1// SPDX-License-Identifier: GPL-2.0
2/*
3 * This is a module to test the HMM (Heterogeneous Memory Management)
4 * mirror and zone device private memory migration APIs of the kernel.
5 * Userspace programs can register with the driver to mirror their own address
6 * space and can use the device to read/write any valid virtual address.
7 */
8#include <linux/init.h>
9#include <linux/fs.h>
10#include <linux/mm.h>
11#include <linux/module.h>
12#include <linux/kernel.h>
13#include <linux/cdev.h>
14#include <linux/device.h>
15#include <linux/memremap.h>
16#include <linux/mutex.h>
17#include <linux/rwsem.h>
18#include <linux/sched.h>
19#include <linux/slab.h>
20#include <linux/highmem.h>
21#include <linux/delay.h>
22#include <linux/pagemap.h>
23#include <linux/hmm.h>
24#include <linux/vmalloc.h>
25#include <linux/swap.h>
26#include <linux/swapops.h>
27#include <linux/sched/mm.h>
28#include <linux/platform_device.h>
29#include <linux/rmap.h>
30#include <linux/mmu_notifier.h>
31#include <linux/migrate.h>
32
33#include "test_hmm_uapi.h"
34
35#define DMIRROR_NDEVICES		4
36#define DMIRROR_RANGE_FAULT_TIMEOUT	1000
37#define DEVMEM_CHUNK_SIZE		(256 * 1024 * 1024U)
38#define DEVMEM_CHUNKS_RESERVE		16
39
40/*
41 * For device_private pages, dpage is just a dummy struct page
42 * representing a piece of device memory. dmirror_devmem_alloc_page
43 * allocates a real system memory page as backing storage to fake a
44 * real device. zone_device_data points to that backing page. But
45 * for device_coherent memory, the struct page represents real
46 * physical CPU-accessible memory that we can use directly.
47 */
48#define BACKING_PAGE(page) (is_device_private_page((page)) ? \
49			   (page)->zone_device_data : (page))
50
51static unsigned long spm_addr_dev0;
52module_param(spm_addr_dev0, long, 0644);
53MODULE_PARM_DESC(spm_addr_dev0,
54		"Specify start address for SPM (special purpose memory) used for device 0. By setting this Coherent device type will be used. Make sure spm_addr_dev1 is set too. Minimum SPM size should be DEVMEM_CHUNK_SIZE.");
55
56static unsigned long spm_addr_dev1;
57module_param(spm_addr_dev1, long, 0644);
58MODULE_PARM_DESC(spm_addr_dev1,
59		"Specify start address for SPM (special purpose memory) used for device 1. By setting this Coherent device type will be used. Make sure spm_addr_dev0 is set too. Minimum SPM size should be DEVMEM_CHUNK_SIZE.");
60
61static const struct dev_pagemap_ops dmirror_devmem_ops;
62static const struct mmu_interval_notifier_ops dmirror_min_ops;
63static dev_t dmirror_dev;
64
65struct dmirror_device;
66
67struct dmirror_bounce {
68	void			*ptr;
69	unsigned long		size;
70	unsigned long		addr;
71	unsigned long		cpages;
72};
73
74#define DPT_XA_TAG_ATOMIC 1UL
75#define DPT_XA_TAG_WRITE 3UL
76
77/*
78 * Data structure to track address ranges and register for mmu interval
79 * notifier updates.
80 */
81struct dmirror_interval {
82	struct mmu_interval_notifier	notifier;
83	struct dmirror			*dmirror;
84};
85
86/*
87 * Data attached to the open device file.
88 * Note that it might be shared after a fork().
89 */
90struct dmirror {
91	struct dmirror_device		*mdevice;
92	struct xarray			pt;
93	struct mmu_interval_notifier	notifier;
94	struct mutex			mutex;
95};
96
97/*
98 * ZONE_DEVICE pages for migration and simulating device memory.
99 */
100struct dmirror_chunk {
101	struct dev_pagemap	pagemap;
102	struct dmirror_device	*mdevice;
103	bool remove;
104};
105
106/*
107 * Per device data.
108 */
109struct dmirror_device {
110	struct cdev		cdevice;
111	unsigned int            zone_device_type;
112	struct device		device;
113
114	unsigned int		devmem_capacity;
115	unsigned int		devmem_count;
116	struct dmirror_chunk	**devmem_chunks;
117	struct mutex		devmem_lock;	/* protects the above */
118
119	unsigned long		calloc;
120	unsigned long		cfree;
121	struct page		*free_pages;
122	spinlock_t		lock;		/* protects the above */
123};
124
125static struct dmirror_device dmirror_devices[DMIRROR_NDEVICES];
126
127static int dmirror_bounce_init(struct dmirror_bounce *bounce,
128			       unsigned long addr,
129			       unsigned long size)
130{
131	bounce->addr = addr;
132	bounce->size = size;
133	bounce->cpages = 0;
134	bounce->ptr = vmalloc(size);
135	if (!bounce->ptr)
136		return -ENOMEM;
137	return 0;
138}
139
140static bool dmirror_is_private_zone(struct dmirror_device *mdevice)
141{
142	return (mdevice->zone_device_type ==
143		HMM_DMIRROR_MEMORY_DEVICE_PRIVATE) ? true : false;
144}
145
146static enum migrate_vma_direction
147dmirror_select_device(struct dmirror *dmirror)
148{
149	return (dmirror->mdevice->zone_device_type ==
150		HMM_DMIRROR_MEMORY_DEVICE_PRIVATE) ?
151		MIGRATE_VMA_SELECT_DEVICE_PRIVATE :
152		MIGRATE_VMA_SELECT_DEVICE_COHERENT;
153}
154
155static void dmirror_bounce_fini(struct dmirror_bounce *bounce)
156{
157	vfree(bounce->ptr);
158}
159
160static int dmirror_fops_open(struct inode *inode, struct file *filp)
161{
162	struct cdev *cdev = inode->i_cdev;
163	struct dmirror *dmirror;
164	int ret;
165
166	/* Mirror this process address space */
167	dmirror = kzalloc(sizeof(*dmirror), GFP_KERNEL);
168	if (dmirror == NULL)
169		return -ENOMEM;
170
171	dmirror->mdevice = container_of(cdev, struct dmirror_device, cdevice);
172	mutex_init(&dmirror->mutex);
173	xa_init(&dmirror->pt);
174
175	ret = mmu_interval_notifier_insert(&dmirror->notifier, current->mm,
176				0, ULONG_MAX & PAGE_MASK, &dmirror_min_ops);
177	if (ret) {
178		kfree(dmirror);
179		return ret;
180	}
181
182	filp->private_data = dmirror;
183	return 0;
184}
185
186static int dmirror_fops_release(struct inode *inode, struct file *filp)
187{
188	struct dmirror *dmirror = filp->private_data;
189
190	mmu_interval_notifier_remove(&dmirror->notifier);
191	xa_destroy(&dmirror->pt);
192	kfree(dmirror);
193	return 0;
194}
195
196static struct dmirror_chunk *dmirror_page_to_chunk(struct page *page)
197{
198	return container_of(page->pgmap, struct dmirror_chunk, pagemap);
199}
200
201static struct dmirror_device *dmirror_page_to_device(struct page *page)
202
203{
204	return dmirror_page_to_chunk(page)->mdevice;
205}
206
207static int dmirror_do_fault(struct dmirror *dmirror, struct hmm_range *range)
208{
209	unsigned long *pfns = range->hmm_pfns;
210	unsigned long pfn;
211
212	for (pfn = (range->start >> PAGE_SHIFT);
213	     pfn < (range->end >> PAGE_SHIFT);
214	     pfn++, pfns++) {
215		struct page *page;
216		void *entry;
217
218		/*
219		 * Since we asked for hmm_range_fault() to populate pages,
220		 * it shouldn't return an error entry on success.
