1/*
2 * LZMA2 decoder
3 *
4 * Authors: Lasse Collin <lasse.collin@tukaani.org>
5 *          Igor Pavlov <https://7-zip.org/>
6 *
7 * This file has been put into the public domain.
8 * You can do whatever you want with this file.
9 */
10
11#include "xz_private.h"
12#include "xz_lzma2.h"
13
14/*
15 * Range decoder initialization eats the first five bytes of each LZMA chunk.
16 */
17#define RC_INIT_BYTES 5
18
19/*
20 * Minimum number of usable input buffer to safely decode one LZMA symbol.
21 * The worst case is that we decode 22 bits using probabilities and 26
22 * direct bits. This may decode at maximum of 20 bytes of input. However,
23 * lzma_main() does an extra normalization before returning, thus we
24 * need to put 21 here.
25 */
26#define LZMA_IN_REQUIRED 21
27
28/*
29 * Dictionary (history buffer)
30 *
31 * These are always true:
32 *    start <= pos <= full <= end
33 *    pos <= limit <= end
34 *
35 * In multi-call mode, also these are true:
36 *    end == size
37 *    size <= size_max
38 *    allocated <= size
39 *
40 * Most of these variables are size_t to support single-call mode,
41 * in which the dictionary variables address the actual output
42 * buffer directly.
43 */
44struct dictionary {
45	/* Beginning of the history buffer */
46	uint8_t *buf;
47
48	/* Old position in buf (before decoding more data) */
49	size_t start;
50
51	/* Position in buf */
52	size_t pos;
53
54	/*
55	 * How full dictionary is. This is used to detect corrupt input that
56	 * would read beyond the beginning of the uncompressed stream.
57	 */
58	size_t full;
59
60	/* Write limit; we don't write to buf[limit] or later bytes. */
61	size_t limit;
62
63	/*
64	 * End of the dictionary buffer. In multi-call mode, this is
65	 * the same as the dictionary size. In single-call mode, this
66	 * indicates the size of the output buffer.
67	 */
68	size_t end;
69
70	/*
71	 * Size of the dictionary as specified in Block Header. This is used
72	 * together with "full" to detect corrupt input that would make us
73	 * read beyond the beginning of the uncompressed stream.
74	 */
75	uint32_t size;
76
77	/*
78	 * Maximum allowed dictionary size in multi-call mode.
79	 * This is ignored in single-call mode.
80	 */
81	uint32_t size_max;
82
83	/*
84	 * Amount of memory currently allocated for the dictionary.
85	 * This is used only with XZ_DYNALLOC. (With XZ_PREALLOC,
86	 * size_max is always the same as the allocated size.)
87	 */
88	uint32_t allocated;
89
90	/* Operation mode */
91	enum xz_mode mode;
92};
93
94/* Range decoder */
95struct rc_dec {
96	uint32_t range;
97	uint32_t code;
98
99	/*
100	 * Number of initializing bytes remaining to be read
101	 * by rc_read_init().
102	 */
103	uint32_t init_bytes_left;
104
105	/*
106	 * Buffer from which we read our input. It can be either
107	 * temp.buf or the caller-provided input buffer.
108	 */
109	const uint8_t *in;
110	size_t in_pos;
111	size_t in_limit;
112};
113
114/* Probabilities for a length decoder. */
115struct lzma_len_dec {
116	/* Probability of match length being at least 10 */
117	uint16_t choice;
118
119	/* Probability of match length being at least 18 */
120	uint16_t choice2;
121
122	/* Probabilities for match lengths 2-9 */
123	uint16_t low[POS_STATES_MAX][LEN_LOW_SYMBOLS];
124
125	/* Probabilities for match lengths 10-17 */
126	uint16_t mid[POS_STATES_MAX][LEN_MID_SYMBOLS];
127
128	/* Probabilities for match lengths 18-273 */
129	uint16_t high[LEN_HIGH_SYMBOLS];
130};
131
132struct lzma_dec {
133	/* Distances of latest four matches */
134	uint32_t rep0;
135	uint32_t rep1;
136	uint32_t rep2;
137	uint32_t rep3;
138
139	/* Types of the most recently seen LZMA symbols */
140	enum lzma_state state;
141
142	/*
143	 * Length of a match. This is updated so that dict_repeat can
144	 * be called again to finish repeating the whole match.
145	 */
146	uint32_t len;
147
148	/*
149	 * LZMA properties or related bit masks (number of literal
150	 * context bits, a mask derived from the number of literal
151	 * position bits, and a mask derived from the number
152	 * position bits)
153	 */
154	uint32_t lc;
155	uint32_t literal_pos_mask; /* (1 << lp) - 1 */
156	uint32_t pos_mask;         /* (1 << pb) - 1 */
157
158	/* If 1, it's a match. Otherwise it's a single 8-bit literal. */
159	uint16_t is_match[STATES][POS_STATES_MAX];
160
161	/* If 1, it's a repeated match. The distance is one of rep0 .. rep3. */
162	uint16_t is_rep[STATES];
163
164	/*
165	 * If 0, distance of a repeated match is rep0.
166	 * Otherwise check is_rep1.
167	 */
168	uint16_t is_rep0[STATES];
169
170	/*
171	 * If 0, distance of a repeated match is rep1.
172	 * Otherwise check is_rep2.
173	 */
174	uint16_t is_rep1[STATES];
175
176	/* If 0, distance of a repeated match is rep2. Otherwise it is rep3. */
177	uint16_t is_rep2[STATES];
178
179	/*
180	 * If 1, the repeated match has length of one byte. Otherwise
181	 * the length is decoded from rep_len_decoder.
182	 */
183	uint16_t is_rep0_long[STATES][POS_STATES_MAX];
184
185	/*
186	 * Probability tree for the highest two bits of the match
187	 * distance. There is a separate probability tree for match
188	 * lengths of 2 (i.e. MATCH_LEN_MIN), 3, 4, and [5, 273].
