1/*
2 * Aug 8, 2011 Bob Pearson with help from Joakim Tjernlund and George Spelvin
3 * cleaned up code to current version of sparse and added the slicing-by-8
4 * algorithm to the closely similar existing slicing-by-4 algorithm.
5 *
6 * Oct 15, 2000 Matt Domsch <Matt_Domsch@dell.com>
7 * Nicer crc32 functions/docs submitted by linux@horizon.com.  Thanks!
8 * Code was from the public domain, copyright abandoned.  Code was
9 * subsequently included in the kernel, thus was re-licensed under the
10 * GNU GPL v2.
11 *
12 * Oct 12, 2000 Matt Domsch <Matt_Domsch@dell.com>
13 * Same crc32 function was used in 5 other places in the kernel.
14 * I made one version, and deleted the others.
15 * There are various incantations of crc32().  Some use a seed of 0 or ~0.
16 * Some xor at the end with ~0.  The generic crc32() function takes
17 * seed as an argument, and doesn't xor at the end.  Then individual
18 * users can do whatever they need.
19 *   drivers/net/smc9194.c uses seed ~0, doesn't xor with ~0.
20 *   fs/jffs2 uses seed 0, doesn't xor with ~0.
21 *   fs/partitions/efi.c uses seed ~0, xor's with ~0.
22 *
23 * This source code is licensed under the GNU General Public License,
24 * Version 2.  See the file COPYING for more details.
25 */
26
27/* see: Documentation/staging/crc32.rst for a description of algorithms */
28
29#include <linux/crc32.h>
30#include <linux/crc32poly.h>
31#include <linux/module.h>
32#include <linux/types.h>
33#include <linux/sched.h>
34#include "crc32defs.h"
35
36#if CRC_LE_BITS > 8
37# define tole(x) ((__force u32) cpu_to_le32(x))
38#else
39# define tole(x) (x)
40#endif
41
42#if CRC_BE_BITS > 8
43# define tobe(x) ((__force u32) cpu_to_be32(x))
44#else
45# define tobe(x) (x)
46#endif
47
48#include "crc32table.h"
49
50MODULE_AUTHOR("Matt Domsch <Matt_Domsch@dell.com>");
51MODULE_DESCRIPTION("Various CRC32 calculations");
52MODULE_LICENSE("GPL");
53
54#if CRC_LE_BITS > 8 || CRC_BE_BITS > 8
55
56/* implements slicing-by-4 or slicing-by-8 algorithm */
57static inline u32 __pure
58crc32_body(u32 crc, unsigned char const *buf, size_t len, const u32 (*tab)[256])
59{
60# ifdef __LITTLE_ENDIAN
61#  define DO_CRC(x) crc = t0[(crc ^ (x)) & 255] ^ (crc >> 8)
62#  define DO_CRC4 (t3[(q) & 255] ^ t2[(q >> 8) & 255] ^ \
63		   t1[(q >> 16) & 255] ^ t0[(q >> 24) & 255])
64#  define DO_CRC8 (t7[(q) & 255] ^ t6[(q >> 8) & 255] ^ \
65		   t5[(q >> 16) & 255] ^ t4[(q >> 24) & 255])
66# else
67#  define DO_CRC(x) crc = t0[((crc >> 24) ^ (x)) & 255] ^ (crc << 8)
68#  define DO_CRC4 (t0[(q) & 255] ^ t1[(q >> 8) & 255] ^ \
69		   t2[(q >> 16) & 255] ^ t3[(q >> 24) & 255])
70#  define DO_CRC8 (t4[(q) & 255] ^ t5[(q >> 8) & 255] ^ \
71		   t6[(q >> 16) & 255] ^ t7[(q >> 24) & 255])
72# endif
73	const u32 *b;
74	size_t    rem_len;
75# ifdef CONFIG_X86
76	size_t i;
77# endif
78	const u32 *t0=tab[0], *t1=tab[1], *t2=tab[2], *t3=tab[3];
79# if CRC_LE_BITS != 32
80	const u32 *t4 = tab[4], *t5 = tab[5], *t6 = tab[6], *t7 = tab[7];
81# endif
82	u32 q;
83
84	/* Align it */
85	if (unlikely((long)buf & 3 && len)) {
86		do {
87			DO_CRC(*buf++);
88		} while ((--len) && ((long)buf)&3);
89	}
90
91# if CRC_LE_BITS == 32
92	rem_len = len & 3;
93	len = len >> 2;
94# else
95	rem_len = len & 7;
96	len = len >> 3;
97# endif
98
99	b = (const u32 *)buf;
100# ifdef CONFIG_X86
101	--b;
102	for (i = 0; i < len; i++) {
103# else
104	for (--b; len; --len) {
105# endif
106		q = crc ^ *++b; /* use pre increment for speed */
107# if CRC_LE_BITS == 32
108		crc = DO_CRC4;
109# else
110		crc = DO_CRC8;
111		q = *++b;
112		crc ^= DO_CRC4;
113# endif
114	}
115	len = rem_len;
116	/* And the last few bytes */
117	if (len) {
118		u8 *p = (u8 *)(b + 1) - 1;
119# ifdef CONFIG_X86
120		for (i = 0; i < len; i++)
121			DO_CRC(*++p); /* use pre increment for speed */
122# else
123		do {
124			DO_CRC(*++p); /* use pre increment for speed */
125		} while (--len);
126# endif
127	}
128	return crc;
129#undef DO_CRC
130#undef DO_CRC4
131#undef DO_CRC8
132}
133#endif
134
135
136/**
137 * crc32_le_generic() - Calculate bitwise little-endian Ethernet AUTODIN II
138 *			CRC32/CRC32C
139 * @crc: seed value for computation.  ~0 for Ethernet, sometimes 0 for other
140 *	 uses, or the previous crc32/crc32c value if computing incrementally.