221		 */
222		WARN_ON(*pfns & HMM_PFN_ERROR);
223		WARN_ON(!(*pfns & HMM_PFN_VALID));
224
225		page = hmm_pfn_to_page(*pfns);
226		WARN_ON(!page);
227
228		entry = page;
229		if (*pfns & HMM_PFN_WRITE)
230			entry = xa_tag_pointer(entry, DPT_XA_TAG_WRITE);
231		else if (WARN_ON(range->default_flags & HMM_PFN_WRITE))
232			return -EFAULT;
233		entry = xa_store(&dmirror->pt, pfn, entry, GFP_ATOMIC);
234		if (xa_is_err(entry))
235			return xa_err(entry);
236	}
237
238	return 0;
239}
240
241static void dmirror_do_update(struct dmirror *dmirror, unsigned long start,
242			      unsigned long end)
243{
244	unsigned long pfn;
245	void *entry;
246
247	/*
248	 * The XArray doesn't hold references to pages since it relies on
249	 * the mmu notifier to clear page pointers when they become stale.
250	 * Therefore, it is OK to just clear the entry.
251	 */
252	xa_for_each_range(&dmirror->pt, pfn, entry, start >> PAGE_SHIFT,
253			  end >> PAGE_SHIFT)
254		xa_erase(&dmirror->pt, pfn);
255}
256
257static bool dmirror_interval_invalidate(struct mmu_interval_notifier *mni,
258				const struct mmu_notifier_range *range,
259				unsigned long cur_seq)
260{
261	struct dmirror *dmirror = container_of(mni, struct dmirror, notifier);
262
263	/*
264	 * Ignore invalidation callbacks for device private pages since
265	 * the invalidation is handled as part of the migration process.
266	 */
267	if (range->event == MMU_NOTIFY_MIGRATE &&
268	    range->owner == dmirror->mdevice)
269		return true;
270
271	if (mmu_notifier_range_blockable(range))
272		mutex_lock(&dmirror->mutex);
273	else if (!mutex_trylock(&dmirror->mutex))
274		return false;
275
276	mmu_interval_set_seq(mni, cur_seq);
277	dmirror_do_update(dmirror, range->start, range->end);
278
279	mutex_unlock(&dmirror->mutex);
280	return true;
281}
282
283static const struct mmu_interval_notifier_ops dmirror_min_ops = {
284	.invalidate = dmirror_interval_invalidate,
285};
286
287static int dmirror_range_fault(struct dmirror *dmirror,
288				struct hmm_range *range)
289{
290	struct mm_struct *mm = dmirror->notifier.mm;
291	unsigned long timeout =
292		jiffies + msecs_to_jiffies(HMM_RANGE_DEFAULT_TIMEOUT);
293	int ret;
294
295	while (true) {
296		if (time_after(jiffies, timeout)) {
297			ret = -EBUSY;
298			goto out;
299		}
300
301		range->notifier_seq = mmu_interval_read_begin(range->notifier);
302		mmap_read_lock(mm);
303		ret = hmm_range_fault(range);
304		mmap_read_unlock(mm);
305		if (ret) {
306			if (ret == -EBUSY)
307				continue;
308			goto out;
309		}
310
311		mutex_lock(&dmirror->mutex);
312		if (mmu_interval_read_retry(range->notifier,
313					    range->notifier_seq)) {
314			mutex_unlock(&dmirror->mutex);
315			continue;
316		}
317		break;
318	}
319
320	ret = dmirror_do_fault(dmirror, range);
321
322	mutex_unlock(&dmirror->mutex);
323out:
324	return ret;
325}
326
327static int dmirror_fault(struct dmirror *dmirror, unsigned long start,
328			 unsigned long end, bool write)
329{
330	struct mm_struct *mm = dmirror->notifier.mm;
331	unsigned long addr;
332	unsigned long pfns[64];
333	struct hmm_range range = {
334		.notifier = &dmirror->notifier,
335		.hmm_pfns = pfns,
336		.pfn_flags_mask = 0,
337		.default_flags =
338			HMM_PFN_REQ_FAULT | (write ? HMM_PFN_REQ_WRITE : 0),
339		.dev_private_owner = dmirror->mdevice,
340	};
341	int ret = 0;
342
343	/* Since the mm is for the mirrored process, get a reference first. */
344	if (!mmget_not_zero(mm))
345		return 0;
346
347	for (addr = start; addr < end; addr = range.end) {
348		range.start = addr;
349		range.end = min(addr + (ARRAY_SIZE(pfns) << PAGE_SHIFT), end);
350
351		ret = dmirror_range_fault(dmirror, &range);
352		if (ret)
353			break;
354	}
355
356	mmput(mm);
357	return ret;
358}
359
360static int dmirror_do_read(struct dmirror *dmirror, unsigned long start,
361			   unsigned long end, struct dmirror_bounce *bounce)
362{
363	unsigned long pfn;
364	void *ptr;
365
366	ptr = bounce->ptr + ((start - bounce->addr) & PAGE_MASK);
367
368	for (pfn = start >> PAGE_SHIFT; pfn < (end >> PAGE_SHIFT); pfn++) {
369		void *entry;
370		struct page *page;
371
372		entry = xa_load(&dmirror->pt, pfn);
373		page = xa_untag_pointer(entry);
374		if (!page)
375			return -ENOENT;
376
377		memcpy_from_page(ptr, page, 0, PAGE_SIZE);
378
379		ptr += PAGE_SIZE;
380		bounce->cpages++;
381	}
382
383	return 0;
384}
385
386static int dmirror_read(struct dmirror *dmirror, struct hmm_dmirror_cmd *cmd)
387{
388	struct dmirror_bounce bounce;
389	unsigned long start, end;
390	unsigned long size = cmd->npages << PAGE_SHIFT;
391	int ret;
392
393	start = cmd->addr;
394	end = start + size;
395	if (end < start)
396		return -EINVAL;
397
398	ret = dmirror_bounce_init(&bounce, start, size);
399	if (ret)
400		return ret;
401
402	while (1) {
403		mutex_lock(&dmirror->mutex);
404		ret = dmirror_do_read(dmirror, start, end, &bounce);
405		mutex_unlock(&dmirror->mutex);
406		if (ret != -ENOENT)
407			break;
408
409		start = cmd->addr + (bounce.cpages << PAGE_SHIFT);
410		ret = dmirror_fault(dmirror, start, end, false);
411		if (ret)
412			break;
413		cmd->faults++;
414	}
415
416	if (ret == 0) {
417		if (copy_to_user(u64_to_user_ptr(cmd->ptr), bounce.ptr,
418				 bounce.size))
419			ret = -EFAULT;
420	}
