1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Infrastructure for migratable timers
4 *
5 * Copyright(C) 2022 linutronix GmbH
6 */
7#include <linux/cpuhotplug.h>
8#include <linux/slab.h>
9#include <linux/smp.h>
10#include <linux/spinlock.h>
11#include <linux/timerqueue.h>
12#include <trace/events/ipi.h>
13
14#include "timer_migration.h"
15#include "tick-internal.h"
16
17#define CREATE_TRACE_POINTS
18#include <trace/events/timer_migration.h>
19
20/*
21 * The timer migration mechanism is built on a hierarchy of groups. The
22 * lowest level group contains CPUs, the next level groups of CPU groups
23 * and so forth. The CPU groups are kept per node so for the normal case
24 * lock contention won't happen across nodes. Depending on the number of
25 * CPUs per node even the next level might be kept as groups of CPU groups
26 * per node and only the levels above cross the node topology.
27 *
28 * Example topology for a two node system with 24 CPUs each.
29 *
30 * LVL 2                           [GRP2:0]
31 *                              GRP1:0 = GRP1:M
32 *
33 * LVL 1            [GRP1:0]                      [GRP1:1]
34 *               GRP0:0 - GRP0:2               GRP0:3 - GRP0:5
35 *
36 * LVL 0  [GRP0:0]  [GRP0:1]  [GRP0:2]  [GRP0:3]  [GRP0:4]  [GRP0:5]
37 * CPUS     0-7       8-15      16-23     24-31     32-39     40-47
38 *
39 * The groups hold a timer queue of events sorted by expiry time. These
40 * queues are updated when CPUs go in idle. When they come out of idle
41 * ignore flag of events is set.
42 *
43 * Each group has a designated migrator CPU/group as long as a CPU/group is
44 * active in the group. This designated role is necessary to avoid that all
45 * active CPUs in a group try to migrate expired timers from other CPUs,
46 * which would result in massive lock bouncing.
47 *
48 * When a CPU is awake, it checks in it's own timer tick the group
49 * hierarchy up to the point where it is assigned the migrator role or if
50 * no CPU is active, it also checks the groups where no migrator is set
51 * (TMIGR_NONE).
52 *
53 * If it finds expired timers in one of the group queues it pulls them over
54 * from the idle CPU and runs the timer function. After that it updates the
55 * group and the parent groups if required.
56 *
57 * CPUs which go idle arm their CPU local timer hardware for the next local
58 * (pinned) timer event. If the next migratable timer expires after the
59 * next local timer or the CPU has no migratable timer pending then the
60 * CPU does not queue an event in the LVL0 group. If the next migratable
61 * timer expires before the next local timer then the CPU queues that timer
62 * in the LVL0 group. In both cases the CPU marks itself idle in the LVL0
63 * group.
64 *
65 * When CPU comes out of idle and when a group has at least a single active
66 * child, the ignore flag of the tmigr_event is set. This indicates, that
67 * the event is ignored even if it is still enqueued in the parent groups
68 * timer queue. It will be removed when touching the timer queue the next
69 * time. This spares locking in active path as the lock protects (after
70 * setup) only event information. For more information about locking,
71 * please read the section "Locking rules".
72 *
73 * If the CPU is the migrator of the group then it delegates that role to
74 * the next active CPU in the group or sets migrator to TMIGR_NONE when
75 * there is no active CPU in the group. This delegation needs to be
76 * propagated up the hierarchy so hand over from other leaves can happen at
77 * all hierarchy levels w/o doing a search.
78 *
79 * When the last CPU in the system goes idle, then it drops all migrator
80 * duties up to the top level of the hierarchy (LVL2 in the example). It
81 * then has to make sure, that it arms it's own local hardware timer for
82 * the earliest event in the system.
83 *
84 *
85 * Lifetime rules:
86 * ---------------
87 *
88 * The groups are built up at init time or when CPUs come online. They are
89 * not destroyed when a group becomes empty due to offlining. The group
90 * just won't participate in the hierarchy management anymore. Destroying
91 * groups would result in interesting race conditions which would just make
92 * the whole mechanism slow and complex.
93 *
94 *
95 * Locking rules:
96 * --------------
97 *
98 * For setting up new groups and handling events it's required to lock both
99 * child and parent group. The lock ordering is always bottom up. This also
100 * includes the per CPU locks in struct tmigr_cpu. For updating the migrator and
101 * active CPU/group information atomic_try_cmpxchg() is used instead and only
102 * the per CPU tmigr_cpu->lock is held.
103 *
104 * During the setup of groups tmigr_level_list is required. It is protected by
105 * @tmigr_mutex.
106 *
107 * When @timer_base->lock as well as tmigr related locks are required, the lock
108 * ordering is: first @timer_base->lock, afterwards tmigr related locks.
109 *
110 *
111 * Protection of the tmigr group state information:
112 * ------------------------------------------------
113 *
114 * The state information with the list of active children and migrator needs to
115 * be protected by a sequence counter. It prevents a race when updates in child
116 * groups are propagated in changed order. The state update is performed
117 * lockless and group wise. The following scenario describes what happens
118 * without updating the sequence counter:
119 *
120 * Therefore, let's take three groups and four CPUs (CPU2 and CPU3 as well
121 * as GRP0:1 will not change during the scenario):
122 *
123 *    LVL 1            [GRP1:0]
124 *                     migrator = GRP0:1
125 *                     active   = GRP0:0, GRP0:1
126 *                   /                \
127 *    LVL 0  [GRP0:0]                  [GRP0:1]
128 *           migrator = CPU0           migrator = CPU2
129 *           active   = CPU0           active   = CPU2
130 *              /         \                /         \
131 *    CPUs     0           1              2           3
132 *             active      idle           active      idle
133 *
134 *
135 * 1. CPU0 goes idle. As the update is performed group wise, in the first step
136 *    only GRP0:0 is updated. The update of GRP1:0 is pending as CPU0 has to
137 *    walk the hierarchy.
138 *
139 *    LVL 1            [GRP1:0]
140 *                     migrator = GRP0:1
141 *                     active   = GRP0:0, GRP0:1
142 *                   /                \
143 *    LVL 0  [GRP0:0]                  [GRP0:1]
144 *       --> migrator = TMIGR_NONE     migrator = CPU2
145 *       --> active   =                active   = CPU2
146 *              /         \                /         \
147 *    CPUs     0           1              2           3
148 *         --> idle        idle           active      idle
149 *
150 * 2. While CPU0 goes idle and continues to update the state, CPU1 comes out of
151 *    idle. CPU1 updates GRP0:0. The update for GRP1:0 is pending as CPU1 also
152 *    has to walk the hierarchy. Both CPUs (CPU0 and CPU1) now walk the
153 *    hierarchy to perform the needed update from their point of view. The
154 *    currently visible state looks the following:
155 *
156 *    LVL 1            [GRP1:0]
157 *                     migrator = GRP0:1
158 *                     active   = GRP0:0, GRP0:1
159 *                   /                \
160 *    LVL 0  [GRP0:0]                  [GRP0:1]
161 *       --> migrator = CPU1           migrator = CPU2
162 *       --> active   = CPU1           active   = CPU2
163 *              /         \                /         \
164 *    CPUs     0           1              2           3
165 *             idle    --> active         active      idle
166 *
167 * 3. Here is the race condition: CPU1 managed to propagate its changes (from
168 *    step 2) through the hierarchy to GRP1:0 before CPU0 (step 1) did. The
169 *    active members of GRP1:0 remain unchanged after the update since it is
170 *    still valid from CPU1 current point of view:
171 *
172 *    LVL 1            [GRP1:0]
173 *                 --> migrator = GRP0:1
174 *                 --> active   = GRP0:0, GRP0:1
175 *                   /                \
176 *    LVL 0  [GRP0:0]                  [GRP0:1]
177 *           migrator = CPU1           migrator = CPU2
178 *           active   = CPU1           active   = CPU2
179 *              /         \                /         \
180 *    CPUs     0           1              2           3
181 *             idle        active         active      idle
182 *
183 * 4. Now CPU0 finally propagates its changes (from step 1) to GRP1:0.
184 *
185 *    LVL 1            [GRP1:0]
186 *                 --> migrator = GRP0:1
187 *                 --> active   = GRP0:1
188 *                   /                \
189 *    LVL 0  [GRP0:0]                  [GRP0:1]
190 *           migrator = CPU1           migrator = CPU2
191 *           active   = CPU1           active   = CPU2
192 *              /         \                /         \
193 *    CPUs     0           1              2           3
194 *             idle        active         active      idle
195 *
196 *
197 * The race of CPU0 vs. CPU1 led to an inconsistent state in GRP1:0. CPU1 is
198 * active and is correctly listed as active in GRP0:0. However GRP1:0 does not
199 * have GRP0:0 listed as active, which is wrong. The sequence counter has been
200 * added to avoid inconsistent states during updates. The state is updated
201 * atomically only if all members, including the sequence counter, match the
202 * expected value (compare-and-exchange).
