1/* +++ trees.c */
2/* trees.c -- output deflated data using Huffman coding
3 * Copyright (C) 1995-1996 Jean-loup Gailly
4 * For conditions of distribution and use, see copyright notice in zlib.h
5 */
6
7/*
8 *  ALGORITHM
9 *
10 *      The "deflation" process uses several Huffman trees. The more
11 *      common source values are represented by shorter bit sequences.
12 *
13 *      Each code tree is stored in a compressed form which is itself
14 * a Huffman encoding of the lengths of all the code strings (in
15 * ascending order by source values).  The actual code strings are
16 * reconstructed from the lengths in the inflate process, as described
17 * in the deflate specification.
18 *
19 *  REFERENCES
20 *
21 *      Deutsch, L.P.,"'Deflate' Compressed Data Format Specification".
22 *      Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc
23 *
24 *      Storer, James A.
25 *          Data Compression:  Methods and Theory, pp. 49-50.
26 *          Computer Science Press, 1988.  ISBN 0-7167-8156-5.
27 *
28 *      Sedgewick, R.
29 *          Algorithms, p290.
30 *          Addison-Wesley, 1983. ISBN 0-201-06672-6.
31 */
32
33/* From: trees.c,v 1.11 1996/07/24 13:41:06 me Exp $ */
34
35/* #include "deflate.h" */
36
37#include <linux/zutil.h>
38#include <linux/bitrev.h>
39#include "defutil.h"
40
41#ifdef DEBUG_ZLIB
42#  include <ctype.h>
43#endif
44
45/* ===========================================================================
46 * Constants
47 */
48
49#define MAX_BL_BITS 7
50/* Bit length codes must not exceed MAX_BL_BITS bits */
51
52#define END_BLOCK 256
53/* end of block literal code */
54
55#define REP_3_6      16
56/* repeat previous bit length 3-6 times (2 bits of repeat count) */
57
58#define REPZ_3_10    17
59/* repeat a zero length 3-10 times  (3 bits of repeat count) */
60
61#define REPZ_11_138  18
62/* repeat a zero length 11-138 times  (7 bits of repeat count) */
63
64static const int extra_lbits[LENGTH_CODES] /* extra bits for each length code */
65   = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0};
66
67static const int extra_dbits[D_CODES] /* extra bits for each distance code */
68   = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};
69
70static const int extra_blbits[BL_CODES]/* extra bits for each bit length code */
71   = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7};
72
73static const uch bl_order[BL_CODES]
74   = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15};
75/* The lengths of the bit length codes are sent in order of decreasing
76 * probability, to avoid transmitting the lengths for unused bit length codes.
77 */
78
79/* ===========================================================================
80 * Local data. These are initialized only once.
81 */
82
83static ct_data static_ltree[L_CODES+2];
84/* The static literal tree. Since the bit lengths are imposed, there is no
85 * need for the L_CODES extra codes used during heap construction. However
86 * The codes 286 and 287 are needed to build a canonical tree (see zlib_tr_init
87 * below).
88 */
89
90static ct_data static_dtree[D_CODES];
91/* The static distance tree. (Actually a trivial tree since all codes use
92 * 5 bits.)
93 */
94
95static uch dist_code[512];
96/* distance codes. The first 256 values correspond to the distances
97 * 3 .. 258, the last 256 values correspond to the top 8 bits of
98 * the 15 bit distances.
99 */
100
101static uch length_code[MAX_MATCH-MIN_MATCH+1];
102/* length code for each normalized match length (0 == MIN_MATCH) */
103
104static int base_length[LENGTH_CODES];
105/* First normalized length for each code (0 = MIN_MATCH) */
106
107static int base_dist[D_CODES];
108/* First normalized distance for each code (0 = distance of 1) */
109
110struct static_tree_desc_s {
111    const ct_data *static_tree;  /* static tree or NULL */
112    const int *extra_bits;       /* extra bits for each code or NULL */
113    int     extra_base;          /* base index for extra_bits */
114    int     elems;               /* max number of elements in the tree */
115    int     max_length;          /* max bit length for the codes */
116};
117
118static static_tree_desc  static_l_desc =
119{static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS};
120
121static static_tree_desc  static_d_desc =
122{static_dtree, extra_dbits, 0,          D_CODES, MAX_BITS};
123
124static static_tree_desc  static_bl_desc =
125{(const ct_data *)0, extra_blbits, 0,   BL_CODES, MAX_BL_BITS};
126
127/* ===========================================================================
128 * Local (static) routines in this file.