421	cmd->cpages = bounce.cpages;
422	dmirror_bounce_fini(&bounce);
423	return ret;
424}
425
426static int dmirror_do_write(struct dmirror *dmirror, unsigned long start,
427			    unsigned long end, struct dmirror_bounce *bounce)
428{
429	unsigned long pfn;
430	void *ptr;
431
432	ptr = bounce->ptr + ((start - bounce->addr) & PAGE_MASK);
433
434	for (pfn = start >> PAGE_SHIFT; pfn < (end >> PAGE_SHIFT); pfn++) {
435		void *entry;
436		struct page *page;
437
438		entry = xa_load(&dmirror->pt, pfn);
439		page = xa_untag_pointer(entry);
440		if (!page || xa_pointer_tag(entry) != DPT_XA_TAG_WRITE)
441			return -ENOENT;
442
443		memcpy_to_page(page, 0, ptr, PAGE_SIZE);
444
445		ptr += PAGE_SIZE;
446		bounce->cpages++;
447	}
448
449	return 0;
450}
451
452static int dmirror_write(struct dmirror *dmirror, struct hmm_dmirror_cmd *cmd)
453{
454	struct dmirror_bounce bounce;
455	unsigned long start, end;
456	unsigned long size = cmd->npages << PAGE_SHIFT;
457	int ret;
458
459	start = cmd->addr;
460	end = start + size;
461	if (end < start)
462		return -EINVAL;
463
464	ret = dmirror_bounce_init(&bounce, start, size);
465	if (ret)
466		return ret;
467	if (copy_from_user(bounce.ptr, u64_to_user_ptr(cmd->ptr),
468			   bounce.size)) {
469		ret = -EFAULT;
470		goto fini;
471	}
472
473	while (1) {
474		mutex_lock(&dmirror->mutex);
475		ret = dmirror_do_write(dmirror, start, end, &bounce);
476		mutex_unlock(&dmirror->mutex);
477		if (ret != -ENOENT)
478			break;
479
480		start = cmd->addr + (bounce.cpages << PAGE_SHIFT);
481		ret = dmirror_fault(dmirror, start, end, true);
482		if (ret)
483			break;
484		cmd->faults++;
485	}
486
487fini:
488	cmd->cpages = bounce.cpages;
489	dmirror_bounce_fini(&bounce);
490	return ret;
491}
492
493static int dmirror_allocate_chunk(struct dmirror_device *mdevice,
494				   struct page **ppage)
495{
496	struct dmirror_chunk *devmem;
497	struct resource *res = NULL;
498	unsigned long pfn;
499	unsigned long pfn_first;
500	unsigned long pfn_last;
501	void *ptr;
502	int ret = -ENOMEM;
503
504	devmem = kzalloc(sizeof(*devmem), GFP_KERNEL);
505	if (!devmem)
506		return ret;
507
508	switch (mdevice->zone_device_type) {
509	case HMM_DMIRROR_MEMORY_DEVICE_PRIVATE:
510		res = request_free_mem_region(&iomem_resource, DEVMEM_CHUNK_SIZE,
511					      "hmm_dmirror");
512		if (IS_ERR_OR_NULL(res))
513			goto err_devmem;
514		devmem->pagemap.range.start = res->start;
515		devmem->pagemap.range.end = res->end;
516		devmem->pagemap.type = MEMORY_DEVICE_PRIVATE;
517		break;
518	case HMM_DMIRROR_MEMORY_DEVICE_COHERENT:
519		devmem->pagemap.range.start = (MINOR(mdevice->cdevice.dev) - 2) ?
520							spm_addr_dev0 :
521							spm_addr_dev1;
522		devmem->pagemap.range.end = devmem->pagemap.range.start +
523					    DEVMEM_CHUNK_SIZE - 1;
524		devmem->pagemap.type = MEMORY_DEVICE_COHERENT;
525		break;
526	default:
527		ret = -EINVAL;
528		goto err_devmem;
529	}
530
531	devmem->pagemap.nr_range = 1;
532	devmem->pagemap.ops = &dmirror_devmem_ops;
533	devmem->pagemap.owner = mdevice;
534
535	mutex_lock(&mdevice->devmem_lock);
536
537	if (mdevice->devmem_count == mdevice->devmem_capacity) {
538		struct dmirror_chunk **new_chunks;
539		unsigned int new_capacity;
540
541		new_capacity = mdevice->devmem_capacity +
542				DEVMEM_CHUNKS_RESERVE;
543		new_chunks = krealloc(mdevice->devmem_chunks,
544				sizeof(new_chunks[0]) * new_capacity,
545				GFP_KERNEL);
546		if (!new_chunks)
547			goto err_release;
548		mdevice->devmem_capacity = new_capacity;
549		mdevice->devmem_chunks = new_chunks;
550	}
551	ptr = memremap_pages(&devmem->pagemap, numa_node_id());
552	if (IS_ERR_OR_NULL(ptr)) {
553		if (ptr)
554			ret = PTR_ERR(ptr);
555		else
556			ret = -EFAULT;
557		goto err_release;
558	}
559
560	devmem->mdevice = mdevice;
561	pfn_first = devmem->pagemap.range.start >> PAGE_SHIFT;
562	pfn_last = pfn_first + (range_len(&devmem->pagemap.range) >> PAGE_SHIFT);
563	mdevice->devmem_chunks[mdevice->devmem_count++] = devmem;
564
565	mutex_unlock(&mdevice->devmem_lock);
566
567	pr_info("added new %u MB chunk (total %u chunks, %u MB) PFNs [0x%lx 0x%lx)\n",
568		DEVMEM_CHUNK_SIZE / (1024 * 1024),
569		mdevice->devmem_count,
570		mdevice->devmem_count * (DEVMEM_CHUNK_SIZE / (1024 * 1024)),
571		pfn_first, pfn_last);
572
573	spin_lock(&mdevice->lock);
574	for (pfn = pfn_first; pfn < pfn_last; pfn++) {
575		struct page *page = pfn_to_page(pfn);
576
577		page->zone_device_data = mdevice->free_pages;
578		mdevice->free_pages = page;
579	}
580	if (ppage) {
581		*ppage = mdevice->free_pages;
582		mdevice->free_pages = (*ppage)->zone_device_data;
583		mdevice->calloc++;
584	}
585	spin_unlock(&mdevice->lock);
586
587	return 0;
588
589err_release:
590	mutex_unlock(&mdevice->devmem_lock);
591	if (res && devmem->pagemap.type == MEMORY_DEVICE_PRIVATE)
592		release_mem_region(devmem->pagemap.range.start,
593				   range_len(&devmem->pagemap.range));
594err_devmem:
595	kfree(devmem);
596
597	return ret;
598}
599
600static struct page *dmirror_devmem_alloc_page(struct dmirror_device *mdevice)
601{
602	struct page *dpage = NULL;
603	struct page *rpage = NULL;
604
605	/*
606	 * For ZONE_DEVICE private type, this is a fake device so we allocate
607	 * real system memory to store our device memory.