203 *
204 * Looking back at the previous example with the addition of the sequence
205 * counter: The update as performed by CPU0 in step 4 will fail. CPU1 changed
206 * the sequence number during the update in step 3 so the expected old value (as
207 * seen by CPU0 before starting the walk) does not match.
208 *
209 * Prevent race between new event and last CPU going inactive
210 * ----------------------------------------------------------
211 *
212 * When the last CPU is going idle and there is a concurrent update of a new
213 * first global timer of an idle CPU, the group and child states have to be read
214 * while holding the lock in tmigr_update_events(). The following scenario shows
215 * what happens, when this is not done.
216 *
217 * 1. Only CPU2 is active:
218 *
219 *    LVL 1            [GRP1:0]
220 *                     migrator = GRP0:1
221 *                     active   = GRP0:1
222 *                     next_expiry = KTIME_MAX
223 *                   /                \
224 *    LVL 0  [GRP0:0]                  [GRP0:1]
225 *           migrator = TMIGR_NONE     migrator = CPU2
226 *           active   =                active   = CPU2
227 *           next_expiry = KTIME_MAX   next_expiry = KTIME_MAX
228 *              /         \                /         \
229 *    CPUs     0           1              2           3
230 *             idle        idle           active      idle
231 *
232 * 2. Now CPU 2 goes idle (and has no global timer, that has to be handled) and
233 *    propagates that to GRP0:1:
234 *
235 *    LVL 1            [GRP1:0]
236 *                     migrator = GRP0:1
237 *                     active   = GRP0:1
238 *                     next_expiry = KTIME_MAX
239 *                   /                \
240 *    LVL 0  [GRP0:0]                  [GRP0:1]
241 *           migrator = TMIGR_NONE --> migrator = TMIGR_NONE
242 *           active   =            --> active   =
243 *           next_expiry = KTIME_MAX   next_expiry = KTIME_MAX
244 *              /         \                /         \
245 *    CPUs     0           1              2           3
246 *             idle        idle       --> idle        idle
247 *
248 * 3. Now the idle state is propagated up to GRP1:0. As this is now the last
249 *    child going idle in top level group, the expiry of the next group event
250 *    has to be handed back to make sure no event is lost. As there is no event
251 *    enqueued, KTIME_MAX is handed back to CPU2.
252 *
253 *    LVL 1            [GRP1:0]
254 *                 --> migrator = TMIGR_NONE
255 *                 --> active   =
256 *                     next_expiry = KTIME_MAX
257 *                   /                \
258 *    LVL 0  [GRP0:0]                  [GRP0:1]
259 *           migrator = TMIGR_NONE     migrator = TMIGR_NONE
260 *           active   =                active   =
261 *           next_expiry = KTIME_MAX   next_expiry = KTIME_MAX
262 *              /         \                /         \
263 *    CPUs     0           1              2           3
264 *             idle        idle       --> idle        idle
265 *
266 * 4. CPU 0 has a new timer queued from idle and it expires at TIMER0. CPU0
267 *    propagates that to GRP0:0:
268 *
269 *    LVL 1            [GRP1:0]
270 *                     migrator = TMIGR_NONE
271 *                     active   =
272 *                     next_expiry = KTIME_MAX
273 *                   /                \
274 *    LVL 0  [GRP0:0]                  [GRP0:1]
275 *           migrator = TMIGR_NONE     migrator = TMIGR_NONE
276 *           active   =                active   =
277 *       --> next_expiry = TIMER0      next_expiry  = KTIME_MAX
278 *              /         \                /         \
279 *    CPUs     0           1              2           3
280 *             idle        idle           idle        idle
281 *
282 * 5. GRP0:0 is not active, so the new timer has to be propagated to
283 *    GRP1:0. Therefore the GRP1:0 state has to be read. When the stalled value
284 *    (from step 2) is read, the timer is enqueued into GRP1:0, but nothing is
285 *    handed back to CPU0, as it seems that there is still an active child in
286 *    top level group.
287 *
288 *    LVL 1            [GRP1:0]
289 *                     migrator = TMIGR_NONE
290 *                     active   =
291 *                 --> next_expiry = TIMER0
292 *                   /                \
293 *    LVL 0  [GRP0:0]                  [GRP0:1]
294 *           migrator = TMIGR_NONE     migrator = TMIGR_NONE
295 *           active   =                active   =
296 *           next_expiry = TIMER0      next_expiry  = KTIME_MAX
297 *              /         \                /         \
298 *    CPUs     0           1              2           3
299 *             idle        idle           idle        idle
300 *
301 * This is prevented by reading the state when holding the lock (when a new
302 * timer has to be propagated from idle path)::
303 *
304 *   CPU2 (tmigr_inactive_up())          CPU0 (tmigr_new_timer_up())
305 *   --------------------------          ---------------------------
306 *   // step 3:
307 *   cmpxchg(&GRP1:0->state);
308 *   tmigr_update_events() {
309 *       spin_lock(&GRP1:0->lock);
310 *       // ... update events ...
311 *       // hand back first expiry when GRP1:0 is idle
312 *       spin_unlock(&GRP1:0->lock);
313 *       // ^^^ release state modification
314 *   }
315 *                                       tmigr_update_events() {
316 *                                           spin_lock(&GRP1:0->lock)
317 *                                           // ^^^ acquire state modification
318 *                                           group_state = atomic_read(&GRP1:0->state)
319 *                                           // .... update events ...
320 *                                           // hand back first expiry when GRP1:0 is idle
321 *                                           spin_unlock(&GRP1:0->lock) <3>
322 *                                           // ^^^ makes state visible for other
323 *                                           // callers of tmigr_new_timer_up()
324 *                                       }
325 *
326 * When CPU0 grabs the lock directly after cmpxchg, the first timer is reported
327 * back to CPU0 and also later on to CPU2. So no timer is missed. A concurrent
328 * update of the group state from active path is no problem, as the upcoming CPU
329 * will take care of the group events.
330 *
331 * Required event and timerqueue update after a remote expiry:
332 * -----------------------------------------------------------
333 *
334 * After expiring timers of a remote CPU, a walk through the hierarchy and
335 * update of events and timerqueues is required. It is obviously needed if there
336 * is a 'new' global timer but also if there is no new global timer but the
337 * remote CPU is still idle.
338 *
339 * 1. CPU0 and CPU1 are idle and have both a global timer expiring at the same
340 *    time. So both have an event enqueued in the timerqueue of GRP0:0. CPU3 is
341 *    also idle and has no global timer pending. CPU2 is the only active CPU and
342 *    thus also the migrator:
343 *
344 *    LVL 1            [GRP1:0]
345 *                     migrator = GRP0:1
346 *                     active   = GRP0:1
347 *                 --> timerqueue = evt-GRP0:0
348 *                   /                \
349 *    LVL 0  [GRP0:0]                  [GRP0:1]
350 *           migrator = TMIGR_NONE     migrator = CPU2
351 *           active   =                active   = CPU2
352 *           groupevt.ignore = false   groupevt.ignore = true
353 *           groupevt.cpu = CPU0       groupevt.cpu =
354 *           timerqueue = evt-CPU0,    timerqueue =
355 *                        evt-CPU1
356 *              /         \                /         \
357 *    CPUs     0           1              2           3
358 *             idle        idle           active      idle
359 *
360 * 2. CPU2 starts to expire remote timers. It starts with LVL0 group
361 *    GRP0:1. There is no event queued in the timerqueue, so CPU2 continues with
362 *    the parent of GRP0:1: GRP1:0. In GRP1:0 it dequeues the first event. It
363 *    looks at tmigr_event::cpu struct member and expires the pending timer(s)
364 *    of CPU0.
