL_GPL(set_online_page_callback);
611
612int restore_online_page_callback(online_page_callback_t callback)
613{
614	int rc = -EINVAL;
615
616	get_online_mems();
617	mutex_lock(&online_page_callback_lock);
618
619	if (online_page_callback == callback) {
620		online_page_callback = generic_online_page;
621		rc = 0;
622	}
623
624	mutex_unlock(&online_page_callback_lock);
625	put_online_mems();
626
627	return rc;
628}
629EXPORT_SYMBOL_GPL(restore_online_page_callback);
630
631void generic_online_page(struct page *page, unsigned int order)
632{
633	/*
634	 * Freeing the page with debug_pagealloc enabled will try to unmap it,
635	 * so we should map it first. This is better than introducing a special
636	 * case in page freeing fast path.
637	 */
638	debug_pagealloc_map_pages(page, 1 << order);
639	__free_pages_core(page, order);
640	totalram_pages_add(1UL << order);
641}
642EXPORT_SYMBOL_GPL(generic_online_page);
643
644static void online_pages_range(unsigned long start_pfn, unsigned long nr_pages)
645{
646	const unsigned long end_pfn = start_pfn + nr_pages;
647	unsigned long pfn;
648
649	/*
650	 * Online the pages in MAX_PAGE_ORDER aligned chunks. The callback might
651	 * decide to not expose all pages to the buddy (e.g., expose them
652	 * later). We account all pages as being online and belonging to this
653	 * zone ("present").
654	 * When using memmap_on_memory, the range might not be aligned to
655	 * MAX_ORDER_NR_PAGES - 1, but pageblock aligned. __ffs() will detect
656	 * this and the first chunk to online will be pageblock_nr_pages.
657	 */
658	for (pfn = start_pfn; pfn < end_pfn;) {
659		int order;
660
661		/*
662		 * Free to online pages in the largest chunks alignment allows.
663		 *
664		 * __ffs() behaviour is undefined for 0. start == 0 is
665		 * MAX_PAGE_ORDER-aligned, Set order to MAX_PAGE_ORDER for
666		 * the case.
667		 */
668		if (pfn)
669			order = min_t(int, MAX_PAGE_ORDER, __ffs(pfn));
670		else
671			order = MAX_PAGE_ORDER;
672
673		(*online_page_callback)(pfn_to_page(pfn), order);
674		pfn += (1UL << order);
675	}
676
677	/* mark all involved sections as online */
678	online_mem_sections(start_pfn, end_pfn);
679}
680
681/* check which state of node_states will be changed when online memory */
682static void node_states_check_changes_online(unsigned long nr_pages,
683	struct zone *zone, struct memory_notify *arg)
684{
685	int nid = zone_to_nid(zone);
686
687	arg->status_change_nid = NUMA_NO_NODE;
688	arg->status_change_nid_normal = NUMA_NO_NODE;
689
690	if (!node_state(nid, N_MEMORY))
691		arg->status_change_nid = nid;
692	if (zone_idx(zone) <= ZONE_NORMAL && !node_state(nid, N_NORMAL_MEMORY))
693		arg->status_change_nid_normal = nid;
694}
695
696static void node_states_set_node(int node, struct memory_notify *arg)
697{
698	if (arg->status_change_nid_normal >= 0)
699		node_set_state(node, N_NORMAL_MEMORY);
700
701	if (arg->status_change_nid >= 0)
702		node_set_state(node, N_MEMORY);
703}
704
705static void __meminit resize_zone_range(struct zone *zone, unsigned long start_pfn,
706		unsigned long nr_pages)
707{
708	unsigned long old_end_pfn = zone_end_pfn(zone);
709
710	if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn)
711		zone->zone_start_pfn = start_pfn;
712
713	zone->spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - zone->zone_start_pfn;
714}
715
716static void __meminit resize_pgdat_range(struct pglist_data *pgdat, unsigned long start_pfn,
717                                     unsigned long nr_pages)
718{
719	unsigned long old_end_pfn = pgdat_end_pfn(pgdat);
720
721	if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn)
722		pgdat->node_start_pfn = start_pfn;
723
724	pgdat->node_spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - pgdat->node_start_pfn;
725
726}
727
728#ifdef CONFIG_ZONE_DEVICE
729static void section_taint_zone_device(unsigned long pfn)
730{
731	struct mem_section *ms = __pfn_to_section(pfn);
732
733	ms->section_mem_map |= SECTION_TAINT_ZONE_DEVICE;
734}
735#else
736static inline void section_taint_zone_device(unsigned long pfn)
737{
738}
739#endif
740
741/*
742 * Associate the pfn range with the given zone, initializing the memmaps
743 * and resizing the pgdat/zone data to span the added pages. After this
744 * call, all affected pages are PG_reserved.
745 *
746 * All aligned pageblocks are initialized to the specified migratetype
747 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
748 * zone stats (e.g., nr_isolate_pageblock) are touched.
749 */
750void __ref move_pfn_range_to_zone(struct zone *zone, unsigned long start_pfn,
751				  unsigned long nr_pages,
752				  struct vmem_altmap *altmap, int migratetype)
753{
754	struct pglist_data *pgdat = zone->zone_pgdat;
755	int nid = pgdat->node_id;
756
757	clear_zone_contiguous(zone);
758
759	if (zone_is_empty(zone))
760		init_currently_empty_zone(zone, start_pfn, nr_pages);
761	resize_zone_range(zone, start_pfn, nr_pages);
762	resize_pgdat_range(pgdat, start_pfn, nr_pages);
763
764	/*
765	 * Subsection population requires care in pfn_to_online_page().
766	 * Set the taint to enable the slow path detection of
767	 * ZONE_DEVICE pages in an otherwise  ZONE_{NORMAL,MOVABLE}
768	 * section.
769	 */
770	if (zone_is_zone_device(zone)) {
771		if (!IS_ALIGNED(start_pfn, PAGES_PER_SECTION))
772			section_taint_zone_device(start_pfn);
773		if (!IS_ALIGNED(start_pfn + nr_pages, PAGES_PER_SECTION))
774			section_taint_zone_device(start_pfn + nr_pages);
775	}
776
777	/*
778	 * TODO now we have a visible range of pages which are not associated
779	 * with their zone properly. Not nice but set_pfnblock_flags_mask
780	 * expects the zone spans the pfn range. All the pages in the range
781	 * are reserved so nobody should be touching them so we should be safe
782	 */
783	memmap_init_range(nr_pages, nid, zone_idx(zone), start_pfn, 0,
784			 MEMINIT_HOTPLUG, altmap, migratetype);
785
786	set_zone_contiguous(zone);
787}
788
789struct auto_movable_stats {
790	unsigned long kernel_early_pages;
791	unsigned long movable_pages;
792};
793
794static void auto_movable_stats_account_zone(struct auto_movable_stats *stats,
795					    struct zone *zone)
796{
797	if (zone_idx(zone) == ZONE_MOVABLE) {
798		stats->movable_pages += zone->present_pages;
799	} else {
800		stats->kernel_early_pages += zone->present_early_pages;
801#ifdef CONFIG_CMA
802		/*
803		 * CMA pages (never on hotplugged memory) behave like
804		 * ZONE_MOVABLE.
805		 */
806		stats->movable_pages += zone->cma_pages;
807		stats->kernel_early_pages -= zone->cma_pages;
808#endif /* CONFIG_CMA */
809	}
810}
811struct auto_movable_group_stats {
812	unsigned long movable_pages;
813	unsigned long req_kernel_early_pages;
814};
815
816static int auto_movable_stats_account_group(struct memory_group *group,
817					   void *arg)
818{
819	const int ratio = READ_ONCE(auto_movable_ratio);
820	struct auto_movable_group_stats *stats = arg;
821	long pages;
822
823	/*
824	 * We don't support modifying the config while the auto-movable online
825	 * policy is already enabled. Just avoid the division by zero below.
826	 */
827	if (!ratio)
828		return 0;
829
830	/*
831	 * Calculate how many early kernel pages this group requires to
832	 * satisfy the configured zone ratio.
