1// SPDX-License-Identifier: GPL-2.0-or-later
2/* mpihelp-mul.c  -  MPI helper functions
3 * Copyright (C) 1994, 1996, 1998, 1999,
4 *               2000 Free Software Foundation, Inc.
5 *
6 * This file is part of GnuPG.
7 *
8 * Note: This code is heavily based on the GNU MP Library.
9 *	 Actually it's the same code with only minor changes in the
10 *	 way the data is stored; this is to support the abstraction
11 *	 of an optional secure memory allocation which may be used
12 *	 to avoid revealing of sensitive data due to paging etc.
13 *	 The GNU MP Library itself is published under the LGPL;
14 *	 however I decided to publish this code under the plain GPL.
15 */
16
17#include <linux/string.h>
18#include "mpi-internal.h"
19#include "longlong.h"
20
21#define MPN_MUL_N_RECURSE(prodp, up, vp, size, tspace)		\
22	do {							\
23		if ((size) < KARATSUBA_THRESHOLD)		\
24			mul_n_basecase(prodp, up, vp, size);	\
25		else						\
26			mul_n(prodp, up, vp, size, tspace);	\
27	} while (0);
28
29#define MPN_SQR_N_RECURSE(prodp, up, size, tspace)		\
30	do {							\
31		if ((size) < KARATSUBA_THRESHOLD)		\
32			mpih_sqr_n_basecase(prodp, up, size);	\
33		else						\
34			mpih_sqr_n(prodp, up, size, tspace);	\
35	} while (0);
36
37/* Multiply the natural numbers u (pointed to by UP) and v (pointed to by VP),
38 * both with SIZE limbs, and store the result at PRODP.  2 * SIZE limbs are
39 * always stored.  Return the most significant limb.
40 *
41 * Argument constraints:
42 * 1. PRODP != UP and PRODP != VP, i.e. the destination
43 *    must be distinct from the multiplier and the multiplicand.
44 *
45 *
46 * Handle simple cases with traditional multiplication.
47 *
48 * This is the most critical code of multiplication.  All multiplies rely
49 * on this, both small and huge.  Small ones arrive here immediately.  Huge
50 * ones arrive here as this is the base case for Karatsuba's recursive
51 * algorithm below.
52 */
53
54static mpi_limb_t
55mul_n_basecase(mpi_ptr_t prodp, mpi_ptr_t up, mpi_ptr_t vp, mpi_size_t size)
56{
57	mpi_size_t i;
58	mpi_limb_t cy;
59	mpi_limb_t v_limb;
60
61	/* Multiply by the first limb in V separately, as the result can be
62	 * stored (not added) to PROD.  We also avoid a loop for zeroing.  */
63	v_limb = vp[0];
64	if (v_limb <= 1) {
65		if (v_limb == 1)
66			MPN_COPY(prodp, up, size);
67		else
68			MPN_ZERO(prodp, size);
69		cy = 0;
70	} else
71		cy = mpihelp_mul_1(prodp, up, size, v_limb);
72
73	prodp[size] = cy;
74	prodp++;
75
76	/* For each iteration in the outer loop, multiply one limb from
77	 * U with one limb from V, and add it to PROD.  */
78	for (i = 1; i < size; i++) {
79		v_limb = vp[i];
80		if (v_limb <= 1) {
81			cy = 0;
82			if (v_limb == 1)
83				cy = mpihelp_add_n(prodp, prodp, up, size);
84		} else
85			cy = mpihelp_addmul_1(prodp, up, size, v_limb);
86
87		prodp[size] = cy;
88		prodp++;
89	}
90
91	return cy;
92}
93
94static void
95mul_n(mpi_ptr_t prodp, mpi_ptr_t up, mpi_ptr_t vp,
96		mpi_size_t size, mpi_ptr_t tspace)
97{
98	if (size & 1) {
99		/* The size is odd, and the code below doesn't handle that.
100		 * Multiply the least significant (size - 1) limbs with a recursive
101		 * call, and handle the most significant limb of S1 and S2
102		 * separately.