129 */
130
131static void tr_static_init (void);
132static void init_block     (deflate_state *s);
133static void pqdownheap     (deflate_state *s, ct_data *tree, int k);
134static void gen_bitlen     (deflate_state *s, tree_desc *desc);
135static void gen_codes      (ct_data *tree, int max_code, ush *bl_count);
136static void build_tree     (deflate_state *s, tree_desc *desc);
137static void scan_tree      (deflate_state *s, ct_data *tree, int max_code);
138static void send_tree      (deflate_state *s, ct_data *tree, int max_code);
139static int  build_bl_tree  (deflate_state *s);
140static void send_all_trees (deflate_state *s, int lcodes, int dcodes,
141                           int blcodes);
142static void compress_block (deflate_state *s, ct_data *ltree,
143                           ct_data *dtree);
144static void set_data_type  (deflate_state *s);
145static void bi_flush       (deflate_state *s);
146static void copy_block     (deflate_state *s, char *buf, unsigned len,
147                           int header);
148
149#ifndef DEBUG_ZLIB
150#  define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len)
151   /* Send a code of the given tree. c and tree must not have side effects */
152
153#else /* DEBUG_ZLIB */
154#  define send_code(s, c, tree) \
155     { if (z_verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \
156       send_bits(s, tree[c].Code, tree[c].Len); }
157#endif
158
159#define d_code(dist) \
160   ((dist) < 256 ? dist_code[dist] : dist_code[256+((dist)>>7)])
161/* Mapping from a distance to a distance code. dist is the distance - 1 and
162 * must not have side effects. dist_code[256] and dist_code[257] are never
163 * used.
164 */
165
166/* ===========================================================================
167 * Initialize the various 'constant' tables. In a multi-threaded environment,
168 * this function may be called by two threads concurrently, but this is
169 * harmless since both invocations do exactly the same thing.
170 */
171static void tr_static_init(void)
172{
173    static int static_init_done;
174    int n;        /* iterates over tree elements */
175    int bits;     /* bit counter */
176    int length;   /* length value */
177    int code;     /* code value */
178    int dist;     /* distance index */
179    ush bl_count[MAX_BITS+1];
180    /* number of codes at each bit length for an optimal tree */
181
182    if (static_init_done) return;
183
184    /* Initialize the mapping length (0..255) -> length code (0..28) */
185    length = 0;
186    for (code = 0; code < LENGTH_CODES-1; code++) {
187        base_length[code] = length;
188        for (n = 0; n < (1<<extra_lbits[code]); n++) {
189            length_code[length++] = (uch)code;
190        }
191    }
192    Assert (length == 256, "tr_static_init: length != 256");
193    /* Note that the length 255 (match length 258) can be represented
194     * in two different ways: code 284 + 5 bits or code 285, so we
195     * overwrite length_code[255] to use the best encoding:
196     */
197    length_code[length-1] = (uch)code;
198
199    /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
200    dist = 0;
201    for (code = 0 ; code < 16; code++) {
202        base_dist[code] = dist;
203        for (n = 0; n < (1<<extra_dbits[code]); n++) {
204            dist_code[dist++] = (uch)code;
205        }
206    }
207    Assert (dist == 256, "tr_static_init: dist != 256");
208    dist >>= 7; /* from now on, all distances are divided by 128 */
209    for ( ; code < D_CODES; code++) {
210        base_dist[code] = dist << 7;
211        for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) {
212            dist_code[256 + dist++] = (uch)code;
213        }
214    }
215    Assert (dist == 256, "tr_static_init: 256+dist != 512");
216
217    /* Construct the codes of the static literal tree */
218    for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0;
219    n = 0;
220    while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++;
221    while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++;
222    while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++;
223    while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++;
224    /* Codes 286 and 287 do not exist, but we must include them in the
225     * tree construction to get a canonical Huffman tree (longest code
226     * all ones)
227     */
228    gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count);
229
230    /* The static distance tree is trivial: */
231    for (n = 0; n < D_CODES; n++) {
232        static_dtree[n].Len = 5;
233        static_dtree[n].Code = bitrev32((u32)n) >> (32 - 5);
234    }
235    static_init_done = 1;
236}
237
238/* ===========================================================================
239 * Initialize the tree data structures for a new zlib stream.
240 */
241void zlib_tr_init(
242	deflate_state *s
243)
244{
245    tr_static_init();
246
247    s->compressed_len = 0L;
248
249    s->l_desc.dyn_tree = s->dyn_ltree;
250    s->l_desc.stat_desc = &static_l_desc;
251
252    s->d_desc.dyn_tree = s->dyn_dtree;
253    s->d_desc.stat_desc = &static_d_desc;
254
255    s->bl_desc.dyn_tree = s->bl_tree;
256    s->bl_desc.stat_desc = &static_bl_desc;
257
258    s->bi_buf = 0;
259    s->bi_valid = 0;
260    s->last_eob_len = 8; /* enough lookahead for inflate */
261#ifdef DEBUG_ZLIB
262    s->bits_sent = 0L;
263#endif
264
265    /* Initialize the first block of the first file: */
266    init_block(s);
267}
268
269/* ===========================================================================
270 * Initialize a new block.
