1// SPDX-License-Identifier: GPL-2.0
2/*
3 *  Kernel timekeeping code and accessor functions. Based on code from
4 *  timer.c, moved in commit 8524070b7982.
5 */
6#include <linux/timekeeper_internal.h>
7#include <linux/module.h>
8#include <linux/interrupt.h>
9#include <linux/percpu.h>
10#include <linux/init.h>
11#include <linux/mm.h>
12#include <linux/nmi.h>
13#include <linux/sched.h>
14#include <linux/sched/loadavg.h>
15#include <linux/sched/clock.h>
16#include <linux/syscore_ops.h>
17#include <linux/clocksource.h>
18#include <linux/jiffies.h>
19#include <linux/time.h>
20#include <linux/timex.h>
21#include <linux/tick.h>
22#include <linux/stop_machine.h>
23#include <linux/pvclock_gtod.h>
24#include <linux/compiler.h>
25#include <linux/audit.h>
26#include <linux/random.h>
27
28#include "tick-internal.h"
29#include "ntp_internal.h"
30#include "timekeeping_internal.h"
31
32#define TK_CLEAR_NTP		(1 << 0)
33#define TK_MIRROR		(1 << 1)
34#define TK_CLOCK_WAS_SET	(1 << 2)
35
36enum timekeeping_adv_mode {
37	/* Update timekeeper when a tick has passed */
38	TK_ADV_TICK,
39
40	/* Update timekeeper on a direct frequency change */
41	TK_ADV_FREQ
42};
43
44DEFINE_RAW_SPINLOCK(timekeeper_lock);
45
46/*
47 * The most important data for readout fits into a single 64 byte
48 * cache line.
49 */
50static struct {
51	seqcount_raw_spinlock_t	seq;
52	struct timekeeper	timekeeper;
53} tk_core ____cacheline_aligned = {
54	.seq = SEQCNT_RAW_SPINLOCK_ZERO(tk_core.seq, &timekeeper_lock),
55};
56
57static struct timekeeper shadow_timekeeper;
58
59/* flag for if timekeeping is suspended */
60int __read_mostly timekeeping_suspended;
61
62/**
63 * struct tk_fast - NMI safe timekeeper
64 * @seq:	Sequence counter for protecting updates. The lowest bit
65 *		is the index for the tk_read_base array
66 * @base:	tk_read_base array. Access is indexed by the lowest bit of
67 *		@seq.
68 *
69 * See @update_fast_timekeeper() below.
70 */
71struct tk_fast {
72	seqcount_latch_t	seq;
73	struct tk_read_base	base[2];
74};
75
76/* Suspend-time cycles value for halted fast timekeeper. */
77static u64 cycles_at_suspend;
78
79static u64 dummy_clock_read(struct clocksource *cs)
80{
81	if (timekeeping_suspended)
82		return cycles_at_suspend;
83	return local_clock();
84}
85
86static struct clocksource dummy_clock = {
87	.read = dummy_clock_read,
88};
89
90/*
91 * Boot time initialization which allows local_clock() to be utilized
92 * during early boot when clocksources are not available. local_clock()
93 * returns nanoseconds already so no conversion is required, hence mult=1
94 * and shift=0. When the first proper clocksource is installed then
95 * the fast time keepers are updated with the correct values.
96 */
97#define FAST_TK_INIT						\
98	{							\
99		.clock		= &dummy_clock,			\
100		.mask		= CLOCKSOURCE_MASK(64),		\
101		.mult		= 1,				\
102		.shift		= 0,				\
103	}
104
105static struct tk_fast tk_fast_mono ____cacheline_aligned = {
106	.seq     = SEQCNT_LATCH_ZERO(tk_fast_mono.seq),
107	.base[0] = FAST_TK_INIT,
108	.base[1] = FAST_TK_INIT,
109};
110
111static struct tk_fast tk_fast_raw  ____cacheline_aligned = {
112	.seq     = SEQCNT_LATCH_ZERO(tk_fast_raw.seq),
113	.base[0] = FAST_TK_INIT,
114	.base[1] = FAST_TK_INIT,
115};
116
117static inline void tk_normalize_xtime(struct timekeeper *tk)
118{
119	while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
120		tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
121		tk->xtime_sec++;
122	}
123	while (tk->tkr_raw.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_raw.shift)) {
124		tk->tkr_raw.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
125		tk->raw_sec++;
126	}
127}
128
129static inline struct timespec64 tk_xtime(const struct timekeeper *tk)
130{
131	struct timespec64 ts;
132
133	ts.tv_sec = tk->xtime_sec;
134	ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
135	return ts;
136}
137
138static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
139{
140	tk->xtime_sec = ts->tv_sec;
141	tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
142}
143
144static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
145{
146	tk->xtime_sec += ts->tv_sec;
147	tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
148	tk_normalize_xtime(tk);
149}
150
151static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
152{
153	struct timespec64 tmp;
154
155	/*
156	 * Verify consistency of: offset_real = -wall_to_monotonic
157	 * before modifying anything
158	 */
159	set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
160					-tk->wall_to_monotonic.tv_nsec);
161	WARN_ON_ONCE(tk->offs_real != timespec64_to_ktime(tmp));
162	tk->wall_to_monotonic = wtm;
163	set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
164	tk->offs_real = timespec64_to_ktime(tmp);
165	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
166}
167
168static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
169{
170	tk->offs_boot = ktime_add(tk->offs_boot, delta);
171	/*
172	 * Timespec representation for VDSO update to avoid 64bit division
173	 * on every update.
174	 */
175	tk->monotonic_to_boot = ktime_to_timespec64(tk->offs_boot);
176}
177
178/*
179 * tk_clock_read - atomic clocksource read() helper
180 *
181 * This helper is necessary to use in the read paths because, while the
182 * seqcount ensures we don't return a bad value while structures are updated,
183 * it doesn't protect from potential crashes. There is the possibility that
184 * the tkr's clocksource may change between the read reference, and the
185 * clock reference passed to the read function.  This can cause crashes if
186 * the wrong clocksource is passed to the wrong read function.
187 * This isn't necessary to use when holding the timekeeper_lock or doing
188 * a read of the fast-timekeeper tkrs (which is protected by its own locking
189 * and update logic).
190 */
191static inline u64 tk_clock_read(const struct tk_read_base *tkr)
192{
193	struct clocksource *clock = READ_ONCE(tkr->clock);
194
195	return clock->read(clock);
196}
197
198#ifdef CONFIG_DEBUG_TIMEKEEPING
199#define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */
200
201static void timekeeping_check_update(struct timekeeper *tk, u64 offset)
202{
203
204	u64 max_cycles = tk->tkr_mono.clock->max_cycles;
205	const char *name = tk->tkr_mono.clock->name;
206
207	if (offset > max_cycles) {
208		printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
209				offset, name, max_cycles);
210		printk_deferred("         timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
211	} else {
212		if (offset > (max_cycles >> 1)) {
213			printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the '%s' clock's 50%% safety margin (%lld)\n",
214					offset, name, max_cycles >> 1);
215			printk_deferred("      timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
216		}
217	}
218
219	if (tk->underflow_seen) {
220		if (jiffies - tk->last_warning > WARNING_FREQ) {
221			printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name);
222			printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
223			printk_deferred("         Your kernel is probably still fine.\n");
224			tk->last_warning = jiffies;
225		}
226		tk->underflow_seen = 0;
227	}
228
229	if (tk->overflow_seen) {
230		if (jiffies - tk->last_warning > WARNING_FREQ) {
231			printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name);
232			printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
233			printk_deferred("         Your kernel is probably still fine.\n");
234			tk->last_warning = jiffies;
235		}
236		tk->overflow_seen = 0;
237	}
238}
239
240static inline u64 timekeeping_get_delta(const struct tk_read_base *tkr)
241{
242	struct timekeeper *tk = &tk_core.timekeeper;
243	u64 now, last, mask, max, delta;
244	unsigned int seq;
245
246	/*
247	 * Since we're called holding a seqcount, the data may shift
248	 * under us while we're doing the calculation. This can cause
249	 * false positives, since we'd note a problem but throw the
250	 * results away. So nest another seqcount here to atomically
251	 * grab the points we are checking with.