189	 */
190	uint16_t dist_slot[DIST_STATES][DIST_SLOTS];
191
192	/*
193	 * Probility trees for additional bits for match distance
194	 * when the distance is in the range [4, 127].
195	 */
196	uint16_t dist_special[FULL_DISTANCES - DIST_MODEL_END];
197
198	/*
199	 * Probability tree for the lowest four bits of a match
200	 * distance that is equal to or greater than 128.
201	 */
202	uint16_t dist_align[ALIGN_SIZE];
203
204	/* Length of a normal match */
205	struct lzma_len_dec match_len_dec;
206
207	/* Length of a repeated match */
208	struct lzma_len_dec rep_len_dec;
209
210	/* Probabilities of literals */
211	uint16_t literal[LITERAL_CODERS_MAX][LITERAL_CODER_SIZE];
212};
213
214struct lzma2_dec {
215	/* Position in xz_dec_lzma2_run(). */
216	enum lzma2_seq {
217		SEQ_CONTROL,
218		SEQ_UNCOMPRESSED_1,
219		SEQ_UNCOMPRESSED_2,
220		SEQ_COMPRESSED_0,
221		SEQ_COMPRESSED_1,
222		SEQ_PROPERTIES,
223		SEQ_LZMA_PREPARE,
224		SEQ_LZMA_RUN,
225		SEQ_COPY
226	} sequence;
227
228	/* Next position after decoding the compressed size of the chunk. */
229	enum lzma2_seq next_sequence;
230
231	/* Uncompressed size of LZMA chunk (2 MiB at maximum) */
232	uint32_t uncompressed;
233
234	/*
235	 * Compressed size of LZMA chunk or compressed/uncompressed
236	 * size of uncompressed chunk (64 KiB at maximum)
237	 */
238	uint32_t compressed;
239
240	/*
241	 * True if dictionary reset is needed. This is false before
242	 * the first chunk (LZMA or uncompressed).
243	 */
244	bool need_dict_reset;
245
246	/*
247	 * True if new LZMA properties are needed. This is false
248	 * before the first LZMA chunk.
249	 */
250	bool need_props;
251
252#ifdef XZ_DEC_MICROLZMA
253	bool pedantic_microlzma;
254#endif
255};
256
257struct xz_dec_lzma2 {
258	/*
259	 * The order below is important on x86 to reduce code size and
260	 * it shouldn't hurt on other platforms. Everything up to and
261	 * including lzma.pos_mask are in the first 128 bytes on x86-32,
262	 * which allows using smaller instructions to access those
263	 * variables. On x86-64, fewer variables fit into the first 128
264	 * bytes, but this is still the best order without sacrificing
265	 * the readability by splitting the structures.
266	 */
267	struct rc_dec rc;
268	struct dictionary dict;
269	struct lzma2_dec lzma2;
270	struct lzma_dec lzma;
271
272	/*
273	 * Temporary buffer which holds small number of input bytes between
274	 * decoder calls. See lzma2_lzma() for details.
275	 */
276	struct {
277		uint32_t size;
278		uint8_t buf[3 * LZMA_IN_REQUIRED];
279	} temp;
280};
281
282/**************
283 * Dictionary *
284 **************/
285
286/*
287 * Reset the dictionary state. When in single-call mode, set up the beginning
288 * of the dictionary to point to the actual output buffer.
289 */
290static void dict_reset(struct dictionary *dict, struct xz_buf *b)
291{
292	if (DEC_IS_SINGLE(dict->mode)) {
293		dict->buf = b->out + b->out_pos;
294		dict->end = b->out_size - b->out_pos;
295	}
296
297	dict->start = 0;
298	dict->pos = 0;
299	dict->limit = 0;
300	dict->full = 0;
301}
302
303/* Set dictionary write limit */
304static void dict_limit(struct dictionary *dict, size_t out_max)
305{
306	if (dict->end - dict->pos <= out_max)
307		dict->limit = dict->end;
308	else
309		dict->limit = dict->pos + out_max;
310}
311
312/* Return true if at least one byte can be written into the dictionary. */
313static inline bool dict_has_space(const struct dictionary *dict)
314{
315	return dict->pos < dict->limit;
316}
317
318/*
319 * Get a byte from the dictionary at the given distance. The distance is
320 * assumed to valid, or as a special case, zero when the dictionary is
321 * still empty. This special case is needed for single-call decoding to
322 * avoid writing a '\0' to the end of the destination buffer.
323 */
324static inline uint32_t dict_get(const struct dictionary *dict, uint32_t dist)
325{
326	size_t offset = dict->pos - dist - 1;
327
328	if (dist >= dict->pos)
329		offset += dict->end;
330
331	return dict->full > 0 ? dict->buf[offset] : 0;
332}
333
334/*
335 * Put one byte into the dictionary. It is assumed that there is space for it.
336 */
337static inline void dict_put(struct dictionary *dict, uint8_t byte)
338{
339	dict->buf[dict->pos++] = byte;
340
341	if (dict->full < dict->pos)
342		dict->full = dict->pos;
343}
344
345/*
346 * Repeat given number of bytes from the given distance. If the distance is
347 * invalid, false is returned. On success, true is returned and *len is
348 * updated to indicate how many bytes were left to be repeated.