271 */
272static void init_block(
273	deflate_state *s
274)
275{
276    int n; /* iterates over tree elements */
277
278    /* Initialize the trees. */
279    for (n = 0; n < L_CODES;  n++) s->dyn_ltree[n].Freq = 0;
280    for (n = 0; n < D_CODES;  n++) s->dyn_dtree[n].Freq = 0;
281    for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0;
282
283    s->dyn_ltree[END_BLOCK].Freq = 1;
284    s->opt_len = s->static_len = 0L;
285    s->last_lit = s->matches = 0;
286}
287
288#define SMALLEST 1
289/* Index within the heap array of least frequent node in the Huffman tree */
290
291
292/* ===========================================================================
293 * Remove the smallest element from the heap and recreate the heap with
294 * one less element. Updates heap and heap_len.
295 */
296#define pqremove(s, tree, top) \
297{\
298    top = s->heap[SMALLEST]; \
299    s->heap[SMALLEST] = s->heap[s->heap_len--]; \
300    pqdownheap(s, tree, SMALLEST); \
301}
302
303/* ===========================================================================
304 * Compares to subtrees, using the tree depth as tie breaker when
305 * the subtrees have equal frequency. This minimizes the worst case length.
306 */
307#define smaller(tree, n, m, depth) \
308   (tree[n].Freq < tree[m].Freq || \
309   (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))
310
311/* ===========================================================================
312 * Restore the heap property by moving down the tree starting at node k,
313 * exchanging a node with the smallest of its two sons if necessary, stopping
314 * when the heap property is re-established (each father smaller than its
315 * two sons).
316 */
317static void pqdownheap(
318	deflate_state *s,
319	ct_data *tree,  /* the tree to restore */
320	int k		/* node to move down */
321)
322{
323    int v = s->heap[k];
324    int j = k << 1;  /* left son of k */
325    while (j <= s->heap_len) {
326        /* Set j to the smallest of the two sons: */
327        if (j < s->heap_len &&
328            smaller(tree, s->heap[j+1], s->heap[j], s->depth)) {
329            j++;
330        }
331        /* Exit if v is smaller than both sons */
332        if (smaller(tree, v, s->heap[j], s->depth)) break;
333
334        /* Exchange v with the smallest son */
335        s->heap[k] = s->heap[j];  k = j;
336
337        /* And continue down the tree, setting j to the left son of k */
338        j <<= 1;
339    }
340    s->heap[k] = v;
341}
342
343/* ===========================================================================
344 * Compute the optimal bit lengths for a tree and update the total bit length
345 * for the current block.
346 * IN assertion: the fields freq and dad are set, heap[heap_max] and
347 *    above are the tree nodes sorted by increasing frequency.
348 * OUT assertions: the field len is set to the optimal bit length, the
349 *     array bl_count contains the frequencies for each bit length.
350 *     The length opt_len is updated; static_len is also updated if stree is
351 *     not null.
352 */
353static void gen_bitlen(
354	deflate_state *s,
355	tree_desc *desc    /* the tree descriptor */
356)
357{
358    ct_data *tree        = desc->dyn_tree;
359    int max_code         = desc->max_code;
360    const ct_data *stree = desc->stat_desc->static_tree;
361    const int *extra     = desc->stat_desc->extra_bits;
362    int base             = desc->stat_desc->extra_base;
363    int max_length       = desc->stat_desc->max_length;
364    int h;              /* heap index */
365    int n, m;           /* iterate over the tree elements */
366    int bits;           /* bit length */
367    int xbits;          /* extra bits */
368    ush f;              /* frequency */
369    int overflow = 0;   /* number of elements with bit length too large */
370
371    for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0;
372
373    /* In a first pass, compute the optimal bit lengths (which may
374     * overflow in the case of the bit length tree).
375     */
376    tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */
377
378    for (h = s->heap_max+1; h < HEAP_SIZE; h++) {
379        n = s->heap[h];
380        bits = tree[tree[n].Dad].Len + 1;
381        if (bits > max_length) bits = max_length, overflow++;
382        tree[n].Len = (ush)bits;
383        /* We overwrite tree[n].Dad which is no longer needed */
384
385        if (n > max_code) continue; /* not a leaf node */
386
387        s->bl_count[bits]++;
388        xbits = 0;
389        if (n >= base) xbits = extra[n-base];
390        f = tree[n].Freq;
391        s->opt_len += (ulg)f * (bits + xbits);
392        if (stree) s->static_len += (ulg)f * (stree[n].Len + xbits);
393    }
394    if (overflow == 0) return;
395
396    Trace((stderr,"\nbit length overflow\n"));
397    /* This happens for example on obj2 and pic of the Calgary corpus */
398
399    /* Find the first bit length which could increase: */
400    do {
401        bits = max_length-1;
402        while (s->bl_count[bits] == 0) bits--;
403        s->bl_count[bits]--;      /* move one leaf down the tree */
404        s->bl_count[bits+1] += 2; /* move one overflow item as its brother */
405        s->bl_count[max_length]--;
406        /* The brother of the overflow item also moves one step up,
407         * but this does not affect bl_count[max_length]
408         */
409        overflow -= 2;
410    } while (overflow > 0);
411
412    /* Now recompute all bit lengths, scanning in increasing frequency.