833	 */
834	pages = group->present_movable_pages * 100 / ratio;
835	pages -= group->present_kernel_pages;
836
837	if (pages > 0)
838		stats->req_kernel_early_pages += pages;
839	stats->movable_pages += group->present_movable_pages;
840	return 0;
841}
842
843static bool auto_movable_can_online_movable(int nid, struct memory_group *group,
844					    unsigned long nr_pages)
845{
846	unsigned long kernel_early_pages, movable_pages;
847	struct auto_movable_group_stats group_stats = {};
848	struct auto_movable_stats stats = {};
849	pg_data_t *pgdat = NODE_DATA(nid);
850	struct zone *zone;
851	int i;
852
853	/* Walk all relevant zones and collect MOVABLE vs. KERNEL stats. */
854	if (nid == NUMA_NO_NODE) {
855		/* TODO: cache values */
856		for_each_populated_zone(zone)
857			auto_movable_stats_account_zone(&stats, zone);
858	} else {
859		for (i = 0; i < MAX_NR_ZONES; i++) {
860			zone = pgdat->node_zones + i;
861			if (populated_zone(zone))
862				auto_movable_stats_account_zone(&stats, zone);
863		}
864	}
865
866	kernel_early_pages = stats.kernel_early_pages;
867	movable_pages = stats.movable_pages;
868
869	/*
870	 * Kernel memory inside dynamic memory group allows for more MOVABLE
871	 * memory within the same group. Remove the effect of all but the
872	 * current group from the stats.
873	 */
874	walk_dynamic_memory_groups(nid, auto_movable_stats_account_group,
875				   group, &group_stats);
876	if (kernel_early_pages <= group_stats.req_kernel_early_pages)
877		return false;
878	kernel_early_pages -= group_stats.req_kernel_early_pages;
879	movable_pages -= group_stats.movable_pages;
880
881	if (group && group->is_dynamic)
882		kernel_early_pages += group->present_kernel_pages;
883
884	/*
885	 * Test if we could online the given number of pages to ZONE_MOVABLE
886	 * and still stay in the configured ratio.
887	 */
888	movable_pages += nr_pages;
889	return movable_pages <= (auto_movable_ratio * kernel_early_pages) / 100;
890}
891
892/*
893 * Returns a default kernel memory zone for the given pfn range.
894 * If no kernel zone covers this pfn range it will automatically go
895 * to the ZONE_NORMAL.
896 */
897static struct zone *default_kernel_zone_for_pfn(int nid, unsigned long start_pfn,
898		unsigned long nr_pages)
899{
900	struct pglist_data *pgdat = NODE_DATA(nid);
901	int zid;
902
903	for (zid = 0; zid < ZONE_NORMAL; zid++) {
904		struct zone *zone = &pgdat->node_zones[zid];
905
906		if (zone_intersects(zone, start_pfn, nr_pages))
907			return zone;
908	}
909
910	return &pgdat->node_zones[ZONE_NORMAL];
911}
912
913/*
914 * Determine to which zone to online memory dynamically based on user
915 * configuration and system stats. We care about the following ratio:
916 *
917 *   MOVABLE : KERNEL
918 *
919 * Whereby MOVABLE is memory in ZONE_MOVABLE and KERNEL is memory in
920 * one of the kernel zones. CMA pages inside one of the kernel zones really
921 * behaves like ZONE_MOVABLE, so we treat them accordingly.
922 *
923 * We don't allow for hotplugged memory in a KERNEL zone to increase the
924 * amount of MOVABLE memory we can have, so we end up with:
925 *
926 *   MOVABLE : KERNEL_EARLY
927 *
928 * Whereby KERNEL_EARLY is memory in one of the kernel zones, available sinze
929 * boot. We base our calculation on KERNEL_EARLY internally, because:
930 *
931 * a) Hotplugged memory in one of the kernel zones can sometimes still get
932 *    hotunplugged, especially when hot(un)plugging individual memory blocks.
933 *    There is no coordination across memory devices, therefore "automatic"
934 *    hotunplugging, as implemented in hypervisors, could result in zone
935 *    imbalances.
936 * b) Early/boot memory in one of the kernel zones can usually not get
937 *    hotunplugged again (e.g., no firmware interface to unplug, fragmented
938 *    with unmovable allocations). While there are corner cases where it might
939 *    still work, it is barely relevant in practice.
940 *
941 * Exceptions are dynamic memory groups, which allow for more MOVABLE
942 * memory within the same memory group -- because in that case, there is
943 * coordination within the single memory device managed by a single driver.
944 *
945 * We rely on "present pages" instead of "managed pages", as the latter is
946 * highly unreliable and dynamic in virtualized environments, and does not
947 * consider boot time allocations. For example, memory ballooning adjusts the
948 * managed pages when inflating/deflating the balloon, and balloon compaction
949 * can even migrate inflated pages between zones.
950 *
951 * Using "present pages" is better but some things to keep in mind are:
952 *
953 * a) Some memblock allocations, such as for the crashkernel area, are
954 *    effectively unused by the kernel, yet they account to "present pages".
955 *    Fortunately, these allocations are comparatively small in relevant setups
956 *    (e.g., fraction of system memory).
957 * b) Some hotplugged memory blocks in virtualized environments, esecially
958 *    hotplugged by virtio-mem, look like they are completely present, however,
959 *    only parts of the memory block are actually currently usable.
960 *    "present pages" is an upper limit that can get reached at runtime. As
961 *    we base our calculations on KERNEL_EARLY, this is not an issue.
962 */
963static struct zone *auto_movable_zone_for_pfn(int nid,
964					      struct memory_group *group,
965					      unsigned long pfn,
966					      unsigned long nr_pages)
967{
968	unsigned long online_pages = 0, max_pages, end_pfn;
969	struct page *page;
970
971	if (!auto_movable_ratio)
972		goto kernel_zone;
973
974	if (group && !group->is_dynamic) {
975		max_pages = group->s.max_pages;
976		online_pages = group->present_movable_pages;
977
978		/* If anything is !MOVABLE online the rest !MOVABLE. */
979		if (group->present_kernel_pages)
980			goto kernel_zone;
981	} else if (!group || group->d.unit_pages == nr_pages) {
982		max_pages = nr_pages;
983	} else {
984		max_pages = group->d.unit_pages;
985		/*
986		 * Take a look at all online sections in the current unit.
987		 * We can safely assume that all pages within a section belong
988		 * to the same zone, because dynamic memory groups only deal
989		 * with hotplugged memory.
990		 */
991		pfn = ALIGN_DOWN(pfn, group->d.unit_pages);
992		end_pfn = pfn + group->d.unit_pages;
993		for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
994			page = pfn_to_online_page(pfn);
995			if (!page)
996				continue;
997			/* If anything is !MOVABLE online the rest !MOVABLE. */
998			if (!is_zone_movable_page(page))
999				goto kernel_zone;
1000			online_pages += PAGES_PER_SECTION;
1001		}
1002	}
1003
1004	/*
1005	 * Online MOVABLE if we could *currently* online all remaining parts
1006	 * MOVABLE. We expect to (add+) online them immediately next, so if
1007	 * nobody interferes, all will be MOVABLE if possible.
1008	 */
1009	nr_pages = max_pages - online_pages;
1010	if (!auto_movable_can_online_movable(NUMA_NO_NODE, group, nr_pages))
1011		goto kernel_zone;
1012
1013#ifdef CONFIG_NUMA
1014	if (auto_movable_numa_aware &&
1015	    !auto_movable_can_online_movable(nid, group, nr_pages))
1016		goto kernel_zone;
1017#endif /* CONFIG_NUMA */
1018
1019	return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
1020kernel_zone:
1021	return default_kernel_zone_for_pfn(nid, pfn, nr_pages);
1022}
1023
1024static inline struct zone *default_zone_for_pfn(int nid, unsigned long start_pfn,
1025		unsigned long nr_pages)
1026{
1027	struct zone *kernel_zone = default_kernel_zone_for_pfn(nid, start_pfn,
1028			nr_pages);
1029	struct zone *movable_zone = &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
1030	bool in_kernel = zone_intersects(kernel_zone, start_pfn, nr_pages);
1031	bool in_movable = zone_intersects(movable_zone, start_pfn, nr_pages);
1032
1033	/*
1034	 * We inherit the existing zone in a simple case where zones do not
1035	 * overlap in the given range
1036	 */
1037	if (in_kernel ^ in_movable)
1038		return (in_kernel) ? kernel_zone : movable_zone;
1039
1040	/*
1041	 * If the range doesn't belong to any zone or two zones overlap in the
1042	 * given range then we use movable zone only if movable_node is
1043	 * enabled because we always online to a kernel zone by default.