349 */
350static bool dict_repeat(struct dictionary *dict, uint32_t *len, uint32_t dist)
351{
352	size_t back;
353	uint32_t left;
354
355	if (dist >= dict->full || dist >= dict->size)
356		return false;
357
358	left = min_t(size_t, dict->limit - dict->pos, *len);
359	*len -= left;
360
361	back = dict->pos - dist - 1;
362	if (dist >= dict->pos)
363		back += dict->end;
364
365	do {
366		dict->buf[dict->pos++] = dict->buf[back++];
367		if (back == dict->end)
368			back = 0;
369	} while (--left > 0);
370
371	if (dict->full < dict->pos)
372		dict->full = dict->pos;
373
374	return true;
375}
376
377/* Copy uncompressed data as is from input to dictionary and output buffers. */
378static void dict_uncompressed(struct dictionary *dict, struct xz_buf *b,
379			      uint32_t *left)
380{
381	size_t copy_size;
382
383	while (*left > 0 && b->in_pos < b->in_size
384			&& b->out_pos < b->out_size) {
385		copy_size = min(b->in_size - b->in_pos,
386				b->out_size - b->out_pos);
387		if (copy_size > dict->end - dict->pos)
388			copy_size = dict->end - dict->pos;
389		if (copy_size > *left)
390			copy_size = *left;
391
392		*left -= copy_size;
393
394		/*
395		 * If doing in-place decompression in single-call mode and the
396		 * uncompressed size of the file is larger than the caller
397		 * thought (i.e. it is invalid input!), the buffers below may
398		 * overlap and cause undefined behavior with memcpy().
399		 * With valid inputs memcpy() would be fine here.
400		 */
401		memmove(dict->buf + dict->pos, b->in + b->in_pos, copy_size);
402		dict->pos += copy_size;
403
404		if (dict->full < dict->pos)
405			dict->full = dict->pos;
406
407		if (DEC_IS_MULTI(dict->mode)) {
408			if (dict->pos == dict->end)
409				dict->pos = 0;
410
411			/*
412			 * Like above but for multi-call mode: use memmove()
413			 * to avoid undefined behavior with invalid input.
414			 */
415			memmove(b->out + b->out_pos, b->in + b->in_pos,
416					copy_size);
417		}
418
419		dict->start = dict->pos;
420
421		b->out_pos += copy_size;
422		b->in_pos += copy_size;
423	}
424}
425
426#ifdef XZ_DEC_MICROLZMA
427#	define DICT_FLUSH_SUPPORTS_SKIPPING true
428#else
429#	define DICT_FLUSH_SUPPORTS_SKIPPING false
430#endif
431
432/*
433 * Flush pending data from dictionary to b->out. It is assumed that there is
434 * enough space in b->out. This is guaranteed because caller uses dict_limit()
435 * before decoding data into the dictionary.
436 */
437static uint32_t dict_flush(struct dictionary *dict, struct xz_buf *b)
438{
439	size_t copy_size = dict->pos - dict->start;
440
441	if (DEC_IS_MULTI(dict->mode)) {
442		if (dict->pos == dict->end)
443			dict->pos = 0;
444
445		/*
446		 * These buffers cannot overlap even if doing in-place
447		 * decompression because in multi-call mode dict->buf
448		 * has been allocated by us in this file; it's not
449		 * provided by the caller like in single-call mode.
450		 *
451		 * With MicroLZMA, b->out can be NULL to skip bytes that
452		 * the caller doesn't need. This cannot be done with XZ
453		 * because it would break BCJ filters.
454		 */
455		if (!DICT_FLUSH_SUPPORTS_SKIPPING || b->out != NULL)
456			memcpy(b->out + b->out_pos, dict->buf + dict->start,
457					copy_size);
458	}
459
460	dict->start = dict->pos;
461	b->out_pos += copy_size;
462	return copy_size;
463}
464
465/*****************
466 * Range decoder *
467 *****************/
468
469/* Reset the range decoder. */
470static void rc_reset(struct rc_dec *rc)
471{
472	rc->range = (uint32_t)-1;
473	rc->code = 0;
474	rc->init_bytes_left = RC_INIT_BYTES;
475}
476
477/*
478 * Read the first five initial bytes into rc->code if they haven't been
479 * read already. (Yes, the first byte gets completely ignored.)
480 */
481static bool rc_read_init(struct rc_dec *rc, struct xz_buf *b)
482{
483	while (rc->init_bytes_left > 0) {
484		if (b->in_pos == b->in_size)
485			return false;
486
487		rc->code = (rc->code << 8) + b->in[b->in_pos++];
488		--rc->init_bytes_left;
489	}
490
491	return true;
492}
493
494/* Return true if there may not be enough input for the next decoding loop. */
495static inline bool rc_limit_exceeded(const struct rc_dec *rc)
496{
497	return rc->in_pos > rc->in_limit;
498}
499
500/*
501 * Return true if it is possible (from point of view of range decoder) that
502 * we have reached the end of the LZMA chunk.
503 */
504static inline bool rc_is_finished(const struct rc_dec *rc)
505{
506	return rc->code == 0;
507}
508
509/* Read the next input byte if needed. */
510static __always_inline void rc_normalize(struct rc_dec *rc)
511{
512	if (rc->range < RC_TOP_VALUE) {
513		rc->range <<= RC_SHIFT_BITS;
514		rc->code = (rc->code << RC_SHIFT_BITS) + rc->in[rc->in_pos++];
515	}
516}
517
518/*
519 * Decode one bit. In some versions, this function has been split in three
520 * functions so that the compiler is supposed to be able to more easily avoid
521 * an extra branch. In this particular version of the LZMA decoder, this
522 * doesn't seem to be a good idea (tested with GCC 3.3.6, 3.4.6, and 4.3.3
523 * on x86). Using a non-split version results in nicer looking code too.
524 *
525 * NOTE: This must return an int. Do not make it return a bool or the speed
526 * of the code generated by GCC 3.x decreases 10-15 %. (GCC 4.3 doesn't care,
527 * and it generates 10-20 % faster code than GCC 3.x from this file anyway.)