413     * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
414     * lengths instead of fixing only the wrong ones. This idea is taken
415     * from 'ar' written by Haruhiko Okumura.)
416     */
417    for (bits = max_length; bits != 0; bits--) {
418        n = s->bl_count[bits];
419        while (n != 0) {
420            m = s->heap[--h];
421            if (m > max_code) continue;
422            if (tree[m].Len != (unsigned) bits) {
423                Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));
424                s->opt_len += ((long)bits - (long)tree[m].Len)
425                              *(long)tree[m].Freq;
426                tree[m].Len = (ush)bits;
427            }
428            n--;
429        }
430    }
431}
432
433/* ===========================================================================
434 * Generate the codes for a given tree and bit counts (which need not be
435 * optimal).
436 * IN assertion: the array bl_count contains the bit length statistics for
437 * the given tree and the field len is set for all tree elements.
438 * OUT assertion: the field code is set for all tree elements of non
439 *     zero code length.
440 */
441static void gen_codes(
442	ct_data *tree,             /* the tree to decorate */
443	int max_code,              /* largest code with non zero frequency */
444	ush *bl_count             /* number of codes at each bit length */
445)
446{
447    ush next_code[MAX_BITS+1]; /* next code value for each bit length */
448    ush code = 0;              /* running code value */
449    int bits;                  /* bit index */
450    int n;                     /* code index */
451
452    /* The distribution counts are first used to generate the code values
453     * without bit reversal.
454     */
455    for (bits = 1; bits <= MAX_BITS; bits++) {
456        next_code[bits] = code = (code + bl_count[bits-1]) << 1;
457    }
458    /* Check that the bit counts in bl_count are consistent. The last code
459     * must be all ones.
460     */
461    Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1,
462            "inconsistent bit counts");
463    Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
464
465    for (n = 0;  n <= max_code; n++) {
466        int len = tree[n].Len;
467        if (len == 0) continue;
468        /* Now reverse the bits */
469        tree[n].Code = bitrev32((u32)(next_code[len]++)) >> (32 - len);
470
471        Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
472             n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1));
473    }
474}
475
476/* ===========================================================================
477 * Construct one Huffman tree and assigns the code bit strings and lengths.
478 * Update the total bit length for the current block.
479 * IN assertion: the field freq is set for all tree elements.
480 * OUT assertions: the fields len and code are set to the optimal bit length
481 *     and corresponding code. The length opt_len is updated; static_len is
482 *     also updated if stree is not null. The field max_code is set.
483 */
484static void build_tree(
485	deflate_state *s,
486	tree_desc *desc	 /* the tree descriptor */
487)
488{
489    ct_data *tree         = desc->dyn_tree;
490    const ct_data *stree  = desc->stat_desc->static_tree;
491    int elems             = desc->stat_desc->elems;
492    int n, m;          /* iterate over heap elements */
493    int max_code = -1; /* largest code with non zero frequency */
494    int node;          /* new node being created */
495
496    /* Construct the initial heap, with least frequent element in
497     * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
498     * heap[0] is not used.
499     */
500    s->heap_len = 0, s->heap_max = HEAP_SIZE;
501
502    for (n = 0; n < elems; n++) {
503        if (tree[n].Freq != 0) {
504            s->heap[++(s->heap_len)] = max_code = n;
505            s->depth[n] = 0;
506        } else {
507            tree[n].Len = 0;
508        }
509    }
510
511    /* The pkzip format requires that at least one distance code exists,
512     * and that at least one bit should be sent even if there is only one
513     * possible code. So to avoid special checks later on we force at least
514     * two codes of non zero frequency.
515     */
516    while (s->heap_len < 2) {
517        node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0);
518        tree[node].Freq = 1;
519        s->depth[node] = 0;
520        s->opt_len--; if (stree) s->static_len -= stree[node].Len;
521        /* node is 0 or 1 so it does not have extra bits */
522    }
523    desc->max_code = max_code;
524
525    /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
526     * establish sub-heaps of increasing lengths:
527     */
528    for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n);
529
530    /* Construct the Huffman tree by repeatedly combining the least two
531     * frequent nodes.