252	 */
253	do {
254		seq = read_seqcount_begin(&tk_core.seq);
255		now = tk_clock_read(tkr);
256		last = tkr->cycle_last;
257		mask = tkr->mask;
258		max = tkr->clock->max_cycles;
259	} while (read_seqcount_retry(&tk_core.seq, seq));
260
261	delta = clocksource_delta(now, last, mask);
262
263	/*
264	 * Try to catch underflows by checking if we are seeing small
265	 * mask-relative negative values.
266	 */
267	if (unlikely((~delta & mask) < (mask >> 3))) {
268		tk->underflow_seen = 1;
269		delta = 0;
270	}
271
272	/* Cap delta value to the max_cycles values to avoid mult overflows */
273	if (unlikely(delta > max)) {
274		tk->overflow_seen = 1;
275		delta = tkr->clock->max_cycles;
276	}
277
278	return delta;
279}
280#else
281static inline void timekeeping_check_update(struct timekeeper *tk, u64 offset)
282{
283}
284static inline u64 timekeeping_get_delta(const struct tk_read_base *tkr)
285{
286	u64 cycle_now, delta;
287
288	/* read clocksource */
289	cycle_now = tk_clock_read(tkr);
290
291	/* calculate the delta since the last update_wall_time */
292	delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);
293
294	return delta;
295}
296#endif
297
298/**
299 * tk_setup_internals - Set up internals to use clocksource clock.
300 *
301 * @tk:		The target timekeeper to setup.
302 * @clock:		Pointer to clocksource.
303 *
304 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
305 * pair and interval request.
306 *
307 * Unless you're the timekeeping code, you should not be using this!
308 */
309static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
310{
311	u64 interval;
312	u64 tmp, ntpinterval;
313	struct clocksource *old_clock;
314
315	++tk->cs_was_changed_seq;
316	old_clock = tk->tkr_mono.clock;
317	tk->tkr_mono.clock = clock;
318	tk->tkr_mono.mask = clock->mask;
319	tk->tkr_mono.cycle_last = tk_clock_read(&tk->tkr_mono);
320
321	tk->tkr_raw.clock = clock;
322	tk->tkr_raw.mask = clock->mask;
323	tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;
324
325	/* Do the ns -> cycle conversion first, using original mult */
326	tmp = NTP_INTERVAL_LENGTH;
327	tmp <<= clock->shift;
328	ntpinterval = tmp;
329	tmp += clock->mult/2;
330	do_div(tmp, clock->mult);
331	if (tmp == 0)
332		tmp = 1;
333
334	interval = (u64) tmp;
335	tk->cycle_interval = interval;
336
337	/* Go back from cycles -> shifted ns */
338	tk->xtime_interval = interval * clock->mult;
339	tk->xtime_remainder = ntpinterval - tk->xtime_interval;
340	tk->raw_interval = interval * clock->mult;
341
342	 /* if changing clocks, convert xtime_nsec shift units */
343	if (old_clock) {
344		int shift_change = clock->shift - old_clock->shift;
345		if (shift_change < 0) {
346			tk->tkr_mono.xtime_nsec >>= -shift_change;
347			tk->tkr_raw.xtime_nsec >>= -shift_change;
348		} else {
349			tk->tkr_mono.xtime_nsec <<= shift_change;
350			tk->tkr_raw.xtime_nsec <<= shift_change;
351		}
352	}
353
354	tk->tkr_mono.shift = clock->shift;
355	tk->tkr_raw.shift = clock->shift;
356
357	tk->ntp_error = 0;
358	tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
359	tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
360
361	/*
362	 * The timekeeper keeps its own mult values for the currently
363	 * active clocksource. These value will be adjusted via NTP
364	 * to counteract clock drifting.
365	 */
366	tk->tkr_mono.mult = clock->mult;
367	tk->tkr_raw.mult = clock->mult;
368	tk->ntp_err_mult = 0;
369	tk->skip_second_overflow = 0;
370}
371
372/* Timekeeper helper functions. */
373
374static inline u64 timekeeping_delta_to_ns(const struct tk_read_base *tkr, u64 delta)
375{
376	u64 nsec;
377
378	nsec = delta * tkr->mult + tkr->xtime_nsec;
379	nsec >>= tkr->shift;
380
381	return nsec;
382}
383
384static inline u64 timekeeping_get_ns(const struct tk_read_base *tkr)
385{
386	u64 delta;
387
388	delta = timekeeping_get_delta(tkr);
389	return timekeeping_delta_to_ns(tkr, delta);
390}
391
392static inline u64 timekeeping_cycles_to_ns(const struct tk_read_base *tkr, u64 cycles)
393{
394	u64 delta;
395
396	/* calculate the delta since the last update_wall_time */
397	delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask);
398	return timekeeping_delta_to_ns(tkr, delta);
399}
400
401/**
402 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
403 * @tkr: Timekeeping readout base from which we take the update
404 * @tkf: Pointer to NMI safe timekeeper
405 *
406 * We want to use this from any context including NMI and tracing /
407 * instrumenting the timekeeping code itself.
408 *
409 * Employ the latch technique; see @raw_write_seqcount_latch.
410 *
411 * So if a NMI hits the update of base[0] then it will use base[1]
412 * which is still consistent. In the worst case this can result is a
413 * slightly wrong timestamp (a few nanoseconds). See
414 * @ktime_get_mono_fast_ns.
415 */
416static void update_fast_timekeeper(const struct tk_read_base *tkr,
417				   struct tk_fast *tkf)
418{
419	struct tk_read_base *base = tkf->base;
420
421	/* Force readers off to base[1] */
422	raw_write_seqcount_latch(&tkf->seq);
423
424	/* Update base[0] */
425	memcpy(base, tkr, sizeof(*base));
426
427	/* Force readers back to base[0] */
428	raw_write_seqcount_latch(&tkf->seq);
429
430	/* Update base[1] */
431	memcpy(base + 1, base, sizeof(*base));
432}
433
434static __always_inline u64 fast_tk_get_delta_ns(struct tk_read_base *tkr)
435{
436	u64 delta, cycles = tk_clock_read(tkr);
437
438	delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask);
439	return timekeeping_delta_to_ns(tkr, delta);
440}
441
442static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
443{
444	struct tk_read_base *tkr;
445	unsigned int seq;
446	u64 now;
447
448	do {
449		seq = raw_read_seqcount_latch(&tkf->seq);
450		tkr = tkf->base + (seq & 0x01);
451		now = ktime_to_ns(tkr->base);
452		now += fast_tk_get_delta_ns(tkr);
453	} while (raw_read_seqcount_latch_retry(&tkf->seq, seq));
454
455	return now;
456}
457
458/**
459 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
460 *
461 * This timestamp is not guaranteed to be monotonic across an update.
462 * The timestamp is calculated by:
463 *
464 *	now = base_mono + clock_delta * slope
465 *
466 * So if the update lowers the slope, readers who are forced to the
467 * not yet updated second array are still using the old steeper slope.
468 *
469 * tmono
470 * ^
471 * |    o  n
472 * |   o n
473 * |  u
474 * | o
475 * |o
476 * |12345678---> reader order
477 *
478 * o = old slope
479 * u = update
480 * n = new slope
481 *
482 * So reader 6 will observe time going backwards versus reader 5.
483 *
484 * While other CPUs are likely to be able to observe that, the only way
485 * for a CPU local observation is when an NMI hits in the middle of
486 * the update. Timestamps taken from that NMI context might be ahead
487 * of the following timestamps. Callers need to be aware of that and
488 * deal with it.
489 */
490u64 notrace ktime_get_mono_fast_ns(void)
491{
492	return __ktime_get_fast_ns(&tk_fast_mono);
493}
494EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);
495
496/**
497 * ktime_get_raw_fast_ns - Fast NMI safe access to clock monotonic raw
498 *
499 * Contrary to ktime_get_mono_fast_ns() this is always correct because the
500 * conversion factor is not affected by NTP/PTP correction.
501 */
502u64 notrace ktime_get_raw_fast_ns(void)
503{
504	return __ktime_get_fast_ns(&tk_fast_raw);
505}
506EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);
507
508/**
509 * ktime_get_boot_fast_ns - NMI safe and fast access to boot clock.