528 */
529static __always_inline int rc_bit(struct rc_dec *rc, uint16_t *prob)
530{
531	uint32_t bound;
532	int bit;
533
534	rc_normalize(rc);
535	bound = (rc->range >> RC_BIT_MODEL_TOTAL_BITS) * *prob;
536	if (rc->code < bound) {
537		rc->range = bound;
538		*prob += (RC_BIT_MODEL_TOTAL - *prob) >> RC_MOVE_BITS;
539		bit = 0;
540	} else {
541		rc->range -= bound;
542		rc->code -= bound;
543		*prob -= *prob >> RC_MOVE_BITS;
544		bit = 1;
545	}
546
547	return bit;
548}
549
550/* Decode a bittree starting from the most significant bit. */
551static __always_inline uint32_t rc_bittree(struct rc_dec *rc,
552					   uint16_t *probs, uint32_t limit)
553{
554	uint32_t symbol = 1;
555
556	do {
557		if (rc_bit(rc, &probs[symbol]))
558			symbol = (symbol << 1) + 1;
559		else
560			symbol <<= 1;
561	} while (symbol < limit);
562
563	return symbol;
564}
565
566/* Decode a bittree starting from the least significant bit. */
567static __always_inline void rc_bittree_reverse(struct rc_dec *rc,
568					       uint16_t *probs,
569					       uint32_t *dest, uint32_t limit)
570{
571	uint32_t symbol = 1;
572	uint32_t i = 0;
573
574	do {
575		if (rc_bit(rc, &probs[symbol])) {
576			symbol = (symbol << 1) + 1;
577			*dest += 1 << i;
578		} else {
579			symbol <<= 1;
580		}
581	} while (++i < limit);
582}
583
584/* Decode direct bits (fixed fifty-fifty probability) */
585static inline void rc_direct(struct rc_dec *rc, uint32_t *dest, uint32_t limit)
586{
587	uint32_t mask;
588
589	do {
590		rc_normalize(rc);
591		rc->range >>= 1;
592		rc->code -= rc->range;
593		mask = (uint32_t)0 - (rc->code >> 31);
594		rc->code += rc->range & mask;
595		*dest = (*dest << 1) + (mask + 1);
596	} while (--limit > 0);
597}
598
599/********
600 * LZMA *
601 ********/
602
603/* Get pointer to literal coder probability array. */
604static uint16_t *lzma_literal_probs(struct xz_dec_lzma2 *s)
605{
606	uint32_t prev_byte = dict_get(&s->dict, 0);
607	uint32_t low = prev_byte >> (8 - s->lzma.lc);
608	uint32_t high = (s->dict.pos & s->lzma.literal_pos_mask) << s->lzma.lc;
609	return s->lzma.literal[low + high];
610}
611
612/* Decode a literal (one 8-bit byte) */
613static void lzma_literal(struct xz_dec_lzma2 *s)
614{
615	uint16_t *probs;
616	uint32_t symbol;
617	uint32_t match_byte;
618	uint32_t match_bit;
619	uint32_t offset;
620	uint32_t i;
621
622	probs = lzma_literal_probs(s);
623
624	if (lzma_state_is_literal(s->lzma.state)) {
625		symbol = rc_bittree(&s->rc, probs, 0x100);
626	} else {
627		symbol = 1;
628		match_byte = dict_get(&s->dict, s->lzma.rep0) << 1;
629		offset = 0x100;
630
631		do {
632			match_bit = match_byte & offset;
633			match_byte <<= 1;
634			i = offset + match_bit + symbol;
635
636			if (rc_bit(&s->rc, &probs[i])) {
637				symbol = (symbol << 1) + 1;
638				offset &= match_bit;
639			} else {
640				symbol <<= 1;
641				offset &= ~match_bit;
642			}
643		} while (symbol < 0x100);
644	}
645
646	dict_put(&s->dict, (uint8_t)symbol);
647	lzma_state_literal(&s->lzma.state);
648}
649
650/* Decode the length of the match into s->lzma.len. */
651static void lzma_len(struct xz_dec_lzma2 *s, struct lzma_len_dec *l,
652		     uint32_t pos_state)
653{
654	uint16_t *probs;
655	uint32_t limit;
656
657	if (!rc_bit(&s->rc, &l->choice)) {
658		probs = l->low[pos_state];
659		limit = LEN_LOW_SYMBOLS;
660		s->lzma.len = MATCH_LEN_MIN;
661	} else {
662		if (!rc_bit(&s->rc, &l->choice2)) {
663			probs = l->mid[pos_state];
664			limit = LEN_MID_SYMBOLS;
665			s->lzma.len = MATCH_LEN_MIN + LEN_LOW_SYMBOLS;
666		} else {
667			probs = l->high;
668			limit = LEN_HIGH_SYMBOLS;
669			s->lzma.len = MATCH_LEN_MIN + LEN_LOW_SYMBOLS
670					+ LEN_MID_SYMBOLS;
671		}
672	}
673
674	s->lzma.len += rc_bittree(&s->rc, probs, limit) - limit;
675}
676
677/* Decode a match. The distance will be stored in s->lzma.rep0. */
678static void lzma_match(struct xz_dec_lzma2 *s, uint32_t pos_state)
679{
680	uint16_t *probs;
681	uint32_t dist_slot;
682	uint32_t limit;
683
684	lzma_state_match(&s->lzma.state);
685
686	s->lzma.rep3 = s->lzma.rep2;
687	s->lzma.rep2 = s->lzma.rep1;
688	s->lzma.rep1 = s->lzma.rep0;
689
690	lzma_len(s, &s->lzma.match_len_dec, pos_state);
691
692	probs = s->lzma.dist_slot[lzma_get_dist_state(s->lzma.len)];
693	dist_slot = rc_bittree(&s->rc, probs, DIST_SLOTS) - DIST_SLOTS;
694
695	if (dist_slot < DIST_MODEL_START) {
696		s->lzma.rep0 = dist_slot;
697	} else {
698		limit = (dist_slot >> 1) - 1;
699		s->lzma.rep0 = 2 + (dist_slot & 1);
700
701		if (dist_slot < DIST_MODEL_END) {
702			s->lzma.rep0 <<= limit;
703			probs = s->lzma.dist_special + s->lzma.rep0
704					- dist_slot - 1;
705			rc_bittree_reverse(&s->rc, probs,
706					&s->lzma.rep0, limit);
707		} else {
708			rc_direct(&s->rc, &s->lzma.rep0, limit - ALIGN_BITS);
709			s->lzma.rep0 <<= ALIGN_BITS;
710			rc_bittree_reverse(&s->rc, s->lzma.dist_align,
711					&s->lzma.rep0, ALIGN_BITS);
712		}
713	}
714}
715
716/*
717 * Decode a repeated match. The distance is one of the four most recently
718 * seen matches. The distance will be stored in s->lzma.rep0.
