1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 *
4 * Copyright (c) 2014 Samsung Electronics Co., Ltd.
5 * Author: Andrey Ryabinin <a.ryabinin@samsung.com>
6 */
7
8#define pr_fmt(fmt) "kasan: test: " fmt
9
10#include <kunit/test.h>
11#include <linux/bitops.h>
12#include <linux/delay.h>
13#include <linux/io.h>
14#include <linux/kasan.h>
15#include <linux/kernel.h>
16#include <linux/mempool.h>
17#include <linux/mm.h>
18#include <linux/mman.h>
19#include <linux/module.h>
20#include <linux/printk.h>
21#include <linux/random.h>
22#include <linux/set_memory.h>
23#include <linux/slab.h>
24#include <linux/string.h>
25#include <linux/tracepoint.h>
26#include <linux/uaccess.h>
27#include <linux/vmalloc.h>
28#include <trace/events/printk.h>
29
30#include <asm/page.h>
31
32#include "kasan.h"
33
34#define OOB_TAG_OFF (IS_ENABLED(CONFIG_KASAN_GENERIC) ? 0 : KASAN_GRANULE_SIZE)
35
36static bool multishot;
37
38/* Fields set based on lines observed in the console. */
39static struct {
40	bool report_found;
41	bool async_fault;
42} test_status;
43
44/*
45 * Some tests use these global variables to store return values from function
46 * calls that could otherwise be eliminated by the compiler as dead code.
47 */
48void *kasan_ptr_result;
49int kasan_int_result;
50
51/* Probe for console output: obtains test_status lines of interest. */
52static void probe_console(void *ignore, const char *buf, size_t len)
53{
54	if (strnstr(buf, "BUG: KASAN: ", len))
55		WRITE_ONCE(test_status.report_found, true);
56	else if (strnstr(buf, "Asynchronous fault: ", len))
57		WRITE_ONCE(test_status.async_fault, true);
58}
59
60static int kasan_suite_init(struct kunit_suite *suite)
61{
62	if (!kasan_enabled()) {
63		pr_err("Can't run KASAN tests with KASAN disabled");
64		return -1;
65	}
66
67	/* Stop failing KUnit tests on KASAN reports. */
68	kasan_kunit_test_suite_start();
69
70	/*
71	 * Temporarily enable multi-shot mode. Otherwise, KASAN would only
72	 * report the first detected bug and panic the kernel if panic_on_warn
73	 * is enabled.
74	 */
75	multishot = kasan_save_enable_multi_shot();
76
77	register_trace_console(probe_console, NULL);
78	return 0;
79}
80
81static void kasan_suite_exit(struct kunit_suite *suite)
82{
83	kasan_kunit_test_suite_end();
84	kasan_restore_multi_shot(multishot);
85	unregister_trace_console(probe_console, NULL);
86	tracepoint_synchronize_unregister();
87}
88
89static void kasan_test_exit(struct kunit *test)
90{
91	KUNIT_EXPECT_FALSE(test, READ_ONCE(test_status.report_found));
92}
93
94/**
95 * KUNIT_EXPECT_KASAN_FAIL - check that the executed expression produces a
96 * KASAN report; causes a KUnit test failure otherwise.
97 *
98 * @test: Currently executing KUnit test.
99 * @expression: Expression that must produce a KASAN report.
100 *
101 * For hardware tag-based KASAN, when a synchronous tag fault happens, tag
102 * checking is auto-disabled. When this happens, this test handler reenables
103 * tag checking. As tag checking can be only disabled or enabled per CPU,
104 * this handler disables migration (preemption).
105 *
106 * Since the compiler doesn't see that the expression can change the test_status
107 * fields, it can reorder or optimize away the accesses to those fields.
108 * Use READ/WRITE_ONCE() for the accesses and compiler barriers around the
109 * expression to prevent that.
110 *
111 * In between KUNIT_EXPECT_KASAN_FAIL checks, test_status.report_found is kept
112 * as false. This allows detecting KASAN reports that happen outside of the
113 * checks by asserting !test_status.report_found at the start of
114 * KUNIT_EXPECT_KASAN_FAIL and in kasan_test_exit.
115 */
116#define KUNIT_EXPECT_KASAN_FAIL(test, expression) do {			\
117	if (IS_ENABLED(CONFIG_KASAN_HW_TAGS) &&				\
118	    kasan_sync_fault_possible())				\
119		migrate_disable();					\
120	KUNIT_EXPECT_FALSE(test, READ_ONCE(test_status.report_found));	\
121	barrier();							\
122	expression;							\
123	barrier();							\
124	if (kasan_async_fault_possible())				\
125		kasan_force_async_fault();				\
126	if (!READ_ONCE(test_status.report_found)) {			\
127		KUNIT_FAIL(test, KUNIT_SUBTEST_INDENT "KASAN failure "	\
128				"expected in \"" #expression		\
129				 "\", but none occurred");		\
130	}								\
131	if (IS_ENABLED(CONFIG_KASAN_HW_TAGS) &&				\
132	    kasan_sync_fault_possible()) {				\
133		if (READ_ONCE(test_status.report_found) &&		\
134		    !READ_ONCE(test_status.async_fault))		\
135			kasan_enable_hw_tags();				\
136		migrate_enable();					\
137	}								\
138	WRITE_ONCE(test_status.report_found, false);			\
139	WRITE_ONCE(test_status.async_fault, false);			\
140} while (0)
141
142#define KASAN_TEST_NEEDS_CONFIG_ON(test, config) do {			\
143	if (!IS_ENABLED(config))					\
144		kunit_skip((test), "Test requires " #config "=y");	\
145} while (0)
146
147#define KASAN_TEST_NEEDS_CONFIG_OFF(test, config) do {			\
148	if (IS_ENABLED(config))						\
149		kunit_skip((test), "Test requires " #config "=n");	\
150} while (0)
151
152#define KASAN_TEST_NEEDS_CHECKED_MEMINTRINSICS(test) do {		\
153	if (IS_ENABLED(CONFIG_KASAN_HW_TAGS))				\
154		break;  /* No compiler instrumentation. */		\
155	if (IS_ENABLED(CONFIG_CC_HAS_KASAN_MEMINTRINSIC_PREFIX))	\
156		break;  /* Should always be instrumented! */		\
157	if (IS_ENABLED(CONFIG_GENERIC_ENTRY))				\
158		kunit_skip((test), "Test requires checked mem*()");	\
159} while (0)
160
161static void kmalloc_oob_right(struct kunit *test)
162{
163	char *ptr;
164	size_t size = 128 - KASAN_GRANULE_SIZE - 5;
165
166	ptr = kmalloc(size, GFP_KERNEL);
167	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
168
169	OPTIMIZER_HIDE_VAR(ptr);
170	/*
171	 * An unaligned access past the requested kmalloc size.
172	 * Only generic KASAN can precisely detect these.
173	 */
174	if (IS_ENABLED(CONFIG_KASAN_GENERIC))
175		KUNIT_EXPECT_KASAN_FAIL(test, ptr[size] = 'x');
176
177	/*
178	 * An aligned access into the first out-of-bounds granule that falls
179	 * within the aligned kmalloc object.
180	 */
181	KUNIT_EXPECT_KASAN_FAIL(test, ptr[size + 5] = 'y');
182
183	/* Out-of-bounds access past the aligned kmalloc object. */
184	KUNIT_EXPECT_KASAN_FAIL(test, ptr[0] =
185					ptr[size + KASAN_GRANULE_SIZE + 5]);
186
187	kfree(ptr);
188}
189
190static void kmalloc_oob_left(struct kunit *test)
191{
192	char *ptr;
193	size_t size = 15;
194
195	ptr = kmalloc(size, GFP_KERNEL);
196	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
197
198	OPTIMIZER_HIDE_VAR(ptr);
199	KUNIT_EXPECT_KASAN_FAIL(test, *ptr = *(ptr - 1));
200	kfree(ptr);
201}
202
203static void kmalloc_node_oob_right(struct kunit *test)
204{
205	char *ptr;
206	size_t size = 4096;
207
208	ptr = kmalloc_node(size, GFP_KERNEL, 0);
209	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
210
211	OPTIMIZER_HIDE_VAR(ptr);
212	KUNIT_EXPECT_KASAN_FAIL(test, ptr[0] = ptr[size]);
213	kfree(ptr);
214}
215
216/*
217 * Check that KASAN detects an out-of-bounds access for a big object allocated
218 * via kmalloc(). But not as big as to trigger the page_alloc fallback.
219 */
220static void kmalloc_big_oob_right(struct kunit *test)
221{
222	char *ptr;
223	size_t size = KMALLOC_MAX_CACHE_SIZE - 256;
224
225	ptr = kmalloc(size, GFP_KERNEL);
226	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
227
228	OPTIMIZER_HIDE_VAR(ptr);
229	KUNIT_EXPECT_KASAN_FAIL(test, ptr[size] = 0);
230	kfree(ptr);
231}
232
233/*
234 * The kmalloc_large_* tests below use kmalloc() to allocate a memory chunk
235 * that does not fit into the largest slab cache and therefore is allocated via
236 * the page_alloc fallback.