510 *
511 * To keep it NMI safe since we're accessing from tracing, we're not using a
512 * separate timekeeper with updates to monotonic clock and boot offset
513 * protected with seqcounts. This has the following minor side effects:
514 *
515 * (1) Its possible that a timestamp be taken after the boot offset is updated
516 * but before the timekeeper is updated. If this happens, the new boot offset
517 * is added to the old timekeeping making the clock appear to update slightly
518 * earlier:
519 *    CPU 0                                        CPU 1
520 *    timekeeping_inject_sleeptime64()
521 *    __timekeeping_inject_sleeptime(tk, delta);
522 *                                                 timestamp();
523 *    timekeeping_update(tk, TK_CLEAR_NTP...);
524 *
525 * (2) On 32-bit systems, the 64-bit boot offset (tk->offs_boot) may be
526 * partially updated.  Since the tk->offs_boot update is a rare event, this
527 * should be a rare occurrence which postprocessing should be able to handle.
528 *
529 * The caveats vs. timestamp ordering as documented for ktime_get_mono_fast_ns()
530 * apply as well.
531 */
532u64 notrace ktime_get_boot_fast_ns(void)
533{
534	struct timekeeper *tk = &tk_core.timekeeper;
535
536	return (ktime_get_mono_fast_ns() + ktime_to_ns(data_race(tk->offs_boot)));
537}
538EXPORT_SYMBOL_GPL(ktime_get_boot_fast_ns);
539
540/**
541 * ktime_get_tai_fast_ns - NMI safe and fast access to tai clock.
542 *
543 * The same limitations as described for ktime_get_boot_fast_ns() apply. The
544 * mono time and the TAI offset are not read atomically which may yield wrong
545 * readouts. However, an update of the TAI offset is an rare event e.g., caused
546 * by settime or adjtimex with an offset. The user of this function has to deal
547 * with the possibility of wrong timestamps in post processing.
548 */
549u64 notrace ktime_get_tai_fast_ns(void)
550{
551	struct timekeeper *tk = &tk_core.timekeeper;
552
553	return (ktime_get_mono_fast_ns() + ktime_to_ns(data_race(tk->offs_tai)));
554}
555EXPORT_SYMBOL_GPL(ktime_get_tai_fast_ns);
556
557static __always_inline u64 __ktime_get_real_fast(struct tk_fast *tkf, u64 *mono)
558{
559	struct tk_read_base *tkr;
560	u64 basem, baser, delta;
561	unsigned int seq;
562
563	do {
564		seq = raw_read_seqcount_latch(&tkf->seq);
565		tkr = tkf->base + (seq & 0x01);
566		basem = ktime_to_ns(tkr->base);
567		baser = ktime_to_ns(tkr->base_real);
568		delta = fast_tk_get_delta_ns(tkr);
569	} while (raw_read_seqcount_latch_retry(&tkf->seq, seq));
570
571	if (mono)
572		*mono = basem + delta;
573	return baser + delta;
574}
575
576/**
577 * ktime_get_real_fast_ns: - NMI safe and fast access to clock realtime.
578 *
579 * See ktime_get_mono_fast_ns() for documentation of the time stamp ordering.
580 */
581u64 ktime_get_real_fast_ns(void)
582{
583	return __ktime_get_real_fast(&tk_fast_mono, NULL);
584}
585EXPORT_SYMBOL_GPL(ktime_get_real_fast_ns);
586
587/**
588 * ktime_get_fast_timestamps: - NMI safe timestamps
589 * @snapshot:	Pointer to timestamp storage
590 *
591 * Stores clock monotonic, boottime and realtime timestamps.
592 *
593 * Boot time is a racy access on 32bit systems if the sleep time injection
594 * happens late during resume and not in timekeeping_resume(). That could
595 * be avoided by expanding struct tk_read_base with boot offset for 32bit
596 * and adding more overhead to the update. As this is a hard to observe
597 * once per resume event which can be filtered with reasonable effort using
598 * the accurate mono/real timestamps, it's probably not worth the trouble.
599 *
600 * Aside of that it might be possible on 32 and 64 bit to observe the
601 * following when the sleep time injection happens late:
602 *
603 * CPU 0				CPU 1
604 * timekeeping_resume()
605 * ktime_get_fast_timestamps()
606 *	mono, real = __ktime_get_real_fast()
607 *					inject_sleep_time()
608 *					   update boot offset
609 *	boot = mono + bootoffset;
610 *
611 * That means that boot time already has the sleep time adjustment, but
612 * real time does not. On the next readout both are in sync again.
613 *
614 * Preventing this for 64bit is not really feasible without destroying the
615 * careful cache layout of the timekeeper because the sequence count and
616 * struct tk_read_base would then need two cache lines instead of one.
617 *
618 * Access to the time keeper clock source is disabled across the innermost
619 * steps of suspend/resume. The accessors still work, but the timestamps
620 * are frozen until time keeping is resumed which happens very early.
621 *
622 * For regular suspend/resume there is no observable difference vs. sched
623 * clock, but it might affect some of the nasty low level debug printks.
624 *
625 * OTOH, access to sched clock is not guaranteed across suspend/resume on
626 * all systems either so it depends on the hardware in use.
627 *
628 * If that turns out to be a real problem then this could be mitigated by
629 * using sched clock in a similar way as during early boot. But it's not as
630 * trivial as on early boot because it needs some careful protection
631 * against the clock monotonic timestamp jumping backwards on resume.
632 */
633void ktime_get_fast_timestamps(struct ktime_timestamps *snapshot)
634{
635	struct timekeeper *tk = &tk_core.timekeeper;
636
637	snapshot->real = __ktime_get_real_fast(&tk_fast_mono, &snapshot->mono);
638	snapshot->boot = snapshot->mono + ktime_to_ns(data_race(tk->offs_boot));
639}
640
641/**
642 * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
643 * @tk: Timekeeper to snapshot.
644 *
645 * It generally is unsafe to access the clocksource after timekeeping has been
646 * suspended, so take a snapshot of the readout base of @tk and use it as the
647 * fast timekeeper's readout base while suspended.  It will return the same
648 * number of cycles every time until timekeeping is resumed at which time the
649 * proper readout base for the fast timekeeper will be restored automatically.
650 */
651static void halt_fast_timekeeper(const struct timekeeper *tk)
652{
653	static struct tk_read_base tkr_dummy;
654	const struct tk_read_base *tkr = &tk->tkr_mono;
655
656	memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
657	cycles_at_suspend = tk_clock_read(tkr);
658	tkr_dummy.clock = &dummy_clock;
659	tkr_dummy.base_real = tkr->base + tk->offs_real;
660	update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
661
662	tkr = &tk->tkr_raw;
663	memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
664	tkr_dummy.clock = &dummy_clock;
665	update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
666}
667
668static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
669
670static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
671{
672	raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
673}
674
675/**
676 * pvclock_gtod_register_notifier - register a pvclock timedata update listener
677 * @nb: Pointer to the notifier block to register
678 */
679int pvclock_gtod_register_notifier(struct notifier_block *nb)
680{
681	struct timekeeper *tk = &tk_core.timekeeper;
682	unsigned long flags;
683	int ret;
684
685	raw_spin_lock_irqsave(&timekeeper_lock, flags);
686	ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
687	update_pvclock_gtod(tk, true);
688	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
689
690	return ret;
691}
692EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
693
694/**
695 * pvclock_gtod_unregister_notifier - unregister a pvclock
696 * timedata update listener
697 * @nb: Pointer to the notifier block to unregister
698 */
699int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
700{
701	unsigned long flags;
702	int ret;
703
704	raw_spin_lock_irqsave(&timekeeper_lock, flags);
705	ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
706	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
707
708	return ret;
709}
710EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
711
712/*
713 * tk_update_leap_state - helper to update the next_leap_ktime
714 */
715static inline void tk_update_leap_state(struct timekeeper *tk)
716{
717	tk->next_leap_ktime = ntp_get_next_leap();
718	if (tk->next_leap_ktime != KTIME_MAX)
719		/* Convert to monotonic time */
720		tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real);
721}
722
723/*
724 * Update the ktime_t based scalar nsec members of the timekeeper
725 */
726static inline void tk_update_ktime_data(struct timekeeper *tk)
727{
728	u64 seconds;
729	u32 nsec;
730
731	/*
732	 * The xtime based monotonic readout is:
733	 *	nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
734	 * The ktime based monotonic readout is:
735	 *	nsec = base_mono + now();
736	 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
737	 */
738	seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
739	nsec = (u32) tk->wall_to_monotonic.tv_nsec;
740	tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
741
742	/*
743	 * The sum of the nanoseconds portions of xtime and
744	 * wall_to_monotonic can be greater/equal one second. Take
745	 * this into account before updating tk->ktime_sec.