719 */
720static void lzma_rep_match(struct xz_dec_lzma2 *s, uint32_t pos_state)
721{
722	uint32_t tmp;
723
724	if (!rc_bit(&s->rc, &s->lzma.is_rep0[s->lzma.state])) {
725		if (!rc_bit(&s->rc, &s->lzma.is_rep0_long[
726				s->lzma.state][pos_state])) {
727			lzma_state_short_rep(&s->lzma.state);
728			s->lzma.len = 1;
729			return;
730		}
731	} else {
732		if (!rc_bit(&s->rc, &s->lzma.is_rep1[s->lzma.state])) {
733			tmp = s->lzma.rep1;
734		} else {
735			if (!rc_bit(&s->rc, &s->lzma.is_rep2[s->lzma.state])) {
736				tmp = s->lzma.rep2;
737			} else {
738				tmp = s->lzma.rep3;
739				s->lzma.rep3 = s->lzma.rep2;
740			}
741
742			s->lzma.rep2 = s->lzma.rep1;
743		}
744
745		s->lzma.rep1 = s->lzma.rep0;
746		s->lzma.rep0 = tmp;
747	}
748
749	lzma_state_long_rep(&s->lzma.state);
750	lzma_len(s, &s->lzma.rep_len_dec, pos_state);
751}
752
753/* LZMA decoder core */
754static bool lzma_main(struct xz_dec_lzma2 *s)
755{
756	uint32_t pos_state;
757
758	/*
759	 * If the dictionary was reached during the previous call, try to
760	 * finish the possibly pending repeat in the dictionary.
761	 */
762	if (dict_has_space(&s->dict) && s->lzma.len > 0)
763		dict_repeat(&s->dict, &s->lzma.len, s->lzma.rep0);
764
765	/*
766	 * Decode more LZMA symbols. One iteration may consume up to
767	 * LZMA_IN_REQUIRED - 1 bytes.
768	 */
769	while (dict_has_space(&s->dict) && !rc_limit_exceeded(&s->rc)) {
770		pos_state = s->dict.pos & s->lzma.pos_mask;
771
772		if (!rc_bit(&s->rc, &s->lzma.is_match[
773				s->lzma.state][pos_state])) {
774			lzma_literal(s);
775		} else {
776			if (rc_bit(&s->rc, &s->lzma.is_rep[s->lzma.state]))
777				lzma_rep_match(s, pos_state);
778			else
779				lzma_match(s, pos_state);
780
781			if (!dict_repeat(&s->dict, &s->lzma.len, s->lzma.rep0))
782				return false;
783		}
784	}
785
786	/*
787	 * Having the range decoder always normalized when we are outside
788	 * this function makes it easier to correctly handle end of the chunk.
789	 */
790	rc_normalize(&s->rc);
791
792	return true;
793}
794
795/*
796 * Reset the LZMA decoder and range decoder state. Dictionary is not reset
797 * here, because LZMA state may be reset without resetting the dictionary.
798 */
799static void lzma_reset(struct xz_dec_lzma2 *s)
800{
801	uint16_t *probs;
802	size_t i;
803
804	s->lzma.state = STATE_LIT_LIT;
805	s->lzma.rep0 = 0;
806	s->lzma.rep1 = 0;
807	s->lzma.rep2 = 0;
808	s->lzma.rep3 = 0;
809	s->lzma.len = 0;
810
811	/*
812	 * All probabilities are initialized to the same value. This hack
813	 * makes the code smaller by avoiding a separate loop for each
814	 * probability array.
815	 *
816	 * This could be optimized so that only that part of literal
817	 * probabilities that are actually required. In the common case
818	 * we would write 12 KiB less.
819	 */
820	probs = s->lzma.is_match[0];
821	for (i = 0; i < PROBS_TOTAL; ++i)
822		probs[i] = RC_BIT_MODEL_TOTAL / 2;
823
824	rc_reset(&s->rc);
825}
826
827/*
828 * Decode and validate LZMA properties (lc/lp/pb) and calculate the bit masks
829 * from the decoded lp and pb values. On success, the LZMA decoder state is
830 * reset and true is returned.
831 */
832static bool lzma_props(struct xz_dec_lzma2 *s, uint8_t props)
833{
834	if (props > (4 * 5 + 4) * 9 + 8)
835		return false;
836
837	s->lzma.pos_mask = 0;
838	while (props >= 9 * 5) {
839		props -= 9 * 5;
840		++s->lzma.pos_mask;
841	}
842
843	s->lzma.pos_mask = (1 << s->lzma.pos_mask) - 1;
844
845	s->lzma.literal_pos_mask = 0;
846	while (props >= 9) {
847		props -= 9;
848		++s->lzma.literal_pos_mask;
849	}
850
851	s->lzma.lc = props;
852
853	if (s->lzma.lc + s->lzma.literal_pos_mask > 4)
854		return false;
855
856	s->lzma.literal_pos_mask = (1 << s->lzma.literal_pos_mask) - 1;
857
858	lzma_reset(s);
859
860	return true;
861}
862
863/*********
864 * LZMA2 *
865 *********/
866
867/*
868 * The LZMA decoder assumes that if the input limit (s->rc.in_limit) hasn't
869 * been exceeded, it is safe to read up to LZMA_IN_REQUIRED bytes. This
870 * wrapper function takes care of making the LZMA decoder's assumption safe.
871 *
872 * As long as there is plenty of input left to be decoded in the current LZMA
873 * chunk, we decode directly from the caller-supplied input buffer until
874 * there's LZMA_IN_REQUIRED bytes left. Those remaining bytes are copied into
875 * s->temp.buf, which (hopefully) gets filled on the next call to this
876 * function. We decode a few bytes from the temporary buffer so that we can
877 * continue decoding from the caller-supplied input buffer again.