237 */
238
239static void kmalloc_large_oob_right(struct kunit *test)
240{
241	char *ptr;
242	size_t size = KMALLOC_MAX_CACHE_SIZE + 10;
243
244	ptr = kmalloc(size, GFP_KERNEL);
245	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
246
247	OPTIMIZER_HIDE_VAR(ptr);
248	KUNIT_EXPECT_KASAN_FAIL(test, ptr[size + OOB_TAG_OFF] = 0);
249
250	kfree(ptr);
251}
252
253static void kmalloc_large_uaf(struct kunit *test)
254{
255	char *ptr;
256	size_t size = KMALLOC_MAX_CACHE_SIZE + 10;
257
258	ptr = kmalloc(size, GFP_KERNEL);
259	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
260	kfree(ptr);
261
262	KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)ptr)[0]);
263}
264
265static void kmalloc_large_invalid_free(struct kunit *test)
266{
267	char *ptr;
268	size_t size = KMALLOC_MAX_CACHE_SIZE + 10;
269
270	ptr = kmalloc(size, GFP_KERNEL);
271	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
272
273	KUNIT_EXPECT_KASAN_FAIL(test, kfree(ptr + 1));
274}
275
276static void page_alloc_oob_right(struct kunit *test)
277{
278	char *ptr;
279	struct page *pages;
280	size_t order = 4;
281	size_t size = (1UL << (PAGE_SHIFT + order));
282
283	/*
284	 * With generic KASAN page allocations have no redzones, thus
285	 * out-of-bounds detection is not guaranteed.
286	 * See https://bugzilla.kernel.org/show_bug.cgi?id=210503.
287	 */
288	KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_KASAN_GENERIC);
289
290	pages = alloc_pages(GFP_KERNEL, order);
291	ptr = page_address(pages);
292	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
293
294	KUNIT_EXPECT_KASAN_FAIL(test, ptr[0] = ptr[size]);
295	free_pages((unsigned long)ptr, order);
296}
297
298static void page_alloc_uaf(struct kunit *test)
299{
300	char *ptr;
301	struct page *pages;
302	size_t order = 4;
303
304	pages = alloc_pages(GFP_KERNEL, order);
305	ptr = page_address(pages);
306	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
307	free_pages((unsigned long)ptr, order);
308
309	KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)ptr)[0]);
310}
311
312static void krealloc_more_oob_helper(struct kunit *test,
313					size_t size1, size_t size2)
314{
315	char *ptr1, *ptr2;
316	size_t middle;
317
318	KUNIT_ASSERT_LT(test, size1, size2);
319	middle = size1 + (size2 - size1) / 2;
320
321	ptr1 = kmalloc(size1, GFP_KERNEL);
322	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr1);
323
324	ptr2 = krealloc(ptr1, size2, GFP_KERNEL);
325	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr2);
326
327	/* Suppress -Warray-bounds warnings. */
328	OPTIMIZER_HIDE_VAR(ptr2);
329
330	/* All offsets up to size2 must be accessible. */
331	ptr2[size1 - 1] = 'x';
332	ptr2[size1] = 'x';
333	ptr2[middle] = 'x';
334	ptr2[size2 - 1] = 'x';
335
336	/* Generic mode is precise, so unaligned size2 must be inaccessible. */
337	if (IS_ENABLED(CONFIG_KASAN_GENERIC))
338		KUNIT_EXPECT_KASAN_FAIL(test, ptr2[size2] = 'x');
339
340	/* For all modes first aligned offset after size2 must be inaccessible. */
341	KUNIT_EXPECT_KASAN_FAIL(test,
342		ptr2[round_up(size2, KASAN_GRANULE_SIZE)] = 'x');
343
344	kfree(ptr2);
345}
346
347static void krealloc_less_oob_helper(struct kunit *test,
348					size_t size1, size_t size2)
349{
350	char *ptr1, *ptr2;
351	size_t middle;
352
353	KUNIT_ASSERT_LT(test, size2, size1);
354	middle = size2 + (size1 - size2) / 2;
355
356	ptr1 = kmalloc(size1, GFP_KERNEL);
357	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr1);
358
359	ptr2 = krealloc(ptr1, size2, GFP_KERNEL);
360	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr2);
361
362	/* Suppress -Warray-bounds warnings. */
363	OPTIMIZER_HIDE_VAR(ptr2);
364
365	/* Must be accessible for all modes. */
366	ptr2[size2 - 1] = 'x';
367
368	/* Generic mode is precise, so unaligned size2 must be inaccessible. */
369	if (IS_ENABLED(CONFIG_KASAN_GENERIC))
370		KUNIT_EXPECT_KASAN_FAIL(test, ptr2[size2] = 'x');
371
372	/* For all modes first aligned offset after size2 must be inaccessible. */
373	KUNIT_EXPECT_KASAN_FAIL(test,
374		ptr2[round_up(size2, KASAN_GRANULE_SIZE)] = 'x');
375
376	/*
377	 * For all modes all size2, middle, and size1 should land in separate
378	 * granules and thus the latter two offsets should be inaccessible.
379	 */
380	KUNIT_EXPECT_LE(test, round_up(size2, KASAN_GRANULE_SIZE),
381				round_down(middle, KASAN_GRANULE_SIZE));
382	KUNIT_EXPECT_LE(test, round_up(middle, KASAN_GRANULE_SIZE),
383				round_down(size1, KASAN_GRANULE_SIZE));
384	KUNIT_EXPECT_KASAN_FAIL(test, ptr2[middle] = 'x');
385	KUNIT_EXPECT_KASAN_FAIL(test, ptr2[size1 - 1] = 'x');
386	KUNIT_EXPECT_KASAN_FAIL(test, ptr2[size1] = 'x');
387
388	kfree(ptr2);
389}
390
391static void krealloc_more_oob(struct kunit *test)
392{
393	krealloc_more_oob_helper(test, 201, 235);
394}
395
396static void krealloc_less_oob(struct kunit *test)
397{
398	krealloc_less_oob_helper(test, 235, 201);
399}
400
401static void krealloc_large_more_oob(struct kunit *test)
402{
403	krealloc_more_oob_helper(test, KMALLOC_MAX_CACHE_SIZE + 201,
404					KMALLOC_MAX_CACHE_SIZE + 235);
405}
406
407static void krealloc_large_less_oob(struct kunit *test)
408{
409	krealloc_less_oob_helper(test, KMALLOC_MAX_CACHE_SIZE + 235,
410					KMALLOC_MAX_CACHE_SIZE + 201);
411}
412
413/*
414 * Check that krealloc() detects a use-after-free, returns NULL,
415 * and doesn't unpoison the freed object.
416 */
417static void krealloc_uaf(struct kunit *test)
418{
419	char *ptr1, *ptr2;
420	int size1 = 201;
421	int size2 = 235;
422
423	ptr1 = kmalloc(size1, GFP_KERNEL);
424	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr1);
425	kfree(ptr1);
426
427	KUNIT_EXPECT_KASAN_FAIL(test, ptr2 = krealloc(ptr1, size2, GFP_KERNEL));
428	KUNIT_ASSERT_NULL(test, ptr2);
429	KUNIT_EXPECT_KASAN_FAIL(test, *(volatile char *)ptr1);
430}
431
432static void kmalloc_oob_16(struct kunit *test)
433{
434	struct {
435		u64 words[2];
436	} *ptr1, *ptr2;
437
438	KASAN_TEST_NEEDS_CHECKED_MEMINTRINSICS(test);
439
440	/* This test is specifically crafted for the generic mode. */
441	KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_GENERIC);
442
443	/* RELOC_HIDE to prevent gcc from warning about short alloc */
444	ptr1 = RELOC_HIDE(kmalloc(sizeof(*ptr1) - 3, GFP_KERNEL), 0);
445	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr1);
446
447	ptr2 = kmalloc(sizeof(*ptr2), GFP_KERNEL);
448	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr2);
449
450	OPTIMIZER_HIDE_VAR(ptr1);
451	OPTIMIZER_HIDE_VAR(ptr2);
452	KUNIT_EXPECT_KASAN_FAIL(test, *ptr1 = *ptr2);
453	kfree(ptr1);
454	kfree(ptr2);
455}
456
457static void kmalloc_uaf_16(struct kunit *test)
458{
459	struct {
460		u64 words[2];
461	} *ptr1, *ptr2;
462
463	KASAN_TEST_NEEDS_CHECKED_MEMINTRINSICS(test);
464
465	ptr1 = kmalloc(sizeof(*ptr1), GFP_KERNEL);
466	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr1);
467
468	ptr2 = kmalloc(sizeof(*ptr2), GFP_KERNEL);
469	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr2);
470	kfree(ptr2);
471
472	KUNIT_EXPECT_KASAN_FAIL(test, *ptr1 = *ptr2);
473	kfree(ptr1);
474}
475
476/*
477 * Note: in the memset tests below, the written range touches both valid and
478 * invalid memory. This makes sure that the instrumentation does not only check
479 * the starting address but the whole range.