1044	 */
1045	return movable_node_enabled ? movable_zone : kernel_zone;
1046}
1047
1048struct zone *zone_for_pfn_range(int online_type, int nid,
1049		struct memory_group *group, unsigned long start_pfn,
1050		unsigned long nr_pages)
1051{
1052	if (online_type == MMOP_ONLINE_KERNEL)
1053		return default_kernel_zone_for_pfn(nid, start_pfn, nr_pages);
1054
1055	if (online_type == MMOP_ONLINE_MOVABLE)
1056		return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
1057
1058	if (online_policy == ONLINE_POLICY_AUTO_MOVABLE)
1059		return auto_movable_zone_for_pfn(nid, group, start_pfn, nr_pages);
1060
1061	return default_zone_for_pfn(nid, start_pfn, nr_pages);
1062}
1063
1064/*
1065 * This function should only be called by memory_block_{online,offline},
1066 * and {online,offline}_pages.
1067 */
1068void adjust_present_page_count(struct page *page, struct memory_group *group,
1069			       long nr_pages)
1070{
1071	struct zone *zone = page_zone(page);
1072	const bool movable = zone_idx(zone) == ZONE_MOVABLE;
1073
1074	/*
1075	 * We only support onlining/offlining/adding/removing of complete
1076	 * memory blocks; therefore, either all is either early or hotplugged.
1077	 */
1078	if (early_section(__pfn_to_section(page_to_pfn(page))))
1079		zone->present_early_pages += nr_pages;
1080	zone->present_pages += nr_pages;
1081	zone->zone_pgdat->node_present_pages += nr_pages;
1082
1083	if (group && movable)
1084		group->present_movable_pages += nr_pages;
1085	else if (group && !movable)
1086		group->present_kernel_pages += nr_pages;
1087}
1088
1089int mhp_init_memmap_on_memory(unsigned long pfn, unsigned long nr_pages,
1090			      struct zone *zone, bool mhp_off_inaccessible)
1091{
1092	unsigned long end_pfn = pfn + nr_pages;
1093	int ret, i;
1094
1095	ret = kasan_add_zero_shadow(__va(PFN_PHYS(pfn)), PFN_PHYS(nr_pages));
1096	if (ret)
1097		return ret;
1098
1099	/*
1100	 * Memory block is accessible at this stage and hence poison the struct
1101	 * pages now.  If the memory block is accessible during memory hotplug
1102	 * addition phase, then page poisining is already performed in
1103	 * sparse_add_section().
1104	 */
1105	if (mhp_off_inaccessible)
1106		page_init_poison(pfn_to_page(pfn), sizeof(struct page) * nr_pages);
1107
1108	move_pfn_range_to_zone(zone, pfn, nr_pages, NULL, MIGRATE_UNMOVABLE);
1109
1110	for (i = 0; i < nr_pages; i++)
1111		SetPageVmemmapSelfHosted(pfn_to_page(pfn + i));
1112
1113	/*
1114	 * It might be that the vmemmap_pages fully span sections. If that is
1115	 * the case, mark those sections online here as otherwise they will be
1116	 * left offline.
1117	 */
1118	if (nr_pages >= PAGES_PER_SECTION)
1119	        online_mem_sections(pfn, ALIGN_DOWN(end_pfn, PAGES_PER_SECTION));
1120
1121	return ret;
1122}
1123
1124void mhp_deinit_memmap_on_memory(unsigned long pfn, unsigned long nr_pages)
1125{
1126	unsigned long end_pfn = pfn + nr_pages;
1127
1128	/*
1129	 * It might be that the vmemmap_pages fully span sections. If that is
1130	 * the case, mark those sections offline here as otherwise they will be
1131	 * left online.
1132	 */
1133	if (nr_pages >= PAGES_PER_SECTION)
1134		offline_mem_sections(pfn, ALIGN_DOWN(end_pfn, PAGES_PER_SECTION));
1135
1136        /*
1137	 * The pages associated with this vmemmap have been offlined, so
1138	 * we can reset its state here.
1139	 */
1140	remove_pfn_range_from_zone(page_zone(pfn_to_page(pfn)), pfn, nr_pages);
1141	kasan_remove_zero_shadow(__va(PFN_PHYS(pfn)), PFN_PHYS(nr_pages));
1142}
1143
1144/*
1145 * Must be called with mem_hotplug_lock in write mode.
1146 */
1147int __ref online_pages(unsigned long pfn, unsigned long nr_pages,
1148		       struct zone *zone, struct memory_group *group)
1149{
1150	unsigned long flags;
1151	int need_zonelists_rebuild = 0;
1152	const int nid = zone_to_nid(zone);
1153	int ret;
1154	struct memory_notify arg;
1155
1156	/*
1157	 * {on,off}lining is constrained to full memory sections (or more
1158	 * precisely to memory blocks from the user space POV).
1159	 * memmap_on_memory is an exception because it reserves initial part
1160	 * of the physical memory space for vmemmaps. That space is pageblock
1161	 * aligned.
1162	 */
1163	if (WARN_ON_ONCE(!nr_pages || !pageblock_aligned(pfn) ||
1164			 !IS_ALIGNED(pfn + nr_pages, PAGES_PER_SECTION)))
1165		return -EINVAL;
1166
1167
1168	/* associate pfn range with the zone */
1169	move_pfn_range_to_zone(zone, pfn, nr_pages, NULL, MIGRATE_ISOLATE);
1170
1171	arg.start_pfn = pfn;
1172	arg.nr_pages = nr_pages;
1173	node_states_check_changes_online(nr_pages, zone, &arg);
1174
1175	ret = memory_notify(MEM_GOING_ONLINE, &arg);
1176	ret = notifier_to_errno(ret);
1177	if (ret)
1178		goto failed_addition;
1179
1180	/*
1181	 * Fixup the number of isolated pageblocks before marking the sections
1182	 * onlining, such that undo_isolate_page_range() works correctly.
1183	 */
1184	spin_lock_irqsave(&zone->lock, flags);
1185	zone->nr_isolate_pageblock += nr_pages / pageblock_nr_pages;
1186	spin_unlock_irqrestore(&zone->lock, flags);
1187
1188	/*
1189	 * If this zone is not populated, then it is not in zonelist.
1190	 * This means the page allocator ignores this zone.
1191	 * So, zonelist must be updated after online.
1192	 */
1193	if (!populated_zone(zone)) {
1194		need_zonelists_rebuild = 1;
1195		setup_zone_pageset(zone);
1196	}
1197
1198	online_pages_range(pfn, nr_pages);
1199	adjust_present_page_count(pfn_to_page(pfn), group, nr_pages);
1200
1201	node_states_set_node(nid, &arg);
1202	if (need_zonelists_rebuild)
1203		build_all_zonelists(NULL);
1204
1205	/* Basic onlining is complete, allow allocation of onlined pages. */
1206	undo_isolate_page_range(pfn, pfn + nr_pages, MIGRATE_MOVABLE);
1207
1208	/*
1209	 * Freshly onlined pages aren't shuffled (e.g., all pages are placed to
1210	 * the tail of the freelist when undoing isolation). Shuffle the whole
1211	 * zone to make sure the just onlined pages are properly distributed
1212	 * across the whole freelist - to create an initial shuffle.
1213	 */
1214	shuffle_zone(zone);
1215
1216	/* reinitialise watermarks and update pcp limits */
1217	init_per_zone_wmark_min();
1218
1219	kswapd_run(nid);
1220	kcompactd_run(nid);
1221
1222	writeback_set_ratelimit();
1223
1224	memory_notify(MEM_ONLINE, &arg);
1225	return 0;
1226
1227failed_addition:
1228	pr_debug("online_pages [mem %#010llx-%#010llx] failed\n",
1229		 (unsigned long long) pfn << PAGE_SHIFT,
1230		 (((unsigned long long) pfn + nr_pages) << PAGE_SHIFT) - 1);
1231	memory_notify(MEM_CANCEL_ONLINE, &arg);
1232	remove_pfn_range_from_zone(zone, pfn, nr_pages);
1233	return ret;
1234}
1235
1236/* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
1237static pg_data_t __ref *hotadd_init_pgdat(int nid)
1238{
1239	struct pglist_data *pgdat;
1240
1241	/*
1242	 * NODE_DATA is preallocated (free_area_init) but its internal
1243	 * state is not allocated completely. Add missing pieces.
1244	 * Completely offline nodes stay around and they just need
1245	 * reintialization.
1246	 */
1247	pgdat = NODE_DATA(nid);
1248
1249	/* init node's zones as empty zones, we don't have any present pages.*/
1250	free_area_init_core_hotplug(pgdat);
1251
1252	/*
1253	 * The node we allocated has no zone fallback lists. For avoiding
1254	 * to access not-initialized zonelist, build here.
1255	 */
1256	build_all_zonelists(pgdat);
1257
1258	return pgdat;
1259}
1260
1261/*
1262 * __try_online_node - online a node if offlined
1263 * @nid: the node ID
1264 * @set_node_online: Whether we want to online the node
1265 * called by cpu_up() to online a node without onlined memory.