878 */
879static bool lzma2_lzma(struct xz_dec_lzma2 *s, struct xz_buf *b)
880{
881	size_t in_avail;
882	uint32_t tmp;
883
884	in_avail = b->in_size - b->in_pos;
885	if (s->temp.size > 0 || s->lzma2.compressed == 0) {
886		tmp = 2 * LZMA_IN_REQUIRED - s->temp.size;
887		if (tmp > s->lzma2.compressed - s->temp.size)
888			tmp = s->lzma2.compressed - s->temp.size;
889		if (tmp > in_avail)
890			tmp = in_avail;
891
892		memcpy(s->temp.buf + s->temp.size, b->in + b->in_pos, tmp);
893
894		if (s->temp.size + tmp == s->lzma2.compressed) {
895			memzero(s->temp.buf + s->temp.size + tmp,
896					sizeof(s->temp.buf)
897						- s->temp.size - tmp);
898			s->rc.in_limit = s->temp.size + tmp;
899		} else if (s->temp.size + tmp < LZMA_IN_REQUIRED) {
900			s->temp.size += tmp;
901			b->in_pos += tmp;
902			return true;
903		} else {
904			s->rc.in_limit = s->temp.size + tmp - LZMA_IN_REQUIRED;
905		}
906
907		s->rc.in = s->temp.buf;
908		s->rc.in_pos = 0;
909
910		if (!lzma_main(s) || s->rc.in_pos > s->temp.size + tmp)
911			return false;
912
913		s->lzma2.compressed -= s->rc.in_pos;
914
915		if (s->rc.in_pos < s->temp.size) {
916			s->temp.size -= s->rc.in_pos;
917			memmove(s->temp.buf, s->temp.buf + s->rc.in_pos,
918					s->temp.size);
919			return true;
920		}
921
922		b->in_pos += s->rc.in_pos - s->temp.size;
923		s->temp.size = 0;
924	}
925
926	in_avail = b->in_size - b->in_pos;
927	if (in_avail >= LZMA_IN_REQUIRED) {
928		s->rc.in = b->in;
929		s->rc.in_pos = b->in_pos;
930
931		if (in_avail >= s->lzma2.compressed + LZMA_IN_REQUIRED)
932			s->rc.in_limit = b->in_pos + s->lzma2.compressed;
933		else
934			s->rc.in_limit = b->in_size - LZMA_IN_REQUIRED;
935
936		if (!lzma_main(s))
937			return false;
938
939		in_avail = s->rc.in_pos - b->in_pos;
940		if (in_avail > s->lzma2.compressed)
941			return false;
942
943		s->lzma2.compressed -= in_avail;
944		b->in_pos = s->rc.in_pos;
945	}
946
947	in_avail = b->in_size - b->in_pos;
948	if (in_avail < LZMA_IN_REQUIRED) {
949		if (in_avail > s->lzma2.compressed)
950			in_avail = s->lzma2.compressed;
951
952		memcpy(s->temp.buf, b->in + b->in_pos, in_avail);
953		s->temp.size = in_avail;
954		b->in_pos += in_avail;
955	}
956
957	return true;
958}
959
960/*
961 * Take care of the LZMA2 control layer, and forward the job of actual LZMA
962 * decoding or copying of uncompressed chunks to other functions.
963 */
964XZ_EXTERN enum xz_ret xz_dec_lzma2_run(struct xz_dec_lzma2 *s,
965				       struct xz_buf *b)
966{
967	uint32_t tmp;
968
969	while (b->in_pos < b->in_size || s->lzma2.sequence == SEQ_LZMA_RUN) {
970		switch (s->lzma2.sequence) {
971		case SEQ_CONTROL:
972			/*
973			 * LZMA2 control byte
974			 *
975			 * Exact values:
976			 *   0x00   End marker
977			 *   0x01   Dictionary reset followed by
978			 *          an uncompressed chunk
979			 *   0x02   Uncompressed chunk (no dictionary reset)
980			 *
981			 * Highest three bits (s->control & 0xE0):
982			 *   0xE0   Dictionary reset, new properties and state
983			 *          reset, followed by LZMA compressed chunk
984			 *   0xC0   New properties and state reset, followed
985			 *          by LZMA compressed chunk (no dictionary
986			 *          reset)
987			 *   0xA0   State reset using old properties,
988			 *          followed by LZMA compressed chunk (no
989			 *          dictionary reset)
990			 *   0x80   LZMA chunk (no dictionary or state reset)
991			 *
992			 * For LZMA compressed chunks, the lowest five bits
993			 * (s->control & 1F) are the highest bits of the
994			 * uncompressed size (bits 16-20).
995			 *
996			 * A new LZMA2 stream must begin with a dictionary
997			 * reset. The first LZMA chunk must set new
998			 * properties and reset the LZMA state.
999			 *
1000			 * Values that don't match anything described above
1001			 * are invalid and we return XZ_DATA_ERROR.
1002			 */
1003			tmp = b->in[b->in_pos++];
1004
1005			if (tmp == 0x00)
1006				return XZ_STREAM_END;
1007
1008			if (tmp >= 0xE0 || tmp == 0x01) {
1009				s->lzma2.need_props = true;
1010				s->lzma2.need_dict_reset = false;
1011				dict_reset(&s->dict, b);
1012			} else if (s->lzma2.need_dict_reset) {
1013				return XZ_DATA_ERROR;
1014			}
1015
1016			if (tmp >= 0x80) {
1017				s->lzma2.uncompressed = (tmp & 0x1F) << 16;
1018				s->lzma2.sequence = SEQ_UNCOMPRESSED_1;
1019
1020				if (tmp >= 0xC0) {
1021					/*
1022					 * When there are new properties,
1023					 * state reset is done at
1024					 * SEQ_PROPERTIES.