480 */
481
482static void kmalloc_oob_memset_2(struct kunit *test)
483{
484	char *ptr;
485	size_t size = 128 - KASAN_GRANULE_SIZE;
486	size_t memset_size = 2;
487
488	KASAN_TEST_NEEDS_CHECKED_MEMINTRINSICS(test);
489
490	ptr = kmalloc(size, GFP_KERNEL);
491	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
492
493	OPTIMIZER_HIDE_VAR(ptr);
494	OPTIMIZER_HIDE_VAR(size);
495	OPTIMIZER_HIDE_VAR(memset_size);
496	KUNIT_EXPECT_KASAN_FAIL(test, memset(ptr + size - 1, 0, memset_size));
497	kfree(ptr);
498}
499
500static void kmalloc_oob_memset_4(struct kunit *test)
501{
502	char *ptr;
503	size_t size = 128 - KASAN_GRANULE_SIZE;
504	size_t memset_size = 4;
505
506	KASAN_TEST_NEEDS_CHECKED_MEMINTRINSICS(test);
507
508	ptr = kmalloc(size, GFP_KERNEL);
509	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
510
511	OPTIMIZER_HIDE_VAR(ptr);
512	OPTIMIZER_HIDE_VAR(size);
513	OPTIMIZER_HIDE_VAR(memset_size);
514	KUNIT_EXPECT_KASAN_FAIL(test, memset(ptr + size - 3, 0, memset_size));
515	kfree(ptr);
516}
517
518static void kmalloc_oob_memset_8(struct kunit *test)
519{
520	char *ptr;
521	size_t size = 128 - KASAN_GRANULE_SIZE;
522	size_t memset_size = 8;
523
524	KASAN_TEST_NEEDS_CHECKED_MEMINTRINSICS(test);
525
526	ptr = kmalloc(size, GFP_KERNEL);
527	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
528
529	OPTIMIZER_HIDE_VAR(ptr);
530	OPTIMIZER_HIDE_VAR(size);
531	OPTIMIZER_HIDE_VAR(memset_size);
532	KUNIT_EXPECT_KASAN_FAIL(test, memset(ptr + size - 7, 0, memset_size));
533	kfree(ptr);
534}
535
536static void kmalloc_oob_memset_16(struct kunit *test)
537{
538	char *ptr;
539	size_t size = 128 - KASAN_GRANULE_SIZE;
540	size_t memset_size = 16;
541
542	KASAN_TEST_NEEDS_CHECKED_MEMINTRINSICS(test);
543
544	ptr = kmalloc(size, GFP_KERNEL);
545	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
546
547	OPTIMIZER_HIDE_VAR(ptr);
548	OPTIMIZER_HIDE_VAR(size);
549	OPTIMIZER_HIDE_VAR(memset_size);
550	KUNIT_EXPECT_KASAN_FAIL(test, memset(ptr + size - 15, 0, memset_size));
551	kfree(ptr);
552}
553
554static void kmalloc_oob_in_memset(struct kunit *test)
555{
556	char *ptr;
557	size_t size = 128 - KASAN_GRANULE_SIZE;
558
559	KASAN_TEST_NEEDS_CHECKED_MEMINTRINSICS(test);
560
561	ptr = kmalloc(size, GFP_KERNEL);
562	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
563
564	OPTIMIZER_HIDE_VAR(ptr);
565	OPTIMIZER_HIDE_VAR(size);
566	KUNIT_EXPECT_KASAN_FAIL(test,
567				memset(ptr, 0, size + KASAN_GRANULE_SIZE));
568	kfree(ptr);
569}
570
571static void kmalloc_memmove_negative_size(struct kunit *test)
572{
573	char *ptr;
574	size_t size = 64;
575	size_t invalid_size = -2;
576
577	KASAN_TEST_NEEDS_CHECKED_MEMINTRINSICS(test);
578
579	/*
580	 * Hardware tag-based mode doesn't check memmove for negative size.
581	 * As a result, this test introduces a side-effect memory corruption,
582	 * which can result in a crash.
583	 */
584	KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_KASAN_HW_TAGS);
585
586	ptr = kmalloc(size, GFP_KERNEL);
587	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
588
589	memset((char *)ptr, 0, 64);
590	OPTIMIZER_HIDE_VAR(ptr);
591	OPTIMIZER_HIDE_VAR(invalid_size);
592	KUNIT_EXPECT_KASAN_FAIL(test,
593		memmove((char *)ptr, (char *)ptr + 4, invalid_size));
594	kfree(ptr);
595}
596
597static void kmalloc_memmove_invalid_size(struct kunit *test)
598{
599	char *ptr;
600	size_t size = 64;
601	size_t invalid_size = size;
602
603	KASAN_TEST_NEEDS_CHECKED_MEMINTRINSICS(test);
604
605	ptr = kmalloc(size, GFP_KERNEL);
606	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
607
608	memset((char *)ptr, 0, 64);
609	OPTIMIZER_HIDE_VAR(ptr);
610	OPTIMIZER_HIDE_VAR(invalid_size);
611	KUNIT_EXPECT_KASAN_FAIL(test,
612		memmove((char *)ptr, (char *)ptr + 4, invalid_size));
613	kfree(ptr);
614}
615
616static void kmalloc_uaf(struct kunit *test)
617{
618	char *ptr;
619	size_t size = 10;
620
621	ptr = kmalloc(size, GFP_KERNEL);
622	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
623
624	kfree(ptr);
625	KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)ptr)[8]);
626}
627
628static void kmalloc_uaf_memset(struct kunit *test)
629{
630	char *ptr;
631	size_t size = 33;
632
633	KASAN_TEST_NEEDS_CHECKED_MEMINTRINSICS(test);
634
635	/*
636	 * Only generic KASAN uses quarantine, which is required to avoid a
637	 * kernel memory corruption this test causes.
638	 */
639	KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_GENERIC);
640
641	ptr = kmalloc(size, GFP_KERNEL);
642	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
643
644	kfree(ptr);
645	KUNIT_EXPECT_KASAN_FAIL(test, memset(ptr, 0, size));
646}
647
648static void kmalloc_uaf2(struct kunit *test)
649{
650	char *ptr1, *ptr2;
651	size_t size = 43;
652	int counter = 0;
653
654again:
655	ptr1 = kmalloc(size, GFP_KERNEL);
656	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr1);
657
658	kfree(ptr1);
659
660	ptr2 = kmalloc(size, GFP_KERNEL);
661	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr2);
662
663	/*
664	 * For tag-based KASAN ptr1 and ptr2 tags might happen to be the same.
665	 * Allow up to 16 attempts at generating different tags.
666	 */
667	if (!IS_ENABLED(CONFIG_KASAN_GENERIC) && ptr1 == ptr2 && counter++ < 16) {
668		kfree(ptr2);
669		goto again;
670	}
671
672	KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)ptr1)[40]);
673	KUNIT_EXPECT_PTR_NE(test, ptr1, ptr2);
674
675	kfree(ptr2);
676}
677
678/*
679 * Check that KASAN detects use-after-free when another object was allocated in
680 * the same slot. Relevant for the tag-based modes, which do not use quarantine.
681 */
682static void kmalloc_uaf3(struct kunit *test)
683{
684	char *ptr1, *ptr2;
685	size_t size = 100;
686
687	/* This test is specifically crafted for tag-based modes. */
688	KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_KASAN_GENERIC);
689
690	ptr1 = kmalloc(size, GFP_KERNEL);
691	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr1);
692	kfree(ptr1);
693
694	ptr2 = kmalloc(size, GFP_KERNEL);
695	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr2);
696	kfree(ptr2);
697
698	KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)ptr1)[8]);
699}
700
701static void kasan_atomics_helper(struct kunit *test, void *unsafe, void *safe)
702{
703	int *i_unsafe = unsafe;
704
705	KUNIT_EXPECT_KASAN_FAIL(test, READ_ONCE(*i_unsafe));
706	KUNIT_EXPECT_KASAN_FAIL(test, WRITE_ONCE(*i_unsafe, 42));
707	KUNIT_EXPECT_KASAN_FAIL(test, smp_load_acquire(i_unsafe));
708	KUNIT_EXPECT_KASAN_FAIL(test, smp_store_release(i_unsafe, 42));
709
710	KUNIT_EXPECT_KASAN_FAIL(test, atomic_read(unsafe));
711	KUNIT_EXPECT_KASAN_FAIL(test, atomic_set(unsafe, 42));
712	KUNIT_EXPECT_KASAN_FAIL(test, atomic_add(42, unsafe));
713	KUNIT_EXPECT_KASAN_FAIL(test, atomic_sub(42, unsafe));
714	KUNIT_EXPECT_KASAN_FAIL(test, atomic_inc(unsafe));
715	KUNIT_EXPECT_KASAN_FAIL(test, atomic_dec(unsafe));
716	KUNIT_EXPECT_KASAN_FAIL(test, atomic_and(42, unsafe));
717	KUNIT_EXPECT_KASAN_FAIL(test, atomic_andnot(42, unsafe));
718	KUNIT_EXPECT_KASAN_FAIL(test, atomic_or(42, unsafe));
719	KUNIT_EXPECT_KASAN_FAIL(test, atomic_xor(42, unsafe));
720	KUNIT_EXPECT_KASAN_FAIL(test, atomic_xchg(unsafe, 42));
721	KUNIT_EXPECT_KASAN_FAIL(test, atomic_cmpxchg(unsafe, 21, 42));
722	KUNIT_EXPECT_KASAN_FAIL(test, atomic_try_cmpxchg(unsafe, safe, 42));
723	KUNIT_EXPECT_KASAN_FAIL(test, atomic_try_cmpxchg(safe, unsafe, 42));
724	KUNIT_EXPECT_KASAN_FAIL(test, atomic_sub_and_test(42, unsafe));
725	KUNIT_EXPECT_KASAN_FAIL(test, atomic_dec_and_test(unsafe));
726	KUNIT_EXPECT_KASAN_FAIL(test, atomic_inc_and_test(unsafe));
727	KUNIT_EXPECT_KASAN_FAIL(test, atomic_add_negative(42, unsafe));
728	KUNIT_EXPECT_KASAN_FAIL(test, atomic_add_unless(unsafe, 21, 42));
729	KUNIT_EXPECT_KASAN_FAIL(test, atomic_inc_not_zero(unsafe));
730	KUNIT_EXPECT_KASAN_FAIL(test, atomic_inc_unless_negative(unsafe));
731	KUNIT_EXPECT_KASAN_FAIL(test, atomic_dec_unless_positive(unsafe));
732	KUNIT_EXPECT_KASAN_FAIL(test, atomic_dec_if_positive(unsafe));
733
734	KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_read(unsafe));
735	KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_set(unsafe, 42));
736	KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_add(42, unsafe));
737	KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_sub(42, unsafe));
738	KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_inc(unsafe));
739	KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_dec(unsafe));
740	KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_and(42, unsafe));
741	KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_andnot(42, unsafe));
742	KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_or(42, unsafe));
743	KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_xor(42, unsafe));
744	KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_xchg(unsafe, 42));
745	KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_cmpxchg(unsafe, 21, 42));
746	KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_try_cmpxchg(unsafe, safe, 42));
747	KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_try_cmpxchg(safe, unsafe, 42));
748	KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_sub_and_test(42, unsafe));
749	KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_dec_and_test(unsafe));
750	KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_inc_and_test(unsafe));
751	KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_add_negative(42, unsafe));
752	KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_add_unless(unsafe, 21, 42));
753	KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_inc_not_zero(unsafe));
754	KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_inc_unless_negative(unsafe));
755	KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_dec_unless_positive(unsafe));
756	KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_dec_if_positive(unsafe));
757}
758
759static void kasan_atomics(struct kunit *test)
760{
761	void *a1, *a2;
762
763	/*
764	 * Just as with kasan_bitops_tags(), we allocate 48 bytes of memory such
765	 * that the following 16 bytes will make up the redzone.