141 * @p: pointer to buffer over which CRC32/CRC32C is run
142 * @len: length of buffer @p
143 * @tab: little-endian Ethernet table
144 * @polynomial: CRC32/CRC32c LE polynomial
145 */
146static inline u32 __pure crc32_le_generic(u32 crc, unsigned char const *p,
147					  size_t len, const u32 (*tab)[256],
148					  u32 polynomial)
149{
150#if CRC_LE_BITS == 1
151	int i;
152	while (len--) {
153		crc ^= *p++;
154		for (i = 0; i < 8; i++)
155			crc = (crc >> 1) ^ ((crc & 1) ? polynomial : 0);
156	}
157# elif CRC_LE_BITS == 2
158	while (len--) {
159		crc ^= *p++;
160		crc = (crc >> 2) ^ tab[0][crc & 3];
161		crc = (crc >> 2) ^ tab[0][crc & 3];
162		crc = (crc >> 2) ^ tab[0][crc & 3];
163		crc = (crc >> 2) ^ tab[0][crc & 3];
164	}
165# elif CRC_LE_BITS == 4
166	while (len--) {
167		crc ^= *p++;
168		crc = (crc >> 4) ^ tab[0][crc & 15];
169		crc = (crc >> 4) ^ tab[0][crc & 15];
170	}
171# elif CRC_LE_BITS == 8
172	/* aka Sarwate algorithm */
173	while (len--) {
174		crc ^= *p++;
175		crc = (crc >> 8) ^ tab[0][crc & 255];
176	}
177# else
178	crc = (__force u32) __cpu_to_le32(crc);
179	crc = crc32_body(crc, p, len, tab);
180	crc = __le32_to_cpu((__force __le32)crc);
181#endif
182	return crc;
183}
184
185#if CRC_LE_BITS == 1
186u32 __pure __weak crc32_le(u32 crc, unsigned char const *p, size_t len)
187{
188	return crc32_le_generic(crc, p, len, NULL, CRC32_POLY_LE);
189}
190u32 __pure __weak __crc32c_le(u32 crc, unsigned char const *p, size_t len)
191{
192	return crc32_le_generic(crc, p, len, NULL, CRC32C_POLY_LE);
193}
194#else
195u32 __pure __weak crc32_le(u32 crc, unsigned char const *p, size_t len)
196{
197	return crc32_le_generic(crc, p, len, crc32table_le, CRC32_POLY_LE);
198}
199u32 __pure __weak __crc32c_le(u32 crc, unsigned char const *p, size_t len)
200{
201	return crc32_le_generic(crc, p, len, crc32ctable_le, CRC32C_POLY_LE);
202}
203#endif
204EXPORT_SYMBOL(crc32_le);
205EXPORT_SYMBOL(__crc32c_le);
206
207u32 __pure crc32_le_base(u32, unsigned char const *, size_t) __alias(crc32_le);
208u32 __pure __crc32c_le_base(u32, unsigned char const *, size_t) __alias(__crc32c_le);
209u32 __pure crc32_be_base(u32, unsigned char const *, size_t) __alias(crc32_be);
210
211/*
212 * This multiplies the polynomials x and y modulo the given modulus.
213 * This follows the "little-endian" CRC convention that the lsbit
214 * represents the highest power of x, and the msbit represents x^0.