746	 */
747	nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
748	if (nsec >= NSEC_PER_SEC)
749		seconds++;
750	tk->ktime_sec = seconds;
751
752	/* Update the monotonic raw base */
753	tk->tkr_raw.base = ns_to_ktime(tk->raw_sec * NSEC_PER_SEC);
754}
755
756/* must hold timekeeper_lock */
757static void timekeeping_update(struct timekeeper *tk, unsigned int action)
758{
759	if (action & TK_CLEAR_NTP) {
760		tk->ntp_error = 0;
761		ntp_clear();
762	}
763
764	tk_update_leap_state(tk);
765	tk_update_ktime_data(tk);
766
767	update_vsyscall(tk);
768	update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
769
770	tk->tkr_mono.base_real = tk->tkr_mono.base + tk->offs_real;
771	update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
772	update_fast_timekeeper(&tk->tkr_raw,  &tk_fast_raw);
773
774	if (action & TK_CLOCK_WAS_SET)
775		tk->clock_was_set_seq++;
776	/*
777	 * The mirroring of the data to the shadow-timekeeper needs
778	 * to happen last here to ensure we don't over-write the
779	 * timekeeper structure on the next update with stale data
780	 */
781	if (action & TK_MIRROR)
782		memcpy(&shadow_timekeeper, &tk_core.timekeeper,
783		       sizeof(tk_core.timekeeper));
784}
785
786/**
787 * timekeeping_forward_now - update clock to the current time
788 * @tk:		Pointer to the timekeeper to update
789 *
790 * Forward the current clock to update its state since the last call to
791 * update_wall_time(). This is useful before significant clock changes,
792 * as it avoids having to deal with this time offset explicitly.
793 */
794static void timekeeping_forward_now(struct timekeeper *tk)
795{
796	u64 cycle_now, delta;
797
798	cycle_now = tk_clock_read(&tk->tkr_mono);
799	delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
800	tk->tkr_mono.cycle_last = cycle_now;
801	tk->tkr_raw.cycle_last  = cycle_now;
802
803	tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult;
804	tk->tkr_raw.xtime_nsec += delta * tk->tkr_raw.mult;
805
806	tk_normalize_xtime(tk);
807}
808
809/**
810 * ktime_get_real_ts64 - Returns the time of day in a timespec64.
811 * @ts:		pointer to the timespec to be set
812 *
813 * Returns the time of day in a timespec64 (WARN if suspended).
814 */
815void ktime_get_real_ts64(struct timespec64 *ts)
816{
817	struct timekeeper *tk = &tk_core.timekeeper;
818	unsigned int seq;
819	u64 nsecs;
820
821	WARN_ON(timekeeping_suspended);
822
823	do {
824		seq = read_seqcount_begin(&tk_core.seq);
825
826		ts->tv_sec = tk->xtime_sec;
827		nsecs = timekeeping_get_ns(&tk->tkr_mono);
828
829	} while (read_seqcount_retry(&tk_core.seq, seq));
830
831	ts->tv_nsec = 0;
832	timespec64_add_ns(ts, nsecs);
833}
834EXPORT_SYMBOL(ktime_get_real_ts64);
835
836ktime_t ktime_get(void)
837{
838	struct timekeeper *tk = &tk_core.timekeeper;
839	unsigned int seq;
840	ktime_t base;
841	u64 nsecs;
842
843	WARN_ON(timekeeping_suspended);
844
845	do {
846		seq = read_seqcount_begin(&tk_core.seq);
847		base = tk->tkr_mono.base;
848		nsecs = timekeeping_get_ns(&tk->tkr_mono);
849
850	} while (read_seqcount_retry(&tk_core.seq, seq));
851
852	return ktime_add_ns(base, nsecs);
853}
854EXPORT_SYMBOL_GPL(ktime_get);
855
856u32 ktime_get_resolution_ns(void)
857{
858	struct timekeeper *tk = &tk_core.timekeeper;
859	unsigned int seq;
860	u32 nsecs;
861
862	WARN_ON(timekeeping_suspended);
863
864	do {
865		seq = read_seqcount_begin(&tk_core.seq);
866		nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift;
867	} while (read_seqcount_retry(&tk_core.seq, seq));
868
869	return nsecs;
870}
871EXPORT_SYMBOL_GPL(ktime_get_resolution_ns);
872
873static ktime_t *offsets[TK_OFFS_MAX] = {
874	[TK_OFFS_REAL]	= &tk_core.timekeeper.offs_real,
875	[TK_OFFS_BOOT]	= &tk_core.timekeeper.offs_boot,
876	[TK_OFFS_TAI]	= &tk_core.timekeeper.offs_tai,
877};
878
879ktime_t ktime_get_with_offset(enum tk_offsets offs)
880{
881	struct timekeeper *tk = &tk_core.timekeeper;
882	unsigned int seq;
883	ktime_t base, *offset = offsets[offs];
884	u64 nsecs;
885
886	WARN_ON(timekeeping_suspended);
887
888	do {
889		seq = read_seqcount_begin(&tk_core.seq);
890		base = ktime_add(tk->tkr_mono.base, *offset);
891		nsecs = timekeeping_get_ns(&tk->tkr_mono);
892
893	} while (read_seqcount_retry(&tk_core.seq, seq));
894
895	return ktime_add_ns(base, nsecs);
896
897}
898EXPORT_SYMBOL_GPL(ktime_get_with_offset);
899
900ktime_t ktime_get_coarse_with_offset(enum tk_offsets offs)
901{
902	struct timekeeper *tk = &tk_core.timekeeper;
903	unsigned int seq;
904	ktime_t base, *offset = offsets[offs];
905	u64 nsecs;
906
907	WARN_ON(timekeeping_suspended);
908
909	do {
910		seq = read_seqcount_begin(&tk_core.seq);
911		base = ktime_add(tk->tkr_mono.base, *offset);
912		nsecs = tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift;
913
914	} while (read_seqcount_retry(&tk_core.seq, seq));
915
916	return ktime_add_ns(base, nsecs);
917}
918EXPORT_SYMBOL_GPL(ktime_get_coarse_with_offset);
919
920/**
921 * ktime_mono_to_any() - convert monotonic time to any other time
922 * @tmono:	time to convert.
923 * @offs:	which offset to use
924 */
925ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
926{
927	ktime_t *offset = offsets[offs];
928	unsigned int seq;
929	ktime_t tconv;
930
931	do {
932		seq = read_seqcount_begin(&tk_core.seq);
933		tconv = ktime_add(tmono, *offset);
934	} while (read_seqcount_retry(&tk_core.seq, seq));
935
936	return tconv;
937}
938EXPORT_SYMBOL_GPL(ktime_mono_to_any);
939
940/**
941 * ktime_get_raw - Returns the raw monotonic time in ktime_t format
942 */
943ktime_t ktime_get_raw(void)
944{
945	struct timekeeper *tk = &tk_core.timekeeper;
946	unsigned int seq;
947	ktime_t base;
948	u64 nsecs;
949
950	do {
951		seq = read_seqcount_begin(&tk_core.seq);
952		base = tk->tkr_raw.base;
953		nsecs = timekeeping_get_ns(&tk->tkr_raw);
954
955	} while (read_seqcount_retry(&tk_core.seq, seq));
956
957	return ktime_add_ns(base, nsecs);
958}
959EXPORT_SYMBOL_GPL(ktime_get_raw);
960
961/**
962 * ktime_get_ts64 - get the monotonic clock in timespec64 format
963 * @ts:		pointer to timespec variable
964 *
965 * The function calculates the monotonic clock from the realtime
966 * clock and the wall_to_monotonic offset and stores the result
967 * in normalized timespec64 format in the variable pointed to by @ts.