766	 */
767	a1 = kzalloc(48, GFP_KERNEL);
768	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, a1);
769	a2 = kzalloc(sizeof(atomic_long_t), GFP_KERNEL);
770	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, a2);
771
772	/* Use atomics to access the redzone. */
773	kasan_atomics_helper(test, a1 + 48, a2);
774
775	kfree(a1);
776	kfree(a2);
777}
778
779static void kmalloc_double_kzfree(struct kunit *test)
780{
781	char *ptr;
782	size_t size = 16;
783
784	ptr = kmalloc(size, GFP_KERNEL);
785	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
786
787	kfree_sensitive(ptr);
788	KUNIT_EXPECT_KASAN_FAIL(test, kfree_sensitive(ptr));
789}
790
791/* Check that ksize() does NOT unpoison whole object. */
792static void ksize_unpoisons_memory(struct kunit *test)
793{
794	char *ptr;
795	size_t size = 128 - KASAN_GRANULE_SIZE - 5;
796	size_t real_size;
797
798	ptr = kmalloc(size, GFP_KERNEL);
799	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
800
801	real_size = ksize(ptr);
802	KUNIT_EXPECT_GT(test, real_size, size);
803
804	OPTIMIZER_HIDE_VAR(ptr);
805
806	/* These accesses shouldn't trigger a KASAN report. */
807	ptr[0] = 'x';
808	ptr[size - 1] = 'x';
809
810	/* These must trigger a KASAN report. */
811	if (IS_ENABLED(CONFIG_KASAN_GENERIC))
812		KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)ptr)[size]);
813	KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)ptr)[size + 5]);
814	KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)ptr)[real_size - 1]);
815
816	kfree(ptr);
817}
818
819/*
820 * Check that a use-after-free is detected by ksize() and via normal accesses
821 * after it.
822 */
823static void ksize_uaf(struct kunit *test)
824{
825	char *ptr;
826	int size = 128 - KASAN_GRANULE_SIZE;
827
828	ptr = kmalloc(size, GFP_KERNEL);
829	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
830	kfree(ptr);
831
832	OPTIMIZER_HIDE_VAR(ptr);
833	KUNIT_EXPECT_KASAN_FAIL(test, ksize(ptr));
834	KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)ptr)[0]);
835	KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)ptr)[size]);
836}
837
838/*
839 * The two tests below check that Generic KASAN prints auxiliary stack traces
840 * for RCU callbacks and workqueues. The reports need to be inspected manually.
841 *
842 * These tests are still enabled for other KASAN modes to make sure that all
843 * modes report bad accesses in tested scenarios.
844 */
845
846static struct kasan_rcu_info {
847	int i;
848	struct rcu_head rcu;
849} *global_rcu_ptr;
850
851static void rcu_uaf_reclaim(struct rcu_head *rp)
852{
853	struct kasan_rcu_info *fp =
854		container_of(rp, struct kasan_rcu_info, rcu);
855
856	kfree(fp);
857	((volatile struct kasan_rcu_info *)fp)->i;
858}
859
860static void rcu_uaf(struct kunit *test)
861{
862	struct kasan_rcu_info *ptr;
863
864	ptr = kmalloc(sizeof(struct kasan_rcu_info), GFP_KERNEL);
865	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
866
867	global_rcu_ptr = rcu_dereference_protected(
868				(struct kasan_rcu_info __rcu *)ptr, NULL);
869
870	KUNIT_EXPECT_KASAN_FAIL(test,
871		call_rcu(&global_rcu_ptr->rcu, rcu_uaf_reclaim);
872		rcu_barrier());
873}
874
875static void workqueue_uaf_work(struct work_struct *work)
876{
877	kfree(work);
878}
879
880static void workqueue_uaf(struct kunit *test)
881{
882	struct workqueue_struct *workqueue;
883	struct work_struct *work;
884
885	workqueue = create_workqueue("kasan_workqueue_test");
886	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, workqueue);
887
888	work = kmalloc(sizeof(struct work_struct), GFP_KERNEL);
889	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, work);
890
891	INIT_WORK(work, workqueue_uaf_work);
892	queue_work(workqueue, work);
893	destroy_workqueue(workqueue);
894
895	KUNIT_EXPECT_KASAN_FAIL(test,
896		((volatile struct work_struct *)work)->data);
897}
898
899static void kfree_via_page(struct kunit *test)
900{
901	char *ptr;
902	size_t size = 8;
903	struct page *page;
904	unsigned long offset;
905
906	ptr = kmalloc(size, GFP_KERNEL);
907	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
908
909	page = virt_to_page(ptr);
910	offset = offset_in_page(ptr);
911	kfree(page_address(page) + offset);
912}
913
914static void kfree_via_phys(struct kunit *test)
915{
916	char *ptr;
917	size_t size = 8;
918	phys_addr_t phys;
919
920	ptr = kmalloc(size, GFP_KERNEL);
921	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
922
923	phys = virt_to_phys(ptr);
924	kfree(phys_to_virt(phys));
925}
926
927static void kmem_cache_oob(struct kunit *test)
928{
929	char *p;
930	size_t size = 200;
931	struct kmem_cache *cache;
932
933	cache = kmem_cache_create("test_cache", size, 0, 0, NULL);
934	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, cache);
935
936	p = kmem_cache_alloc(cache, GFP_KERNEL);
937	if (!p) {
938		kunit_err(test, "Allocation failed: %s\n", __func__);
939		kmem_cache_destroy(cache);
940		return;
941	}
942
943	KUNIT_EXPECT_KASAN_FAIL(test, *p = p[size + OOB_TAG_OFF]);
944
945	kmem_cache_free(cache, p);
946	kmem_cache_destroy(cache);
947}
948
949static void kmem_cache_double_free(struct kunit *test)
950{
951	char *p;
952	size_t size = 200;
953	struct kmem_cache *cache;
954
955	cache = kmem_cache_create("test_cache", size, 0, 0, NULL);
956	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, cache);
957
958	p = kmem_cache_alloc(cache, GFP_KERNEL);
959	if (!p) {
960		kunit_err(test, "Allocation failed: %s\n", __func__);
961		kmem_cache_destroy(cache);
962		return;
963	}
964
965	kmem_cache_free(cache, p);
966	KUNIT_EXPECT_KASAN_FAIL(test, kmem_cache_free(cache, p));
967	kmem_cache_destroy(cache);
968}
969
970static void kmem_cache_invalid_free(struct kunit *test)
971{
972	char *p;
973	size_t size = 200;
974	struct kmem_cache *cache;
975
976	cache = kmem_cache_create("test_cache", size, 0, SLAB_TYPESAFE_BY_RCU,
977				  NULL);
978	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, cache);
979
980	p = kmem_cache_alloc(cache, GFP_KERNEL);
981	if (!p) {
982		kunit_err(test, "Allocation failed: %s\n", __func__);
983		kmem_cache_destroy(cache);
984		return;
985	}
986
987	/* Trigger invalid free, the object doesn't get freed. */
988	KUNIT_EXPECT_KASAN_FAIL(test, kmem_cache_free(cache, p + 1));
989
990	/*
991	 * Properly free the object to prevent the "Objects remaining in
992	 * test_cache on __kmem_cache_shutdown" BUG failure.
993	 */
994	kmem_cache_free(cache, p);
995
996	kmem_cache_destroy(cache);
997}
998
999static void empty_cache_ctor(void *object) { }
1000
1001static void kmem_cache_double_destroy(struct kunit *test)
1002{
1003	struct kmem_cache *cache;
1004
1005	/* Provide a constructor to prevent cache merging. */
1006	cache = kmem_cache_create("test_cache", 200, 0, 0, empty_cache_ctor);
1007	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, cache);
1008	kmem_cache_destroy(cache);
1009	KUNIT_EXPECT_KASAN_FAIL(test, kmem_cache_destroy(cache));
1010}
1011
1012static void kmem_cache_accounted(struct kunit *test)
1013{
1014	int i;
1015	char *p;
1016	size_t size = 200;
1017	struct kmem_cache *cache;
1018
1019	cache = kmem_cache_create("test_cache", size, 0, SLAB_ACCOUNT, NULL);
1020	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, cache);
1021
1022	/*
1023	 * Several allocations with a delay to allow for lazy per memcg kmem
1024	 * cache creation.