1266 *
1267 * Returns:
1268 * 1 -> a new node has been allocated
1269 * 0 -> the node is already online
1270 * -ENOMEM -> the node could not be allocated
1271 */
1272static int __try_online_node(int nid, bool set_node_online)
1273{
1274	pg_data_t *pgdat;
1275	int ret = 1;
1276
1277	if (node_online(nid))
1278		return 0;
1279
1280	pgdat = hotadd_init_pgdat(nid);
1281	if (!pgdat) {
1282		pr_err("Cannot online node %d due to NULL pgdat\n", nid);
1283		ret = -ENOMEM;
1284		goto out;
1285	}
1286
1287	if (set_node_online) {
1288		node_set_online(nid);
1289		ret = register_one_node(nid);
1290		BUG_ON(ret);
1291	}
1292out:
1293	return ret;
1294}
1295
1296/*
1297 * Users of this function always want to online/register the node
1298 */
1299int try_online_node(int nid)
1300{
1301	int ret;
1302
1303	mem_hotplug_begin();
1304	ret =  __try_online_node(nid, true);
1305	mem_hotplug_done();
1306	return ret;
1307}
1308
1309static int check_hotplug_memory_range(u64 start, u64 size)
1310{
1311	/* memory range must be block size aligned */
1312	if (!size || !IS_ALIGNED(start, memory_block_size_bytes()) ||
1313	    !IS_ALIGNED(size, memory_block_size_bytes())) {
1314		pr_err("Block size [%#lx] unaligned hotplug range: start %#llx, size %#llx",
1315		       memory_block_size_bytes(), start, size);
1316		return -EINVAL;
1317	}
1318
1319	return 0;
1320}
1321
1322static int online_memory_block(struct memory_block *mem, void *arg)
1323{
1324	mem->online_type = mhp_default_online_type;
1325	return device_online(&mem->dev);
1326}
1327
1328#ifndef arch_supports_memmap_on_memory
1329static inline bool arch_supports_memmap_on_memory(unsigned long vmemmap_size)
1330{
1331	/*
1332	 * As default, we want the vmemmap to span a complete PMD such that we
1333	 * can map the vmemmap using a single PMD if supported by the
1334	 * architecture.
1335	 */
1336	return IS_ALIGNED(vmemmap_size, PMD_SIZE);
1337}
1338#endif
1339
1340bool mhp_supports_memmap_on_memory(void)
1341{
1342	unsigned long vmemmap_size = memory_block_memmap_size();
1343	unsigned long memmap_pages = memory_block_memmap_on_memory_pages();
1344
1345	/*
1346	 * Besides having arch support and the feature enabled at runtime, we
1347	 * need a few more assumptions to hold true:
1348	 *
1349	 * a) The vmemmap pages span complete PMDs: We don't want vmemmap code
1350	 *    to populate memory from the altmap for unrelated parts (i.e.,
1351	 *    other memory blocks)
1352	 *
1353	 * b) The vmemmap pages (and thereby the pages that will be exposed to
1354	 *    the buddy) have to cover full pageblocks: memory onlining/offlining
1355	 *    code requires applicable ranges to be page-aligned, for example, to
1356	 *    set the migratetypes properly.
1357	 *
1358	 * TODO: Although we have a check here to make sure that vmemmap pages
1359	 *       fully populate a PMD, it is not the right place to check for
1360	 *       this. A much better solution involves improving vmemmap code
1361	 *       to fallback to base pages when trying to populate vmemmap using
1362	 *       altmap as an alternative source of memory, and we do not exactly
1363	 *       populate a single PMD.
1364	 */
1365	if (!mhp_memmap_on_memory())
1366		return false;
1367
1368	/*
1369	 * Make sure the vmemmap allocation is fully contained
1370	 * so that we always allocate vmemmap memory from altmap area.
1371	 */
1372	if (!IS_ALIGNED(vmemmap_size, PAGE_SIZE))
1373		return false;
1374
1375	/*
1376	 * start pfn should be pageblock_nr_pages aligned for correctly
1377	 * setting migrate types
1378	 */
1379	if (!pageblock_aligned(memmap_pages))
1380		return false;
1381
1382	if (memmap_pages == PHYS_PFN(memory_block_size_bytes()))
1383		/* No effective hotplugged memory doesn't make sense. */
1384		return false;
1385
1386	return arch_supports_memmap_on_memory(vmemmap_size);
1387}
1388EXPORT_SYMBOL_GPL(mhp_supports_memmap_on_memory);
1389
1390static void __ref remove_memory_blocks_and_altmaps(u64 start, u64 size)
1391{
1392	unsigned long memblock_size = memory_block_size_bytes();
1393	u64 cur_start;
1394
1395	/*
1396	 * For memmap_on_memory, the altmaps were added on a per-memblock
1397	 * basis; we have to process each individual memory block.
1398	 */
1399	for (cur_start = start; cur_start < start + size;
1400	     cur_start += memblock_size) {
1401		struct vmem_altmap *altmap = NULL;
1402		struct memory_block *mem;
1403
1404		mem = find_memory_block(pfn_to_section_nr(PFN_DOWN(cur_start)));
1405		if (WARN_ON_ONCE(!mem))
1406			continue;
1407
1408		altmap = mem->altmap;
1409		mem->altmap = NULL;
1410
1411		remove_memory_block_devices(cur_start, memblock_size);
1412
1413		arch_remove_memory(cur_start, memblock_size, altmap);
1414
1415		/* Verify that all vmemmap pages have actually been freed. */
1416		WARN(altmap->alloc, "Altmap not fully unmapped");
1417		kfree(altmap);
1418	}
1419}
1420
1421static int create_altmaps_and_memory_blocks(int nid, struct memory_group *group,
1422					    u64 start, u64 size, mhp_t mhp_flags)
1423{
1424	unsigned long memblock_size = memory_block_size_bytes();
1425	u64 cur_start;
1426	int ret;
1427
1428	for (cur_start = start; cur_start < start + size;
1429	     cur_start += memblock_size) {
1430		struct mhp_params params = { .pgprot =
1431						     pgprot_mhp(PAGE_KERNEL) };
1432		struct vmem_altmap mhp_altmap = {
1433			.base_pfn = PHYS_PFN(cur_start),
1434			.end_pfn = PHYS_PFN(cur_start + memblock_size - 1),
1435		};
1436
1437		mhp_altmap.free = memory_block_memmap_on_memory_pages();
1438		if (mhp_flags & MHP_OFFLINE_INACCESSIBLE)
1439			mhp_altmap.inaccessible = true;
1440		params.altmap = kmemdup(&mhp_altmap, sizeof(struct vmem_altmap),
1441					GFP_KERNEL);
1442		if (!params.altmap) {
1443			ret = -ENOMEM;
1444			goto out;
1445		}
1446
1447		/* call arch's memory hotadd */
1448		ret = arch_add_memory(nid, cur_start, memblock_size, &params);
1449		if (ret < 0) {
1450			kfree(params.altmap);
1451			goto out;
1452		}
1453
1454		/* create memory block devices after memory was added */
1455		ret = create_memory_block_devices(cur_start, memblock_size,
1456						  params.altmap, group);
1457		if (ret) {
1458			arch_remove_memory(cur_start, memblock_size, NULL);
1459			kfree(params.altmap);
1460			goto out;
1461		}
1462	}
1463
1464	return 0;
1465out:
1466	if (ret && cur_start != start)
1467		remove_memory_blocks_and_altmaps(start, cur_start - start);
1468	return ret;
1469}
1470
1471/*
1472 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1473 * and online/offline operations (triggered e.g. by sysfs).