968 */
969void ktime_get_ts64(struct timespec64 *ts)
970{
971	struct timekeeper *tk = &tk_core.timekeeper;
972	struct timespec64 tomono;
973	unsigned int seq;
974	u64 nsec;
975
976	WARN_ON(timekeeping_suspended);
977
978	do {
979		seq = read_seqcount_begin(&tk_core.seq);
980		ts->tv_sec = tk->xtime_sec;
981		nsec = timekeeping_get_ns(&tk->tkr_mono);
982		tomono = tk->wall_to_monotonic;
983
984	} while (read_seqcount_retry(&tk_core.seq, seq));
985
986	ts->tv_sec += tomono.tv_sec;
987	ts->tv_nsec = 0;
988	timespec64_add_ns(ts, nsec + tomono.tv_nsec);
989}
990EXPORT_SYMBOL_GPL(ktime_get_ts64);
991
992/**
993 * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
994 *
995 * Returns the seconds portion of CLOCK_MONOTONIC with a single non
996 * serialized read. tk->ktime_sec is of type 'unsigned long' so this
997 * works on both 32 and 64 bit systems. On 32 bit systems the readout
998 * covers ~136 years of uptime which should be enough to prevent
999 * premature wrap arounds.
1000 */
1001time64_t ktime_get_seconds(void)
1002{
1003	struct timekeeper *tk = &tk_core.timekeeper;
1004
1005	WARN_ON(timekeeping_suspended);
1006	return tk->ktime_sec;
1007}
1008EXPORT_SYMBOL_GPL(ktime_get_seconds);
1009
1010/**
1011 * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
1012 *
1013 * Returns the wall clock seconds since 1970.
1014 *
1015 * For 64bit systems the fast access to tk->xtime_sec is preserved. On
1016 * 32bit systems the access must be protected with the sequence
1017 * counter to provide "atomic" access to the 64bit tk->xtime_sec
1018 * value.
1019 */
1020time64_t ktime_get_real_seconds(void)
1021{
1022	struct timekeeper *tk = &tk_core.timekeeper;
1023	time64_t seconds;
1024	unsigned int seq;
1025
1026	if (IS_ENABLED(CONFIG_64BIT))
1027		return tk->xtime_sec;
1028
1029	do {
1030		seq = read_seqcount_begin(&tk_core.seq);
1031		seconds = tk->xtime_sec;
1032
1033	} while (read_seqcount_retry(&tk_core.seq, seq));
1034
1035	return seconds;
1036}
1037EXPORT_SYMBOL_GPL(ktime_get_real_seconds);
1038
1039/**
1040 * __ktime_get_real_seconds - The same as ktime_get_real_seconds
1041 * but without the sequence counter protect. This internal function
1042 * is called just when timekeeping lock is already held.
1043 */
1044noinstr time64_t __ktime_get_real_seconds(void)
1045{
1046	struct timekeeper *tk = &tk_core.timekeeper;
1047
1048	return tk->xtime_sec;
1049}
1050
1051/**
1052 * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter
1053 * @systime_snapshot:	pointer to struct receiving the system time snapshot
1054 */
1055void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot)
1056{
1057	struct timekeeper *tk = &tk_core.timekeeper;
1058	unsigned int seq;
1059	ktime_t base_raw;
1060	ktime_t base_real;
1061	u64 nsec_raw;
1062	u64 nsec_real;
1063	u64 now;
1064
1065	WARN_ON_ONCE(timekeeping_suspended);
1066
1067	do {
1068		seq = read_seqcount_begin(&tk_core.seq);
1069		now = tk_clock_read(&tk->tkr_mono);
1070		systime_snapshot->cs_id = tk->tkr_mono.clock->id;
1071		systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq;
1072		systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq;
1073		base_real = ktime_add(tk->tkr_mono.base,
1074				      tk_core.timekeeper.offs_real);
1075		base_raw = tk->tkr_raw.base;
1076		nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now);
1077		nsec_raw  = timekeeping_cycles_to_ns(&tk->tkr_raw, now);
1078	} while (read_seqcount_retry(&tk_core.seq, seq));
1079
1080	systime_snapshot->cycles = now;
1081	systime_snapshot->real = ktime_add_ns(base_real, nsec_real);
1082	systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw);
1083}
1084EXPORT_SYMBOL_GPL(ktime_get_snapshot);
1085
1086/* Scale base by mult/div checking for overflow */
1087static int scale64_check_overflow(u64 mult, u64 div, u64 *base)
1088{
1089	u64 tmp, rem;
1090
1091	tmp = div64_u64_rem(*base, div, &rem);
1092
1093	if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) ||
1094	    ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem)))
1095		return -EOVERFLOW;
1096	tmp *= mult;
1097
1098	rem = div64_u64(rem * mult, div);
1099	*base = tmp + rem;
1100	return 0;
1101}
1102
1103/**
1104 * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval
1105 * @history:			Snapshot representing start of history
1106 * @partial_history_cycles:	Cycle offset into history (fractional part)
1107 * @total_history_cycles:	Total history length in cycles
1108 * @discontinuity:		True indicates clock was set on history period
1109 * @ts:				Cross timestamp that should be adjusted using
1110 *	partial/total ratio
1111 *
1112 * Helper function used by get_device_system_crosststamp() to correct the
1113 * crosstimestamp corresponding to the start of the current interval to the
1114 * system counter value (timestamp point) provided by the driver. The
1115 * total_history_* quantities are the total history starting at the provided
1116 * reference point and ending at the start of the current interval. The cycle
1117 * count between the driver timestamp point and the start of the current
1118 * interval is partial_history_cycles.
1119 */
1120static int adjust_historical_crosststamp(struct system_time_snapshot *history,
1121					 u64 partial_history_cycles,
1122					 u64 total_history_cycles,
1123					 bool discontinuity,
1124					 struct system_device_crosststamp *ts)
1125{
1126	struct timekeeper *tk = &tk_core.timekeeper;
1127	u64 corr_raw, corr_real;
1128	bool interp_forward;
1129	int ret;
1130
1131	if (total_history_cycles == 0 || partial_history_cycles == 0)
1132		return 0;
1133
1134	/* Interpolate shortest distance from beginning or end of history */
1135	interp_forward = partial_history_cycles > total_history_cycles / 2;
1136	partial_history_cycles = interp_forward ?
1137		total_history_cycles - partial_history_cycles :
1138		partial_history_cycles;
1139
1140	/*
1141	 * Scale the monotonic raw time delta by:
1142	 *	partial_history_cycles / total_history_cycles
1143	 */
1144	corr_raw = (u64)ktime_to_ns(
1145		ktime_sub(ts->sys_monoraw, history->raw));
1146	ret = scale64_check_overflow(partial_history_cycles,
1147				     total_history_cycles, &corr_raw);
1148	if (ret)
1149		return ret;
1150
1151	/*
1152	 * If there is a discontinuity in the history, scale monotonic raw
1153	 *	correction by:
1154	 *	mult(real)/mult(raw) yielding the realtime correction
1155	 * Otherwise, calculate the realtime correction similar to monotonic
1156	 *	raw calculation
1157	 */
1158	if (discontinuity) {
1159		corr_real = mul_u64_u32_div
1160			(corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult);
1161	} else {
1162		corr_real = (u64)ktime_to_ns(
1163			ktime_sub(ts->sys_realtime, history->real));
1164		ret = scale64_check_overflow(partial_history_cycles,
1165					     total_history_cycles, &corr_real);
1166		if (ret)
1167			return ret;
1168	}
1169
1170	/* Fixup monotonic raw and real time time values */
1171	if (interp_forward) {
1172		ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw);
1173		ts->sys_realtime = ktime_add_ns(history->real, corr_real);
1174	} else {
1175		ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw);
1176		ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real);
1177	}
1178
1179	return 0;
1180}
1181
1182/*
1183 * timestamp_in_interval - true if ts is chronologically in [start, end]
1184 *
1185 * True if ts occurs chronologically at or after start, and before or at end.