532     */
533    node = elems;              /* next internal node of the tree */
534    do {
535        pqremove(s, tree, n);  /* n = node of least frequency */
536        m = s->heap[SMALLEST]; /* m = node of next least frequency */
537
538        s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */
539        s->heap[--(s->heap_max)] = m;
540
541        /* Create a new node father of n and m */
542        tree[node].Freq = tree[n].Freq + tree[m].Freq;
543        s->depth[node] = (uch) (max(s->depth[n], s->depth[m]) + 1);
544        tree[n].Dad = tree[m].Dad = (ush)node;
545#ifdef DUMP_BL_TREE
546        if (tree == s->bl_tree) {
547            fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)",
548                    node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
549        }
550#endif
551        /* and insert the new node in the heap */
552        s->heap[SMALLEST] = node++;
553        pqdownheap(s, tree, SMALLEST);
554
555    } while (s->heap_len >= 2);
556
557    s->heap[--(s->heap_max)] = s->heap[SMALLEST];
558
559    /* At this point, the fields freq and dad are set. We can now
560     * generate the bit lengths.
561     */
562    gen_bitlen(s, (tree_desc *)desc);
563
564    /* The field len is now set, we can generate the bit codes */
565    gen_codes ((ct_data *)tree, max_code, s->bl_count);
566}
567
568/* ===========================================================================
569 * Scan a literal or distance tree to determine the frequencies of the codes
570 * in the bit length tree.
571 */
572static void scan_tree(
573	deflate_state *s,
574	ct_data *tree,   /* the tree to be scanned */
575	int max_code     /* and its largest code of non zero frequency */
576)
577{
578    int n;                     /* iterates over all tree elements */
579    int prevlen = -1;          /* last emitted length */
580    int curlen;                /* length of current code */
581    int nextlen = tree[0].Len; /* length of next code */
582    int count = 0;             /* repeat count of the current code */
583    int max_count = 7;         /* max repeat count */
584    int min_count = 4;         /* min repeat count */
585
586    if (nextlen == 0) max_count = 138, min_count = 3;
587    tree[max_code+1].Len = (ush)0xffff; /* guard */
588
589    for (n = 0; n <= max_code; n++) {
590        curlen = nextlen; nextlen = tree[n+1].Len;
591        if (++count < max_count && curlen == nextlen) {
592            continue;
593        } else if (count < min_count) {
594            s->bl_tree[curlen].Freq += count;
595        } else if (curlen != 0) {
596            if (curlen != prevlen) s->bl_tree[curlen].Freq++;
597            s->bl_tree[REP_3_6].Freq++;
598        } else if (count <= 10) {
599            s->bl_tree[REPZ_3_10].Freq++;
600        } else {
601            s->bl_tree[REPZ_11_138].Freq++;
602        }
603        count = 0; prevlen = curlen;
604        if (nextlen == 0) {
605            max_count = 138, min_count = 3;
606        } else if (curlen == nextlen) {
607            max_count = 6, min_count = 3;
608        } else {
609            max_count = 7, min_count = 4;
610        }
611    }
612}
613
614/* ===========================================================================
615 * Send a literal or distance tree in compressed form, using the codes in
616 * bl_tree.
617 */
618static void send_tree(
619	deflate_state *s,
620	ct_data *tree, /* the tree to be scanned */
621	int max_code   /* and its largest code of non zero frequency */
622)
623{
624    int n;                     /* iterates over all tree elements */
625    int prevlen = -1;          /* last emitted length */
626    int curlen;                /* length of current code */
627    int nextlen = tree[0].Len; /* length of next code */
628    int count = 0;             /* repeat count of the current code */
629    int max_count = 7;         /* max repeat count */
630    int min_count = 4;         /* min repeat count */
631
632    /* tree[max_code+1].Len = -1; */  /* guard already set */
633    if (nextlen == 0) max_count = 138, min_count = 3;
634
635    for (n = 0; n <= max_code; n++) {
636        curlen = nextlen; nextlen = tree[n+1].Len;
637        if (++count < max_count && curlen == nextlen) {
638            continue;
639        } else if (count < min_count) {
640            do { send_code(s, curlen, s->bl_tree); } while (--count != 0);
641
642        } else if (curlen != 0) {
643            if (curlen != prevlen) {
644                send_code(s, curlen, s->bl_tree); count--;
645            }
646            Assert(count >= 3 && count <= 6, " 3_6?");
647            send_code(s, REP_3_6, s->bl_tree); send_bits(s, count-3, 2);
648
649        } else if (count <= 10) {
650            send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count-3, 3);
651
652        } else {
653            send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count-11, 7);
654        }
655        count = 0; prevlen = curlen;
656        if (nextlen == 0) {
657            max_count = 138, min_count = 3;
658        } else if (curlen == nextlen) {
659            max_count = 6, min_count = 3;
660        } else {
661            max_count = 7, min_count = 4;
662        }
663    }
664}
665
666/* ===========================================================================
667 * Construct the Huffman tree for the bit lengths and return the index in
668 * bl_order of the last bit length code to send.