608	 * For ZONE_DEVICE coherent type we use the actual dpage to store the
609	 * data and ignore rpage.
610	 */
611	if (dmirror_is_private_zone(mdevice)) {
612		rpage = alloc_page(GFP_HIGHUSER);
613		if (!rpage)
614			return NULL;
615	}
616	spin_lock(&mdevice->lock);
617
618	if (mdevice->free_pages) {
619		dpage = mdevice->free_pages;
620		mdevice->free_pages = dpage->zone_device_data;
621		mdevice->calloc++;
622		spin_unlock(&mdevice->lock);
623	} else {
624		spin_unlock(&mdevice->lock);
625		if (dmirror_allocate_chunk(mdevice, &dpage))
626			goto error;
627	}
628
629	zone_device_page_init(dpage);
630	dpage->zone_device_data = rpage;
631	return dpage;
632
633error:
634	if (rpage)
635		__free_page(rpage);
636	return NULL;
637}
638
639static void dmirror_migrate_alloc_and_copy(struct migrate_vma *args,
640					   struct dmirror *dmirror)
641{
642	struct dmirror_device *mdevice = dmirror->mdevice;
643	const unsigned long *src = args->src;
644	unsigned long *dst = args->dst;
645	unsigned long addr;
646
647	for (addr = args->start; addr < args->end; addr += PAGE_SIZE,
648						   src++, dst++) {
649		struct page *spage;
650		struct page *dpage;
651		struct page *rpage;
652
653		if (!(*src & MIGRATE_PFN_MIGRATE))
654			continue;
655
656		/*
657		 * Note that spage might be NULL which is OK since it is an
658		 * unallocated pte_none() or read-only zero page.
659		 */
660		spage = migrate_pfn_to_page(*src);
661		if (WARN(spage && is_zone_device_page(spage),
662		     "page already in device spage pfn: 0x%lx\n",
663		     page_to_pfn(spage)))
664			continue;
665
666		dpage = dmirror_devmem_alloc_page(mdevice);
667		if (!dpage)
668			continue;
669
670		rpage = BACKING_PAGE(dpage);
671		if (spage)
672			copy_highpage(rpage, spage);
673		else
674			clear_highpage(rpage);
675
676		/*
677		 * Normally, a device would use the page->zone_device_data to
678		 * point to the mirror but here we use it to hold the page for
679		 * the simulated device memory and that page holds the pointer
680		 * to the mirror.
681		 */
682		rpage->zone_device_data = dmirror;
683
684		pr_debug("migrating from sys to dev pfn src: 0x%lx pfn dst: 0x%lx\n",
685			 page_to_pfn(spage), page_to_pfn(dpage));
686		*dst = migrate_pfn(page_to_pfn(dpage));
687		if ((*src & MIGRATE_PFN_WRITE) ||
688		    (!spage && args->vma->vm_flags & VM_WRITE))
689			*dst |= MIGRATE_PFN_WRITE;
690	}
691}
692
693static int dmirror_check_atomic(struct dmirror *dmirror, unsigned long start,
694			     unsigned long end)
695{
696	unsigned long pfn;
697
698	for (pfn = start >> PAGE_SHIFT; pfn < (end >> PAGE_SHIFT); pfn++) {
699		void *entry;
700
701		entry = xa_load(&dmirror->pt, pfn);
702		if (xa_pointer_tag(entry) == DPT_XA_TAG_ATOMIC)
703			return -EPERM;
704	}
705
706	return 0;
707}
708
709static int dmirror_atomic_map(unsigned long start, unsigned long end,
710			      struct page **pages, struct dmirror *dmirror)
711{
712	unsigned long pfn, mapped = 0;
713	int i;
714
715	/* Map the migrated pages into the device's page tables. */
716	mutex_lock(&dmirror->mutex);
717
718	for (i = 0, pfn = start >> PAGE_SHIFT; pfn < (end >> PAGE_SHIFT); pfn++, i++) {
719		void *entry;
720
721		if (!pages[i])
722			continue;
723
724		entry = pages[i];
725		entry = xa_tag_pointer(entry, DPT_XA_TAG_ATOMIC);
726		entry = xa_store(&dmirror->pt, pfn, entry, GFP_ATOMIC);
727		if (xa_is_err(entry)) {
728			mutex_unlock(&dmirror->mutex);
729			return xa_err(entry);
730		}
731
732		mapped++;
733	}
734
735	mutex_unlock(&dmirror->mutex);
736	return mapped;
737}
738
739static int dmirror_migrate_finalize_and_map(struct migrate_vma *args,
740					    struct dmirror *dmirror)
741{
742	unsigned long start = args->start;
743	unsigned long end = args->end;
744	const unsigned long *src = args->src;
745	const unsigned long *dst = args->dst;
746	unsigned long pfn;
747
748	/* Map the migrated pages into the device's page tables. */
749	mutex_lock(&dmirror->mutex);
750
751	for (pfn = start >> PAGE_SHIFT; pfn < (end >> PAGE_SHIFT); pfn++,
752								src++, dst++) {
753		struct page *dpage;
754		void *entry;
755
756		if (!(*src & MIGRATE_PFN_MIGRATE))
757			continue;
758
759		dpage = migrate_pfn_to_page(*dst);
760		if (!dpage)
761			continue;
762
763		entry = BACKING_PAGE(dpage);
764		if (*dst & MIGRATE_PFN_WRITE)
765			entry = xa_tag_pointer(entry, DPT_XA_TAG_WRITE);
766		entry = xa_store(&dmirror->pt, pfn, entry, GFP_ATOMIC);
767		if (xa_is_err(entry)) {
768			mutex_unlock(&dmirror->mutex);
769			return xa_err(entry);
770		}
771	}
772
773	mutex_unlock(&dmirror->mutex);
774	return 0;
775}
776
777static int dmirror_exclusive(struct dmirror *dmirror,
778			     struct hmm_dmirror_cmd *cmd)
779{
780	unsigned long start, end, addr;
781	unsigned long size = cmd->npages << PAGE_SHIFT;
782	struct mm_struct *mm = dmirror->notifier.mm;
783	struct page *pages[64];
784	struct dmirror_bounce bounce;
785	unsigned long next;
786	int ret;
787
788	start = cmd->addr;
789	end = start + size;
790	if (end < start)
791		return -EINVAL;
792
793	/* Since the mm is for the mirrored process, get a reference first. */
794	if (!mmget_not_zero(mm))
795		return -EINVAL;
796
797	mmap_read_lock(mm);
798	for (addr = start; addr < end; addr = next) {
799		unsigned long mapped = 0;
800		int i;
801
802		if (end < addr + (ARRAY_SIZE(pages) << PAGE_SHIFT))
803			next = end;
804		else
805			next = addr + (ARRAY_SIZE(pages) << PAGE_SHIFT);
806
807		ret = make_device_exclusive_range(mm, addr, next, pages, NULL);
808		/*
809		 * Do dmirror_atomic_map() iff all pages are marked for
810		 * exclusive access to avoid accessing uninitialized
811		 * fields of pages.