103		 * A slightly faster way to do this would be to make the Karatsuba
104		 * code below behave as if the size were even, and let it check for
105		 * odd size in the end.  I.e., in essence move this code to the end.
106		 * Doing so would save us a recursive call, and potentially make the
107		 * stack grow a lot less.
108		 */
109		mpi_size_t esize = size - 1;	/* even size */
110		mpi_limb_t cy_limb;
111
112		MPN_MUL_N_RECURSE(prodp, up, vp, esize, tspace);
113		cy_limb = mpihelp_addmul_1(prodp + esize, up, esize, vp[esize]);
114		prodp[esize + esize] = cy_limb;
115		cy_limb = mpihelp_addmul_1(prodp + esize, vp, size, up[esize]);
116		prodp[esize + size] = cy_limb;
117	} else {
118		/* Anatolij Alekseevich Karatsuba's divide-and-conquer algorithm.
119		 *
120		 * Split U in two pieces, U1 and U0, such that
121		 * U = U0 + U1*(B**n),
122		 * and V in V1 and V0, such that
123		 * V = V0 + V1*(B**n).
124		 *
125		 * UV is then computed recursively using the identity
126		 *
127		 *        2n   n          n                     n
128		 * UV = (B  + B )U V  +  B (U -U )(V -V )  +  (B + 1)U V
129		 *                1 1        1  0   0  1              0 0
130		 *
131		 * Where B = 2**BITS_PER_MP_LIMB.
132		 */
133		mpi_size_t hsize = size >> 1;
134		mpi_limb_t cy;
135		int negflg;
136
137		/* Product H.      ________________  ________________
138		 *                |_____U1 x V1____||____U0 x V0_____|
139		 * Put result in upper part of PROD and pass low part of TSPACE
140		 * as new TSPACE.
141		 */
142		MPN_MUL_N_RECURSE(prodp + size, up + hsize, vp + hsize, hsize,
143				  tspace);
144
145		/* Product M.      ________________
146		 *                |_(U1-U0)(V0-V1)_|
147		 */
148		if (mpihelp_cmp(up + hsize, up, hsize) >= 0) {
149			mpihelp_sub_n(prodp, up + hsize, up, hsize);
150			negflg = 0;
151		} else {
152			mpihelp_sub_n(prodp, up, up + hsize, hsize);
153			negflg = 1;
154		}
155		if (mpihelp_cmp(vp + hsize, vp, hsize) >= 0) {
156			mpihelp_sub_n(prodp + hsize, vp + hsize, vp, hsize);
157			negflg ^= 1;
158		} else {
159			mpihelp_sub_n(prodp + hsize, vp, vp + hsize, hsize);
160			/* No change of NEGFLG.  */
161		}
162		/* Read temporary operands from low part of PROD.
163		 * Put result in low part of TSPACE using upper part of TSPACE
164		 * as new TSPACE.
165		 */
166		MPN_MUL_N_RECURSE(tspace, prodp, prodp + hsize, hsize,
167				  tspace + size);
168
169		/* Add/copy product H. */
170		MPN_COPY(prodp + hsize, prodp + size, hsize);
171		cy = mpihelp_add_n(prodp + size, prodp + size,
172				   prodp + size + hsize, hsize);
173
174		/* Add product M (if NEGFLG M is a negative number) */
175		if (negflg)
176			cy -=
177			    mpihelp_sub_n(prodp + hsize, prodp + hsize, tspace,
178					  size);
179		else
180			cy +=
181			    mpihelp_add_n(prodp + hsize, prodp + hsize, tspace,
182					  size);
183
184		/* Product L.      ________________  ________________
185		 *                |________________||____U0 x V0_____|
186		 * Read temporary operands from low part of PROD.
187		 * Put result in low part of TSPACE using upper part of TSPACE
188		 * as new TSPACE.