669 */
670static int build_bl_tree(
671	deflate_state *s
672)
673{
674    int max_blindex;  /* index of last bit length code of non zero freq */
675
676    /* Determine the bit length frequencies for literal and distance trees */
677    scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code);
678    scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code);
679
680    /* Build the bit length tree: */
681    build_tree(s, (tree_desc *)(&(s->bl_desc)));
682    /* opt_len now includes the length of the tree representations, except
683     * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
684     */
685
686    /* Determine the number of bit length codes to send. The pkzip format
687     * requires that at least 4 bit length codes be sent. (appnote.txt says
688     * 3 but the actual value used is 4.)
689     */
690    for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) {
691        if (s->bl_tree[bl_order[max_blindex]].Len != 0) break;
692    }
693    /* Update opt_len to include the bit length tree and counts */
694    s->opt_len += 3*(max_blindex+1) + 5+5+4;
695    Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld",
696            s->opt_len, s->static_len));
697
698    return max_blindex;
699}
700
701/* ===========================================================================
702 * Send the header for a block using dynamic Huffman trees: the counts, the
703 * lengths of the bit length codes, the literal tree and the distance tree.
704 * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
705 */
706static void send_all_trees(
707	deflate_state *s,
708	int lcodes,  /* number of codes for each tree */
709	int dcodes,  /* number of codes for each tree */
710	int blcodes  /* number of codes for each tree */
711)
712{
713    int rank;                    /* index in bl_order */
714
715    Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
716    Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
717            "too many codes");
718    Tracev((stderr, "\nbl counts: "));
719    send_bits(s, lcodes-257, 5); /* not +255 as stated in appnote.txt */
720    send_bits(s, dcodes-1,   5);
721    send_bits(s, blcodes-4,  4); /* not -3 as stated in appnote.txt */
722    for (rank = 0; rank < blcodes; rank++) {
723        Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
724        send_bits(s, s->bl_tree[bl_order[rank]].Len, 3);
725    }
726    Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent));
727
728    send_tree(s, (ct_data *)s->dyn_ltree, lcodes-1); /* literal tree */
729    Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent));
730
731    send_tree(s, (ct_data *)s->dyn_dtree, dcodes-1); /* distance tree */
732    Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent));
733}
734
735/* ===========================================================================
736 * Send a stored block
737 */
738void zlib_tr_stored_block(
739	deflate_state *s,
740	char *buf,        /* input block */
741	ulg stored_len,   /* length of input block */
742	int eof           /* true if this is the last block for a file */
743)
744{
745    send_bits(s, (STORED_BLOCK<<1)+eof, 3);  /* send block type */
746    s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L;
747    s->compressed_len += (stored_len + 4) << 3;
748
749    copy_block(s, buf, (unsigned)stored_len, 1); /* with header */
750}
751
752/* Send just the `stored block' type code without any length bytes or data.
753 */
754void zlib_tr_stored_type_only(
755	deflate_state *s
756)
757{
758    send_bits(s, (STORED_BLOCK << 1), 3);
759    bi_windup(s);
760    s->compressed_len = (s->compressed_len + 3) & ~7L;
761}
762
763
764/* ===========================================================================
765 * Send one empty static block to give enough lookahead for inflate.
766 * This takes 10 bits, of which 7 may remain in the bit buffer.
767 * The current inflate code requires 9 bits of lookahead. If the
768 * last two codes for the previous block (real code plus EOB) were coded
769 * on 5 bits or less, inflate may have only 5+3 bits of lookahead to decode
770 * the last real code. In this case we send two empty static blocks instead
771 * of one. (There are no problems if the previous block is stored or fixed.)
772 * To simplify the code, we assume the worst case of last real code encoded
773 * on one bit only.
774 */
775void zlib_tr_align(
776	deflate_state *s
777)
778{
779    send_bits(s, STATIC_TREES<<1, 3);
780    send_code(s, END_BLOCK, static_ltree);
781    s->compressed_len += 10L; /* 3 for block type, 7 for EOB */
782    bi_flush(s);
783    /* Of the 10 bits for the empty block, we have already sent
784     * (10 - bi_valid) bits. The lookahead for the last real code (before
785     * the EOB of the previous block) was thus at least one plus the length
786     * of the EOB plus what we have just sent of the empty static block.
787     */
788    if (1 + s->last_eob_len + 10 - s->bi_valid < 9) {
789        send_bits(s, STATIC_TREES<<1, 3);
790        send_code(s, END_BLOCK, static_ltree);
791        s->compressed_len += 10L;
792        bi_flush(s);
793    }
794    s->last_eob_len = 7;
795}
796
797/* ===========================================================================
798 * Determine the best encoding for the current block: dynamic trees, static
799 * trees or store, and output the encoded block to the zip file. This function
800 * returns the total compressed length for the file so far.