812		 */
813		if (ret == (next - addr) >> PAGE_SHIFT)
814			mapped = dmirror_atomic_map(addr, next, pages, dmirror);
815		for (i = 0; i < ret; i++) {
816			if (pages[i]) {
817				unlock_page(pages[i]);
818				put_page(pages[i]);
819			}
820		}
821
822		if (addr + (mapped << PAGE_SHIFT) < next) {
823			mmap_read_unlock(mm);
824			mmput(mm);
825			return -EBUSY;
826		}
827	}
828	mmap_read_unlock(mm);
829	mmput(mm);
830
831	/* Return the migrated data for verification. */
832	ret = dmirror_bounce_init(&bounce, start, size);
833	if (ret)
834		return ret;
835	mutex_lock(&dmirror->mutex);
836	ret = dmirror_do_read(dmirror, start, end, &bounce);
837	mutex_unlock(&dmirror->mutex);
838	if (ret == 0) {
839		if (copy_to_user(u64_to_user_ptr(cmd->ptr), bounce.ptr,
840				 bounce.size))
841			ret = -EFAULT;
842	}
843
844	cmd->cpages = bounce.cpages;
845	dmirror_bounce_fini(&bounce);
846	return ret;
847}
848
849static vm_fault_t dmirror_devmem_fault_alloc_and_copy(struct migrate_vma *args,
850						      struct dmirror *dmirror)
851{
852	const unsigned long *src = args->src;
853	unsigned long *dst = args->dst;
854	unsigned long start = args->start;
855	unsigned long end = args->end;
856	unsigned long addr;
857
858	for (addr = start; addr < end; addr += PAGE_SIZE,
859				       src++, dst++) {
860		struct page *dpage, *spage;
861
862		spage = migrate_pfn_to_page(*src);
863		if (!spage || !(*src & MIGRATE_PFN_MIGRATE))
864			continue;
865
866		if (WARN_ON(!is_device_private_page(spage) &&
867			    !is_device_coherent_page(spage)))
868			continue;
869		spage = BACKING_PAGE(spage);
870		dpage = alloc_page_vma(GFP_HIGHUSER_MOVABLE, args->vma, addr);
871		if (!dpage)
872			continue;
873		pr_debug("migrating from dev to sys pfn src: 0x%lx pfn dst: 0x%lx\n",
874			 page_to_pfn(spage), page_to_pfn(dpage));
875
876		lock_page(dpage);
877		xa_erase(&dmirror->pt, addr >> PAGE_SHIFT);
878		copy_highpage(dpage, spage);
879		*dst = migrate_pfn(page_to_pfn(dpage));
880		if (*src & MIGRATE_PFN_WRITE)
881			*dst |= MIGRATE_PFN_WRITE;
882	}
883	return 0;
884}
885
886static unsigned long
887dmirror_successful_migrated_pages(struct migrate_vma *migrate)
888{
889	unsigned long cpages = 0;
890	unsigned long i;
891
892	for (i = 0; i < migrate->npages; i++) {
893		if (migrate->src[i] & MIGRATE_PFN_VALID &&
894		    migrate->src[i] & MIGRATE_PFN_MIGRATE)
895			cpages++;
896	}
897	return cpages;
898}
899
900static int dmirror_migrate_to_system(struct dmirror *dmirror,
901				     struct hmm_dmirror_cmd *cmd)
902{
903	unsigned long start, end, addr;
904	unsigned long size = cmd->npages << PAGE_SHIFT;
905	struct mm_struct *mm = dmirror->notifier.mm;
906	struct vm_area_struct *vma;
907	unsigned long src_pfns[64] = { 0 };
908	unsigned long dst_pfns[64] = { 0 };
909	struct migrate_vma args = { 0 };
910	unsigned long next;
911	int ret;
912
913	start = cmd->addr;
914	end = start + size;
915	if (end < start)
916		return -EINVAL;
917
918	/* Since the mm is for the mirrored process, get a reference first. */
919	if (!mmget_not_zero(mm))
920		return -EINVAL;
921
922	cmd->cpages = 0;
923	mmap_read_lock(mm);
924	for (addr = start; addr < end; addr = next) {
925		vma = vma_lookup(mm, addr);
926		if (!vma || !(vma->vm_flags & VM_READ)) {
927			ret = -EINVAL;
928			goto out;
929		}
930		next = min(end, addr + (ARRAY_SIZE(src_pfns) << PAGE_SHIFT));
931		if (next > vma->vm_end)
932			next = vma->vm_end;
933
934		args.vma = vma;
935		args.src = src_pfns;
936		args.dst = dst_pfns;
937		args.start = addr;
938		args.end = next;
939		args.pgmap_owner = dmirror->mdevice;
940		args.flags = dmirror_select_device(dmirror);
941
942		ret = migrate_vma_setup(&args);
943		if (ret)
944			goto out;
945
946		pr_debug("Migrating from device mem to sys mem\n");
947		dmirror_devmem_fault_alloc_and_copy(&args, dmirror);
948
949		migrate_vma_pages(&args);
950		cmd->cpages += dmirror_successful_migrated_pages(&args);
951		migrate_vma_finalize(&args);
952	}
953out:
954	mmap_read_unlock(mm);
955	mmput(mm);
956
957	return ret;
958}
959
960static int dmirror_migrate_to_device(struct dmirror *dmirror,
961				struct hmm_dmirror_cmd *cmd)
962{
963	unsigned long start, end, addr;
964	unsigned long size = cmd->npages << PAGE_SHIFT;
965	struct mm_struct *mm = dmirror->notifier.mm;
966	struct vm_area_struct *vma;
967	unsigned long src_pfns[64] = { 0 };
968	unsigned long dst_pfns[64] = { 0 };
969	struct dmirror_bounce bounce;
970	struct migrate_vma args = { 0 };
971	unsigned long next;
972	int ret;
973
974	start = cmd->addr;
975	end = start + size;
976	if (end < start)
977		return -EINVAL;
978
979	/* Since the mm is for the mirrored process, get a reference first. */
980	if (!mmget_not_zero(mm))
981		return -EINVAL;
982
983	mmap_read_lock(mm);
984	for (addr = start; addr < end; addr = next) {
985		vma = vma_lookup(mm, addr);
986		if (!vma || !(vma->vm_flags & VM_READ)) {
987			ret = -EINVAL;
988			goto out;
989		}
990		next = min(end, addr + (ARRAY_SIZE(src_pfns) << PAGE_SHIFT));
991		if (next > vma->vm_end)
992			next = vma->vm_end;
993
994		args.vma = vma;
995		args.src = src_pfns;
996		args.dst = dst_pfns;
997		args.start = addr;
998		args.end = next;
999		args.pgmap_owner = dmirror->mdevice;
1000		args.flags = MIGRATE_VMA_SELECT_SYSTEM;
1001		ret = migrate_vma_setup(&args);
1002		if (ret)
1003			goto out;
1004
1005		pr_debug("Migrating from sys mem to device mem\n");
1006		dmirror_migrate_alloc_and_copy(&args, dmirror);
1007		migrate_vma_pages(&args);
1008		dmirror_migrate_finalize_and_map(&args, dmirror);
1009		migrate_vma_finalize(&args);
1010	}
1011	mmap_read_unlock(mm);
1012	mmput(mm);
1013
1014	/*
1015	 * Return the migrated data for verification.