1186 */
1187static bool timestamp_in_interval(u64 start, u64 end, u64 ts)
1188{
1189	if (ts >= start && ts <= end)
1190		return true;
1191	if (start > end && (ts >= start || ts <= end))
1192		return true;
1193	return false;
1194}
1195
1196/**
1197 * get_device_system_crosststamp - Synchronously capture system/device timestamp
1198 * @get_time_fn:	Callback to get simultaneous device time and
1199 *	system counter from the device driver
1200 * @ctx:		Context passed to get_time_fn()
1201 * @history_begin:	Historical reference point used to interpolate system
1202 *	time when counter provided by the driver is before the current interval
1203 * @xtstamp:		Receives simultaneously captured system and device time
1204 *
1205 * Reads a timestamp from a device and correlates it to system time
1206 */
1207int get_device_system_crosststamp(int (*get_time_fn)
1208				  (ktime_t *device_time,
1209				   struct system_counterval_t *sys_counterval,
1210				   void *ctx),
1211				  void *ctx,
1212				  struct system_time_snapshot *history_begin,
1213				  struct system_device_crosststamp *xtstamp)
1214{
1215	struct system_counterval_t system_counterval;
1216	struct timekeeper *tk = &tk_core.timekeeper;
1217	u64 cycles, now, interval_start;
1218	unsigned int clock_was_set_seq = 0;
1219	ktime_t base_real, base_raw;
1220	u64 nsec_real, nsec_raw;
1221	u8 cs_was_changed_seq;
1222	unsigned int seq;
1223	bool do_interp;
1224	int ret;
1225
1226	do {
1227		seq = read_seqcount_begin(&tk_core.seq);
1228		/*
1229		 * Try to synchronously capture device time and a system
1230		 * counter value calling back into the device driver
1231		 */
1232		ret = get_time_fn(&xtstamp->device, &system_counterval, ctx);
1233		if (ret)
1234			return ret;
1235
1236		/*
1237		 * Verify that the clocksource ID associated with the captured
1238		 * system counter value is the same as for the currently
1239		 * installed timekeeper clocksource
1240		 */
1241		if (system_counterval.cs_id == CSID_GENERIC ||
1242		    tk->tkr_mono.clock->id != system_counterval.cs_id)
1243			return -ENODEV;
1244		cycles = system_counterval.cycles;
1245
1246		/*
1247		 * Check whether the system counter value provided by the
1248		 * device driver is on the current timekeeping interval.
1249		 */
1250		now = tk_clock_read(&tk->tkr_mono);
1251		interval_start = tk->tkr_mono.cycle_last;
1252		if (!timestamp_in_interval(interval_start, now, cycles)) {
1253			clock_was_set_seq = tk->clock_was_set_seq;
1254			cs_was_changed_seq = tk->cs_was_changed_seq;
1255			cycles = interval_start;
1256			do_interp = true;
1257		} else {
1258			do_interp = false;
1259		}
1260
1261		base_real = ktime_add(tk->tkr_mono.base,
1262				      tk_core.timekeeper.offs_real);
1263		base_raw = tk->tkr_raw.base;
1264
1265		nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, cycles);
1266		nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw, cycles);
1267	} while (read_seqcount_retry(&tk_core.seq, seq));
1268
1269	xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real);
1270	xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw);
1271
1272	/*
1273	 * Interpolate if necessary, adjusting back from the start of the
1274	 * current interval
1275	 */
1276	if (do_interp) {
1277		u64 partial_history_cycles, total_history_cycles;
1278		bool discontinuity;
1279
1280		/*
1281		 * Check that the counter value is not before the provided
1282		 * history reference and that the history doesn't cross a
1283		 * clocksource change
1284		 */
1285		if (!history_begin ||
1286		    !timestamp_in_interval(history_begin->cycles,
1287					   cycles, system_counterval.cycles) ||
1288		    history_begin->cs_was_changed_seq != cs_was_changed_seq)
1289			return -EINVAL;
1290		partial_history_cycles = cycles - system_counterval.cycles;
1291		total_history_cycles = cycles - history_begin->cycles;
1292		discontinuity =
1293			history_begin->clock_was_set_seq != clock_was_set_seq;
1294
1295		ret = adjust_historical_crosststamp(history_begin,
1296						    partial_history_cycles,
1297						    total_history_cycles,
1298						    discontinuity, xtstamp);
1299		if (ret)
1300			return ret;
1301	}
1302
1303	return 0;
1304}
1305EXPORT_SYMBOL_GPL(get_device_system_crosststamp);
1306
1307/**
1308 * do_settimeofday64 - Sets the time of day.
1309 * @ts:     pointer to the timespec64 variable containing the new time
1310 *
1311 * Sets the time of day to the new time and update NTP and notify hrtimers
1312 */
1313int do_settimeofday64(const struct timespec64 *ts)
1314{
1315	struct timekeeper *tk = &tk_core.timekeeper;
1316	struct timespec64 ts_delta, xt;
1317	unsigned long flags;
1318	int ret = 0;
1319
1320	if (!timespec64_valid_settod(ts))
1321		return -EINVAL;
1322
1323	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1324	write_seqcount_begin(&tk_core.seq);
1325
1326	timekeeping_forward_now(tk);
1327
1328	xt = tk_xtime(tk);
1329	ts_delta = timespec64_sub(*ts, xt);
1330
1331	if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) {
1332		ret = -EINVAL;
1333		goto out;
1334	}
1335
1336	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
1337
1338	tk_set_xtime(tk, ts);
1339out:
1340	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1341
1342	write_seqcount_end(&tk_core.seq);
1343	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1344
1345	/* Signal hrtimers about time change */
1346	clock_was_set(CLOCK_SET_WALL);
1347
1348	if (!ret) {
1349		audit_tk_injoffset(ts_delta);
1350		add_device_randomness(ts, sizeof(*ts));
1351	}
1352
1353	return ret;
1354}
1355EXPORT_SYMBOL(do_settimeofday64);
1356
1357/**
1358 * timekeeping_inject_offset - Adds or subtracts from the current time.
1359 * @ts:		Pointer to the timespec variable containing the offset
1360 *
1361 * Adds or subtracts an offset value from the current time.
1362 */
1363static int timekeeping_inject_offset(const struct timespec64 *ts)
1364{
1365	struct timekeeper *tk = &tk_core.timekeeper;
1366	unsigned long flags;
1367	struct timespec64 tmp;
1368	int ret = 0;
1369
1370	if (ts->tv_nsec < 0 || ts->tv_nsec >= NSEC_PER_SEC)
1371		return -EINVAL;
1372
1373	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1374	write_seqcount_begin(&tk_core.seq);
1375
1376	timekeeping_forward_now(tk);
1377
1378	/* Make sure the proposed value is valid */
1379	tmp = timespec64_add(tk_xtime(tk), *ts);
1380	if (timespec64_compare(&tk->wall_to_monotonic, ts) > 0 ||
1381	    !timespec64_valid_settod(&tmp)) {
1382		ret = -EINVAL;
1383		goto error;
1384	}
1385
1386	tk_xtime_add(tk, ts);
1387	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *ts));
1388
1389error: /* even if we error out, we forwarded the time, so call update */
1390	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1391
1392	write_seqcount_end(&tk_core.seq);
1393	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1394
1395	/* Signal hrtimers about time change */
1396	clock_was_set(CLOCK_SET_WALL);
1397
1398	return ret;
1399}
1400
1401/*
1402 * Indicates if there is an offset between the system clock and the hardware
1403 * clock/persistent clock/rtc.
1404 */
1405int persistent_clock_is_local;
1406
1407/*
1408 * Adjust the time obtained from the CMOS to be UTC time instead of
1409 * local time.
1410 *
1411 * This is ugly, but preferable to the alternatives.  Otherwise we
1412 * would either need to write a program to do it in /etc/rc (and risk
1413 * confusion if the program gets run more than once; it would also be
1414 * hard to make the program warp the clock precisely n hours)  or
1415 * compile in the timezone information into the kernel.  Bad, bad....
1416 *
1417 *						- TYT, 1992-01-01
1418 *
1419 * The best thing to do is to keep the CMOS clock in universal time (UTC)
1420 * as real UNIX machines always do it. This avoids all headaches about
1421 * daylight saving times and warping kernel clocks.
1422 */
1423void timekeeping_warp_clock(void)
1424{
1425	if (sys_tz.tz_minuteswest != 0) {
1426		struct timespec64 adjust;
1427
1428		persistent_clock_is_local = 1;
1429		adjust.tv_sec = sys_tz.tz_minuteswest * 60;
1430		adjust.tv_nsec = 0;
1431		timekeeping_inject_offset(&adjust);
1432	}
1433}
1434
1435/*
1436 * __timekeeping_set_tai_offset - Sets the TAI offset from UTC and monotonic
1437 */
1438static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
1439{
1440	tk->tai_offset = tai_offset;
1441	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
1442}
1443
1444/*
1445 * change_clocksource - Swaps clocksources if a new one is available
1446 *
1447 * Accumulates current time interval and initializes new clocksource
1448 */
1449static int change_clocksource(void *data)
1450{
1451	struct timekeeper *tk = &tk_core.timekeeper;
1452	struct clocksource *new, *old = NULL;
1453	unsigned long flags;
1454	bool change = false;
1455
1456	new = (struct clocksource *) data;
1457
1458	/*
1459	 * If the cs is in module, get a module reference. Succeeds
1460	 * for built-in code (owner == NULL) as well.