365 *
366 *    LVL 1            [GRP1:0]
367 *                     migrator = GRP0:1
368 *                     active   = GRP0:1
369 *                 --> timerqueue =
370 *                   /                \
371 *    LVL 0  [GRP0:0]                  [GRP0:1]
372 *           migrator = TMIGR_NONE     migrator = CPU2
373 *           active   =                active   = CPU2
374 *           groupevt.ignore = false   groupevt.ignore = true
375 *       --> groupevt.cpu = CPU0       groupevt.cpu =
376 *           timerqueue = evt-CPU0,    timerqueue =
377 *                        evt-CPU1
378 *              /         \                /         \
379 *    CPUs     0           1              2           3
380 *             idle        idle           active      idle
381 *
382 * 3. Some work has to be done after expiring the timers of CPU0. If we stop
383 *    here, then CPU1's pending global timer(s) will not expire in time and the
384 *    timerqueue of GRP0:0 has still an event for CPU0 enqueued which has just
385 *    been processed. So it is required to walk the hierarchy from CPU0's point
386 *    of view and update it accordingly. CPU0's event will be removed from the
387 *    timerqueue because it has no pending timer. If CPU0 would have a timer
388 *    pending then it has to expire after CPU1's first timer because all timers
389 *    from this period were just expired. Either way CPU1's event will be first
390 *    in GRP0:0's timerqueue and therefore set in the CPU field of the group
391 *    event which is then enqueued in GRP1:0's timerqueue as GRP0:0 is still not
392 *    active:
393 *
394 *    LVL 1            [GRP1:0]
395 *                     migrator = GRP0:1
396 *                     active   = GRP0:1
397 *                 --> timerqueue = evt-GRP0:0
398 *                   /                \
399 *    LVL 0  [GRP0:0]                  [GRP0:1]
400 *           migrator = TMIGR_NONE     migrator = CPU2
401 *           active   =                active   = CPU2
402 *           groupevt.ignore = false   groupevt.ignore = true
403 *       --> groupevt.cpu = CPU1       groupevt.cpu =
404 *       --> timerqueue = evt-CPU1     timerqueue =
405 *              /         \                /         \
406 *    CPUs     0           1              2           3
407 *             idle        idle           active      idle
408 *
409 * Now CPU2 (migrator) will continue step 2 at GRP1:0 and will expire the
410 * timer(s) of CPU1.
411 *
412 * The hierarchy walk in step 3 can be skipped if the migrator notices that a
413 * CPU of GRP0:0 is active again. The CPU will mark GRP0:0 active and take care
414 * of the group as migrator and any needed updates within the hierarchy.
415 */
416
417static DEFINE_MUTEX(tmigr_mutex);
418static struct list_head *tmigr_level_list __read_mostly;
419
420static unsigned int tmigr_hierarchy_levels __read_mostly;
421static unsigned int tmigr_crossnode_level __read_mostly;
422
423static DEFINE_PER_CPU(struct tmigr_cpu, tmigr_cpu);
424
425#define TMIGR_NONE	0xFF
426#define BIT_CNT		8
427
428static inline bool tmigr_is_not_available(struct tmigr_cpu *tmc)
429{
430	return !(tmc->tmgroup && tmc->online);
431}
432
433/*
434 * Returns true, when @childmask corresponds to the group migrator or when the
435 * group is not active - so no migrator is set.
436 */
437static bool tmigr_check_migrator(struct tmigr_group *group, u8 childmask)
438{
439	union tmigr_state s;
440
441	s.state = atomic_read(&group->migr_state);
442
443	if ((s.migrator == childmask) || (s.migrator == TMIGR_NONE))
444		return true;
445
446	return false;
447}
448
449static bool tmigr_check_migrator_and_lonely(struct tmigr_group *group, u8 childmask)
450{
451	bool lonely, migrator = false;
452	unsigned long active;
453	union tmigr_state s;
454
455	s.state = atomic_read(&group->migr_state);
456
457	if ((s.migrator == childmask) || (s.migrator == TMIGR_NONE))
458		migrator = true;
459
460	active = s.active;
461	lonely = bitmap_weight(&active, BIT_CNT) <= 1;
462
463	return (migrator && lonely);
464}
465
466static bool tmigr_check_lonely(struct tmigr_group *group)
467{
468	unsigned long active;
469	union tmigr_state s;
470
471	s.state = atomic_read(&group->migr_state);
472
473	active = s.active;
474
475	return bitmap_weight(&active, BIT_CNT) <= 1;
476}
477
478typedef bool (*up_f)(struct tmigr_group *, struct tmigr_group *, void *);
479
480static void __walk_groups(up_f up, void *data,
481			  struct tmigr_cpu *tmc)
482{
483	struct tmigr_group *child = NULL, *group = tmc->tmgroup;
484
485	do {
486		WARN_ON_ONCE(group->level >= tmigr_hierarchy_levels);
487
488		if (up(group, child, data))
489			break;
490
491		child = group;
492		group = group->parent;
493	} while (group);
494}
495
496static void walk_groups(up_f up, void *data, struct tmigr_cpu *tmc)
497{
498	lockdep_assert_held(&tmc->lock);
499
500	__walk_groups(up, data, tmc);
501}
502
503/**
504 * struct tmigr_walk - data required for walking the hierarchy
505 * @nextexp:		Next CPU event expiry information which is handed into
506 *			the timer migration code by the timer code
507 *			(get_next_timer_interrupt())
508 * @firstexp:		Contains the first event expiry information when last
509 *			active CPU of hierarchy is on the way to idle to make
510 *			sure CPU will be back in time.
511 * @evt:		Pointer to tmigr_event which needs to be queued (of idle
512 *			child group)
513 * @childmask:		childmask of child group
514 * @remote:		Is set, when the new timer path is executed in
515 *			tmigr_handle_remote_cpu()
516 */
517struct tmigr_walk {
518	u64			nextexp;
519	u64			firstexp;
520	struct tmigr_event	*evt;
521	u8			childmask;
522	bool			remote;
523};
524
525/**
526 * struct tmigr_remote_data - data required for remote expiry hierarchy walk
527 * @basej:		timer base in jiffies
528 * @now:		timer base monotonic
529 * @firstexp:		returns expiry of the first timer in the idle timer
530 *			migration hierarchy to make sure the timer is handled in
531 *			time; it is stored in the per CPU tmigr_cpu struct of
532 *			CPU which expires remote timers
533 * @childmask:		childmask of child group
534 * @check:		is set if there is the need to handle remote timers;
535 *			required in tmigr_requires_handle_remote() only
536 * @tmc_active:		this flag indicates, whether the CPU which triggers
537 *			the hierarchy walk is !idle in the timer migration
538 *			hierarchy. When the CPU is idle and the whole hierarchy is
539 *			idle, only the first event of the top level has to be
540 *			considered.
541 */
542struct tmigr_remote_data {
543	unsigned long	basej;
544	u64		now;
545	u64		firstexp;
546	u8		childmask;
547	bool		check;
548	bool		tmc_active;
549};
550
551/*
552 * Returns the next event of the timerqueue @group->events
553 *
554 * Removes timers with ignore flag and update next_expiry of the group. Values
555 * of the group event are updated in tmigr_update_events() only.
556 */
557static struct tmigr_event *tmigr_next_groupevt(struct tmigr_group *group)
558{
559	struct timerqueue_node *node = NULL;
560	struct tmigr_event *evt = NULL;
561
562	lockdep_assert_held(&group->lock);
563
564	WRITE_ONCE(group->next_expiry, KTIME_MAX);
565
566	while ((node = timerqueue_getnext(&group->events))) {
567		evt = container_of(node, struct tmigr_event, nextevt);
568
569		if (!evt->ignore) {
570			WRITE_ONCE(group->next_expiry, evt->nextevt.expires);
571			return evt;
572		}
573
574		/*
575		 * Remove next timers with ignore flag, because the group lock
576		 * is held anyway
577		 */
578		if (!timerqueue_del(&group->events, node))
579			break;
580	}
581
582	return NULL;
583}
584
585/*
586 * Return the next event (with the expiry equal or before @now)
587 *
588 * Event, which is returned, is also removed from the queue.
589 */
590static struct tmigr_event *tmigr_next_expired_groupevt(struct tmigr_group *group,
591						       u64 now)
592{
593	struct tmigr_event *evt = tmigr_next_groupevt(group);
594
595	if (!evt || now < evt->nextevt.expires)
596		return NULL;
597
598	/*
599	 * The event is ready to expire. Remove it and update next group event.
600	 */
601	timerqueue_del(&group->events, &evt->nextevt);
602	tmigr_next_groupevt(group);
603
604	return evt;
605}
606
607static u64 tmigr_next_groupevt_expires(struct tmigr_group *group)
608{
609	struct tmigr_event *evt;
610
611	evt = tmigr_next_groupevt(group);
612
613	if (!evt)
614		return KTIME_MAX;
615	else
616		return evt->nextevt.expires;
617}
618
619static bool tmigr_active_up(struct tmigr_group *group,
620			    struct tmigr_group *child,
621			    void *ptr)
622{
623	union tmigr_state curstate, newstate;
624	struct tmigr_walk *data = ptr;
625	bool walk_done;
626	u8 childmask;
627
628	childmask = data->childmask;
629	/*
630	 * No memory barrier is required here in contrast to
631	 * tmigr_inactive_up(), as the group state change does not depend on the
632	 * child state.