1025	 */
1026	for (i = 0; i < 5; i++) {
1027		p = kmem_cache_alloc(cache, GFP_KERNEL);
1028		if (!p)
1029			goto free_cache;
1030
1031		kmem_cache_free(cache, p);
1032		msleep(100);
1033	}
1034
1035free_cache:
1036	kmem_cache_destroy(cache);
1037}
1038
1039static void kmem_cache_bulk(struct kunit *test)
1040{
1041	struct kmem_cache *cache;
1042	size_t size = 200;
1043	char *p[10];
1044	bool ret;
1045	int i;
1046
1047	cache = kmem_cache_create("test_cache", size, 0, 0, NULL);
1048	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, cache);
1049
1050	ret = kmem_cache_alloc_bulk(cache, GFP_KERNEL, ARRAY_SIZE(p), (void **)&p);
1051	if (!ret) {
1052		kunit_err(test, "Allocation failed: %s\n", __func__);
1053		kmem_cache_destroy(cache);
1054		return;
1055	}
1056
1057	for (i = 0; i < ARRAY_SIZE(p); i++)
1058		p[i][0] = p[i][size - 1] = 42;
1059
1060	kmem_cache_free_bulk(cache, ARRAY_SIZE(p), (void **)&p);
1061	kmem_cache_destroy(cache);
1062}
1063
1064static void *mempool_prepare_kmalloc(struct kunit *test, mempool_t *pool, size_t size)
1065{
1066	int pool_size = 4;
1067	int ret;
1068	void *elem;
1069
1070	memset(pool, 0, sizeof(*pool));
1071	ret = mempool_init_kmalloc_pool(pool, pool_size, size);
1072	KUNIT_ASSERT_EQ(test, ret, 0);
1073
1074	/*
1075	 * Allocate one element to prevent mempool from freeing elements to the
1076	 * underlying allocator and instead make it add them to the element
1077	 * list when the tests trigger double-free and invalid-free bugs.
1078	 * This allows testing KASAN annotations in add_element().
1079	 */
1080	elem = mempool_alloc_preallocated(pool);
1081	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, elem);
1082
1083	return elem;
1084}
1085
1086static struct kmem_cache *mempool_prepare_slab(struct kunit *test, mempool_t *pool, size_t size)
1087{
1088	struct kmem_cache *cache;
1089	int pool_size = 4;
1090	int ret;
1091
1092	cache = kmem_cache_create("test_cache", size, 0, 0, NULL);
1093	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, cache);
1094
1095	memset(pool, 0, sizeof(*pool));
1096	ret = mempool_init_slab_pool(pool, pool_size, cache);
1097	KUNIT_ASSERT_EQ(test, ret, 0);
1098
1099	/*
1100	 * Do not allocate one preallocated element, as we skip the double-free
1101	 * and invalid-free tests for slab mempool for simplicity.
1102	 */
1103
1104	return cache;
1105}
1106
1107static void *mempool_prepare_page(struct kunit *test, mempool_t *pool, int order)
1108{
1109	int pool_size = 4;
1110	int ret;
1111	void *elem;
1112
1113	memset(pool, 0, sizeof(*pool));
1114	ret = mempool_init_page_pool(pool, pool_size, order);
1115	KUNIT_ASSERT_EQ(test, ret, 0);
1116
1117	elem = mempool_alloc_preallocated(pool);
1118	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, elem);
1119
1120	return elem;
1121}
1122
1123static void mempool_oob_right_helper(struct kunit *test, mempool_t *pool, size_t size)
1124{
1125	char *elem;
1126
1127	elem = mempool_alloc_preallocated(pool);
1128	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, elem);
1129
1130	OPTIMIZER_HIDE_VAR(elem);
1131
1132	if (IS_ENABLED(CONFIG_KASAN_GENERIC))
1133		KUNIT_EXPECT_KASAN_FAIL(test,
1134			((volatile char *)&elem[size])[0]);
1135	else
1136		KUNIT_EXPECT_KASAN_FAIL(test,
1137			((volatile char *)&elem[round_up(size, KASAN_GRANULE_SIZE)])[0]);
1138
1139	mempool_free(elem, pool);
1140}
1141
1142static void mempool_kmalloc_oob_right(struct kunit *test)
1143{
1144	mempool_t pool;
1145	size_t size = 128 - KASAN_GRANULE_SIZE - 5;
1146	void *extra_elem;
1147
1148	extra_elem = mempool_prepare_kmalloc(test, &pool, size);
1149
1150	mempool_oob_right_helper(test, &pool, size);
1151
1152	mempool_free(extra_elem, &pool);
1153	mempool_exit(&pool);
1154}
1155
1156static void mempool_kmalloc_large_oob_right(struct kunit *test)
1157{
1158	mempool_t pool;
1159	size_t size = KMALLOC_MAX_CACHE_SIZE + 1;
1160	void *extra_elem;
1161
1162	extra_elem = mempool_prepare_kmalloc(test, &pool, size);
1163
1164	mempool_oob_right_helper(test, &pool, size);
1165
1166	mempool_free(extra_elem, &pool);
1167	mempool_exit(&pool);
1168}
1169
1170static void mempool_slab_oob_right(struct kunit *test)
1171{
1172	mempool_t pool;
1173	size_t size = 123;
1174	struct kmem_cache *cache;
1175
1176	cache = mempool_prepare_slab(test, &pool, size);
1177
1178	mempool_oob_right_helper(test, &pool, size);
1179
1180	mempool_exit(&pool);
1181	kmem_cache_destroy(cache);
1182}
1183
1184/*
1185 * Skip the out-of-bounds test for page mempool. With Generic KASAN, page
1186 * allocations have no redzones, and thus the out-of-bounds detection is not
1187 * guaranteed; see https://bugzilla.kernel.org/show_bug.cgi?id=210503. With
1188 * the tag-based KASAN modes, the neighboring allocation might have the same
1189 * tag; see https://bugzilla.kernel.org/show_bug.cgi?id=203505.
1190 */
1191
1192static void mempool_uaf_helper(struct kunit *test, mempool_t *pool, bool page)
1193{
1194	char *elem, *ptr;
1195
1196	elem = mempool_alloc_preallocated(pool);
1197	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, elem);
1198
1199	mempool_free(elem, pool);
1200
1201	ptr = page ? page_address((struct page *)elem) : elem;
1202	KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)ptr)[0]);
1203}
1204
1205static void mempool_kmalloc_uaf(struct kunit *test)
1206{
1207	mempool_t pool;
1208	size_t size = 128;
1209	void *extra_elem;
1210
1211	extra_elem = mempool_prepare_kmalloc(test, &pool, size);
1212
1213	mempool_uaf_helper(test, &pool, false);
1214
1215	mempool_free(extra_elem, &pool);
1216	mempool_exit(&pool);
1217}
1218
1219static void mempool_kmalloc_large_uaf(struct kunit *test)
1220{
1221	mempool_t pool;
1222	size_t size = KMALLOC_MAX_CACHE_SIZE + 1;
1223	void *extra_elem;
1224
1225	extra_elem = mempool_prepare_kmalloc(test, &pool, size);
1226
1227	mempool_uaf_helper(test, &pool, false);
1228
1229	mempool_free(extra_elem, &pool);
1230	mempool_exit(&pool);
1231}
1232
1233static void mempool_slab_uaf(struct kunit *test)
1234{
1235	mempool_t pool;
1236	size_t size = 123;
1237	struct kmem_cache *cache;
1238
1239	cache = mempool_prepare_slab(test, &pool, size);
1240
1241	mempool_uaf_helper(test, &pool, false);
1242
1243	mempool_exit(&pool);
1244	kmem_cache_destroy(cache);
1245}
1246
1247static void mempool_page_alloc_uaf(struct kunit *test)
1248{
1249	mempool_t pool;
1250	int order = 2;
1251	void *extra_elem;
1252
1253	extra_elem = mempool_prepare_page(test, &pool, order);
1254
1255	mempool_uaf_helper(test, &pool, true);
1256
1257	mempool_free(extra_elem, &pool);
1258	mempool_exit(&pool);
1259}
1260
1261static void mempool_double_free_helper(struct kunit *test, mempool_t *pool)
1262{
1263	char *elem;
1264
1265	elem = mempool_alloc_preallocated(pool);
1266	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, elem);
1267
1268	mempool_free(elem, pool);
1269
1270	KUNIT_EXPECT_KASAN_FAIL(test, mempool_free(elem, pool));
1271}
1272
1273static void mempool_kmalloc_double_free(struct kunit *test)
1274{
1275	mempool_t pool;
1276	size_t size = 128;
1277	char *extra_elem;
1278
1279	extra_elem = mempool_prepare_kmalloc(test, &pool, size);
1280
1281	mempool_double_free_helper(test, &pool);
1282
1283	mempool_free(extra_elem, &pool);
1284	mempool_exit(&pool);
1285}
1286
1287static void mempool_kmalloc_large_double_free(struct kunit *test)
1288{
1289	mempool_t pool;
1290	size_t size = KMALLOC_MAX_CACHE_SIZE + 1;
1291	char *extra_elem;
1292
1293	extra_elem = mempool_prepare_kmalloc(test, &pool, size);
1294
1295	mempool_double_free_helper(test, &pool);
1296
1297	mempool_free(extra_elem, &pool);
1298	mempool_exit(&pool);
1299}
1300
1301static void mempool_page_alloc_double_free(struct kunit *test)
1302{
1303	mempool_t pool;
1304	int order = 2;
1305	char *extra_elem;
1306
1307	extra_elem = mempool_prepare_page(test, &pool, order);
1308
1309	mempool_double_free_helper(test, &pool);
1310
1311	mempool_free(extra_elem, &pool);
1312	mempool_exit(&pool);
1313}
1314
1315static void mempool_kmalloc_invalid_free_helper(struct kunit *test, mempool_t *pool)
1316{
1317	char *elem;
1318
1319	elem = mempool_alloc_preallocated(pool);
1320	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, elem);
1321
1322	KUNIT_EXPECT_KASAN_FAIL(test, mempool_free(elem + 1, pool));
1323
1324	mempool_free(elem, pool);
1325}
1326
1327static void mempool_kmalloc_invalid_free(struct kunit *test)
1328{
1329	mempool_t pool;
1330	size_t size = 128;
1331	char *extra_elem;
1332
1333	extra_elem = mempool_prepare_kmalloc(test, &pool, size);
1334
1335	mempool_kmalloc_invalid_free_helper(test, &pool);
1336
1337	mempool_free(extra_elem, &pool);
1338	mempool_exit(&pool);
1339}
1340
1341static void mempool_kmalloc_large_invalid_free(struct kunit *test)
1342{
1343	mempool_t pool;
1344	size_t size = KMALLOC_MAX_CACHE_SIZE + 1;
1345	char *extra_elem;
1346
1347	extra_elem = mempool_prepare_kmalloc(test, &pool, size);
1348
1349	mempool_kmalloc_invalid_free_helper(test, &pool);
1350
1351	mempool_free(extra_elem, &pool);
1352	mempool_exit(&pool);
1353}
1354
1355/*
1356 * Skip the invalid-free test for page mempool. The invalid-free detection only
1357 * works for compound pages and mempool preallocates all page elements without
1358 * the __GFP_COMP flag.