1025					 */
1026					s->lzma2.need_props = false;
1027					s->lzma2.next_sequence
1028							= SEQ_PROPERTIES;
1029
1030				} else if (s->lzma2.need_props) {
1031					return XZ_DATA_ERROR;
1032
1033				} else {
1034					s->lzma2.next_sequence
1035							= SEQ_LZMA_PREPARE;
1036					if (tmp >= 0xA0)
1037						lzma_reset(s);
1038				}
1039			} else {
1040				if (tmp > 0x02)
1041					return XZ_DATA_ERROR;
1042
1043				s->lzma2.sequence = SEQ_COMPRESSED_0;
1044				s->lzma2.next_sequence = SEQ_COPY;
1045			}
1046
1047			break;
1048
1049		case SEQ_UNCOMPRESSED_1:
1050			s->lzma2.uncompressed
1051					+= (uint32_t)b->in[b->in_pos++] << 8;
1052			s->lzma2.sequence = SEQ_UNCOMPRESSED_2;
1053			break;
1054
1055		case SEQ_UNCOMPRESSED_2:
1056			s->lzma2.uncompressed
1057					+= (uint32_t)b->in[b->in_pos++] + 1;
1058			s->lzma2.sequence = SEQ_COMPRESSED_0;
1059			break;
1060
1061		case SEQ_COMPRESSED_0:
1062			s->lzma2.compressed
1063					= (uint32_t)b->in[b->in_pos++] << 8;
1064			s->lzma2.sequence = SEQ_COMPRESSED_1;
1065			break;
1066
1067		case SEQ_COMPRESSED_1:
1068			s->lzma2.compressed
1069					+= (uint32_t)b->in[b->in_pos++] + 1;
1070			s->lzma2.sequence = s->lzma2.next_sequence;
1071			break;
1072
1073		case SEQ_PROPERTIES:
1074			if (!lzma_props(s, b->in[b->in_pos++]))
1075				return XZ_DATA_ERROR;
1076
1077			s->lzma2.sequence = SEQ_LZMA_PREPARE;
1078
1079			fallthrough;
1080
1081		case SEQ_LZMA_PREPARE:
1082			if (s->lzma2.compressed < RC_INIT_BYTES)
1083				return XZ_DATA_ERROR;
1084
1085			if (!rc_read_init(&s->rc, b))
1086				return XZ_OK;
1087
1088			s->lzma2.compressed -= RC_INIT_BYTES;
1089			s->lzma2.sequence = SEQ_LZMA_RUN;
1090
1091			fallthrough;
1092
1093		case SEQ_LZMA_RUN:
1094			/*
1095			 * Set dictionary limit to indicate how much we want
1096			 * to be encoded at maximum. Decode new data into the
1097			 * dictionary. Flush the new data from dictionary to
1098			 * b->out. Check if we finished decoding this chunk.
1099			 * In case the dictionary got full but we didn't fill
1100			 * the output buffer yet, we may run this loop
1101			 * multiple times without changing s->lzma2.sequence.
1102			 */
1103			dict_limit(&s->dict, min_t(size_t,
1104					b->out_size - b->out_pos,
1105					s->lzma2.uncompressed));
1106			if (!lzma2_lzma(s, b))
1107				return XZ_DATA_ERROR;
1108
1109			s->lzma2.uncompressed -= dict_flush(&s->dict, b);
1110
1111			if (s->lzma2.uncompressed == 0) {
1112				if (s->lzma2.compressed > 0 || s->lzma.len > 0
1113						|| !rc_is_finished(&s->rc))
1114					return XZ_DATA_ERROR;
1115
1116				rc_reset(&s->rc);
1117				s->lzma2.sequence = SEQ_CONTROL;
1118
1119			} else if (b->out_pos == b->out_size
1120					|| (b->in_pos == b->in_size
1121						&& s->temp.size
1122						< s->lzma2.compressed)) {
1123				return XZ_OK;
1124			}
1125
1126			break;
1127
1128		case SEQ_COPY:
1129			dict_uncompressed(&s->dict, b, &s->lzma2.compressed);
1130			if (s->lzma2.compressed > 0)
1131				return XZ_OK;
1132
1133			s->lzma2.sequence = SEQ_CONTROL;
1134			break;
1135		}
1136	}
1137
1138	return XZ_OK;
1139}
1140
1141XZ_EXTERN struct xz_dec_lzma2 *xz_dec_lzma2_create(enum xz_mode mode,
1142						   uint32_t dict_max)
1143{
1144	struct xz_dec_lzma2 *s = kmalloc(sizeof(*s), GFP_KERNEL);
1145	if (s == NULL)
1146		return NULL;
1147
1148	s->dict.mode = mode;
1149	s->dict.size_max = dict_max;
1150
1151	if (DEC_IS_PREALLOC(mode)) {
1152		s->dict.buf = vmalloc(dict_max);
1153		if (s->dict.buf == NULL) {
1154			kfree(s);
1155			return NULL;
1156		}
1157	} else if (DEC_IS_DYNALLOC(mode)) {
1158		s->dict.buf = NULL;
1159		s->dict.allocated = 0;
1160	}
1161
1162	return s;
1163}
1164
1165XZ_EXTERN enum xz_ret xz_dec_lzma2_reset(struct xz_dec_lzma2 *s, uint8_t props)
1166{
1167	/* This limits dictionary size to 3 GiB to keep parsing simpler. */
1168	if (props > 39)
1169		return XZ_OPTIONS_ERROR;
1170
1171	s->dict.size = 2 + (props & 1);
1172	s->dict.size <<= (props >> 1) + 11;
1173
1174	if (DEC_IS_MULTI(s->dict.mode)) {
1175		if (s->dict.size > s->dict.size_max)
1176			return XZ_MEMLIMIT_ERROR;
1177
1178		s->dict.end = s->dict.size;
1179
1180		if (DEC_IS_DYNALLOC(s->dict.mode)) {
1181			if (s->dict.allocated < s->dict.size) {
1182				s->dict.allocated = s->dict.size;
1183				vfree(s->dict.buf);
1184				s->dict.buf = vmalloc(s->dict.size);
1185				if (s->dict.buf == NULL) {
1186					s->dict.allocated = 0;
1187					return XZ_MEM_ERROR;
1188				}
1189			}
1190		}
1191	}
1192
1193	s->lzma2.sequence = SEQ_CONTROL;
1194	s->lzma2.need_dict_reset = true;
1195
1196	s->temp.size = 0;
1197
1198	return XZ_OK;
1199}
1200
1201XZ_EXTERN void xz_dec_lzma2_end(struct xz_dec_lzma2 *s)
1202{
1203	if (DEC_IS_MULTI(s->dict.mode))
1204		vfree(s->dict.buf);
1205
1206	kfree(s);
1207}
1208
1209#ifdef XZ_DEC_MICROLZMA
1210/* This is a wrapper struct to have a nice struct name in the public API. */
1211struct xz_dec_microlzma {
1212	struct xz_dec_lzma2 s;
1213};
1214
1215enum xz_ret xz_dec_microlzma_run(struct xz_dec_microlzma *s_ptr,
1216				 struct xz_buf *b)
1217{
1218	struct xz_dec_lzma2 *s = &s_ptr->s;
1219
1220	/*
1221	 * sequence is SEQ_PROPERTIES before the first input byte,
1222	 * SEQ_LZMA_PREPARE until a total of five bytes have been read,
1223	 * and SEQ_LZMA_RUN for the rest of the input stream.