633	 */
634	curstate.state = atomic_read(&group->migr_state);
635
636	do {
637		newstate = curstate;
638		walk_done = true;
639
640		if (newstate.migrator == TMIGR_NONE) {
641			newstate.migrator = childmask;
642
643			/* Changes need to be propagated */
644			walk_done = false;
645		}
646
647		newstate.active |= childmask;
648		newstate.seq++;
649
650	} while (!atomic_try_cmpxchg(&group->migr_state, &curstate.state, newstate.state));
651
652	if ((walk_done == false) && group->parent)
653		data->childmask = group->childmask;
654
655	/*
656	 * The group is active (again). The group event might be still queued
657	 * into the parent group's timerqueue but can now be handled by the
658	 * migrator of this group. Therefore the ignore flag for the group event
659	 * is updated to reflect this.
660	 *
661	 * The update of the ignore flag in the active path is done lockless. In
662	 * worst case the migrator of the parent group observes the change too
663	 * late and expires remotely all events belonging to this group. The
664	 * lock is held while updating the ignore flag in idle path. So this
665	 * state change will not be lost.
666	 */
667	group->groupevt.ignore = true;
668
669	trace_tmigr_group_set_cpu_active(group, newstate, childmask);
670
671	return walk_done;
672}
673
674static void __tmigr_cpu_activate(struct tmigr_cpu *tmc)
675{
676	struct tmigr_walk data;
677
678	data.childmask = tmc->childmask;
679
680	trace_tmigr_cpu_active(tmc);
681
682	tmc->cpuevt.ignore = true;
683	WRITE_ONCE(tmc->wakeup, KTIME_MAX);
684
685	walk_groups(&tmigr_active_up, &data, tmc);
686}
687
688/**
689 * tmigr_cpu_activate() - set this CPU active in timer migration hierarchy
690 *
691 * Call site timer_clear_idle() is called with interrupts disabled.
692 */
693void tmigr_cpu_activate(void)
694{
695	struct tmigr_cpu *tmc = this_cpu_ptr(&tmigr_cpu);
696
697	if (tmigr_is_not_available(tmc))
698		return;
699
700	if (WARN_ON_ONCE(!tmc->idle))
701		return;
702
703	raw_spin_lock(&tmc->lock);
704	tmc->idle = false;
705	__tmigr_cpu_activate(tmc);
706	raw_spin_unlock(&tmc->lock);
707}
708
709/*
710 * Returns true, if there is nothing to be propagated to the next level
711 *
712 * @data->firstexp is set to expiry of first gobal event of the (top level of
713 * the) hierarchy, but only when hierarchy is completely idle.
714 *
715 * The child and group states need to be read under the lock, to prevent a race
716 * against a concurrent tmigr_inactive_up() run when the last CPU goes idle. See
717 * also section "Prevent race between new event and last CPU going inactive" in
718 * the documentation at the top.
719 *
720 * This is the only place where the group event expiry value is set.
721 */
722static
723bool tmigr_update_events(struct tmigr_group *group, struct tmigr_group *child,
724			 struct tmigr_walk *data)
725{
726	struct tmigr_event *evt, *first_childevt;
727	union tmigr_state childstate, groupstate;
728	bool remote = data->remote;
729	bool walk_done = false;
730	u64 nextexp;
731
732	if (child) {
733		raw_spin_lock(&child->lock);
734		raw_spin_lock_nested(&group->lock, SINGLE_DEPTH_NESTING);
735
736		childstate.state = atomic_read(&child->migr_state);
737		groupstate.state = atomic_read(&group->migr_state);
738
739		if (childstate.active) {
740			walk_done = true;
741			goto unlock;
742		}
743
744		first_childevt = tmigr_next_groupevt(child);
745		nextexp = child->next_expiry;
746		evt = &child->groupevt;
747
748		evt->ignore = (nextexp == KTIME_MAX) ? true : false;
749	} else {
750		nextexp = data->nextexp;
751
752		first_childevt = evt = data->evt;
753
754		/*
755		 * Walking the hierarchy is required in any case when a
756		 * remote expiry was done before. This ensures to not lose
757		 * already queued events in non active groups (see section
758		 * "Required event and timerqueue update after a remote
759		 * expiry" in the documentation at the top).
760		 *
761		 * The two call sites which are executed without a remote expiry
762		 * before, are not prevented from propagating changes through
763		 * the hierarchy by the return:
764		 *  - When entering this path by tmigr_new_timer(), @evt->ignore
765		 *    is never set.
766		 *  - tmigr_inactive_up() takes care of the propagation by
767		 *    itself and ignores the return value. But an immediate
768		 *    return is possible if there is a parent, sparing group
769		 *    locking at this level, because the upper walking call to
770		 *    the parent will take care about removing this event from
771		 *    within the group and update next_expiry accordingly.
772		 *
773		 * However if there is no parent, ie: the hierarchy has only a
774		 * single level so @group is the top level group, make sure the
775		 * first event information of the group is updated properly and
776		 * also handled properly, so skip this fast return path.
777		 */
778		if (evt->ignore && !remote && group->parent)
779			return true;
780
781		raw_spin_lock(&group->lock);
782
783		childstate.state = 0;
784		groupstate.state = atomic_read(&group->migr_state);
785	}
786
787	/*
788	 * If the child event is already queued in the group, remove it from the
789	 * queue when the expiry time changed only or when it could be ignored.
790	 */
791	if (timerqueue_node_queued(&evt->nextevt)) {
792		if ((evt->nextevt.expires == nextexp) && !evt->ignore) {
793			/* Make sure not to miss a new CPU event with the same expiry */
794			evt->cpu = first_childevt->cpu;
795			goto check_toplvl;
796		}
797
798		if (!timerqueue_del(&group->events, &evt->nextevt))
799			WRITE_ONCE(group->next_expiry, KTIME_MAX);
800	}
801
802	if (evt->ignore) {
803		/*
804		 * When the next child event could be ignored (nextexp is
805		 * KTIME_MAX) and there was no remote timer handling before or
806		 * the group is already active, there is no need to walk the
807		 * hierarchy even if there is a parent group.
808		 *
809		 * The other way round: even if the event could be ignored, but
810		 * if a remote timer handling was executed before and the group
811		 * is not active, walking the hierarchy is required to not miss
812		 * an enqueued timer in the non active group. The enqueued timer
813		 * of the group needs to be propagated to a higher level to
814		 * ensure it is handled.
815		 */
816		if (!remote || groupstate.active)
817			walk_done = true;
818	} else {
819		evt->nextevt.expires = nextexp;
820		evt->cpu = first_childevt->cpu;
821
822		if (timerqueue_add(&group->events, &evt->nextevt))
823			WRITE_ONCE(group->next_expiry, nextexp);
824	}
825
826check_toplvl:
827	if (!group->parent && (groupstate.migrator == TMIGR_NONE)) {
828		walk_done = true;
829
830		/*
831		 * Nothing to do when update was done during remote timer
832		 * handling. First timer in top level group which needs to be
833		 * handled when top level group is not active, is calculated
834		 * directly in tmigr_handle_remote_up().
835		 */
836		if (remote)
837			goto unlock;
838
839		/*
840		 * The top level group is idle and it has to be ensured the
841		 * global timers are handled in time. (This could be optimized
842		 * by keeping track of the last global scheduled event and only
843		 * arming it on the CPU if the new event is earlier. Not sure if
844		 * its worth the complexity.)
845		 */
846		data->firstexp = tmigr_next_groupevt_expires(group);
847	}
848
849	trace_tmigr_update_events(child, group, childstate, groupstate,
850				  nextexp);
851
852unlock:
853	raw_spin_unlock(&group->lock);
854
855	if (child)
856		raw_spin_unlock(&child->lock);
857
858	return walk_done;
859}
860
861static bool tmigr_new_timer_up(struct tmigr_group *group,
862			       struct tmigr_group *child,
863			       void *ptr)
864{
865	struct tmigr_walk *data = ptr;
866
867	return tmigr_update_events(group, child, data);
868}
869
870/*
871 * Returns the expiry of the next timer that needs to be handled. KTIME_MAX is
872 * returned, if an active CPU will handle all the timer migration hierarchy
873 * timers.