1359 */
1360
1361static char global_array[10];
1362
1363static void kasan_global_oob_right(struct kunit *test)
1364{
1365	/*
1366	 * Deliberate out-of-bounds access. To prevent CONFIG_UBSAN_LOCAL_BOUNDS
1367	 * from failing here and panicking the kernel, access the array via a
1368	 * volatile pointer, which will prevent the compiler from being able to
1369	 * determine the array bounds.
1370	 *
1371	 * This access uses a volatile pointer to char (char *volatile) rather
1372	 * than the more conventional pointer to volatile char (volatile char *)
1373	 * because we want to prevent the compiler from making inferences about
1374	 * the pointer itself (i.e. its array bounds), not the data that it
1375	 * refers to.
1376	 */
1377	char *volatile array = global_array;
1378	char *p = &array[ARRAY_SIZE(global_array) + 3];
1379
1380	/* Only generic mode instruments globals. */
1381	KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_GENERIC);
1382
1383	KUNIT_EXPECT_KASAN_FAIL(test, *(volatile char *)p);
1384}
1385
1386static void kasan_global_oob_left(struct kunit *test)
1387{
1388	char *volatile array = global_array;
1389	char *p = array - 3;
1390
1391	/*
1392	 * GCC is known to fail this test, skip it.
1393	 * See https://bugzilla.kernel.org/show_bug.cgi?id=215051.
1394	 */
1395	KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_CC_IS_CLANG);
1396	KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_GENERIC);
1397	KUNIT_EXPECT_KASAN_FAIL(test, *(volatile char *)p);
1398}
1399
1400static void kasan_stack_oob(struct kunit *test)
1401{
1402	char stack_array[10];
1403	/* See comment in kasan_global_oob_right. */
1404	char *volatile array = stack_array;
1405	char *p = &array[ARRAY_SIZE(stack_array) + OOB_TAG_OFF];
1406
1407	KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_STACK);
1408
1409	KUNIT_EXPECT_KASAN_FAIL(test, *(volatile char *)p);
1410}
1411
1412static void kasan_alloca_oob_left(struct kunit *test)
1413{
1414	volatile int i = 10;
1415	char alloca_array[i];
1416	/* See comment in kasan_global_oob_right. */
1417	char *volatile array = alloca_array;
1418	char *p = array - 1;
1419
1420	/* Only generic mode instruments dynamic allocas. */
1421	KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_GENERIC);
1422	KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_STACK);
1423
1424	KUNIT_EXPECT_KASAN_FAIL(test, *(volatile char *)p);
1425}
1426
1427static void kasan_alloca_oob_right(struct kunit *test)
1428{
1429	volatile int i = 10;
1430	char alloca_array[i];
1431	/* See comment in kasan_global_oob_right. */
1432	char *volatile array = alloca_array;
1433	char *p = array + i;
1434
1435	/* Only generic mode instruments dynamic allocas. */
1436	KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_GENERIC);
1437	KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_STACK);
1438
1439	KUNIT_EXPECT_KASAN_FAIL(test, *(volatile char *)p);
1440}
1441
1442static void kasan_memchr(struct kunit *test)
1443{
1444	char *ptr;
1445	size_t size = 24;
1446
1447	/*
1448	 * str* functions are not instrumented with CONFIG_AMD_MEM_ENCRYPT.
1449	 * See https://bugzilla.kernel.org/show_bug.cgi?id=206337 for details.
1450	 */
1451	KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_AMD_MEM_ENCRYPT);
1452
1453	if (OOB_TAG_OFF)
1454		size = round_up(size, OOB_TAG_OFF);
1455
1456	ptr = kmalloc(size, GFP_KERNEL | __GFP_ZERO);
1457	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
1458
1459	OPTIMIZER_HIDE_VAR(ptr);
1460	OPTIMIZER_HIDE_VAR(size);
1461	KUNIT_EXPECT_KASAN_FAIL(test,
1462		kasan_ptr_result = memchr(ptr, '1', size + 1));
1463
1464	kfree(ptr);
1465}
1466
1467static void kasan_memcmp(struct kunit *test)
1468{
1469	char *ptr;
1470	size_t size = 24;
1471	int arr[9];
1472
1473	/*
1474	 * str* functions are not instrumented with CONFIG_AMD_MEM_ENCRYPT.
1475	 * See https://bugzilla.kernel.org/show_bug.cgi?id=206337 for details.
1476	 */
1477	KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_AMD_MEM_ENCRYPT);
1478
1479	if (OOB_TAG_OFF)
1480		size = round_up(size, OOB_TAG_OFF);
1481
1482	ptr = kmalloc(size, GFP_KERNEL | __GFP_ZERO);
1483	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
1484	memset(arr, 0, sizeof(arr));
1485
1486	OPTIMIZER_HIDE_VAR(ptr);
1487	OPTIMIZER_HIDE_VAR(size);
1488	KUNIT_EXPECT_KASAN_FAIL(test,
1489		kasan_int_result = memcmp(ptr, arr, size+1));
1490	kfree(ptr);
1491}
1492
1493static void kasan_strings(struct kunit *test)
1494{
1495	char *ptr;
1496	size_t size = 24;
1497
1498	/*
1499	 * str* functions are not instrumented with CONFIG_AMD_MEM_ENCRYPT.
1500	 * See https://bugzilla.kernel.org/show_bug.cgi?id=206337 for details.
1501	 */
1502	KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_AMD_MEM_ENCRYPT);
1503
1504	ptr = kmalloc(size, GFP_KERNEL | __GFP_ZERO);
1505	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
1506
1507	kfree(ptr);
1508
1509	/*
1510	 * Try to cause only 1 invalid access (less spam in dmesg).
1511	 * For that we need ptr to point to zeroed byte.
1512	 * Skip metadata that could be stored in freed object so ptr
1513	 * will likely point to zeroed byte.
1514	 */
1515	ptr += 16;
1516	KUNIT_EXPECT_KASAN_FAIL(test, kasan_ptr_result = strchr(ptr, '1'));
1517
1518	KUNIT_EXPECT_KASAN_FAIL(test, kasan_ptr_result = strrchr(ptr, '1'));
1519
1520	KUNIT_EXPECT_KASAN_FAIL(test, kasan_int_result = strcmp(ptr, "2"));
1521
1522	KUNIT_EXPECT_KASAN_FAIL(test, kasan_int_result = strncmp(ptr, "2", 1));
1523
1524	KUNIT_EXPECT_KASAN_FAIL(test, kasan_int_result = strlen(ptr));
1525
1526	KUNIT_EXPECT_KASAN_FAIL(test, kasan_int_result = strnlen(ptr, 1));
1527}
1528
1529static void kasan_bitops_modify(struct kunit *test, int nr, void *addr)
1530{
1531	KUNIT_EXPECT_KASAN_FAIL(test, set_bit(nr, addr));
1532	KUNIT_EXPECT_KASAN_FAIL(test, __set_bit(nr, addr));
1533	KUNIT_EXPECT_KASAN_FAIL(test, clear_bit(nr, addr));
1534	KUNIT_EXPECT_KASAN_FAIL(test, __clear_bit(nr, addr));
1535	KUNIT_EXPECT_KASAN_FAIL(test, clear_bit_unlock(nr, addr));
1536	KUNIT_EXPECT_KASAN_FAIL(test, __clear_bit_unlock(nr, addr));
1537	KUNIT_EXPECT_KASAN_FAIL(test, change_bit(nr, addr));
1538	KUNIT_EXPECT_KASAN_FAIL(test, __change_bit(nr, addr));
1539}
1540
1541static void kasan_bitops_test_and_modify(struct kunit *test, int nr, void *addr)
1542{
1543	KUNIT_EXPECT_KASAN_FAIL(test, test_and_set_bit(nr, addr));
1544	KUNIT_EXPECT_KASAN_FAIL(test, __test_and_set_bit(nr, addr));
1545	KUNIT_EXPECT_KASAN_FAIL(test, test_and_set_bit_lock(nr, addr));
1546	KUNIT_EXPECT_KASAN_FAIL(test, test_and_clear_bit(nr, addr));
1547	KUNIT_EXPECT_KASAN_FAIL(test, __test_and_clear_bit(nr, addr));
1548	KUNIT_EXPECT_KASAN_FAIL(test, test_and_change_bit(nr, addr));
1549	KUNIT_EXPECT_KASAN_FAIL(test, __test_and_change_bit(nr, addr));
1550	KUNIT_EXPECT_KASAN_FAIL(test, kasan_int_result = test_bit(nr, addr));
1551	if (nr < 7)
1552		KUNIT_EXPECT_KASAN_FAIL(test, kasan_int_result =
1553				xor_unlock_is_negative_byte(1 << nr, addr));
1554}
1555
1556static void kasan_bitops_generic(struct kunit *test)
1557{
1558	long *bits;
1559
1560	/* This test is specifically crafted for the generic mode. */
1561	KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_GENERIC);
1562
1563	/*
1564	 * Allocate 1 more byte, which causes kzalloc to round up to 16 bytes;
1565	 * this way we do not actually corrupt other memory.