1016	 * Only for pages in device zone
1017	 */
1018	ret = dmirror_bounce_init(&bounce, start, size);
1019	if (ret)
1020		return ret;
1021	mutex_lock(&dmirror->mutex);
1022	ret = dmirror_do_read(dmirror, start, end, &bounce);
1023	mutex_unlock(&dmirror->mutex);
1024	if (ret == 0) {
1025		if (copy_to_user(u64_to_user_ptr(cmd->ptr), bounce.ptr,
1026				 bounce.size))
1027			ret = -EFAULT;
1028	}
1029	cmd->cpages = bounce.cpages;
1030	dmirror_bounce_fini(&bounce);
1031	return ret;
1032
1033out:
1034	mmap_read_unlock(mm);
1035	mmput(mm);
1036	return ret;
1037}
1038
1039static void dmirror_mkentry(struct dmirror *dmirror, struct hmm_range *range,
1040			    unsigned char *perm, unsigned long entry)
1041{
1042	struct page *page;
1043
1044	if (entry & HMM_PFN_ERROR) {
1045		*perm = HMM_DMIRROR_PROT_ERROR;
1046		return;
1047	}
1048	if (!(entry & HMM_PFN_VALID)) {
1049		*perm = HMM_DMIRROR_PROT_NONE;
1050		return;
1051	}
1052
1053	page = hmm_pfn_to_page(entry);
1054	if (is_device_private_page(page)) {
1055		/* Is the page migrated to this device or some other? */
1056		if (dmirror->mdevice == dmirror_page_to_device(page))
1057			*perm = HMM_DMIRROR_PROT_DEV_PRIVATE_LOCAL;
1058		else
1059			*perm = HMM_DMIRROR_PROT_DEV_PRIVATE_REMOTE;
1060	} else if (is_device_coherent_page(page)) {
1061		/* Is the page migrated to this device or some other? */
1062		if (dmirror->mdevice == dmirror_page_to_device(page))
1063			*perm = HMM_DMIRROR_PROT_DEV_COHERENT_LOCAL;
1064		else
1065			*perm = HMM_DMIRROR_PROT_DEV_COHERENT_REMOTE;
1066	} else if (is_zero_pfn(page_to_pfn(page)))
1067		*perm = HMM_DMIRROR_PROT_ZERO;
1068	else
1069		*perm = HMM_DMIRROR_PROT_NONE;
1070	if (entry & HMM_PFN_WRITE)
1071		*perm |= HMM_DMIRROR_PROT_WRITE;
1072	else
1073		*perm |= HMM_DMIRROR_PROT_READ;
1074	if (hmm_pfn_to_map_order(entry) + PAGE_SHIFT == PMD_SHIFT)
1075		*perm |= HMM_DMIRROR_PROT_PMD;
1076	else if (hmm_pfn_to_map_order(entry) + PAGE_SHIFT == PUD_SHIFT)
1077		*perm |= HMM_DMIRROR_PROT_PUD;
1078}
1079
1080static bool dmirror_snapshot_invalidate(struct mmu_interval_notifier *mni,
1081				const struct mmu_notifier_range *range,
1082				unsigned long cur_seq)
1083{
1084	struct dmirror_interval *dmi =
1085		container_of(mni, struct dmirror_interval, notifier);
1086	struct dmirror *dmirror = dmi->dmirror;
1087
1088	if (mmu_notifier_range_blockable(range))
1089		mutex_lock(&dmirror->mutex);
1090	else if (!mutex_trylock(&dmirror->mutex))
1091		return false;
1092
1093	/*
1094	 * Snapshots only need to set the sequence number since any
1095	 * invalidation in the interval invalidates the whole snapshot.
1096	 */
1097	mmu_interval_set_seq(mni, cur_seq);
1098
1099	mutex_unlock(&dmirror->mutex);
1100	return true;
1101}
1102
1103static const struct mmu_interval_notifier_ops dmirror_mrn_ops = {
1104	.invalidate = dmirror_snapshot_invalidate,
1105};
1106
1107static int dmirror_range_snapshot(struct dmirror *dmirror,
1108				  struct hmm_range *range,
1109				  unsigned char *perm)
1110{
1111	struct mm_struct *mm = dmirror->notifier.mm;
1112	struct dmirror_interval notifier;
1113	unsigned long timeout =
1114		jiffies + msecs_to_jiffies(HMM_RANGE_DEFAULT_TIMEOUT);
1115	unsigned long i;
1116	unsigned long n;
1117	int ret = 0;
1118
1119	notifier.dmirror = dmirror;
1120	range->notifier = &notifier.notifier;
1121
1122	ret = mmu_interval_notifier_insert(range->notifier, mm,
1123			range->start, range->end - range->start,
1124			&dmirror_mrn_ops);
1125	if (ret)
1126		return ret;
1127
1128	while (true) {
1129		if (time_after(jiffies, timeout)) {
1130			ret = -EBUSY;
1131			goto out;
1132		}
1133
1134		range->notifier_seq = mmu_interval_read_begin(range->notifier);
1135
1136		mmap_read_lock(mm);
1137		ret = hmm_range_fault(range);
1138		mmap_read_unlock(mm);
1139		if (ret) {
1140			if (ret == -EBUSY)
1141				continue;
1142			goto out;
1143		}
1144
1145		mutex_lock(&dmirror->mutex);
1146		if (mmu_interval_read_retry(range->notifier,
1147					    range->notifier_seq)) {
1148			mutex_unlock(&dmirror->mutex);
1149			continue;
1150		}
1151		break;
1152	}
1153
1154	n = (range->end - range->start) >> PAGE_SHIFT;
1155	for (i = 0; i < n; i++)
1156		dmirror_mkentry(dmirror, range, perm + i, range->hmm_pfns[i]);
1157
1158	mutex_unlock(&dmirror->mutex);
1159out:
1160	mmu_interval_notifier_remove(range->notifier);
1161	return ret;
1162}
1163
1164static int dmirror_snapshot(struct dmirror *dmirror,
1165			    struct hmm_dmirror_cmd *cmd)
1166{
1167	struct mm_struct *mm = dmirror->notifier.mm;
1168	unsigned long start, end;
1169	unsigned long size = cmd->npages << PAGE_SHIFT;
1170	unsigned long addr;
1171	unsigned long next;
1172	unsigned long pfns[64];
1173	unsigned char perm[64];
1174	char __user *uptr;
1175	struct hmm_range range = {
1176		.hmm_pfns = pfns,
1177		.dev_private_owner = dmirror->mdevice,
1178	};
1179	int ret = 0;
1180
1181	start = cmd->addr;
1182	end = start + size;
1183	if (end < start)
1184		return -EINVAL;
1185
1186	/* Since the mm is for the mirrored process, get a reference first. */
1187	if (!mmget_not_zero(mm))
1188		return -EINVAL;
1189
1190	/*
1191	 * Register a temporary notifier to detect invalidations even if it
1192	 * overlaps with other mmu_interval_notifiers.