874 */
875static u64 tmigr_new_timer(struct tmigr_cpu *tmc, u64 nextexp)
876{
877	struct tmigr_walk data = { .nextexp = nextexp,
878				   .firstexp = KTIME_MAX,
879				   .evt = &tmc->cpuevt };
880
881	lockdep_assert_held(&tmc->lock);
882
883	if (tmc->remote)
884		return KTIME_MAX;
885
886	trace_tmigr_cpu_new_timer(tmc);
887
888	tmc->cpuevt.ignore = false;
889	data.remote = false;
890
891	walk_groups(&tmigr_new_timer_up, &data, tmc);
892
893	/* If there is a new first global event, make sure it is handled */
894	return data.firstexp;
895}
896
897static void tmigr_handle_remote_cpu(unsigned int cpu, u64 now,
898				    unsigned long jif)
899{
900	struct timer_events tevt;
901	struct tmigr_walk data;
902	struct tmigr_cpu *tmc;
903
904	tmc = per_cpu_ptr(&tmigr_cpu, cpu);
905
906	raw_spin_lock_irq(&tmc->lock);
907
908	/*
909	 * If the remote CPU is offline then the timers have been migrated to
910	 * another CPU.
911	 *
912	 * If tmigr_cpu::remote is set, at the moment another CPU already
913	 * expires the timers of the remote CPU.
914	 *
915	 * If tmigr_event::ignore is set, then the CPU returns from idle and
916	 * takes care of its timers.
917	 *
918	 * If the next event expires in the future, then the event has been
919	 * updated and there are no timers to expire right now. The CPU which
920	 * updated the event takes care when hierarchy is completely
921	 * idle. Otherwise the migrator does it as the event is enqueued.
922	 */
923	if (!tmc->online || tmc->remote || tmc->cpuevt.ignore ||
924	    now < tmc->cpuevt.nextevt.expires) {
925		raw_spin_unlock_irq(&tmc->lock);
926		return;
927	}
928
929	trace_tmigr_handle_remote_cpu(tmc);
930
931	tmc->remote = true;
932	WRITE_ONCE(tmc->wakeup, KTIME_MAX);
933
934	/* Drop the lock to allow the remote CPU to exit idle */
935	raw_spin_unlock_irq(&tmc->lock);
936
937	if (cpu != smp_processor_id())
938		timer_expire_remote(cpu);
939
940	/*
941	 * Lock ordering needs to be preserved - timer_base locks before tmigr
942	 * related locks (see section "Locking rules" in the documentation at
943	 * the top). During fetching the next timer interrupt, also tmc->lock
944	 * needs to be held. Otherwise there is a possible race window against
945	 * the CPU itself when it comes out of idle, updates the first timer in
946	 * the hierarchy and goes back to idle.
947	 *
948	 * timer base locks are dropped as fast as possible: After checking
949	 * whether the remote CPU went offline in the meantime and after
950	 * fetching the next remote timer interrupt. Dropping the locks as fast
951	 * as possible keeps the locking region small and prevents holding
952	 * several (unnecessary) locks during walking the hierarchy for updating
953	 * the timerqueue and group events.
954	 */
955	local_irq_disable();
956	timer_lock_remote_bases(cpu);
957	raw_spin_lock(&tmc->lock);
958
959	/*
960	 * When the CPU went offline in the meantime, no hierarchy walk has to
961	 * be done for updating the queued events, because the walk was
962	 * already done during marking the CPU offline in the hierarchy.
963	 *
964	 * When the CPU is no longer idle, the CPU takes care of the timers and
965	 * also of the timers in the hierarchy.
966	 *
967	 * (See also section "Required event and timerqueue update after a
968	 * remote expiry" in the documentation at the top)
969	 */
970	if (!tmc->online || !tmc->idle) {
971		timer_unlock_remote_bases(cpu);
972		goto unlock;
973	}
974
975	/* next	event of CPU */
976	fetch_next_timer_interrupt_remote(jif, now, &tevt, cpu);
977	timer_unlock_remote_bases(cpu);
978
979	data.nextexp = tevt.global;
980	data.firstexp = KTIME_MAX;
981	data.evt = &tmc->cpuevt;
982	data.remote = true;
983
984	/*
985	 * The update is done even when there is no 'new' global timer pending
986	 * on the remote CPU (see section "Required event and timerqueue update
987	 * after a remote expiry" in the documentation at the top)
988	 */
989	walk_groups(&tmigr_new_timer_up, &data, tmc);
990
991unlock:
992	tmc->remote = false;
993	raw_spin_unlock_irq(&tmc->lock);
994}
995
996static bool tmigr_handle_remote_up(struct tmigr_group *group,
997				   struct tmigr_group *child,
998				   void *ptr)
999{
1000	struct tmigr_remote_data *data = ptr;
1001	struct tmigr_event *evt;
1002	unsigned long jif;
1003	u8 childmask;
1004	u64 now;
1005
1006	jif = data->basej;
1007	now = data->now;
1008
1009	childmask = data->childmask;
1010
1011	trace_tmigr_handle_remote(group);
1012again:
1013	/*
1014	 * Handle the group only if @childmask is the migrator or if the
1015	 * group has no migrator. Otherwise the group is active and is
1016	 * handled by its own migrator.
1017	 */
1018	if (!tmigr_check_migrator(group, childmask))
1019		return true;
1020
1021	raw_spin_lock_irq(&group->lock);
1022
1023	evt = tmigr_next_expired_groupevt(group, now);
1024
1025	if (evt) {
1026		unsigned int remote_cpu = evt->cpu;
1027
1028		raw_spin_unlock_irq(&group->lock);
1029
1030		tmigr_handle_remote_cpu(remote_cpu, now, jif);
1031
1032		/* check if there is another event, that needs to be handled */
1033		goto again;
1034	}
1035
1036	/*
1037	 * Update of childmask for the next level and keep track of the expiry
1038	 * of the first event that needs to be handled (group->next_expiry was
1039	 * updated by tmigr_next_expired_groupevt(), next was set by
1040	 * tmigr_handle_remote_cpu()).
1041	 */
1042	data->childmask = group->childmask;
1043	data->firstexp = group->next_expiry;
1044
1045	raw_spin_unlock_irq(&group->lock);
1046
1047	return false;
1048}
1049
1050/**
1051 * tmigr_handle_remote() - Handle global timers of remote idle CPUs
1052 *
1053 * Called from the timer soft interrupt with interrupts enabled.
1054 */
1055void tmigr_handle_remote(void)
1056{
1057	struct tmigr_cpu *tmc = this_cpu_ptr(&tmigr_cpu);
1058	struct tmigr_remote_data data;
1059
1060	if (tmigr_is_not_available(tmc))
1061		return;
1062
1063	data.childmask = tmc->childmask;
1064	data.firstexp = KTIME_MAX;
1065
1066	/*
1067	 * NOTE: This is a doubled check because the migrator test will be done
1068	 * in tmigr_handle_remote_up() anyway. Keep this check to speed up the
1069	 * return when nothing has to be done.
1070	 */
1071	if (!tmigr_check_migrator(tmc->tmgroup, tmc->childmask)) {
1072		/*
1073		 * If this CPU was an idle migrator, make sure to clear its wakeup
1074		 * value so it won't chase timers that have already expired elsewhere.
1075		 * This avoids endless requeue from tmigr_new_timer().
1076		 */
1077		if (READ_ONCE(tmc->wakeup) == KTIME_MAX)
1078			return;
1079	}
1080
1081	data.now = get_jiffies_update(&data.basej);
1082
1083	/*
1084	 * Update @tmc->wakeup only at the end and do not reset @tmc->wakeup to
1085	 * KTIME_MAX. Even if tmc->lock is not held during the whole remote
1086	 * handling, tmc->wakeup is fine to be stale as it is called in
1087	 * interrupt context and tick_nohz_next_event() is executed in interrupt
1088	 * exit path only after processing the last pending interrupt.
1089	 */
1090
1091	__walk_groups(&tmigr_handle_remote_up, &data, tmc);
1092
1093	raw_spin_lock_irq(&tmc->lock);
1094	WRITE_ONCE(tmc->wakeup, data.firstexp);
1095	raw_spin_unlock_irq(&tmc->lock);
1096}
1097
1098static bool tmigr_requires_handle_remote_up(struct tmigr_group *group,
1099					    struct tmigr_group *child,
1100					    void *ptr)
1101{
1102	struct tmigr_remote_data *data = ptr;
1103	u8 childmask;
1104
1105	childmask = data->childmask;
1106
1107	/*
1108	 * Handle the group only if the child is the migrator or if the group
1109	 * has no migrator. Otherwise the group is active and is handled by its
1110	 * own migrator.