215 */
216static u32 __attribute_const__ gf2_multiply(u32 x, u32 y, u32 modulus)
217{
218	u32 product = x & 1 ? y : 0;
219	int i;
220
221	for (i = 0; i < 31; i++) {
222		product = (product >> 1) ^ (product & 1 ? modulus : 0);
223		x >>= 1;
224		product ^= x & 1 ? y : 0;
225	}
226
227	return product;
228}
229
230/**
231 * crc32_generic_shift - Append @len 0 bytes to crc, in logarithmic time
232 * @crc: The original little-endian CRC (i.e. lsbit is x^31 coefficient)
233 * @len: The number of bytes. @crc is multiplied by x^(8*@len)
234 * @polynomial: The modulus used to reduce the result to 32 bits.
235 *
236 * It's possible to parallelize CRC computations by computing a CRC
237 * over separate ranges of a buffer, then summing them.
238 * This shifts the given CRC by 8*len bits (i.e. produces the same effect
239 * as appending len bytes of zero to the data), in time proportional
240 * to log(len).
241 */
242static u32 __attribute_const__ crc32_generic_shift(u32 crc, size_t len,
243						   u32 polynomial)
244{
245	u32 power = polynomial;	/* CRC of x^32 */
246	int i;
247
248	/* Shift up to 32 bits in the simple linear way */
249	for (i = 0; i < 8 * (int)(len & 3); i++)
250		crc = (crc >> 1) ^ (crc & 1 ? polynomial : 0);
251
252	len >>= 2;
253	if (!len)
254		return crc;
255
256	for (;;) {
257		/* "power" is x^(2^i), modulo the polynomial */
258		if (len & 1)
259			crc = gf2_multiply(crc, power, polynomial);
260
261		len >>= 1;
262		if (!len)
263			break;
264
265		/* Square power, advancing to x^(2^(i+1)) */
266		power = gf2_multiply(power, power, polynomial);
267	}
268
269	return crc;
270}
271
272u32 __attribute_const__ crc32_le_shift(u32 crc, size_t len)
273{
274	return crc32_generic_shift(crc, len, CRC32_POLY_LE);
275}
276
277u32 __attribute_const__ __crc32c_le_shift(u32 crc, size_t len)
278{
279	return crc32_generic_shift(crc, len, CRC32C_POLY_LE);
280}
281EXPORT_SYMBOL(crc32_le_shift);
282EXPORT_SYMBOL(__crc32c_le_shift);
283
284/**
285 * crc32_be_generic() - Calculate bitwise big-endian Ethernet AUTODIN II CRC32
286 * @crc: seed value for computation.  ~0 for Ethernet, sometimes 0 for
287 *	other uses, or the previous crc32 value if computing incrementally.
288 * @p: pointer to buffer over which CRC32 is run
289 * @len: length of buffer @p
290 * @tab: big-endian Ethernet table
291 * @polynomial: CRC32 BE polynomial
292 */
293static inline u32 __pure crc32_be_generic(u32 crc, unsigned char const *p,
294					  size_t len, const u32 (*tab)[256],
295					  u32 polynomial)
296{
297#if CRC_BE_BITS == 1
298	int i;
299	while (len--) {
300		crc ^= *p++ << 24;
301		for (i = 0; i < 8; i++)
302			crc =
303			    (crc << 1) ^ ((crc & 0x80000000) ? polynomial :
304					  0);
305	}
306# elif CRC_BE_BITS == 2
307	while (len--) {
308		crc ^= *p++ << 24;
309		crc = (crc << 2) ^ tab[0][crc >> 30];
310		crc = (crc << 2) ^ tab[0][crc >> 30];
311		crc = (crc << 2) ^ tab[0][crc >> 30];
312		crc = (crc << 2) ^ tab[0][crc >> 30];
313	}
314# elif CRC_BE_BITS == 4
315	while (len--) {
316		crc ^= *p++ << 24;
317		crc = (crc << 4) ^ tab[0][crc >> 28];
318		crc = (crc << 4) ^ tab[0][crc >> 28];
319	}
320# elif CRC_BE_BITS == 8
321	while (len--) {
322		crc ^= *p++ << 24;
323		crc = (crc << 8) ^ tab[0][crc >> 24];
324	}
325# else
326	crc = (__force u32) __cpu_to_be32(crc);
327	crc = crc32_body(crc, p, len, tab);
328	crc = __be32_to_cpu((__force __be32)crc);
329# endif
330	return crc;
331}
332
333#if CRC_BE_BITS == 1
334u32 __pure __weak crc32_be(u32 crc, unsigned char const *p, size_t len)
335{
336	return crc32_be_generic(crc, p, len, NULL, CRC32_POLY_BE);
337}
338#else
339u32 __pure __weak crc32_be(u32 crc, unsigned char const *p, size_t len)
340{
341	return crc32_be_generic(crc, p, len, crc32table_be, CRC32_POLY_BE);
342}
343#endif
344EXPORT_SYMBOL(crc32_be);
345