801 */
802ulg zlib_tr_flush_block(
803	deflate_state *s,
804	char *buf,        /* input block, or NULL if too old */
805	ulg stored_len,   /* length of input block */
806	int eof           /* true if this is the last block for a file */
807)
808{
809    ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
810    int max_blindex = 0;  /* index of last bit length code of non zero freq */
811
812    /* Build the Huffman trees unless a stored block is forced */
813    if (s->level > 0) {
814
815	 /* Check if the file is ascii or binary */
816	if (s->data_type == Z_UNKNOWN) set_data_type(s);
817
818	/* Construct the literal and distance trees */
819	build_tree(s, (tree_desc *)(&(s->l_desc)));
820	Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len,
821		s->static_len));
822
823	build_tree(s, (tree_desc *)(&(s->d_desc)));
824	Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len,
825		s->static_len));
826	/* At this point, opt_len and static_len are the total bit lengths of
827	 * the compressed block data, excluding the tree representations.
828	 */
829
830	/* Build the bit length tree for the above two trees, and get the index
831	 * in bl_order of the last bit length code to send.
832	 */
833	max_blindex = build_bl_tree(s);
834
835	/* Determine the best encoding. Compute first the block length in bytes*/
836	opt_lenb = (s->opt_len+3+7)>>3;
837	static_lenb = (s->static_len+3+7)>>3;
838
839	Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ",
840		opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len,
841		s->last_lit));
842
843	if (static_lenb <= opt_lenb) opt_lenb = static_lenb;
844
845    } else {
846        Assert(buf != (char*)0, "lost buf");
847	opt_lenb = static_lenb = stored_len + 5; /* force a stored block */
848    }
849
850    /* If compression failed and this is the first and last block,
851     * and if the .zip file can be seeked (to rewrite the local header),
852     * the whole file is transformed into a stored file:
853     */
854#ifdef STORED_FILE_OK
855#  ifdef FORCE_STORED_FILE
856    if (eof && s->compressed_len == 0L) { /* force stored file */
857#  else
858    if (stored_len <= opt_lenb && eof && s->compressed_len==0L && seekable()) {
859#  endif
860        /* Since LIT_BUFSIZE <= 2*WSIZE, the input data must be there: */
861        if (buf == (char*)0) error ("block vanished");
862
863        copy_block(s, buf, (unsigned)stored_len, 0); /* without header */
864        s->compressed_len = stored_len << 3;
865        s->method = STORED;
866    } else
867#endif /* STORED_FILE_OK */
868
869#ifdef FORCE_STORED
870    if (buf != (char*)0) { /* force stored block */
871#else
872    if (stored_len+4 <= opt_lenb && buf != (char*)0) {
873                       /* 4: two words for the lengths */
874#endif
875        /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
876         * Otherwise we can't have processed more than WSIZE input bytes since
877         * the last block flush, because compression would have been
878         * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
879         * transform a block into a stored block.
880         */
881        zlib_tr_stored_block(s, buf, stored_len, eof);
882
883#ifdef FORCE_STATIC
884    } else if (static_lenb >= 0) { /* force static trees */
885#else
886    } else if (static_lenb == opt_lenb) {
887#endif
888        send_bits(s, (STATIC_TREES<<1)+eof, 3);
889        compress_block(s, (ct_data *)static_ltree, (ct_data *)static_dtree);
890        s->compressed_len += 3 + s->static_len;
891    } else {
892        send_bits(s, (DYN_TREES<<1)+eof, 3);
893        send_all_trees(s, s->l_desc.max_code+1, s->d_desc.max_code+1,
894                       max_blindex+1);
895        compress_block(s, (ct_data *)s->dyn_ltree, (ct_data *)s->dyn_dtree);
896        s->compressed_len += 3 + s->opt_len;
897    }
898    Assert (s->compressed_len == s->bits_sent, "bad compressed size");
899    init_block(s);
900
901    if (eof) {
902        bi_windup(s);
903        s->compressed_len += 7;  /* align on byte boundary */
904    }
905    Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3,
906           s->compressed_len-7*eof));
907
908    return s->compressed_len >> 3;
909}
910
911/* ===========================================================================
912 * Save the match info and tally the frequency counts. Return true if
913 * the current block must be flushed.
914 */
915int zlib_tr_tally(
916	deflate_state *s,
917	unsigned dist,  /* distance of matched string */
918	unsigned lc     /* match length-MIN_MATCH or unmatched char (if dist==0) */
919)
920{
921    s->d_buf[s->last_lit] = (ush)dist;
922    s->l_buf[s->last_lit++] = (uch)lc;
923    if (dist == 0) {
924        /* lc is the unmatched char */
925        s->dyn_ltree[lc].Freq++;
926    } else {
927        s->matches++;
928        /* Here, lc is the match length - MIN_MATCH */
929        dist--;             /* dist = match distance - 1 */
930        Assert((ush)dist < (ush)MAX_DIST(s) &&
931               (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
932               (ush)d_code(dist) < (ush)D_CODES,  "zlib_tr_tally: bad match");
933
934        s->dyn_ltree[length_code[lc]+LITERALS+1].Freq++;
935        s->dyn_dtree[d_code(dist)].Freq++;
936    }
937
938    /* Try to guess if it is profitable to stop the current block here */
939    if ((s->last_lit & 0xfff) == 0 && s->level > 2) {
940        /* Compute an upper bound for the compressed length */
941        ulg out_length = (ulg)s->last_lit*8L;
942        ulg in_length = (ulg)((long)s->strstart - s->block_start);
943        int dcode;
944        for (dcode = 0; dcode < D_CODES; dcode++) {
945            out_length += (ulg)s->dyn_dtree[dcode].Freq *
946                (5L+extra_dbits[dcode]);
947        }
948        out_length >>= 3;
949        Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ",
950               s->last_lit, in_length, out_length,
951               100L - out_length*100L/in_length));
952        if (s->matches < s->last_lit/2 && out_length < in_length/2) return 1;
953    }
954    return (s->last_lit == s->lit_bufsize-1);
955    /* We avoid equality with lit_bufsize because of wraparound at 64K
956     * on 16 bit machines and because stored blocks are restricted to
957     * 64K-1 bytes.