1566	 */
1567	bits = kzalloc(sizeof(*bits) + 1, GFP_KERNEL);
1568	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, bits);
1569
1570	/*
1571	 * Below calls try to access bit within allocated memory; however, the
1572	 * below accesses are still out-of-bounds, since bitops are defined to
1573	 * operate on the whole long the bit is in.
1574	 */
1575	kasan_bitops_modify(test, BITS_PER_LONG, bits);
1576
1577	/*
1578	 * Below calls try to access bit beyond allocated memory.
1579	 */
1580	kasan_bitops_test_and_modify(test, BITS_PER_LONG + BITS_PER_BYTE, bits);
1581
1582	kfree(bits);
1583}
1584
1585static void kasan_bitops_tags(struct kunit *test)
1586{
1587	long *bits;
1588
1589	/* This test is specifically crafted for tag-based modes. */
1590	KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_KASAN_GENERIC);
1591
1592	/* kmalloc-64 cache will be used and the last 16 bytes will be the redzone. */
1593	bits = kzalloc(48, GFP_KERNEL);
1594	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, bits);
1595
1596	/* Do the accesses past the 48 allocated bytes, but within the redone. */
1597	kasan_bitops_modify(test, BITS_PER_LONG, (void *)bits + 48);
1598	kasan_bitops_test_and_modify(test, BITS_PER_LONG + BITS_PER_BYTE, (void *)bits + 48);
1599
1600	kfree(bits);
1601}
1602
1603static void vmalloc_helpers_tags(struct kunit *test)
1604{
1605	void *ptr;
1606
1607	/* This test is intended for tag-based modes. */
1608	KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_KASAN_GENERIC);
1609
1610	KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_VMALLOC);
1611
1612	if (!kasan_vmalloc_enabled())
1613		kunit_skip(test, "Test requires kasan.vmalloc=on");
1614
1615	ptr = vmalloc(PAGE_SIZE);
1616	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
1617
1618	/* Check that the returned pointer is tagged. */
1619	KUNIT_EXPECT_GE(test, (u8)get_tag(ptr), (u8)KASAN_TAG_MIN);
1620	KUNIT_EXPECT_LT(test, (u8)get_tag(ptr), (u8)KASAN_TAG_KERNEL);
1621
1622	/* Make sure exported vmalloc helpers handle tagged pointers. */
1623	KUNIT_ASSERT_TRUE(test, is_vmalloc_addr(ptr));
1624	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, vmalloc_to_page(ptr));
1625
1626#if !IS_MODULE(CONFIG_KASAN_KUNIT_TEST)
1627	{
1628		int rv;
1629
1630		/* Make sure vmalloc'ed memory permissions can be changed. */
1631		rv = set_memory_ro((unsigned long)ptr, 1);
1632		KUNIT_ASSERT_GE(test, rv, 0);
1633		rv = set_memory_rw((unsigned long)ptr, 1);
1634		KUNIT_ASSERT_GE(test, rv, 0);
1635	}
1636#endif
1637
1638	vfree(ptr);
1639}
1640
1641static void vmalloc_oob(struct kunit *test)
1642{
1643	char *v_ptr, *p_ptr;
1644	struct page *page;
1645	size_t size = PAGE_SIZE / 2 - KASAN_GRANULE_SIZE - 5;
1646
1647	KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_VMALLOC);
1648
1649	if (!kasan_vmalloc_enabled())
1650		kunit_skip(test, "Test requires kasan.vmalloc=on");
1651
1652	v_ptr = vmalloc(size);
1653	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, v_ptr);
1654
1655	OPTIMIZER_HIDE_VAR(v_ptr);
1656
1657	/*
1658	 * We have to be careful not to hit the guard page in vmalloc tests.
1659	 * The MMU will catch that and crash us.
1660	 */
1661
1662	/* Make sure in-bounds accesses are valid. */
1663	v_ptr[0] = 0;
1664	v_ptr[size - 1] = 0;
1665
1666	/*
1667	 * An unaligned access past the requested vmalloc size.
1668	 * Only generic KASAN can precisely detect these.
1669	 */
1670	if (IS_ENABLED(CONFIG_KASAN_GENERIC))
1671		KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)v_ptr)[size]);
1672
1673	/* An aligned access into the first out-of-bounds granule. */
1674	KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)v_ptr)[size + 5]);
1675
1676	/* Check that in-bounds accesses to the physical page are valid. */
1677	page = vmalloc_to_page(v_ptr);
1678	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, page);
1679	p_ptr = page_address(page);
1680	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, p_ptr);
1681	p_ptr[0] = 0;
1682
1683	vfree(v_ptr);
1684
1685	/*
1686	 * We can't check for use-after-unmap bugs in this nor in the following
1687	 * vmalloc tests, as the page might be fully unmapped and accessing it
1688	 * will crash the kernel.
1689	 */
1690}
1691
1692static void vmap_tags(struct kunit *test)
1693{
1694	char *p_ptr, *v_ptr;
1695	struct page *p_page, *v_page;
1696
1697	/*
1698	 * This test is specifically crafted for the software tag-based mode,
1699	 * the only tag-based mode that poisons vmap mappings.
1700	 */
1701	KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_SW_TAGS);
1702
1703	KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_VMALLOC);
1704
1705	if (!kasan_vmalloc_enabled())
1706		kunit_skip(test, "Test requires kasan.vmalloc=on");
1707
1708	p_page = alloc_pages(GFP_KERNEL, 1);
1709	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, p_page);
1710	p_ptr = page_address(p_page);
1711	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, p_ptr);
1712
1713	v_ptr = vmap(&p_page, 1, VM_MAP, PAGE_KERNEL);
1714	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, v_ptr);
1715
1716	/*
1717	 * We can't check for out-of-bounds bugs in this nor in the following
1718	 * vmalloc tests, as allocations have page granularity and accessing
1719	 * the guard page will crash the kernel.
1720	 */
1721
1722	KUNIT_EXPECT_GE(test, (u8)get_tag(v_ptr), (u8)KASAN_TAG_MIN);
1723	KUNIT_EXPECT_LT(test, (u8)get_tag(v_ptr), (u8)KASAN_TAG_KERNEL);
1724
1725	/* Make sure that in-bounds accesses through both pointers work. */
1726	*p_ptr = 0;
1727	*v_ptr = 0;
1728
1729	/* Make sure vmalloc_to_page() correctly recovers the page pointer. */
1730	v_page = vmalloc_to_page(v_ptr);
1731	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, v_page);
1732	KUNIT_EXPECT_PTR_EQ(test, p_page, v_page);
1733
1734	vunmap(v_ptr);
1735	free_pages((unsigned long)p_ptr, 1);
1736}
1737
1738static void vm_map_ram_tags(struct kunit *test)
1739{
1740	char *p_ptr, *v_ptr;
1741	struct page *page;
1742
1743	/*
1744	 * This test is specifically crafted for the software tag-based mode,
1745	 * the only tag-based mode that poisons vm_map_ram mappings.
1746	 */
1747	KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_SW_TAGS);
1748
1749	page = alloc_pages(GFP_KERNEL, 1);
1750	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, page);
1751	p_ptr = page_address(page);
1752	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, p_ptr);
1753
1754	v_ptr = vm_map_ram(&page, 1, -1);
1755	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, v_ptr);
1756
1757	KUNIT_EXPECT_GE(test, (u8)get_tag(v_ptr), (u8)KASAN_TAG_MIN);
1758	KUNIT_EXPECT_LT(test, (u8)get_tag(v_ptr), (u8)KASAN_TAG_KERNEL);
1759
1760	/* Make sure that in-bounds accesses through both pointers work. */
1761	*p_ptr = 0;
1762	*v_ptr = 0;
1763
1764	vm_unmap_ram(v_ptr, 1);
1765	free_pages((unsigned long)p_ptr, 1);
1766}
1767
1768static void vmalloc_percpu(struct kunit *test)
1769{
1770	char __percpu *ptr;
1771	int cpu;
1772
1773	/*
1774	 * This test is specifically crafted for the software tag-based mode,
1775	 * the only tag-based mode that poisons percpu mappings.
1776	 */
1777	KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_SW_TAGS);
1778
1779	ptr = __alloc_percpu(PAGE_SIZE, PAGE_SIZE);
1780
1781	for_each_possible_cpu(cpu) {
1782		char *c_ptr = per_cpu_ptr(ptr, cpu);
1783
1784		KUNIT_EXPECT_GE(test, (u8)get_tag(c_ptr), (u8)KASAN_TAG_MIN);
1785		KUNIT_EXPECT_LT(test, (u8)get_tag(c_ptr), (u8)KASAN_TAG_KERNEL);
1786
1787		/* Make sure that in-bounds accesses don't crash the kernel. */
1788		*c_ptr = 0;
1789	}
1790
1791	free_percpu(ptr);
1792}
1793
1794/*
1795 * Check that the assigned pointer tag falls within the [KASAN_TAG_MIN,
1796 * KASAN_TAG_KERNEL) range (note: excluding the match-all tag) for tag-based
1797 * modes.