1461	 */
1462	if (try_module_get(new->owner)) {
1463		if (!new->enable || new->enable(new) == 0)
1464			change = true;
1465		else
1466			module_put(new->owner);
1467	}
1468
1469	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1470	write_seqcount_begin(&tk_core.seq);
1471
1472	timekeeping_forward_now(tk);
1473
1474	if (change) {
1475		old = tk->tkr_mono.clock;
1476		tk_setup_internals(tk, new);
1477	}
1478
1479	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1480
1481	write_seqcount_end(&tk_core.seq);
1482	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1483
1484	if (old) {
1485		if (old->disable)
1486			old->disable(old);
1487
1488		module_put(old->owner);
1489	}
1490
1491	return 0;
1492}
1493
1494/**
1495 * timekeeping_notify - Install a new clock source
1496 * @clock:		pointer to the clock source
1497 *
1498 * This function is called from clocksource.c after a new, better clock
1499 * source has been registered. The caller holds the clocksource_mutex.
1500 */
1501int timekeeping_notify(struct clocksource *clock)
1502{
1503	struct timekeeper *tk = &tk_core.timekeeper;
1504
1505	if (tk->tkr_mono.clock == clock)
1506		return 0;
1507	stop_machine(change_clocksource, clock, NULL);
1508	tick_clock_notify();
1509	return tk->tkr_mono.clock == clock ? 0 : -1;
1510}
1511
1512/**
1513 * ktime_get_raw_ts64 - Returns the raw monotonic time in a timespec
1514 * @ts:		pointer to the timespec64 to be set
1515 *
1516 * Returns the raw monotonic time (completely un-modified by ntp)
1517 */
1518void ktime_get_raw_ts64(struct timespec64 *ts)
1519{
1520	struct timekeeper *tk = &tk_core.timekeeper;
1521	unsigned int seq;
1522	u64 nsecs;
1523
1524	do {
1525		seq = read_seqcount_begin(&tk_core.seq);
1526		ts->tv_sec = tk->raw_sec;
1527		nsecs = timekeeping_get_ns(&tk->tkr_raw);
1528
1529	} while (read_seqcount_retry(&tk_core.seq, seq));
1530
1531	ts->tv_nsec = 0;
1532	timespec64_add_ns(ts, nsecs);
1533}
1534EXPORT_SYMBOL(ktime_get_raw_ts64);
1535
1536
1537/**
1538 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
1539 */
1540int timekeeping_valid_for_hres(void)
1541{
1542	struct timekeeper *tk = &tk_core.timekeeper;
1543	unsigned int seq;
1544	int ret;
1545
1546	do {
1547		seq = read_seqcount_begin(&tk_core.seq);
1548
1549		ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
1550
1551	} while (read_seqcount_retry(&tk_core.seq, seq));
1552
1553	return ret;
1554}
1555
1556/**
1557 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
1558 */
1559u64 timekeeping_max_deferment(void)
1560{
1561	struct timekeeper *tk = &tk_core.timekeeper;
1562	unsigned int seq;
1563	u64 ret;
1564
1565	do {
1566		seq = read_seqcount_begin(&tk_core.seq);
1567
1568		ret = tk->tkr_mono.clock->max_idle_ns;
1569
1570	} while (read_seqcount_retry(&tk_core.seq, seq));
1571
1572	return ret;
1573}
1574
1575/**
1576 * read_persistent_clock64 -  Return time from the persistent clock.
1577 * @ts: Pointer to the storage for the readout value
1578 *
1579 * Weak dummy function for arches that do not yet support it.
1580 * Reads the time from the battery backed persistent clock.
1581 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1582 *
1583 *  XXX - Do be sure to remove it once all arches implement it.
1584 */
1585void __weak read_persistent_clock64(struct timespec64 *ts)
1586{
1587	ts->tv_sec = 0;
1588	ts->tv_nsec = 0;
1589}
1590
1591/**
1592 * read_persistent_wall_and_boot_offset - Read persistent clock, and also offset
1593 *                                        from the boot.
1594 * @wall_time:	  current time as returned by persistent clock
1595 * @boot_offset:  offset that is defined as wall_time - boot_time
1596 *
1597 * Weak dummy function for arches that do not yet support it.
1598 *
1599 * The default function calculates offset based on the current value of
1600 * local_clock(). This way architectures that support sched_clock() but don't
1601 * support dedicated boot time clock will provide the best estimate of the
1602 * boot time.
1603 */
1604void __weak __init
1605read_persistent_wall_and_boot_offset(struct timespec64 *wall_time,
1606				     struct timespec64 *boot_offset)
1607{
1608	read_persistent_clock64(wall_time);
1609	*boot_offset = ns_to_timespec64(local_clock());
1610}
1611
1612/*
1613 * Flag reflecting whether timekeeping_resume() has injected sleeptime.
1614 *
1615 * The flag starts of false and is only set when a suspend reaches
1616 * timekeeping_suspend(), timekeeping_resume() sets it to false when the
1617 * timekeeper clocksource is not stopping across suspend and has been
1618 * used to update sleep time. If the timekeeper clocksource has stopped
1619 * then the flag stays true and is used by the RTC resume code to decide
1620 * whether sleeptime must be injected and if so the flag gets false then.
1621 *
1622 * If a suspend fails before reaching timekeeping_resume() then the flag
1623 * stays false and prevents erroneous sleeptime injection.
1624 */
1625static bool suspend_timing_needed;
1626
1627/* Flag for if there is a persistent clock on this platform */
1628static bool persistent_clock_exists;
1629
1630/*
1631 * timekeeping_init - Initializes the clocksource and common timekeeping values
1632 */
1633void __init timekeeping_init(void)
1634{
1635	struct timespec64 wall_time, boot_offset, wall_to_mono;
1636	struct timekeeper *tk = &tk_core.timekeeper;
1637	struct clocksource *clock;
1638	unsigned long flags;
1639
1640	read_persistent_wall_and_boot_offset(&wall_time, &boot_offset);
1641	if (timespec64_valid_settod(&wall_time) &&
1642	    timespec64_to_ns(&wall_time) > 0) {
1643		persistent_clock_exists = true;
1644	} else if (timespec64_to_ns(&wall_time) != 0) {
1645		pr_warn("Persistent clock returned invalid value");
1646		wall_time = (struct timespec64){0};
1647	}
1648
1649	if (timespec64_compare(&wall_time, &boot_offset) < 0)
1650		boot_offset = (struct timespec64){0};
1651
1652	/*
1653	 * We want set wall_to_mono, so the following is true:
1654	 * wall time + wall_to_mono = boot time
1655	 */
1656	wall_to_mono = timespec64_sub(boot_offset, wall_time);
1657
1658	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1659	write_seqcount_begin(&tk_core.seq);
1660	ntp_init();
1661
1662	clock = clocksource_default_clock();
1663	if (clock->enable)
1664		clock->enable(clock);
1665	tk_setup_internals(tk, clock);
1666
1667	tk_set_xtime(tk, &wall_time);
1668	tk->raw_sec = 0;
1669
1670	tk_set_wall_to_mono(tk, wall_to_mono);
1671
1672	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1673
1674	write_seqcount_end(&tk_core.seq);
1675	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1676}
1677
1678/* time in seconds when suspend began for persistent clock */
1679static struct timespec64 timekeeping_suspend_time;
1680
1681/**
1682 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
1683 * @tk:		Pointer to the timekeeper to be updated
1684 * @delta:	Pointer to the delta value in timespec64 format
1685 *
1686 * Takes a timespec offset measuring a suspend interval and properly
1687 * adds the sleep offset to the timekeeping variables.
1688 */
1689static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1690					   const struct timespec64 *delta)
1691{
1692	if (!timespec64_valid_strict(delta)) {
1693		printk_deferred(KERN_WARNING
1694				"__timekeeping_inject_sleeptime: Invalid "
1695				"sleep delta value!\n");
1696		return;
1697	}
1698	tk_xtime_add(tk, delta);
1699	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
1700	tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1701	tk_debug_account_sleep_time(delta);
1702}
1703
1704#if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
1705/*
1706 * We have three kinds of time sources to use for sleep time
1707 * injection, the preference order is:
1708 * 1) non-stop clocksource
1709 * 2) persistent clock (ie: RTC accessible when irqs are off)
1710 * 3) RTC
1711 *
1712 * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
1713 * If system has neither 1) nor 2), 3) will be used finally.