1474 *
1475 * we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG
1476 */
1477int __ref add_memory_resource(int nid, struct resource *res, mhp_t mhp_flags)
1478{
1479	struct mhp_params params = { .pgprot = pgprot_mhp(PAGE_KERNEL) };
1480	enum memblock_flags memblock_flags = MEMBLOCK_NONE;
1481	struct memory_group *group = NULL;
1482	u64 start, size;
1483	bool new_node = false;
1484	int ret;
1485
1486	start = res->start;
1487	size = resource_size(res);
1488
1489	ret = check_hotplug_memory_range(start, size);
1490	if (ret)
1491		return ret;
1492
1493	if (mhp_flags & MHP_NID_IS_MGID) {
1494		group = memory_group_find_by_id(nid);
1495		if (!group)
1496			return -EINVAL;
1497		nid = group->nid;
1498	}
1499
1500	if (!node_possible(nid)) {
1501		WARN(1, "node %d was absent from the node_possible_map\n", nid);
1502		return -EINVAL;
1503	}
1504
1505	mem_hotplug_begin();
1506
1507	if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK)) {
1508		if (res->flags & IORESOURCE_SYSRAM_DRIVER_MANAGED)
1509			memblock_flags = MEMBLOCK_DRIVER_MANAGED;
1510		ret = memblock_add_node(start, size, nid, memblock_flags);
1511		if (ret)
1512			goto error_mem_hotplug_end;
1513	}
1514
1515	ret = __try_online_node(nid, false);
1516	if (ret < 0)
1517		goto error;
1518	new_node = ret;
1519
1520	/*
1521	 * Self hosted memmap array
1522	 */
1523	if ((mhp_flags & MHP_MEMMAP_ON_MEMORY) &&
1524	    mhp_supports_memmap_on_memory()) {
1525		ret = create_altmaps_and_memory_blocks(nid, group, start, size, mhp_flags);
1526		if (ret)
1527			goto error;
1528	} else {
1529		ret = arch_add_memory(nid, start, size, &params);
1530		if (ret < 0)
1531			goto error;
1532
1533		/* create memory block devices after memory was added */
1534		ret = create_memory_block_devices(start, size, NULL, group);
1535		if (ret) {
1536			arch_remove_memory(start, size, params.altmap);
1537			goto error;
1538		}
1539	}
1540
1541	if (new_node) {
1542		/* If sysfs file of new node can't be created, cpu on the node
1543		 * can't be hot-added. There is no rollback way now.
1544		 * So, check by BUG_ON() to catch it reluctantly..
1545		 * We online node here. We can't roll back from here.
1546		 */
1547		node_set_online(nid);
1548		ret = __register_one_node(nid);
1549		BUG_ON(ret);
1550	}
1551
1552	register_memory_blocks_under_node(nid, PFN_DOWN(start),
1553					  PFN_UP(start + size - 1),
1554					  MEMINIT_HOTPLUG);
1555
1556	/* create new memmap entry */
1557	if (!strcmp(res->name, "System RAM"))
1558		firmware_map_add_hotplug(start, start + size, "System RAM");
1559
1560	/* device_online() will take the lock when calling online_pages() */
1561	mem_hotplug_done();
1562
1563	/*
1564	 * In case we're allowed to merge the resource, flag it and trigger
1565	 * merging now that adding succeeded.
1566	 */
1567	if (mhp_flags & MHP_MERGE_RESOURCE)
1568		merge_system_ram_resource(res);
1569
1570	/* online pages if requested */
1571	if (mhp_default_online_type != MMOP_OFFLINE)
1572		walk_memory_blocks(start, size, NULL, online_memory_block);
1573
1574	return ret;
1575error:
1576	if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK))
1577		memblock_remove(start, size);
1578error_mem_hotplug_end:
1579	mem_hotplug_done();
1580	return ret;
1581}
1582
1583/* requires device_hotplug_lock, see add_memory_resource() */
1584int __ref __add_memory(int nid, u64 start, u64 size, mhp_t mhp_flags)
1585{
1586	struct resource *res;
1587	int ret;
1588
1589	res = register_memory_resource(start, size, "System RAM");
1590	if (IS_ERR(res))
1591		return PTR_ERR(res);
1592
1593	ret = add_memory_resource(nid, res, mhp_flags);
1594	if (ret < 0)
1595		release_memory_resource(res);
1596	return ret;
1597}
1598
1599int add_memory(int nid, u64 start, u64 size, mhp_t mhp_flags)
1600{
1601	int rc;
1602
1603	lock_device_hotplug();
1604	rc = __add_memory(nid, start, size, mhp_flags);
1605	unlock_device_hotplug();
1606
1607	return rc;
1608}
1609EXPORT_SYMBOL_GPL(add_memory);
1610
1611/*
1612 * Add special, driver-managed memory to the system as system RAM. Such
1613 * memory is not exposed via the raw firmware-provided memmap as system
1614 * RAM, instead, it is detected and added by a driver - during cold boot,
1615 * after a reboot, and after kexec.
1616 *
1617 * Reasons why this memory should not be used for the initial memmap of a
1618 * kexec kernel or for placing kexec images:
1619 * - The booting kernel is in charge of determining how this memory will be
1620 *   used (e.g., use persistent memory as system RAM)
1621 * - Coordination with a hypervisor is required before this memory
1622 *   can be used (e.g., inaccessible parts).
1623 *
1624 * For this memory, no entries in /sys/firmware/memmap ("raw firmware-provided
1625 * memory map") are created. Also, the created memory resource is flagged
1626 * with IORESOURCE_SYSRAM_DRIVER_MANAGED, so in-kernel users can special-case
1627 * this memory as well (esp., not place kexec images onto it).
1628 *
1629 * The resource_name (visible via /proc/iomem) has to have the format
1630 * "System RAM ($DRIVER)".
1631 */
1632int add_memory_driver_managed(int nid, u64 start, u64 size,
1633			      const char *resource_name, mhp_t mhp_flags)
1634{
1635	struct resource *res;
1636	int rc;
1637
1638	if (!resource_name ||
1639	    strstr(resource_name, "System RAM (") != resource_name ||
1640	    resource_name[strlen(resource_name) - 1] != ')')
1641		return -EINVAL;
1642
1643	lock_device_hotplug();
1644
1645	res = register_memory_resource(start, size, resource_name);
1646	if (IS_ERR(res)) {
1647		rc = PTR_ERR(res);
1648		goto out_unlock;
1649	}
1650
1651	rc = add_memory_resource(nid, res, mhp_flags);
1652	if (rc < 0)
1653		release_memory_resource(res);
1654
1655out_unlock:
1656	unlock_device_hotplug();
1657	return rc;
1658}
1659EXPORT_SYMBOL_GPL(add_memory_driver_managed);
1660
1661/*
1662 * Platforms should define arch_get_mappable_range() that provides
1663 * maximum possible addressable physical memory range for which the
1664 * linear mapping could be created. The platform returned address
1665 * range must adhere to these following semantics.
1666 *
1667 * - range.start <= range.end
1668 * - Range includes both end points [range.start..range.end]
1669 *
1670 * There is also a fallback definition provided here, allowing the
1671 * entire possible physical address range in case any platform does
1672 * not define arch_get_mappable_range().
1673 */
1674struct range __weak arch_get_mappable_range(void)
1675{
1676	struct range mhp_range = {
1677		.start = 0UL,
1678		.end = -1ULL,
1679	};
1680	return mhp_range;
1681}
1682
1683struct range mhp_get_pluggable_range(bool need_mapping)
1684{
1685	const u64 max_phys = (1ULL << MAX_PHYSMEM_BITS) - 1;
1686	struct range mhp_range;
1687
1688	if (need_mapping) {
1689		mhp_range = arch_get_mappable_range();
1690		if (mhp_range.start > max_phys) {
1691			mhp_range.start = 0;
1692			mhp_range.end = 0;
1693		}
1694		mhp_range.end = min_t(u64, mhp_range.end, max_phys);
1695	} else {
1696		mhp_range.start = 0;
1697		mhp_range.end = max_phys;
1698	}
1699	return mhp_range;
1700}
1701EXPORT_SYMBOL_GPL(mhp_get_pluggable_range);
1702
1703bool mhp_range_allowed(u64 start, u64 size, bool need_mapping)
1704{
1705	struct range mhp_range = mhp_get_pluggable_range(need_mapping);
1706	u64 end = start + size;
1707
1708	if (start < end && start >= mhp_range.start && (end - 1) <= mhp_range.end)
1709		return true;
1710
1711	pr_warn("Hotplug memory [%#llx-%#llx] exceeds maximum addressable range [%#llx-%#llx]\n",
1712		start, end, mhp_range.start, mhp_range.end);
1713	return false;
1714}
1715
1716#ifdef CONFIG_MEMORY_HOTREMOVE
1717/*
1718 * Scan pfn range [start,end) to find movable/migratable pages (LRU pages,
1719 * non-lru movable pages and hugepages). Will skip over most unmovable
1720 * pages (esp., pages that can be skipped when offlining), but bail out on
1721 * definitely unmovable pages.
1722 *
1723 * Returns:
1724 *	0 in case a movable page is found and movable_pfn was updated.
1725 *	-ENOENT in case no movable page was found.
1726 *	-EBUSY in case a definitely unmovable page was found.