1798 */
1799static void match_all_not_assigned(struct kunit *test)
1800{
1801	char *ptr;
1802	struct page *pages;
1803	int i, size, order;
1804
1805	KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_KASAN_GENERIC);
1806
1807	for (i = 0; i < 256; i++) {
1808		size = get_random_u32_inclusive(1, 1024);
1809		ptr = kmalloc(size, GFP_KERNEL);
1810		KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
1811		KUNIT_EXPECT_GE(test, (u8)get_tag(ptr), (u8)KASAN_TAG_MIN);
1812		KUNIT_EXPECT_LT(test, (u8)get_tag(ptr), (u8)KASAN_TAG_KERNEL);
1813		kfree(ptr);
1814	}
1815
1816	for (i = 0; i < 256; i++) {
1817		order = get_random_u32_inclusive(1, 4);
1818		pages = alloc_pages(GFP_KERNEL, order);
1819		ptr = page_address(pages);
1820		KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
1821		KUNIT_EXPECT_GE(test, (u8)get_tag(ptr), (u8)KASAN_TAG_MIN);
1822		KUNIT_EXPECT_LT(test, (u8)get_tag(ptr), (u8)KASAN_TAG_KERNEL);
1823		free_pages((unsigned long)ptr, order);
1824	}
1825
1826	if (!kasan_vmalloc_enabled())
1827		return;
1828
1829	for (i = 0; i < 256; i++) {
1830		size = get_random_u32_inclusive(1, 1024);
1831		ptr = vmalloc(size);
1832		KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
1833		KUNIT_EXPECT_GE(test, (u8)get_tag(ptr), (u8)KASAN_TAG_MIN);
1834		KUNIT_EXPECT_LT(test, (u8)get_tag(ptr), (u8)KASAN_TAG_KERNEL);
1835		vfree(ptr);
1836	}
1837}
1838
1839/* Check that 0xff works as a match-all pointer tag for tag-based modes. */
1840static void match_all_ptr_tag(struct kunit *test)
1841{
1842	char *ptr;
1843	u8 tag;
1844
1845	KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_KASAN_GENERIC);
1846
1847	ptr = kmalloc(128, GFP_KERNEL);
1848	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
1849
1850	/* Backup the assigned tag. */
1851	tag = get_tag(ptr);
1852	KUNIT_EXPECT_NE(test, tag, (u8)KASAN_TAG_KERNEL);
1853
1854	/* Reset the tag to 0xff.*/
1855	ptr = set_tag(ptr, KASAN_TAG_KERNEL);
1856
1857	/* This access shouldn't trigger a KASAN report. */
1858	*ptr = 0;
1859
1860	/* Recover the pointer tag and free. */
1861	ptr = set_tag(ptr, tag);
1862	kfree(ptr);
1863}
1864
1865/* Check that there are no match-all memory tags for tag-based modes. */
1866static void match_all_mem_tag(struct kunit *test)
1867{
1868	char *ptr;
1869	int tag;
1870
1871	KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_KASAN_GENERIC);
1872
1873	ptr = kmalloc(128, GFP_KERNEL);
1874	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
1875	KUNIT_EXPECT_NE(test, (u8)get_tag(ptr), (u8)KASAN_TAG_KERNEL);
1876
1877	/* For each possible tag value not matching the pointer tag. */
1878	for (tag = KASAN_TAG_MIN; tag <= KASAN_TAG_KERNEL; tag++) {
1879		/*
1880		 * For Software Tag-Based KASAN, skip the majority of tag
1881		 * values to avoid the test printing too many reports.
1882		 */
1883		if (IS_ENABLED(CONFIG_KASAN_SW_TAGS) &&
1884		    tag >= KASAN_TAG_MIN + 8 && tag <= KASAN_TAG_KERNEL - 8)
1885			continue;
1886
1887		if (tag == get_tag(ptr))
1888			continue;
1889
1890		/* Mark the first memory granule with the chosen memory tag. */
1891		kasan_poison(ptr, KASAN_GRANULE_SIZE, (u8)tag, false);
1892
1893		/* This access must cause a KASAN report. */
1894		KUNIT_EXPECT_KASAN_FAIL(test, *ptr = 0);
1895	}
1896
1897	/* Recover the memory tag and free. */
1898	kasan_poison(ptr, KASAN_GRANULE_SIZE, get_tag(ptr), false);
1899	kfree(ptr);
1900}
1901
1902static struct kunit_case kasan_kunit_test_cases[] = {
1903	KUNIT_CASE(kmalloc_oob_right),
1904	KUNIT_CASE(kmalloc_oob_left),
1905	KUNIT_CASE(kmalloc_node_oob_right),
1906	KUNIT_CASE(kmalloc_big_oob_right),
1907	KUNIT_CASE(kmalloc_large_oob_right),
1908	KUNIT_CASE(kmalloc_large_uaf),
1909	KUNIT_CASE(kmalloc_large_invalid_free),
1910	KUNIT_CASE(page_alloc_oob_right),
1911	KUNIT_CASE(page_alloc_uaf),
1912	KUNIT_CASE(krealloc_more_oob),
1913	KUNIT_CASE(krealloc_less_oob),
1914	KUNIT_CASE(krealloc_large_more_oob),
1915	KUNIT_CASE(krealloc_large_less_oob),
1916	KUNIT_CASE(krealloc_uaf),
1917	KUNIT_CASE(kmalloc_oob_16),
1918	KUNIT_CASE(kmalloc_uaf_16),
1919	KUNIT_CASE(kmalloc_oob_in_memset),
1920	KUNIT_CASE(kmalloc_oob_memset_2),
1921	KUNIT_CASE(kmalloc_oob_memset_4),
1922	KUNIT_CASE(kmalloc_oob_memset_8),
1923	KUNIT_CASE(kmalloc_oob_memset_16),
1924	KUNIT_CASE(kmalloc_memmove_negative_size),
1925	KUNIT_CASE(kmalloc_memmove_invalid_size),
1926	KUNIT_CASE(kmalloc_uaf),
1927	KUNIT_CASE(kmalloc_uaf_memset),
1928	KUNIT_CASE(kmalloc_uaf2),
1929	KUNIT_CASE(kmalloc_uaf3),
1930	KUNIT_CASE(kmalloc_double_kzfree),
1931	KUNIT_CASE(ksize_unpoisons_memory),
1932	KUNIT_CASE(ksize_uaf),
1933	KUNIT_CASE(rcu_uaf),
1934	KUNIT_CASE(workqueue_uaf),
1935	KUNIT_CASE(kfree_via_page),
1936	KUNIT_CASE(kfree_via_phys),
1937	KUNIT_CASE(kmem_cache_oob),
1938	KUNIT_CASE(kmem_cache_double_free),
1939	KUNIT_CASE(kmem_cache_invalid_free),
1940	KUNIT_CASE(kmem_cache_double_destroy),
1941	KUNIT_CASE(kmem_cache_accounted),
1942	KUNIT_CASE(kmem_cache_bulk),
1943	KUNIT_CASE(mempool_kmalloc_oob_right),
1944	KUNIT_CASE(mempool_kmalloc_large_oob_right),
1945	KUNIT_CASE(mempool_slab_oob_right),
1946	KUNIT_CASE(mempool_kmalloc_uaf),
1947	KUNIT_CASE(mempool_kmalloc_large_uaf),
1948	KUNIT_CASE(mempool_slab_uaf),
1949	KUNIT_CASE(mempool_page_alloc_uaf),
1950	KUNIT_CASE(mempool_kmalloc_double_free),
1951	KUNIT_CASE(mempool_kmalloc_large_double_free),
1952	KUNIT_CASE(mempool_page_alloc_double_free),
1953	KUNIT_CASE(mempool_kmalloc_invalid_free),
1954	KUNIT_CASE(mempool_kmalloc_large_invalid_free),
1955	KUNIT_CASE(kasan_global_oob_right),
1956	KUNIT_CASE(kasan_global_oob_left),
1957	KUNIT_CASE(kasan_stack_oob),
1958	KUNIT_CASE(kasan_alloca_oob_left),
1959	KUNIT_CASE(kasan_alloca_oob_right),
1960	KUNIT_CASE(kasan_memchr),
1961	KUNIT_CASE(kasan_memcmp),
1962	KUNIT_CASE(kasan_strings),
1963	KUNIT_CASE(kasan_bitops_generic),
1964	KUNIT_CASE(kasan_bitops_tags),
1965	KUNIT_CASE(kasan_atomics),
1966	KUNIT_CASE(vmalloc_helpers_tags),
1967	KUNIT_CASE(vmalloc_oob),
1968	KUNIT_CASE(vmap_tags),
1969	KUNIT_CASE(vm_map_ram_tags),
1970	KUNIT_CASE(vmalloc_percpu),
1971	KUNIT_CASE(match_all_not_assigned),
1972	KUNIT_CASE(match_all_ptr_tag),
1973	KUNIT_CASE(match_all_mem_tag),
1974	{}
1975};
1976
1977static struct kunit_suite kasan_kunit_test_suite = {
1978	.name = "kasan",
1979	.test_cases = kasan_kunit_test_cases,
1980	.exit = kasan_test_exit,
1981	.suite_init = kasan_suite_init,
1982	.suite_exit = kasan_suite_exit,
1983};
1984
1985kunit_test_suite(kasan_kunit_test_suite);
1986
1987MODULE_LICENSE("GPL");
1988