189		 */
190		MPN_MUL_N_RECURSE(tspace, up, vp, hsize, tspace + size);
191
192		/* Add/copy Product L (twice) */
193
194		cy += mpihelp_add_n(prodp + hsize, prodp + hsize, tspace, size);
195		if (cy)
196			mpihelp_add_1(prodp + hsize + size,
197				      prodp + hsize + size, hsize, cy);
198
199		MPN_COPY(prodp, tspace, hsize);
200		cy = mpihelp_add_n(prodp + hsize, prodp + hsize, tspace + hsize,
201				   hsize);
202		if (cy)
203			mpihelp_add_1(prodp + size, prodp + size, size, 1);
204	}
205}
206
207void mpih_sqr_n_basecase(mpi_ptr_t prodp, mpi_ptr_t up, mpi_size_t size)
208{
209	mpi_size_t i;
210	mpi_limb_t cy_limb;
211	mpi_limb_t v_limb;
212
213	/* Multiply by the first limb in V separately, as the result can be
214	 * stored (not added) to PROD.  We also avoid a loop for zeroing.  */
215	v_limb = up[0];
216	if (v_limb <= 1) {
217		if (v_limb == 1)
218			MPN_COPY(prodp, up, size);
219		else
220			MPN_ZERO(prodp, size);
221		cy_limb = 0;
222	} else
223		cy_limb = mpihelp_mul_1(prodp, up, size, v_limb);
224
225	prodp[size] = cy_limb;
226	prodp++;
227
228	/* For each iteration in the outer loop, multiply one limb from
229	 * U with one limb from V, and add it to PROD.  */
230	for (i = 1; i < size; i++) {
231		v_limb = up[i];
232		if (v_limb <= 1) {
233			cy_limb = 0;
234			if (v_limb == 1)
235				cy_limb = mpihelp_add_n(prodp, prodp, up, size);
236		} else
237			cy_limb = mpihelp_addmul_1(prodp, up, size, v_limb);
238
239		prodp[size] = cy_limb;
240		prodp++;
241	}
242}
243
244void
245mpih_sqr_n(mpi_ptr_t prodp, mpi_ptr_t up, mpi_size_t size, mpi_ptr_t tspace)
246{
247	if (size & 1) {
248		/* The size is odd, and the code below doesn't handle that.
249		 * Multiply the least significant (size - 1) limbs with a recursive
250		 * call, and handle the most significant limb of S1 and S2
251		 * separately.
252		 * A slightly faster way to do this would be to make the Karatsuba
253		 * code below behave as if the size were even, and let it check for
254		 * odd size in the end.  I.e., in essence move this code to the end.
255		 * Doing so would save us a recursive call, and potentially make the
256		 * stack grow a lot less.
257		 */
258		mpi_size_t esize = size - 1;	/* even size */
259		mpi_limb_t cy_limb;
260
261		MPN_SQR_N_RECURSE(prodp, up, esize, tspace);
262		cy_limb = mpihelp_addmul_1(prodp + esize, up, esize, up[esize]);
263		prodp[esize + esize] = cy_limb;
264		cy_limb = mpihelp_addmul_1(prodp + esize, up, size, up[esize]);
265
266		prodp[esize + size] = cy_limb;
267	} else {
268		mpi_size_t hsize = size >> 1;
269		mpi_limb_t cy;
270
271		/* Product H.      ________________  ________________
272		 *                |_____U1 x U1____||____U0 x U0_____|
273		 * Put result in upper part of PROD and pass low part of TSPACE
274		 * as new TSPACE.
275		 */
276		MPN_SQR_N_RECURSE(prodp + size, up + hsize, hsize, tspace);
277
278		/* Product M.      ________________
279		 *                |_(U1-U0)(U0-U1)_|
280		 */
281		if (mpihelp_cmp(up + hsize, up, hsize) >= 0)
282			mpihelp_sub_n(prodp, up + hsize, up, hsize);
283		else
284			mpihelp_sub_n(prodp, up, up + hsize, hsize);
285
286		/* Read temporary operands from low part of PROD.
287		 * Put result in low part of TSPACE using upper part of TSPACE
288		 * as new TSPACE.  */
289		MPN_SQR_N_RECURSE(tspace, prodp, hsize, tspace + size);
290
291		/* Add/copy product H  */
292		MPN_COPY(prodp + hsize, prodp + size, hsize);
293		cy = mpihelp_add_n(prodp + size, prodp + size,
294				   prodp + size + hsize, hsize);
295
296		/* Add product M (if NEGFLG M is a negative number).  */
297		cy -= mpihelp_sub_n(prodp + hsize, prodp + hsize, tspace, size);
298
299		/* Product L.      ________________  ________________
300		 *                |________________||____U0 x U0_____|
301		 * Read temporary operands from low part of PROD.