1193	 */
1194	uptr = u64_to_user_ptr(cmd->ptr);
1195	for (addr = start; addr < end; addr = next) {
1196		unsigned long n;
1197
1198		next = min(addr + (ARRAY_SIZE(pfns) << PAGE_SHIFT), end);
1199		range.start = addr;
1200		range.end = next;
1201
1202		ret = dmirror_range_snapshot(dmirror, &range, perm);
1203		if (ret)
1204			break;
1205
1206		n = (range.end - range.start) >> PAGE_SHIFT;
1207		if (copy_to_user(uptr, perm, n)) {
1208			ret = -EFAULT;
1209			break;
1210		}
1211
1212		cmd->cpages += n;
1213		uptr += n;
1214	}
1215	mmput(mm);
1216
1217	return ret;
1218}
1219
1220static void dmirror_device_evict_chunk(struct dmirror_chunk *chunk)
1221{
1222	unsigned long start_pfn = chunk->pagemap.range.start >> PAGE_SHIFT;
1223	unsigned long end_pfn = chunk->pagemap.range.end >> PAGE_SHIFT;
1224	unsigned long npages = end_pfn - start_pfn + 1;
1225	unsigned long i;
1226	unsigned long *src_pfns;
1227	unsigned long *dst_pfns;
1228
1229	src_pfns = kcalloc(npages, sizeof(*src_pfns), GFP_KERNEL);
1230	dst_pfns = kcalloc(npages, sizeof(*dst_pfns), GFP_KERNEL);
1231
1232	migrate_device_range(src_pfns, start_pfn, npages);
1233	for (i = 0; i < npages; i++) {
1234		struct page *dpage, *spage;
1235
1236		spage = migrate_pfn_to_page(src_pfns[i]);
1237		if (!spage || !(src_pfns[i] & MIGRATE_PFN_MIGRATE))
1238			continue;
1239
1240		if (WARN_ON(!is_device_private_page(spage) &&
1241			    !is_device_coherent_page(spage)))
1242			continue;
1243		spage = BACKING_PAGE(spage);
1244		dpage = alloc_page(GFP_HIGHUSER_MOVABLE | __GFP_NOFAIL);
1245		lock_page(dpage);
1246		copy_highpage(dpage, spage);
1247		dst_pfns[i] = migrate_pfn(page_to_pfn(dpage));
1248		if (src_pfns[i] & MIGRATE_PFN_WRITE)
1249			dst_pfns[i] |= MIGRATE_PFN_WRITE;
1250	}
1251	migrate_device_pages(src_pfns, dst_pfns, npages);
1252	migrate_device_finalize(src_pfns, dst_pfns, npages);
1253	kfree(src_pfns);
1254	kfree(dst_pfns);
1255}
1256
1257/* Removes free pages from the free list so they can't be re-allocated */
1258static void dmirror_remove_free_pages(struct dmirror_chunk *devmem)
1259{
1260	struct dmirror_device *mdevice = devmem->mdevice;
1261	struct page *page;
1262
1263	for (page = mdevice->free_pages; page; page = page->zone_device_data)
1264		if (dmirror_page_to_chunk(page) == devmem)
1265			mdevice->free_pages = page->zone_device_data;
1266}
1267
1268static void dmirror_device_remove_chunks(struct dmirror_device *mdevice)
1269{
1270	unsigned int i;
1271
1272	mutex_lock(&mdevice->devmem_lock);
1273	if (mdevice->devmem_chunks) {
1274		for (i = 0; i < mdevice->devmem_count; i++) {
1275			struct dmirror_chunk *devmem =
1276				mdevice->devmem_chunks[i];
1277
1278			spin_lock(&mdevice->lock);
1279			devmem->remove = true;
1280			dmirror_remove_free_pages(devmem);
1281			spin_unlock(&mdevice->lock);
1282
1283			dmirror_device_evict_chunk(devmem);
1284			memunmap_pages(&devmem->pagemap);
1285			if (devmem->pagemap.type == MEMORY_DEVICE_PRIVATE)
1286				release_mem_region(devmem->pagemap.range.start,
1287						   range_len(&devmem->pagemap.range));
1288			kfree(devmem);
1289		}
1290		mdevice->devmem_count = 0;
1291		mdevice->devmem_capacity = 0;
1292		mdevice->free_pages = NULL;
1293		kfree(mdevice->devmem_chunks);
1294		mdevice->devmem_chunks = NULL;
1295	}
1296	mutex_unlock(&mdevice->devmem_lock);
1297}
1298
1299static long dmirror_fops_unlocked_ioctl(struct file *filp,
1300					unsigned int command,
1301					unsigned long arg)
1302{
1303	void __user *uarg = (void __user *)arg;
1304	struct hmm_dmirror_cmd cmd;
1305	struct dmirror *dmirror;
1306	int ret;
1307
1308	dmirror = filp->private_data;
1309	if (!dmirror)
1310		return -EINVAL;
1311
1312	if (copy_from_user(&cmd, uarg, sizeof(cmd)))
1313		return -EFAULT;
1314
1315	if (cmd.addr & ~PAGE_MASK)
1316		return -EINVAL;
1317	if (cmd.addr >= (cmd.addr + (cmd.npages << PAGE_SHIFT)))
1318		return -EINVAL;
1319
1320	cmd.cpages = 0;
1321	cmd.faults = 0;
1322
1323	switch (command) {
1324	case HMM_DMIRROR_READ:
1325		ret = dmirror_read(dmirror, &cmd);
1326		break;
1327
1328	case HMM_DMIRROR_WRITE:
1329		ret = dmirror_write(dmirror, &cmd);
1330		break;
1331
1332	case HMM_DMIRROR_MIGRATE_TO_DEV:
1333		ret = dmirror_migrate_to_device(dmirror, &cmd);
1334		break;
1335
1336	case HMM_DMIRROR_MIGRATE_TO_SYS:
1337		ret = dmirror_migrate_to_system(dmirror, &cmd);
1338		break;
1339
1340	case HMM_DMIRROR_EXCLUSIVE:
1341		ret = dmirror_exclusive(dmirror, &cmd);
1342		break;
1343
1344	case HMM_DMIRROR_CHECK_EXCLUSIVE:
1345		ret = dmirror_check_atomic(dmirror, cmd.addr,
1346					cmd.addr + (cmd.npages << PAGE_SHIFT));
1347		break;
1348
1349	case HMM_DMIRROR_SNAPSHOT:
1350		ret = dmirror_snapshot(dmirror, &cmd);
1351		break;
1352
1353	case HMM_DMIRROR_RELEASE:
1354		dmirror_device_remove_chunks(dmirror->mdevice);
1355		ret = 0;
1356		break;
1357
1358	default:
1359		return -EINVAL;
1360	}
1361	if (ret)
1362		return ret;
1363
1364	if (copy_to_user(uarg, &cmd, sizeof(cmd)))
1365		return -EFAULT;
1366
1367	return 0;
1368}
1369
1370static int dmirror_fops_mmap(struct file *file, struct vm_area_struct *vma)
1371{
1372	unsigned long addr;
1373
1374	for (addr = vma->vm_start; addr < vma->vm_end; addr += PAGE_SIZE) {