958     */
959}
960
961/* ===========================================================================
962 * Send the block data compressed using the given Huffman trees
963 */
964static void compress_block(
965	deflate_state *s,
966	ct_data *ltree, /* literal tree */
967	ct_data *dtree  /* distance tree */
968)
969{
970    unsigned dist;      /* distance of matched string */
971    int lc;             /* match length or unmatched char (if dist == 0) */
972    unsigned lx = 0;    /* running index in l_buf */
973    unsigned code;      /* the code to send */
974    int extra;          /* number of extra bits to send */
975
976    if (s->last_lit != 0) do {
977        dist = s->d_buf[lx];
978        lc = s->l_buf[lx++];
979        if (dist == 0) {
980            send_code(s, lc, ltree); /* send a literal byte */
981            Tracecv(isgraph(lc), (stderr," '%c' ", lc));
982        } else {
983            /* Here, lc is the match length - MIN_MATCH */
984            code = length_code[lc];
985            send_code(s, code+LITERALS+1, ltree); /* send the length code */
986            extra = extra_lbits[code];
987            if (extra != 0) {
988                lc -= base_length[code];
989                send_bits(s, lc, extra);       /* send the extra length bits */
990            }
991            dist--; /* dist is now the match distance - 1 */
992            code = d_code(dist);
993            Assert (code < D_CODES, "bad d_code");
994
995            send_code(s, code, dtree);       /* send the distance code */
996            extra = extra_dbits[code];
997            if (extra != 0) {
998                dist -= base_dist[code];
999                send_bits(s, dist, extra);   /* send the extra distance bits */
1000            }
1001        } /* literal or match pair ? */
1002
1003        /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */
1004        Assert(s->pending < s->lit_bufsize + 2*lx, "pendingBuf overflow");
1005
1006    } while (lx < s->last_lit);
1007
1008    send_code(s, END_BLOCK, ltree);
1009    s->last_eob_len = ltree[END_BLOCK].Len;
1010}
1011
1012/* ===========================================================================
1013 * Set the data type to ASCII or BINARY, using a crude approximation:
1014 * binary if more than 20% of the bytes are <= 6 or >= 128, ascii otherwise.
1015 * IN assertion: the fields freq of dyn_ltree are set and the total of all
1016 * frequencies does not exceed 64K (to fit in an int on 16 bit machines).
1017 */
1018static void set_data_type(
1019	deflate_state *s
1020)
1021{
1022    int n = 0;
1023    unsigned ascii_freq = 0;
1024    unsigned bin_freq = 0;
1025    while (n < 7)        bin_freq += s->dyn_ltree[n++].Freq;
1026    while (n < 128)    ascii_freq += s->dyn_ltree[n++].Freq;
1027    while (n < LITERALS) bin_freq += s->dyn_ltree[n++].Freq;
1028    s->data_type = (Byte)(bin_freq > (ascii_freq >> 2) ? Z_BINARY : Z_ASCII);
1029}
1030
1031/* ===========================================================================
1032 * Copy a stored block, storing first the length and its
1033 * one's complement if requested.
1034 */
1035static void copy_block(
1036	deflate_state *s,
1037	char    *buf,     /* the input data */
1038	unsigned len,     /* its length */
1039	int      header   /* true if block header must be written */
1040)
1041{
1042    bi_windup(s);        /* align on byte boundary */
1043    s->last_eob_len = 8; /* enough lookahead for inflate */
1044
1045    if (header) {
1046        put_short(s, (ush)len);
1047        put_short(s, (ush)~len);
1048#ifdef DEBUG_ZLIB
1049        s->bits_sent += 2*16;
1050#endif
1051    }
1052#ifdef DEBUG_ZLIB
1053    s->bits_sent += (ulg)len<<3;
1054#endif
1055    /* bundle up the put_byte(s, *buf++) calls */
1056    memcpy(&s->pending_buf[s->pending], buf, len);
1057    s->pending += len;
1058}
1059
1060