302		 * Put result in low part of TSPACE using upper part of TSPACE
303		 * as new TSPACE.  */
304		MPN_SQR_N_RECURSE(tspace, up, hsize, tspace + size);
305
306		/* Add/copy Product L (twice).  */
307		cy += mpihelp_add_n(prodp + hsize, prodp + hsize, tspace, size);
308		if (cy)
309			mpihelp_add_1(prodp + hsize + size,
310				      prodp + hsize + size, hsize, cy);
311
312		MPN_COPY(prodp, tspace, hsize);
313		cy = mpihelp_add_n(prodp + hsize, prodp + hsize, tspace + hsize,
314				   hsize);
315		if (cy)
316			mpihelp_add_1(prodp + size, prodp + size, size, 1);
317	}
318}
319
320
321void mpihelp_mul_n(mpi_ptr_t prodp,
322		mpi_ptr_t up, mpi_ptr_t vp, mpi_size_t size)
323{
324	if (up == vp) {
325		if (size < KARATSUBA_THRESHOLD)
326			mpih_sqr_n_basecase(prodp, up, size);
327		else {
328			mpi_ptr_t tspace;
329			tspace = mpi_alloc_limb_space(2 * size);
330			mpih_sqr_n(prodp, up, size, tspace);
331			mpi_free_limb_space(tspace);
332		}
333	} else {
334		if (size < KARATSUBA_THRESHOLD)
335			mul_n_basecase(prodp, up, vp, size);
336		else {
337			mpi_ptr_t tspace;
338			tspace = mpi_alloc_limb_space(2 * size);
339			mul_n(prodp, up, vp, size, tspace);
340			mpi_free_limb_space(tspace);
341		}
342	}
343}
344
345int
346mpihelp_mul_karatsuba_case(mpi_ptr_t prodp,
347			   mpi_ptr_t up, mpi_size_t usize,
348			   mpi_ptr_t vp, mpi_size_t vsize,
349			   struct karatsuba_ctx *ctx)
350{
351	mpi_limb_t cy;
352
353	if (!ctx->tspace || ctx->tspace_size < vsize) {
354		if (ctx->tspace)
355			mpi_free_limb_space(ctx->tspace);
356		ctx->tspace = mpi_alloc_limb_space(2 * vsize);
357		if (!ctx->tspace)
358			return -ENOMEM;
359		ctx->tspace_size = vsize;
360	}
361
362	MPN_MUL_N_RECURSE(prodp, up, vp, vsize, ctx->tspace);
363
364	prodp += vsize;
365	up += vsize;
366	usize -= vsize;
367	if (usize >= vsize) {
368		if (!ctx->tp || ctx->tp_size < vsize) {
369			if (ctx->tp)
370				mpi_free_limb_space(ctx->tp);
371			ctx->tp = mpi_alloc_limb_space(2 * vsize);
372			if (!ctx->tp) {
373				if (ctx->tspace)
374					mpi_free_limb_space(ctx->tspace);
375				ctx->tspace = NULL;
376				return -ENOMEM;
377			}
378			ctx->tp_size = vsize;
379		}
380
381		do {
382			MPN_MUL_N_RECURSE(ctx->tp, up, vp, vsize, ctx->tspace);
383			cy = mpihelp_add_n(prodp, prodp, ctx->tp, vsize);
384			mpihelp_add_1(prodp + vsize, ctx->tp + vsize, vsize,
385				      cy);
386			prodp += vsize;
387			up += vsize;
388			usize -= vsize;
389		} while (usize >= vsize);
390	}
391
392	if (usize) {
393		if (usize < KARATSUBA_THRESHOLD) {
394			mpi_limb_t tmp;
395			if (mpihelp_mul(ctx->tspace, vp, vsize, up, usize, &tmp)
396			    < 0)
397				return -ENOMEM;
398		} else {
399			if (!ctx->next) {
400				ctx->next = kzalloc(sizeof *ctx, GFP_KERNEL);
401				if (!ctx->next)
402					return -ENOMEM;
403			}
404			if (mpihelp_mul_karatsuba_case(ctx->tspace,