1727 */
1728static int scan_movable_pages(unsigned long start, unsigned long end,
1729			      unsigned long *movable_pfn)
1730{
1731	unsigned long pfn;
1732
1733	for (pfn = start; pfn < end; pfn++) {
1734		struct page *page, *head;
1735		unsigned long skip;
1736
1737		if (!pfn_valid(pfn))
1738			continue;
1739		page = pfn_to_page(pfn);
1740		if (PageLRU(page))
1741			goto found;
1742		if (__PageMovable(page))
1743			goto found;
1744
1745		/*
1746		 * PageOffline() pages that are not marked __PageMovable() and
1747		 * have a reference count > 0 (after MEM_GOING_OFFLINE) are
1748		 * definitely unmovable. If their reference count would be 0,
1749		 * they could at least be skipped when offlining memory.
1750		 */
1751		if (PageOffline(page) && page_count(page))
1752			return -EBUSY;
1753
1754		if (!PageHuge(page))
1755			continue;
1756		head = compound_head(page);
1757		/*
1758		 * This test is racy as we hold no reference or lock.  The
1759		 * hugetlb page could have been free'ed and head is no longer
1760		 * a hugetlb page before the following check.  In such unlikely
1761		 * cases false positives and negatives are possible.  Calling
1762		 * code must deal with these scenarios.
1763		 */
1764		if (HPageMigratable(head))
1765			goto found;
1766		skip = compound_nr(head) - (pfn - page_to_pfn(head));
1767		pfn += skip - 1;
1768	}
1769	return -ENOENT;
1770found:
1771	*movable_pfn = pfn;
1772	return 0;
1773}
1774
1775static void do_migrate_range(unsigned long start_pfn, unsigned long end_pfn)
1776{
1777	unsigned long pfn;
1778	struct page *page, *head;
1779	LIST_HEAD(source);
1780	static DEFINE_RATELIMIT_STATE(migrate_rs, DEFAULT_RATELIMIT_INTERVAL,
1781				      DEFAULT_RATELIMIT_BURST);
1782
1783	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1784		struct folio *folio;
1785		bool isolated;
1786
1787		if (!pfn_valid(pfn))
1788			continue;
1789		page = pfn_to_page(pfn);
1790		folio = page_folio(page);
1791		head = &folio->page;
1792
1793		if (PageHuge(page)) {
1794			pfn = page_to_pfn(head) + compound_nr(head) - 1;
1795			isolate_hugetlb(folio, &source);
1796			continue;
1797		} else if (PageTransHuge(page))
1798			pfn = page_to_pfn(head) + thp_nr_pages(page) - 1;
1799
1800		/*
1801		 * HWPoison pages have elevated reference counts so the migration would
1802		 * fail on them. It also doesn't make any sense to migrate them in the
1803		 * first place. Still try to unmap such a page in case it is still mapped
1804		 * (e.g. current hwpoison implementation doesn't unmap KSM pages but keep
1805		 * the unmap as the catch all safety net).
1806		 */
1807		if (PageHWPoison(page)) {
1808			if (WARN_ON(folio_test_lru(folio)))
1809				folio_isolate_lru(folio);
1810			if (folio_mapped(folio))
1811				try_to_unmap(folio, TTU_IGNORE_MLOCK);
1812			continue;
1813		}
1814
1815		if (!get_page_unless_zero(page))
1816			continue;
1817		/*
1818		 * We can skip free pages. And we can deal with pages on
1819		 * LRU and non-lru movable pages.
1820		 */
1821		if (PageLRU(page))
1822			isolated = isolate_lru_page(page);
1823		else
1824			isolated = isolate_movable_page(page, ISOLATE_UNEVICTABLE);
1825		if (isolated) {
1826			list_add_tail(&page->lru, &source);
1827			if (!__PageMovable(page))
1828				inc_node_page_state(page, NR_ISOLATED_ANON +
1829						    page_is_file_lru(page));
1830
1831		} else {
1832			if (__ratelimit(&migrate_rs)) {
1833				pr_warn("failed to isolate pfn %lx\n", pfn);
1834				dump_page(page, "isolation failed");
1835			}
1836		}
1837		put_page(page);
1838	}
1839	if (!list_empty(&source)) {
1840		nodemask_t nmask = node_states[N_MEMORY];
1841		struct migration_target_control mtc = {
1842			.nmask = &nmask,
1843			.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
1844		};
1845		int ret;
1846
1847		/*
1848		 * We have checked that migration range is on a single zone so
1849		 * we can use the nid of the first page to all the others.
1850		 */
1851		mtc.nid = page_to_nid(list_first_entry(&source, struct page, lru));
1852
1853		/*
1854		 * try to allocate from a different node but reuse this node
1855		 * if there are no other online nodes to be used (e.g. we are
1856		 * offlining a part of the only existing node)
1857		 */
1858		node_clear(mtc.nid, nmask);
1859		if (nodes_empty(nmask))
1860			node_set(mtc.nid, nmask);
1861		ret = migrate_pages(&source, alloc_migration_target, NULL,
1862			(unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_HOTPLUG, NULL);
1863		if (ret) {
1864			list_for_each_entry(page, &source, lru) {
1865				if (__ratelimit(&migrate_rs)) {
1866					pr_warn("migrating pfn %lx failed ret:%d\n",
1867						page_to_pfn(page), ret);
1868					dump_page(page, "migration failure");
1869				}
1870			}
1871			putback_movable_pages(&source);
1872		}
1873	}
1874}
1875
1876static int __init cmdline_parse_movable_node(char *p)
1877{
1878	movable_node_enabled = true;
1879	return 0;
1880}
1881early_param("movable_node", cmdline_parse_movable_node);
1882
1883/* check which state of node_states will be changed when offline memory */
1884static void node_states_check_changes_offline(unsigned long nr_pages,
1885		struct zone *zone, struct memory_notify *arg)
1886{
1887	struct pglist_data *pgdat = zone->zone_pgdat;
1888	unsigned long present_pages = 0;
1889	enum zone_type zt;
1890
1891	arg->status_change_nid = NUMA_NO_NODE;
1892	arg->status_change_nid_normal = NUMA_NO_NODE;
1893
1894	/*
1895	 * Check whether node_states[N_NORMAL_MEMORY] will be changed.
1896	 * If the memory to be offline is within the range
1897	 * [0..ZONE_NORMAL], and it is the last present memory there,
1898	 * the zones in that range will become empty after the offlining,
1899	 * thus we can determine that we need to clear the node from
1900	 * node_states[N_NORMAL_MEMORY].
1901	 */
1902	for (zt = 0; zt <= ZONE_NORMAL; zt++)
1903		present_pages += pgdat->node_zones[zt].present_pages;
1904	if (zone_idx(zone) <= ZONE_NORMAL && nr_pages >= present_pages)
1905		arg->status_change_nid_normal = zone_to_nid(zone);
1906
1907	/*
1908	 * We have accounted the pages from [0..ZONE_NORMAL); ZONE_HIGHMEM
1909	 * does not apply as we don't support 32bit.
1910	 * Here we count the possible pages from ZONE_MOVABLE.
1911	 * If after having accounted all the pages, we see that the nr_pages
1912	 * to be offlined is over or equal to the accounted pages,
1913	 * we know that the node will become empty, and so, we can clear
1914	 * it for N_MEMORY as well.
1915	 */
1916	present_pages += pgdat->node_zones[ZONE_MOVABLE].present_pages;
1917
1918	if (nr_pages >= present_pages)
1919		arg->status_change_nid = zone_to_nid(zone);
1920}
1921
1922static void node_states_clear_node(int node, struct memory_notify *arg)
1923{
1924	if (arg->status_change_nid_normal >= 0)
1925		node_clear_state(node, N_NORMAL_MEMORY);
1926
1927	if (arg->status_change_nid >= 0)
1928		node_clear_state(node, N_MEMORY);
1929}
1930
1931static int count_system_ram_pages_cb(unsigned long start_pfn,
1932				     unsigned long nr_pages, void *data)
1933{
1934	unsigned long *nr_system_ram_pages = data;
1935
1936	*nr_system_ram_pages += nr_pages;
1937	return 0;
1938}
1939
1940/*
1941 * Must be called with mem_hotplug_lock in write mode.
1942 */
1943int __ref offline_pages(unsigned long start_pfn, unsigned long nr_pages,
1944			struct zone *zone, struct memory_group *group)
1945{
1946	const unsigned long end_pfn = start_pfn + nr_pages;
1947	unsigned long pfn, system_ram_pages = 0;
1948	const int node = zone_to_nid(zone);
1949	unsigned long flags;
1950	struct memory_notify arg;
1951	char *reason;
1952	int ret;
1953
1954	/*
1955	 * {on,off}lining is constrained to full memory sections (or more
1956	 * precisely to memory blocks from the user space POV).