1111	 */
1112	if (!tmigr_check_migrator(group, childmask))
1113		return true;
1114
1115	/*
1116	 * When there is a parent group and the CPU which triggered the
1117	 * hierarchy walk is not active, proceed the walk to reach the top level
1118	 * group before reading the next_expiry value.
1119	 */
1120	if (group->parent && !data->tmc_active)
1121		goto out;
1122
1123	/*
1124	 * The lock is required on 32bit architectures to read the variable
1125	 * consistently with a concurrent writer. On 64bit the lock is not
1126	 * required because the read operation is not split and so it is always
1127	 * consistent.
1128	 */
1129	if (IS_ENABLED(CONFIG_64BIT)) {
1130		data->firstexp = READ_ONCE(group->next_expiry);
1131		if (data->now >= data->firstexp) {
1132			data->check = true;
1133			return true;
1134		}
1135	} else {
1136		raw_spin_lock(&group->lock);
1137		data->firstexp = group->next_expiry;
1138		if (data->now >= group->next_expiry) {
1139			data->check = true;
1140			raw_spin_unlock(&group->lock);
1141			return true;
1142		}
1143		raw_spin_unlock(&group->lock);
1144	}
1145
1146out:
1147	/* Update of childmask for the next level */
1148	data->childmask = group->childmask;
1149	return false;
1150}
1151
1152/**
1153 * tmigr_requires_handle_remote() - Check the need of remote timer handling
1154 *
1155 * Must be called with interrupts disabled.
1156 */
1157bool tmigr_requires_handle_remote(void)
1158{
1159	struct tmigr_cpu *tmc = this_cpu_ptr(&tmigr_cpu);
1160	struct tmigr_remote_data data;
1161	unsigned long jif;
1162	bool ret = false;
1163
1164	if (tmigr_is_not_available(tmc))
1165		return ret;
1166
1167	data.now = get_jiffies_update(&jif);
1168	data.childmask = tmc->childmask;
1169	data.firstexp = KTIME_MAX;
1170	data.tmc_active = !tmc->idle;
1171	data.check = false;
1172
1173	/*
1174	 * If the CPU is active, walk the hierarchy to check whether a remote
1175	 * expiry is required.
1176	 *
1177	 * Check is done lockless as interrupts are disabled and @tmc->idle is
1178	 * set only by the local CPU.
1179	 */
1180	if (!tmc->idle) {
1181		__walk_groups(&tmigr_requires_handle_remote_up, &data, tmc);
1182
1183		return data.check;
1184	}
1185
1186	/*
1187	 * When the CPU is idle, compare @tmc->wakeup with @data.now. The lock
1188	 * is required on 32bit architectures to read the variable consistently
1189	 * with a concurrent writer. On 64bit the lock is not required because
1190	 * the read operation is not split and so it is always consistent.
1191	 */
1192	if (IS_ENABLED(CONFIG_64BIT)) {
1193		if (data.now >= READ_ONCE(tmc->wakeup))
1194			return true;
1195	} else {
1196		raw_spin_lock(&tmc->lock);
1197		if (data.now >= tmc->wakeup)
1198			ret = true;
1199		raw_spin_unlock(&tmc->lock);
1200	}
1201
1202	return ret;
1203}
1204
1205/**
1206 * tmigr_cpu_new_timer() - enqueue next global timer into hierarchy (idle tmc)
1207 * @nextexp:	Next expiry of global timer (or KTIME_MAX if not)
1208 *
1209 * The CPU is already deactivated in the timer migration
1210 * hierarchy. tick_nohz_get_sleep_length() calls tick_nohz_next_event()
1211 * and thereby the timer idle path is executed once more. @tmc->wakeup
1212 * holds the first timer, when the timer migration hierarchy is
1213 * completely idle.
1214 *
1215 * Returns the first timer that needs to be handled by this CPU or KTIME_MAX if
1216 * nothing needs to be done.
1217 */
1218u64 tmigr_cpu_new_timer(u64 nextexp)
1219{
1220	struct tmigr_cpu *tmc = this_cpu_ptr(&tmigr_cpu);
1221	u64 ret;
1222
1223	if (tmigr_is_not_available(tmc))
1224		return nextexp;
1225
1226	raw_spin_lock(&tmc->lock);
1227
1228	ret = READ_ONCE(tmc->wakeup);
1229	if (nextexp != KTIME_MAX) {
1230		if (nextexp != tmc->cpuevt.nextevt.expires ||
1231		    tmc->cpuevt.ignore) {
1232			ret = tmigr_new_timer(tmc, nextexp);
1233		}
1234	}
1235	/*
1236	 * Make sure the reevaluation of timers in idle path will not miss an
1237	 * event.
1238	 */
1239	WRITE_ONCE(tmc->wakeup, ret);
1240
1241	trace_tmigr_cpu_new_timer_idle(tmc, nextexp);
1242	raw_spin_unlock(&tmc->lock);
1243	return ret;
1244}
1245
1246static bool tmigr_inactive_up(struct tmigr_group *group,
1247			      struct tmigr_group *child,
1248			      void *ptr)
1249{
1250	union tmigr_state curstate, newstate, childstate;
1251	struct tmigr_walk *data = ptr;
1252	bool walk_done;
1253	u8 childmask;
1254
1255	childmask = data->childmask;
1256	childstate.state = 0;
1257
1258	/*
1259	 * The memory barrier is paired with the cmpxchg() in tmigr_active_up()
1260	 * to make sure the updates of child and group states are ordered. The
1261	 * ordering is mandatory, as the group state change depends on the child
1262	 * state.
1263	 */
1264	curstate.state = atomic_read_acquire(&group->migr_state);
1265
1266	for (;;) {
1267		if (child)
1268			childstate.state = atomic_read(&child->migr_state);
1269
1270		newstate = curstate;
1271		walk_done = true;
1272
1273		/* Reset active bit when the child is no longer active */
1274		if (!childstate.active)
1275			newstate.active &= ~childmask;
1276
1277		if (newstate.migrator == childmask) {
1278			/*
1279			 * Find a new migrator for the group, because the child
1280			 * group is idle!
1281			 */
1282			if (!childstate.active) {
1283				unsigned long new_migr_bit, active = newstate.active;
1284
1285				new_migr_bit = find_first_bit(&active, BIT_CNT);
1286
1287				if (new_migr_bit != BIT_CNT) {
1288					newstate.migrator = BIT(new_migr_bit);
1289				} else {
1290					newstate.migrator = TMIGR_NONE;
1291
1292					/* Changes need to be propagated */
1293					walk_done = false;
1294				}
1295			}
1296		}
1297
1298		newstate.seq++;
1299
1300		WARN_ON_ONCE((newstate.migrator != TMIGR_NONE) && !(newstate.active));
1301
1302		if (atomic_try_cmpxchg(&group->migr_state, &curstate.state,
1303				       newstate.state))
1304			break;
1305
1306		/*
1307		 * The memory barrier is paired with the cmpxchg() in
1308		 * tmigr_active_up() to make sure the updates of child and group
1309		 * states are ordered. It is required only when the above
1310		 * try_cmpxchg() fails.
1311		 */
1312		smp_mb__after_atomic();
1313	}
1314
1315	data->remote = false;
1316
1317	/* Event Handling */
1318	tmigr_update_events(group, child, data);
1319
1320	if (group->parent && (walk_done == false))
1321		data->childmask = group->childmask;
1322
1323	/*
1324	 * data->firstexp was set by tmigr_update_events() and contains the
1325	 * expiry of the first global event which needs to be handled. It
1326	 * differs from KTIME_MAX if:
1327	 * - group is the top level group and
1328	 * - group is idle (which means CPU was the last active CPU in the
1329	 *   hierarchy) and
1330	 * - there is a pending event in the hierarchy
1331	 */
1332	WARN_ON_ONCE(data->firstexp != KTIME_MAX && group->parent);
1333
1334	trace_tmigr_group_set_cpu_inactive(group, newstate, childmask);
1335
1336	return walk_done;
1337}
1338
1339static u64 __tmigr_cpu_deactivate(struct tmigr_cpu *tmc, u64 nextexp)
1340{
1341	struct tmigr_walk data = { .nextexp = nextexp,
1342				   .firstexp = KTIME_MAX,
1343				   .evt = &tmc->cpuevt,
1344				   .childmask = tmc->childmask };
1345
1346	/*
1347	 * If nextexp is KTIME_MAX, the CPU event will be ignored because the
1348	 * local timer expires before the global timer, no global timer is set
1349	 * or CPU goes offline.