1375		struct page *page;
1376		int ret;
1377
1378		page = alloc_page(GFP_KERNEL | __GFP_ZERO);
1379		if (!page)
1380			return -ENOMEM;
1381
1382		ret = vm_insert_page(vma, addr, page);
1383		if (ret) {
1384			__free_page(page);
1385			return ret;
1386		}
1387		put_page(page);
1388	}
1389
1390	return 0;
1391}
1392
1393static const struct file_operations dmirror_fops = {
1394	.open		= dmirror_fops_open,
1395	.release	= dmirror_fops_release,
1396	.mmap		= dmirror_fops_mmap,
1397	.unlocked_ioctl = dmirror_fops_unlocked_ioctl,
1398	.llseek		= default_llseek,
1399	.owner		= THIS_MODULE,
1400};
1401
1402static void dmirror_devmem_free(struct page *page)
1403{
1404	struct page *rpage = BACKING_PAGE(page);
1405	struct dmirror_device *mdevice;
1406
1407	if (rpage != page)
1408		__free_page(rpage);
1409
1410	mdevice = dmirror_page_to_device(page);
1411	spin_lock(&mdevice->lock);
1412
1413	/* Return page to our allocator if not freeing the chunk */
1414	if (!dmirror_page_to_chunk(page)->remove) {
1415		mdevice->cfree++;
1416		page->zone_device_data = mdevice->free_pages;
1417		mdevice->free_pages = page;
1418	}
1419	spin_unlock(&mdevice->lock);
1420}
1421
1422static vm_fault_t dmirror_devmem_fault(struct vm_fault *vmf)
1423{
1424	struct migrate_vma args = { 0 };
1425	unsigned long src_pfns = 0;
1426	unsigned long dst_pfns = 0;
1427	struct page *rpage;
1428	struct dmirror *dmirror;
1429	vm_fault_t ret;
1430
1431	/*
1432	 * Normally, a device would use the page->zone_device_data to point to
1433	 * the mirror but here we use it to hold the page for the simulated
1434	 * device memory and that page holds the pointer to the mirror.
1435	 */
1436	rpage = vmf->page->zone_device_data;
1437	dmirror = rpage->zone_device_data;
1438
1439	/* FIXME demonstrate how we can adjust migrate range */
1440	args.vma = vmf->vma;
1441	args.start = vmf->address;
1442	args.end = args.start + PAGE_SIZE;
1443	args.src = &src_pfns;
1444	args.dst = &dst_pfns;
1445	args.pgmap_owner = dmirror->mdevice;
1446	args.flags = dmirror_select_device(dmirror);
1447	args.fault_page = vmf->page;
1448
1449	if (migrate_vma_setup(&args))
1450		return VM_FAULT_SIGBUS;
1451
1452	ret = dmirror_devmem_fault_alloc_and_copy(&args, dmirror);
1453	if (ret)
1454		return ret;
1455	migrate_vma_pages(&args);
1456	/*
1457	 * No device finalize step is needed since
1458	 * dmirror_devmem_fault_alloc_and_copy() will have already
1459	 * invalidated the device page table.
1460	 */
1461	migrate_vma_finalize(&args);
1462	return 0;
1463}
1464
1465static const struct dev_pagemap_ops dmirror_devmem_ops = {
1466	.page_free	= dmirror_devmem_free,
1467	.migrate_to_ram	= dmirror_devmem_fault,
1468};
1469
1470static int dmirror_device_init(struct dmirror_device *mdevice, int id)
1471{
1472	dev_t dev;
1473	int ret;
1474
1475	dev = MKDEV(MAJOR(dmirror_dev), id);
1476	mutex_init(&mdevice->devmem_lock);
1477	spin_lock_init(&mdevice->lock);
1478
1479	cdev_init(&mdevice->cdevice, &dmirror_fops);
1480	mdevice->cdevice.owner = THIS_MODULE;
1481	device_initialize(&mdevice->device);
1482	mdevice->device.devt = dev;
1483
1484	ret = dev_set_name(&mdevice->device, "hmm_dmirror%u", id);
1485	if (ret)
1486		return ret;
1487
1488	ret = cdev_device_add(&mdevice->cdevice, &mdevice->device);
1489	if (ret)
1490		return ret;
1491
1492	/* Build a list of free ZONE_DEVICE struct pages */
1493	return dmirror_allocate_chunk(mdevice, NULL);
1494}
1495
1496static void dmirror_device_remove(struct dmirror_device *mdevice)
1497{
1498	dmirror_device_remove_chunks(mdevice);
1499	cdev_device_del(&mdevice->cdevice, &mdevice->device);
1500}
1501
1502static int __init hmm_dmirror_init(void)
1503{
1504	int ret;
1505	int id = 0;
1506	int ndevices = 0;
1507
1508	ret = alloc_chrdev_region(&dmirror_dev, 0, DMIRROR_NDEVICES,
1509				  "HMM_DMIRROR");
1510	if (ret)
1511		goto err_unreg;
1512
1513	memset(dmirror_devices, 0, DMIRROR_NDEVICES * sizeof(dmirror_devices[0]));
1514	dmirror_devices[ndevices++].zone_device_type =
1515				HMM_DMIRROR_MEMORY_DEVICE_PRIVATE;
1516	dmirror_devices[ndevices++].zone_device_type =
1517				HMM_DMIRROR_MEMORY_DEVICE_PRIVATE;
1518	if (spm_addr_dev0 && spm_addr_dev1) {
1519		dmirror_devices[ndevices++].zone_device_type =
1520					HMM_DMIRROR_MEMORY_DEVICE_COHERENT;
1521		dmirror_devices[ndevices++].zone_device_type =
1522					HMM_DMIRROR_MEMORY_DEVICE_COHERENT;
1523	}
1524	for (id = 0; id < ndevices; id++) {
1525		ret = dmirror_device_init(dmirror_devices + id, id);
1526		if (ret)
1527			goto err_chrdev;
1528	}
1529
1530	pr_info("HMM test module loaded. This is only for testing HMM.\n");
1531	return 0;
1532
1533err_chrdev:
1534	while (--id >= 0)
1535		dmirror_device_remove(dmirror_devices + id);
1536	unregister_chrdev_region(dmirror_dev, DMIRROR_NDEVICES);
1537err_unreg:
1538	return ret;
1539}
1540
1541static void __exit hmm_dmirror_exit(void)
1542{
1543	int id;
1544
1545	for (id = 0; id < DMIRROR_NDEVICES; id++)
1546		if (dmirror_devices[id].zone_device_type)
1547			dmirror_device_remove(dmirror_devices + id);
1548	unregister_chrdev_region(dmirror_dev, DMIRROR_NDEVICES);
1549}
1550
1551module_init(hmm_dmirror_init);
1552module_exit(hmm_dmirror_exit);
1553MODULE_LICENSE("GPL");
1554