1957	 * memmap_on_memory is an exception because it reserves initial part
1958	 * of the physical memory space for vmemmaps. That space is pageblock
1959	 * aligned.
1960	 */
1961	if (WARN_ON_ONCE(!nr_pages || !pageblock_aligned(start_pfn) ||
1962			 !IS_ALIGNED(start_pfn + nr_pages, PAGES_PER_SECTION)))
1963		return -EINVAL;
1964
1965	/*
1966	 * Don't allow to offline memory blocks that contain holes.
1967	 * Consequently, memory blocks with holes can never get onlined
1968	 * via the hotplug path - online_pages() - as hotplugged memory has
1969	 * no holes. This way, we e.g., don't have to worry about marking
1970	 * memory holes PG_reserved, don't need pfn_valid() checks, and can
1971	 * avoid using walk_system_ram_range() later.
1972	 */
1973	walk_system_ram_range(start_pfn, nr_pages, &system_ram_pages,
1974			      count_system_ram_pages_cb);
1975	if (system_ram_pages != nr_pages) {
1976		ret = -EINVAL;
1977		reason = "memory holes";
1978		goto failed_removal;
1979	}
1980
1981	/*
1982	 * We only support offlining of memory blocks managed by a single zone,
1983	 * checked by calling code. This is just a sanity check that we might
1984	 * want to remove in the future.
1985	 */
1986	if (WARN_ON_ONCE(page_zone(pfn_to_page(start_pfn)) != zone ||
1987			 page_zone(pfn_to_page(end_pfn - 1)) != zone)) {
1988		ret = -EINVAL;
1989		reason = "multizone range";
1990		goto failed_removal;
1991	}
1992
1993	/*
1994	 * Disable pcplists so that page isolation cannot race with freeing
1995	 * in a way that pages from isolated pageblock are left on pcplists.
1996	 */
1997	zone_pcp_disable(zone);
1998	lru_cache_disable();
1999
2000	/* set above range as isolated */
2001	ret = start_isolate_page_range(start_pfn, end_pfn,
2002				       MIGRATE_MOVABLE,
2003				       MEMORY_OFFLINE | REPORT_FAILURE,
2004				       GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL);
2005	if (ret) {
2006		reason = "failure to isolate range";
2007		goto failed_removal_pcplists_disabled;
2008	}
2009
2010	arg.start_pfn = start_pfn;
2011	arg.nr_pages = nr_pages;
2012	node_states_check_changes_offline(nr_pages, zone, &arg);
2013
2014	ret = memory_notify(MEM_GOING_OFFLINE, &arg);
2015	ret = notifier_to_errno(ret);
2016	if (ret) {
2017		reason = "notifier failure";
2018		goto failed_removal_isolated;
2019	}
2020
2021	do {
2022		pfn = start_pfn;
2023		do {
2024			/*
2025			 * Historically we always checked for any signal and
2026			 * can't limit it to fatal signals without eventually
2027			 * breaking user space.
2028			 */
2029			if (signal_pending(current)) {
2030				ret = -EINTR;
2031				reason = "signal backoff";
2032				goto failed_removal_isolated;
2033			}
2034
2035			cond_resched();
2036
2037			ret = scan_movable_pages(pfn, end_pfn, &pfn);
2038			if (!ret) {
2039				/*
2040				 * TODO: fatal migration failures should bail
2041				 * out
2042				 */
2043				do_migrate_range(pfn, end_pfn);
2044			}
2045		} while (!ret);
2046
2047		if (ret != -ENOENT) {
2048			reason = "unmovable page";
2049			goto failed_removal_isolated;
2050		}
2051
2052		/*
2053		 * Dissolve free hugepages in the memory block before doing
2054		 * offlining actually in order to make hugetlbfs's object
2055		 * counting consistent.
2056		 */
2057		ret = dissolve_free_huge_pages(start_pfn, end_pfn);
2058		if (ret) {
2059			reason = "failure to dissolve huge pages";
2060			goto failed_removal_isolated;
2061		}
2062
2063		ret = test_pages_isolated(start_pfn, end_pfn, MEMORY_OFFLINE);
2064
2065	} while (ret);
2066
2067	/* Mark all sections offline and remove free pages from the buddy. */
2068	__offline_isolated_pages(start_pfn, end_pfn);
2069	pr_debug("Offlined Pages %ld\n", nr_pages);
2070
2071	/*
2072	 * The memory sections are marked offline, and the pageblock flags
2073	 * effectively stale; nobody should be touching them. Fixup the number
2074	 * of isolated pageblocks, memory onlining will properly revert this.
2075	 */
2076	spin_lock_irqsave(&zone->lock, flags);
2077	zone->nr_isolate_pageblock -= nr_pages / pageblock_nr_pages;
2078	spin_unlock_irqrestore(&zone->lock, flags);
2079
2080	lru_cache_enable();
2081	zone_pcp_enable(zone);
2082
2083	/* removal success */
2084	adjust_managed_page_count(pfn_to_page(start_pfn), -nr_pages);
2085	adjust_present_page_count(pfn_to_page(start_pfn), group, -nr_pages);
2086
2087	/* reinitialise watermarks and update pcp limits */
2088	init_per_zone_wmark_min();
2089
2090	/*
2091	 * Make sure to mark the node as memory-less before rebuilding the zone
2092	 * list. Otherwise this node would still appear in the fallback lists.
2093	 */
2094	node_states_clear_node(node, &arg);
2095	if (!populated_zone(zone)) {
2096		zone_pcp_reset(zone);
2097		build_all_zonelists(NULL);
2098	}
2099
2100	if (arg.status_change_nid >= 0) {
2101		kcompactd_stop(node);
2102		kswapd_stop(node);
2103	}
2104
2105	writeback_set_ratelimit();
2106
2107	memory_notify(MEM_OFFLINE, &arg);
2108	remove_pfn_range_from_zone(zone, start_pfn, nr_pages);
2109	return 0;
2110
2111failed_removal_isolated:
2112	/* pushback to free area */
2113	undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
2114	memory_notify(MEM_CANCEL_OFFLINE, &arg);
2115failed_removal_pcplists_disabled:
2116	lru_cache_enable();
2117	zone_pcp_enable(zone);
2118failed_removal:
2119	pr_debug("memory offlining [mem %#010llx-%#010llx] failed due to %s\n",
2120		 (unsigned long long) start_pfn << PAGE_SHIFT,
2121		 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1,
2122		 reason);
2123	return ret;
2124}
2125
2126static int check_memblock_offlined_cb(struct memory_block *mem, void *arg)
2127{
2128	int *nid = arg;
2129
2130	*nid = mem->nid;
2131	if (unlikely(mem->state != MEM_OFFLINE)) {
2132		phys_addr_t beginpa, endpa;
2133
2134		beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr));
2135		endpa = beginpa + memory_block_size_bytes() - 1;
2136		pr_warn("removing memory fails, because memory [%pa-%pa] is onlined\n",
2137			&beginpa, &endpa);
2138
2139		return -EBUSY;
2140	}
2141	return 0;
2142}
2143
2144static int count_memory_range_altmaps_cb(struct memory_block *mem, void *arg)
2145{
2146	u64 *num_altmaps = (u64 *)arg;
2147
2148	if (mem->altmap)
2149		*num_altmaps += 1;
2150
2151	return 0;
2152}
2153
2154static int check_cpu_on_node(int nid)
2155{
2156	int cpu;
2157
2158	for_each_present_cpu(cpu) {
2159		if (cpu_to_node(cpu) == nid)
2160			/*
2161			 * the cpu on this node isn't removed, and we can't
2162			 * offline this node.
2163			 */
2164			return -EBUSY;
2165	}
2166
2167	return 0;
2168}
2169
2170static int check_no_memblock_for_node_cb(struct memory_block *mem, void *arg)
2171{
2172	int nid = *(int *)arg;
2173
2174	/*
2175	 * If a memory block belongs to multiple nodes, the stored nid is not
2176	 * reliable. However, such blocks are always online (e.g., cannot get
2177	 * offlined) and, therefore, are still spanned by the node.
2178	 */
2179	return mem->nid == nid ? -EEXIST : 0;
2180}
2181
2182/**
2183 * try_offline_node
2184 * @nid: the node ID
2185 *
2186 * Offline a node if all memory sections and cpus of the node are removed.
2187 *
2188 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
2189 * and online/offline operations before this call.