1350	 */
1351	if (nextexp != KTIME_MAX)
1352		tmc->cpuevt.ignore = false;
1353
1354	walk_groups(&tmigr_inactive_up, &data, tmc);
1355	return data.firstexp;
1356}
1357
1358/**
1359 * tmigr_cpu_deactivate() - Put current CPU into inactive state
1360 * @nextexp:	The next global timer expiry of the current CPU
1361 *
1362 * Must be called with interrupts disabled.
1363 *
1364 * Return: the next event expiry of the current CPU or the next event expiry
1365 * from the hierarchy if this CPU is the top level migrator or the hierarchy is
1366 * completely idle.
1367 */
1368u64 tmigr_cpu_deactivate(u64 nextexp)
1369{
1370	struct tmigr_cpu *tmc = this_cpu_ptr(&tmigr_cpu);
1371	u64 ret;
1372
1373	if (tmigr_is_not_available(tmc))
1374		return nextexp;
1375
1376	raw_spin_lock(&tmc->lock);
1377
1378	ret = __tmigr_cpu_deactivate(tmc, nextexp);
1379
1380	tmc->idle = true;
1381
1382	/*
1383	 * Make sure the reevaluation of timers in idle path will not miss an
1384	 * event.
1385	 */
1386	WRITE_ONCE(tmc->wakeup, ret);
1387
1388	trace_tmigr_cpu_idle(tmc, nextexp);
1389	raw_spin_unlock(&tmc->lock);
1390	return ret;
1391}
1392
1393/**
1394 * tmigr_quick_check() - Quick forecast of next tmigr event when CPU wants to
1395 *			 go idle
1396 * @nextevt:	The next global timer expiry of the current CPU
1397 *
1398 * Return:
1399 * * KTIME_MAX		- when it is probable that nothing has to be done (not
1400 *			  the only one in the level 0 group; and if it is the
1401 *			  only one in level 0 group, but there are more than a
1402 *			  single group active on the way to top level)
1403 * * nextevt		- when CPU is offline and has to handle timer on his own
1404 *			  or when on the way to top in every group only a single
1405 *			  child is active but @nextevt is before the lowest
1406 *			  next_expiry encountered while walking up to top level.
1407 * * next_expiry	- value of lowest expiry encountered while walking groups
1408 *			  if only a single child is active on each and @nextevt
1409 *			  is after this lowest expiry.
1410 */
1411u64 tmigr_quick_check(u64 nextevt)
1412{
1413	struct tmigr_cpu *tmc = this_cpu_ptr(&tmigr_cpu);
1414	struct tmigr_group *group = tmc->tmgroup;
1415
1416	if (tmigr_is_not_available(tmc))
1417		return nextevt;
1418
1419	if (WARN_ON_ONCE(tmc->idle))
1420		return nextevt;
1421
1422	if (!tmigr_check_migrator_and_lonely(tmc->tmgroup, tmc->childmask))
1423		return KTIME_MAX;
1424
1425	do {
1426		if (!tmigr_check_lonely(group)) {
1427			return KTIME_MAX;
1428		} else {
1429			/*
1430			 * Since current CPU is active, events may not be sorted
1431			 * from bottom to the top because the CPU's event is ignored
1432			 * up to the top and its sibling's events not propagated upwards.
1433			 * Thus keep track of the lowest observed expiry.
1434			 */
1435			nextevt = min_t(u64, nextevt, READ_ONCE(group->next_expiry));
1436			if (!group->parent)
1437				return nextevt;
1438		}
1439		group = group->parent;
1440	} while (group);
1441
1442	return KTIME_MAX;
1443}
1444
1445static void tmigr_init_group(struct tmigr_group *group, unsigned int lvl,
1446			     int node)
1447{
1448	union tmigr_state s;
1449
1450	raw_spin_lock_init(&group->lock);
1451
1452	group->level = lvl;
1453	group->numa_node = lvl < tmigr_crossnode_level ? node : NUMA_NO_NODE;
1454
1455	group->num_children = 0;
1456
1457	s.migrator = TMIGR_NONE;
1458	s.active = 0;
1459	s.seq = 0;
1460	atomic_set(&group->migr_state, s.state);
1461
1462	timerqueue_init_head(&group->events);
1463	timerqueue_init(&group->groupevt.nextevt);
1464	group->groupevt.nextevt.expires = KTIME_MAX;
1465	WRITE_ONCE(group->next_expiry, KTIME_MAX);
1466	group->groupevt.ignore = true;
1467}
1468
1469static struct tmigr_group *tmigr_get_group(unsigned int cpu, int node,
1470					   unsigned int lvl)
1471{
1472	struct tmigr_group *tmp, *group = NULL;
1473
1474	lockdep_assert_held(&tmigr_mutex);
1475
1476	/* Try to attach to an existing group first */
1477	list_for_each_entry(tmp, &tmigr_level_list[lvl], list) {
1478		/*
1479		 * If @lvl is below the cross NUMA node level, check whether
1480		 * this group belongs to the same NUMA node.
1481		 */
1482		if (lvl < tmigr_crossnode_level && tmp->numa_node != node)
1483			continue;
1484
1485		/* Capacity left? */
1486		if (tmp->num_children >= TMIGR_CHILDREN_PER_GROUP)
1487			continue;
1488
1489		/*
1490		 * TODO: A possible further improvement: Make sure that all CPU
1491		 * siblings end up in the same group of the lowest level of the
1492		 * hierarchy. Rely on the topology sibling mask would be a
1493		 * reasonable solution.
1494		 */
1495
1496		group = tmp;
1497		break;
1498	}
1499
1500	if (group)
1501		return group;
1502
1503	/* Allocate and	set up a new group */
1504	group = kzalloc_node(sizeof(*group), GFP_KERNEL, node);
1505	if (!group)
1506		return ERR_PTR(-ENOMEM);
1507
1508	tmigr_init_group(group, lvl, node);
1509
1510	/* Setup successful. Add it to the hierarchy */
1511	list_add(&group->list, &tmigr_level_list[lvl]);
1512	trace_tmigr_group_set(group);
1513	return group;
1514}
1515
1516static void tmigr_connect_child_parent(struct tmigr_group *child,
1517				       struct tmigr_group *parent)
1518{
1519	union tmigr_state childstate;
1520
1521	raw_spin_lock_irq(&child->lock);
1522	raw_spin_lock_nested(&parent->lock, SINGLE_DEPTH_NESTING);
1523
1524	child->parent = parent;
1525	child->childmask = BIT(parent->num_children++);
1526
1527	raw_spin_unlock(&parent->lock);
1528	raw_spin_unlock_irq(&child->lock);
1529
1530	trace_tmigr_connect_child_parent(child);
1531
1532	/*
1533	 * To prevent inconsistent states, active children need to be active in
1534	 * the new parent as well. Inactive children are already marked inactive
1535	 * in the parent group:
1536	 *
1537	 * * When new groups were created by tmigr_setup_groups() starting from
1538	 *   the lowest level (and not higher then one level below the current
1539	 *   top level), then they are not active. They will be set active when
1540	 *   the new online CPU comes active.
1541	 *
1542	 * * But if a new group above the current top level is required, it is
1543	 *   mandatory to propagate the active state of the already existing
1544	 *   child to the new parent. So tmigr_connect_child_parent() is
1545	 *   executed with the formerly top level group (child) and the newly
1546	 *   created group (parent).
1547	 */
1548	childstate.state = atomic_read(&child->migr_state);
1549	if (childstate.migrator != TMIGR_NONE) {
1550		struct tmigr_walk data;
1551
1552		data.childmask = child->childmask;
1553
1554		/*
1555		 * There is only one new level per time. When connecting the
1556		 * child and the parent and set the child active when the parent
1557		 * is inactive, the parent needs to be the uppermost
1558		 * level. Otherwise there went something wrong!
1559		 */
1560		WARN_ON(!tmigr_active_up(parent, child, &data) && parent->parent);
1561	}
1562}
1563
1564static int tmigr_setup_groups(unsigned int cpu, unsigned int node)
1565{
1566	struct tmigr_group *group, *child, **stack;
1567	int top = 0, err = 0, i = 0;
1568	struct list_head *lvllist;
1569
1570	stack = kcalloc(tmigr_hierarchy_levels, sizeof(*stack), GFP_KERNEL);
1571	if (!stack)
1572		return -ENOMEM;
1573
1574	do {
1575		group = tmigr_get_group(cpu, node, i);
1576		if (IS_ERR(group)) {
1577			err = PTR_ERR(group);
1578			break;
1579		}
1580
1581		top = i;
1582		stack[i++] = group;
1583
1584		/*
1585		 * When booting only less CPUs of a system than CPUs are
1586		 * available, not all calculated hierarchy levels are required.