1224	 */
1225	if (s->lzma2.sequence != SEQ_LZMA_RUN) {
1226		if (s->lzma2.sequence == SEQ_PROPERTIES) {
1227			/* One byte is needed for the props. */
1228			if (b->in_pos >= b->in_size)
1229				return XZ_OK;
1230
1231			/*
1232			 * Don't increment b->in_pos here. The same byte is
1233			 * also passed to rc_read_init() which will ignore it.
1234			 */
1235			if (!lzma_props(s, ~b->in[b->in_pos]))
1236				return XZ_DATA_ERROR;
1237
1238			s->lzma2.sequence = SEQ_LZMA_PREPARE;
1239		}
1240
1241		/*
1242		 * xz_dec_microlzma_reset() doesn't validate the compressed
1243		 * size so we do it here. We have to limit the maximum size
1244		 * to avoid integer overflows in lzma2_lzma(). 3 GiB is a nice
1245		 * round number and much more than users of this code should
1246		 * ever need.
1247		 */
1248		if (s->lzma2.compressed < RC_INIT_BYTES
1249				|| s->lzma2.compressed > (3U << 30))
1250			return XZ_DATA_ERROR;
1251
1252		if (!rc_read_init(&s->rc, b))
1253			return XZ_OK;
1254
1255		s->lzma2.compressed -= RC_INIT_BYTES;
1256		s->lzma2.sequence = SEQ_LZMA_RUN;
1257
1258		dict_reset(&s->dict, b);
1259	}
1260
1261	/* This is to allow increasing b->out_size between calls. */
1262	if (DEC_IS_SINGLE(s->dict.mode))
1263		s->dict.end = b->out_size - b->out_pos;
1264
1265	while (true) {
1266		dict_limit(&s->dict, min_t(size_t, b->out_size - b->out_pos,
1267					   s->lzma2.uncompressed));
1268
1269		if (!lzma2_lzma(s, b))
1270			return XZ_DATA_ERROR;
1271
1272		s->lzma2.uncompressed -= dict_flush(&s->dict, b);
1273
1274		if (s->lzma2.uncompressed == 0) {
1275			if (s->lzma2.pedantic_microlzma) {
1276				if (s->lzma2.compressed > 0 || s->lzma.len > 0
1277						|| !rc_is_finished(&s->rc))
1278					return XZ_DATA_ERROR;
1279			}
1280
1281			return XZ_STREAM_END;
1282		}
1283
1284		if (b->out_pos == b->out_size)
1285			return XZ_OK;
1286
1287		if (b->in_pos == b->in_size
1288				&& s->temp.size < s->lzma2.compressed)
1289			return XZ_OK;
1290	}
1291}
1292
1293struct xz_dec_microlzma *xz_dec_microlzma_alloc(enum xz_mode mode,
1294						uint32_t dict_size)
1295{
1296	struct xz_dec_microlzma *s;
1297
1298	/* Restrict dict_size to the same range as in the LZMA2 code. */
1299	if (dict_size < 4096 || dict_size > (3U << 30))
1300		return NULL;
1301
1302	s = kmalloc(sizeof(*s), GFP_KERNEL);
1303	if (s == NULL)
1304		return NULL;
1305
1306	s->s.dict.mode = mode;
1307	s->s.dict.size = dict_size;
1308
1309	if (DEC_IS_MULTI(mode)) {
1310		s->s.dict.end = dict_size;
1311
1312		s->s.dict.buf = vmalloc(dict_size);
1313		if (s->s.dict.buf == NULL) {
1314			kfree(s);
1315			return NULL;
1316		}
1317	}
1318
1319	return s;
1320}
1321
1322void xz_dec_microlzma_reset(struct xz_dec_microlzma *s, uint32_t comp_size,
1323			    uint32_t uncomp_size, int uncomp_size_is_exact)
1324{
1325	/*
1326	 * comp_size is validated in xz_dec_microlzma_run().
1327	 * uncomp_size can safely be anything.
1328	 */
1329	s->s.lzma2.compressed = comp_size;
1330	s->s.lzma2.uncompressed = uncomp_size;
1331	s->s.lzma2.pedantic_microlzma = uncomp_size_is_exact;
1332
1333	s->s.lzma2.sequence = SEQ_PROPERTIES;
1334	s->s.temp.size = 0;
1335}
1336
1337void xz_dec_microlzma_end(struct xz_dec_microlzma *s)
1338{
1339	if (DEC_IS_MULTI(s->s.dict.mode))
1340		vfree(s->s.dict.buf);
1341
1342	kfree(s);
1343}
1344#endif
1345