405						       vp, vsize,
406						       up, usize,
407						       ctx->next) < 0)
408				return -ENOMEM;
409		}
410
411		cy = mpihelp_add_n(prodp, prodp, ctx->tspace, vsize);
412		mpihelp_add_1(prodp + vsize, ctx->tspace + vsize, usize, cy);
413	}
414
415	return 0;
416}
417
418void mpihelp_release_karatsuba_ctx(struct karatsuba_ctx *ctx)
419{
420	struct karatsuba_ctx *ctx2;
421
422	if (ctx->tp)
423		mpi_free_limb_space(ctx->tp);
424	if (ctx->tspace)
425		mpi_free_limb_space(ctx->tspace);
426	for (ctx = ctx->next; ctx; ctx = ctx2) {
427		ctx2 = ctx->next;
428		if (ctx->tp)
429			mpi_free_limb_space(ctx->tp);
430		if (ctx->tspace)
431			mpi_free_limb_space(ctx->tspace);
432		kfree(ctx);
433	}
434}
435
436/* Multiply the natural numbers u (pointed to by UP, with USIZE limbs)
437 * and v (pointed to by VP, with VSIZE limbs), and store the result at
438 * PRODP.  USIZE + VSIZE limbs are always stored, but if the input
439 * operands are normalized.  Return the most significant limb of the
440 * result.
441 *
442 * NOTE: The space pointed to by PRODP is overwritten before finished
443 * with U and V, so overlap is an error.
444 *
445 * Argument constraints:
446 * 1. USIZE >= VSIZE.
447 * 2. PRODP != UP and PRODP != VP, i.e. the destination
448 *    must be distinct from the multiplier and the multiplicand.
449 */
450
451int
452mpihelp_mul(mpi_ptr_t prodp, mpi_ptr_t up, mpi_size_t usize,
453	    mpi_ptr_t vp, mpi_size_t vsize, mpi_limb_t *_result)
454{
455	mpi_ptr_t prod_endp = prodp + usize + vsize - 1;
456	mpi_limb_t cy;
457	struct karatsuba_ctx ctx;
458
459	if (vsize < KARATSUBA_THRESHOLD) {
460		mpi_size_t i;
461		mpi_limb_t v_limb;
462
463		if (!vsize) {
464			*_result = 0;
465			return 0;
466		}
467
468		/* Multiply by the first limb in V separately, as the result can be
469		 * stored (not added) to PROD.  We also avoid a loop for zeroing.  */
470		v_limb = vp[0];
471		if (v_limb <= 1) {
472			if (v_limb == 1)
473				MPN_COPY(prodp, up, usize);
474			else
475				MPN_ZERO(prodp, usize);
476			cy = 0;
477		} else
478			cy = mpihelp_mul_1(prodp, up, usize, v_limb);
479
480		prodp[usize] = cy;
481		prodp++;
482
483		/* For each iteration in the outer loop, multiply one limb from
484		 * U with one limb from V, and add it to PROD.  */
485		for (i = 1; i < vsize; i++) {
486			v_limb = vp[i];
487			if (v_limb <= 1) {
488				cy = 0;
489				if (v_limb == 1)
490					cy = mpihelp_add_n(prodp, prodp, up,
491							   usize);
492			} else
493				cy = mpihelp_addmul_1(prodp, up, usize, v_limb);
494
495			prodp[usize] = cy;
496			prodp++;
497		}
498
499		*_result = cy;
500		return 0;
501	}
502
503	memset(&ctx, 0, sizeof ctx);
504	if (mpihelp_mul_karatsuba_case(prodp, up, usize, vp, vsize, &ctx) < 0)
505		return -ENOMEM;
506	mpihelp_release_karatsuba_ctx(&ctx);
507	*_result = *prod_endp;
508	return 0;
509}
510