1587		 *
1588		 * The loop is aborted as soon as the highest level, which might
1589		 * be different from tmigr_hierarchy_levels, contains only a
1590		 * single group.
1591		 */
1592		if (group->parent || i == tmigr_hierarchy_levels ||
1593		    (list_empty(&tmigr_level_list[i]) &&
1594		     list_is_singular(&tmigr_level_list[i - 1])))
1595			break;
1596
1597	} while (i < tmigr_hierarchy_levels);
1598
1599	do {
1600		group = stack[--i];
1601
1602		if (err < 0) {
1603			list_del(&group->list);
1604			kfree(group);
1605			continue;
1606		}
1607
1608		WARN_ON_ONCE(i != group->level);
1609
1610		/*
1611		 * Update tmc -> group / child -> group connection
1612		 */
1613		if (i == 0) {
1614			struct tmigr_cpu *tmc = this_cpu_ptr(&tmigr_cpu);
1615
1616			raw_spin_lock_irq(&group->lock);
1617
1618			tmc->tmgroup = group;
1619			tmc->childmask = BIT(group->num_children++);
1620
1621			raw_spin_unlock_irq(&group->lock);
1622
1623			trace_tmigr_connect_cpu_parent(tmc);
1624
1625			/* There are no children that need to be connected */
1626			continue;
1627		} else {
1628			child = stack[i - 1];
1629			tmigr_connect_child_parent(child, group);
1630		}
1631
1632		/* check if uppermost level was newly created */
1633		if (top != i)
1634			continue;
1635
1636		WARN_ON_ONCE(top == 0);
1637
1638		lvllist = &tmigr_level_list[top];
1639		if (group->num_children == 1 && list_is_singular(lvllist)) {
1640			lvllist = &tmigr_level_list[top - 1];
1641			list_for_each_entry(child, lvllist, list) {
1642				if (child->parent)
1643					continue;
1644
1645				tmigr_connect_child_parent(child, group);
1646			}
1647		}
1648	} while (i > 0);
1649
1650	kfree(stack);
1651
1652	return err;
1653}
1654
1655static int tmigr_add_cpu(unsigned int cpu)
1656{
1657	int node = cpu_to_node(cpu);
1658	int ret;
1659
1660	mutex_lock(&tmigr_mutex);
1661	ret = tmigr_setup_groups(cpu, node);
1662	mutex_unlock(&tmigr_mutex);
1663
1664	return ret;
1665}
1666
1667static int tmigr_cpu_online(unsigned int cpu)
1668{
1669	struct tmigr_cpu *tmc = this_cpu_ptr(&tmigr_cpu);
1670	int ret;
1671
1672	/* First online attempt? Initialize CPU data */
1673	if (!tmc->tmgroup) {
1674		raw_spin_lock_init(&tmc->lock);
1675
1676		ret = tmigr_add_cpu(cpu);
1677		if (ret < 0)
1678			return ret;
1679
1680		if (tmc->childmask == 0)
1681			return -EINVAL;
1682
1683		timerqueue_init(&tmc->cpuevt.nextevt);
1684		tmc->cpuevt.nextevt.expires = KTIME_MAX;
1685		tmc->cpuevt.ignore = true;
1686		tmc->cpuevt.cpu = cpu;
1687
1688		tmc->remote = false;
1689		WRITE_ONCE(tmc->wakeup, KTIME_MAX);
1690	}
1691	raw_spin_lock_irq(&tmc->lock);
1692	trace_tmigr_cpu_online(tmc);
1693	tmc->idle = timer_base_is_idle();
1694	if (!tmc->idle)
1695		__tmigr_cpu_activate(tmc);
1696	tmc->online = true;
1697	raw_spin_unlock_irq(&tmc->lock);
1698	return 0;
1699}
1700
1701/*
1702 * tmigr_trigger_active() - trigger a CPU to become active again
1703 *
1704 * This function is executed on a CPU which is part of cpu_online_mask, when the
1705 * last active CPU in the hierarchy is offlining. With this, it is ensured that
1706 * the other CPU is active and takes over the migrator duty.
1707 */
1708static long tmigr_trigger_active(void *unused)
1709{
1710	struct tmigr_cpu *tmc = this_cpu_ptr(&tmigr_cpu);
1711
1712	WARN_ON_ONCE(!tmc->online || tmc->idle);
1713
1714	return 0;
1715}
1716
1717static int tmigr_cpu_offline(unsigned int cpu)
1718{
1719	struct tmigr_cpu *tmc = this_cpu_ptr(&tmigr_cpu);
1720	int migrator;
1721	u64 firstexp;
1722
1723	raw_spin_lock_irq(&tmc->lock);
1724	tmc->online = false;
1725	WRITE_ONCE(tmc->wakeup, KTIME_MAX);
1726
1727	/*
1728	 * CPU has to handle the local events on his own, when on the way to
1729	 * offline; Therefore nextevt value is set to KTIME_MAX
1730	 */
1731	firstexp = __tmigr_cpu_deactivate(tmc, KTIME_MAX);
1732	trace_tmigr_cpu_offline(tmc);
1733	raw_spin_unlock_irq(&tmc->lock);
1734
1735	if (firstexp != KTIME_MAX) {
1736		migrator = cpumask_any_but(cpu_online_mask, cpu);
1737		work_on_cpu(migrator, tmigr_trigger_active, NULL);
1738	}
1739
1740	return 0;
1741}
1742
1743static int __init tmigr_init(void)
1744{
1745	unsigned int cpulvl, nodelvl, cpus_per_node, i;
1746	unsigned int nnodes = num_possible_nodes();
1747	unsigned int ncpus = num_possible_cpus();
1748	int ret = -ENOMEM;
1749
1750	BUILD_BUG_ON_NOT_POWER_OF_2(TMIGR_CHILDREN_PER_GROUP);
1751
1752	/* Nothing to do if running on UP */
1753	if (ncpus == 1)
1754		return 0;
1755
1756	/*
1757	 * Calculate the required hierarchy levels. Unfortunately there is no
1758	 * reliable information available, unless all possible CPUs have been
1759	 * brought up and all NUMA nodes are populated.
1760	 *
1761	 * Estimate the number of levels with the number of possible nodes and
1762	 * the number of possible CPUs. Assume CPUs are spread evenly across
1763	 * nodes. We cannot rely on cpumask_of_node() because it only works for
1764	 * online CPUs.
1765	 */
1766	cpus_per_node = DIV_ROUND_UP(ncpus, nnodes);
1767
1768	/* Calc the hierarchy levels required to hold the CPUs of a node */
1769	cpulvl = DIV_ROUND_UP(order_base_2(cpus_per_node),
1770			      ilog2(TMIGR_CHILDREN_PER_GROUP));
1771
1772	/* Calculate the extra levels to connect all nodes */
1773	nodelvl = DIV_ROUND_UP(order_base_2(nnodes),
1774			       ilog2(TMIGR_CHILDREN_PER_GROUP));
1775
1776	tmigr_hierarchy_levels = cpulvl + nodelvl;
1777
1778	/*
1779	 * If a NUMA node spawns more than one CPU level group then the next
1780	 * level(s) of the hierarchy contains groups which handle all CPU groups
1781	 * of the same NUMA node. The level above goes across NUMA nodes. Store
1782	 * this information for the setup code to decide in which level node
1783	 * matching is no longer required.
1784	 */
1785	tmigr_crossnode_level = cpulvl;
1786
1787	tmigr_level_list = kcalloc(tmigr_hierarchy_levels, sizeof(struct list_head), GFP_KERNEL);
1788	if (!tmigr_level_list)
1789		goto err;
1790
1791	for (i = 0; i < tmigr_hierarchy_levels; i++)
1792		INIT_LIST_HEAD(&tmigr_level_list[i]);
1793
1794	pr_info("Timer migration: %d hierarchy levels; %d children per group;"
1795		" %d crossnode level\n",
1796		tmigr_hierarchy_levels, TMIGR_CHILDREN_PER_GROUP,
1797		tmigr_crossnode_level);
1798
1799	ret = cpuhp_setup_state(CPUHP_AP_TMIGR_ONLINE, "tmigr:online",
1800				tmigr_cpu_online, tmigr_cpu_offline);
1801	if (ret)
1802		goto err;
1803
1804	return 0;
1805
1806err:
1807	pr_err("Timer migration setup failed\n");
1808	return ret;
1809}
1810late_initcall(tmigr_init);
1811