2190 */
2191void try_offline_node(int nid)
2192{
2193	int rc;
2194
2195	/*
2196	 * If the node still spans pages (especially ZONE_DEVICE), don't
2197	 * offline it. A node spans memory after move_pfn_range_to_zone(),
2198	 * e.g., after the memory block was onlined.
2199	 */
2200	if (node_spanned_pages(nid))
2201		return;
2202
2203	/*
2204	 * Especially offline memory blocks might not be spanned by the
2205	 * node. They will get spanned by the node once they get onlined.
2206	 * However, they link to the node in sysfs and can get onlined later.
2207	 */
2208	rc = for_each_memory_block(&nid, check_no_memblock_for_node_cb);
2209	if (rc)
2210		return;
2211
2212	if (check_cpu_on_node(nid))
2213		return;
2214
2215	/*
2216	 * all memory/cpu of this node are removed, we can offline this
2217	 * node now.
2218	 */
2219	node_set_offline(nid);
2220	unregister_one_node(nid);
2221}
2222EXPORT_SYMBOL(try_offline_node);
2223
2224static int memory_blocks_have_altmaps(u64 start, u64 size)
2225{
2226	u64 num_memblocks = size / memory_block_size_bytes();
2227	u64 num_altmaps = 0;
2228
2229	if (!mhp_memmap_on_memory())
2230		return 0;
2231
2232	walk_memory_blocks(start, size, &num_altmaps,
2233			   count_memory_range_altmaps_cb);
2234
2235	if (num_altmaps == 0)
2236		return 0;
2237
2238	if (WARN_ON_ONCE(num_memblocks != num_altmaps))
2239		return -EINVAL;
2240
2241	return 1;
2242}
2243
2244static int __ref try_remove_memory(u64 start, u64 size)
2245{
2246	int rc, nid = NUMA_NO_NODE;
2247
2248	BUG_ON(check_hotplug_memory_range(start, size));
2249
2250	/*
2251	 * All memory blocks must be offlined before removing memory.  Check
2252	 * whether all memory blocks in question are offline and return error
2253	 * if this is not the case.
2254	 *
2255	 * While at it, determine the nid. Note that if we'd have mixed nodes,
2256	 * we'd only try to offline the last determined one -- which is good
2257	 * enough for the cases we care about.
2258	 */
2259	rc = walk_memory_blocks(start, size, &nid, check_memblock_offlined_cb);
2260	if (rc)
2261		return rc;
2262
2263	/* remove memmap entry */
2264	firmware_map_remove(start, start + size, "System RAM");
2265
2266	mem_hotplug_begin();
2267
2268	rc = memory_blocks_have_altmaps(start, size);
2269	if (rc < 0) {
2270		mem_hotplug_done();
2271		return rc;
2272	} else if (!rc) {
2273		/*
2274		 * Memory block device removal under the device_hotplug_lock is
2275		 * a barrier against racing online attempts.
2276		 * No altmaps present, do the removal directly
2277		 */
2278		remove_memory_block_devices(start, size);
2279		arch_remove_memory(start, size, NULL);
2280	} else {
2281		/* all memblocks in the range have altmaps */
2282		remove_memory_blocks_and_altmaps(start, size);
2283	}
2284
2285	if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK)) {
2286		memblock_phys_free(start, size);
2287		memblock_remove(start, size);
2288	}
2289
2290	release_mem_region_adjustable(start, size);
2291
2292	if (nid != NUMA_NO_NODE)
2293		try_offline_node(nid);
2294
2295	mem_hotplug_done();
2296	return 0;
2297}
2298
2299/**
2300 * __remove_memory - Remove memory if every memory block is offline
2301 * @start: physical address of the region to remove
2302 * @size: size of the region to remove
2303 *
2304 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
2305 * and online/offline operations before this call, as required by
2306 * try_offline_node().
2307 */
2308void __remove_memory(u64 start, u64 size)
2309{
2310
2311	/*
2312	 * trigger BUG() if some memory is not offlined prior to calling this
2313	 * function
2314	 */
2315	if (try_remove_memory(start, size))
2316		BUG();
2317}
2318
2319/*
2320 * Remove memory if every memory block is offline, otherwise return -EBUSY is
2321 * some memory is not offline
2322 */
2323int remove_memory(u64 start, u64 size)
2324{
2325	int rc;
2326
2327	lock_device_hotplug();
2328	rc = try_remove_memory(start, size);
2329	unlock_device_hotplug();
2330
2331	return rc;
2332}
2333EXPORT_SYMBOL_GPL(remove_memory);
2334
2335static int try_offline_memory_block(struct memory_block *mem, void *arg)
2336{
2337	uint8_t online_type = MMOP_ONLINE_KERNEL;
2338	uint8_t **online_types = arg;
2339	struct page *page;
2340	int rc;
2341
2342	/*
2343	 * Sense the online_type via the zone of the memory block. Offlining
2344	 * with multiple zones within one memory block will be rejected
2345	 * by offlining code ... so we don't care about that.
2346	 */
2347	page = pfn_to_online_page(section_nr_to_pfn(mem->start_section_nr));
2348	if (page && zone_idx(page_zone(page)) == ZONE_MOVABLE)
2349		online_type = MMOP_ONLINE_MOVABLE;
2350
2351	rc = device_offline(&mem->dev);
2352	/*
2353	 * Default is MMOP_OFFLINE - change it only if offlining succeeded,
2354	 * so try_reonline_memory_block() can do the right thing.
2355	 */
2356	if (!rc)
2357		**online_types = online_type;
2358
2359	(*online_types)++;
2360	/* Ignore if already offline. */
2361	return rc < 0 ? rc : 0;
2362}
2363
2364static int try_reonline_memory_block(struct memory_block *mem, void *arg)
2365{
2366	uint8_t **online_types = arg;
2367	int rc;
2368
2369	if (**online_types != MMOP_OFFLINE) {
2370		mem->online_type = **online_types;
2371		rc = device_online(&mem->dev);
2372		if (rc < 0)
2373			pr_warn("%s: Failed to re-online memory: %d",
2374				__func__, rc);
2375	}
2376
2377	/* Continue processing all remaining memory blocks. */
2378	(*online_types)++;
2379	return 0;
2380}
2381
2382/*
2383 * Try to offline and remove memory. Might take a long time to finish in case
2384 * memory is still in use. Primarily useful for memory devices that logically
2385 * unplugged all memory (so it's no longer in use) and want to offline + remove
2386 * that memory.
2387 */
2388int offline_and_remove_memory(u64 start, u64 size)
2389{
2390	const unsigned long mb_count = size / memory_block_size_bytes();
2391	uint8_t *online_types, *tmp;
2392	int rc;
2393
2394	if (!IS_ALIGNED(start, memory_block_size_bytes()) ||
2395	    !IS_ALIGNED(size, memory_block_size_bytes()) || !size)
2396		return -EINVAL;
2397
2398	/*
2399	 * We'll remember the old online type of each memory block, so we can
2400	 * try to revert whatever we did when offlining one memory block fails
2401	 * after offlining some others succeeded.
2402	 */
2403	online_types = kmalloc_array(mb_count, sizeof(*online_types),
2404				     GFP_KERNEL);
2405	if (!online_types)
2406		return -ENOMEM;
2407	/*
2408	 * Initialize all states to MMOP_OFFLINE, so when we abort processing in
2409	 * try_offline_memory_block(), we'll skip all unprocessed blocks in
2410	 * try_reonline_memory_block().
2411	 */
2412	memset(online_types, MMOP_OFFLINE, mb_count);
2413
2414	lock_device_hotplug();
2415
2416	tmp = online_types;
2417	rc = walk_memory_blocks(start, size, &tmp, try_offline_memory_block);
2418
2419	/*
2420	 * In case we succeeded to offline all memory, remove it.
2421	 * This cannot fail as it cannot get onlined in the meantime.
2422	 */
2423	if (!rc) {
2424		rc = try_remove_memory(start, size);
2425		if (rc)
2426			pr_err("%s: Failed to remove memory: %d", __func__, rc);
2427	}
2428
2429	/*
2430	 * Rollback what we did. While memory onlining might theoretically fail
2431	 * (nacked by a notifier), it barely ever happens.
2432	 */
2433	if (rc) {
2434		tmp = online_types;
2435		walk_memory_blocks(start, size, &tmp,
2436				   try_reonline_memory_block);
2437	}
2438	unlock_device_hotplug();
2439
2440	kfree(online_types);
2441	return rc;
2442}
2443EXPORT_SYMBOL_GPL(offline_and_remove_memory);
2444#endif /* CONFIG_MEMORY_HOTREMOVE */
2445