1714 *
1715 *
1716 * If timekeeping has injected sleeptime via either 1) or 2),
1717 * 3) becomes needless, so in this case we don't need to call
1718 * rtc_resume(), and this is what timekeeping_rtc_skipresume()
1719 * means.
1720 */
1721bool timekeeping_rtc_skipresume(void)
1722{
1723	return !suspend_timing_needed;
1724}
1725
1726/*
1727 * 1) can be determined whether to use or not only when doing
1728 * timekeeping_resume() which is invoked after rtc_suspend(),
1729 * so we can't skip rtc_suspend() surely if system has 1).
1730 *
1731 * But if system has 2), 2) will definitely be used, so in this
1732 * case we don't need to call rtc_suspend(), and this is what
1733 * timekeeping_rtc_skipsuspend() means.
1734 */
1735bool timekeeping_rtc_skipsuspend(void)
1736{
1737	return persistent_clock_exists;
1738}
1739
1740/**
1741 * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
1742 * @delta: pointer to a timespec64 delta value
1743 *
1744 * This hook is for architectures that cannot support read_persistent_clock64
1745 * because their RTC/persistent clock is only accessible when irqs are enabled.
1746 * and also don't have an effective nonstop clocksource.
1747 *
1748 * This function should only be called by rtc_resume(), and allows
1749 * a suspend offset to be injected into the timekeeping values.
1750 */
1751void timekeeping_inject_sleeptime64(const struct timespec64 *delta)
1752{
1753	struct timekeeper *tk = &tk_core.timekeeper;
1754	unsigned long flags;
1755
1756	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1757	write_seqcount_begin(&tk_core.seq);
1758
1759	suspend_timing_needed = false;
1760
1761	timekeeping_forward_now(tk);
1762
1763	__timekeeping_inject_sleeptime(tk, delta);
1764
1765	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1766
1767	write_seqcount_end(&tk_core.seq);
1768	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1769
1770	/* Signal hrtimers about time change */
1771	clock_was_set(CLOCK_SET_WALL | CLOCK_SET_BOOT);
1772}
1773#endif
1774
1775/**
1776 * timekeeping_resume - Resumes the generic timekeeping subsystem.
1777 */
1778void timekeeping_resume(void)
1779{
1780	struct timekeeper *tk = &tk_core.timekeeper;
1781	struct clocksource *clock = tk->tkr_mono.clock;
1782	unsigned long flags;
1783	struct timespec64 ts_new, ts_delta;
1784	u64 cycle_now, nsec;
1785	bool inject_sleeptime = false;
1786
1787	read_persistent_clock64(&ts_new);
1788
1789	clockevents_resume();
1790	clocksource_resume();
1791
1792	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1793	write_seqcount_begin(&tk_core.seq);
1794
1795	/*
1796	 * After system resumes, we need to calculate the suspended time and
1797	 * compensate it for the OS time. There are 3 sources that could be
1798	 * used: Nonstop clocksource during suspend, persistent clock and rtc
1799	 * device.
1800	 *
1801	 * One specific platform may have 1 or 2 or all of them, and the
1802	 * preference will be:
1803	 *	suspend-nonstop clocksource -> persistent clock -> rtc
1804	 * The less preferred source will only be tried if there is no better
1805	 * usable source. The rtc part is handled separately in rtc core code.
1806	 */
1807	cycle_now = tk_clock_read(&tk->tkr_mono);
1808	nsec = clocksource_stop_suspend_timing(clock, cycle_now);
1809	if (nsec > 0) {
1810		ts_delta = ns_to_timespec64(nsec);
1811		inject_sleeptime = true;
1812	} else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
1813		ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1814		inject_sleeptime = true;
1815	}
1816
1817	if (inject_sleeptime) {
1818		suspend_timing_needed = false;
1819		__timekeeping_inject_sleeptime(tk, &ts_delta);
1820	}
1821
1822	/* Re-base the last cycle value */
1823	tk->tkr_mono.cycle_last = cycle_now;
1824	tk->tkr_raw.cycle_last  = cycle_now;
1825
1826	tk->ntp_error = 0;
1827	timekeeping_suspended = 0;
1828	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1829	write_seqcount_end(&tk_core.seq);
1830	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1831
1832	touch_softlockup_watchdog();
1833
1834	/* Resume the clockevent device(s) and hrtimers */
1835	tick_resume();
1836	/* Notify timerfd as resume is equivalent to clock_was_set() */
1837	timerfd_resume();
1838}
1839
1840int timekeeping_suspend(void)
1841{
1842	struct timekeeper *tk = &tk_core.timekeeper;
1843	unsigned long flags;
1844	struct timespec64		delta, delta_delta;
1845	static struct timespec64	old_delta;
1846	struct clocksource *curr_clock;
1847	u64 cycle_now;
1848
1849	read_persistent_clock64(&timekeeping_suspend_time);
1850
1851	/*
1852	 * On some systems the persistent_clock can not be detected at
1853	 * timekeeping_init by its return value, so if we see a valid
1854	 * value returned, update the persistent_clock_exists flag.
1855	 */
1856	if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
1857		persistent_clock_exists = true;
1858
1859	suspend_timing_needed = true;
1860
1861	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1862	write_seqcount_begin(&tk_core.seq);
1863	timekeeping_forward_now(tk);
1864	timekeeping_suspended = 1;
1865
1866	/*
1867	 * Since we've called forward_now, cycle_last stores the value
1868	 * just read from the current clocksource. Save this to potentially
1869	 * use in suspend timing.
1870	 */
1871	curr_clock = tk->tkr_mono.clock;
1872	cycle_now = tk->tkr_mono.cycle_last;
1873	clocksource_start_suspend_timing(curr_clock, cycle_now);
1874
1875	if (persistent_clock_exists) {
1876		/*
1877		 * To avoid drift caused by repeated suspend/resumes,
1878		 * which each can add ~1 second drift error,
1879		 * try to compensate so the difference in system time
1880		 * and persistent_clock time stays close to constant.
1881		 */
1882		delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
1883		delta_delta = timespec64_sub(delta, old_delta);
1884		if (abs(delta_delta.tv_sec) >= 2) {
1885			/*
1886			 * if delta_delta is too large, assume time correction
1887			 * has occurred and set old_delta to the current delta.
1888			 */
1889			old_delta = delta;
1890		} else {
1891			/* Otherwise try to adjust old_system to compensate */
1892			timekeeping_suspend_time =
1893				timespec64_add(timekeeping_suspend_time, delta_delta);
1894		}
1895	}
1896
1897	timekeeping_update(tk, TK_MIRROR);
1898	halt_fast_timekeeper(tk);
1899	write_seqcount_end(&tk_core.seq);
1900	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1901
1902	tick_suspend();
1903	clocksource_suspend();
1904	clockevents_suspend();
1905
1906	return 0;
1907}
1908
1909/* sysfs resume/suspend bits for timekeeping */
1910static struct syscore_ops timekeeping_syscore_ops = {
1911	.resume		= timekeeping_resume,
1912	.suspend	= timekeeping_suspend,
1913};
1914
1915static int __init timekeeping_init_ops(void)
1916{
1917	register_syscore_ops(&timekeeping_syscore_ops);
1918	return 0;
1919}
1920device_initcall(timekeeping_init_ops);
1921
1922/*
1923 * Apply a multiplier adjustment to the timekeeper
1924 */
1925static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
1926							 s64 offset,
1927							 s32 mult_adj)
1928{
1929	s64 interval = tk->cycle_interval;
1930
1931	if (mult_adj == 0) {
1932		return;
1933	} else if (mult_adj == -1) {
1934		interval = -interval;
1935		offset = -offset;
1936	} else if (mult_adj != 1) {
1937		interval *= mult_adj;
1938		offset *= mult_adj;
1939	}
1940
1941	/*
1942	 * So the following can be confusing.
1943	 *
1944	 * To keep things simple, lets assume mult_adj == 1 for now.
1945	 *
1946	 * When mult_adj != 1, remember that the interval and offset values
1947	 * have been appropriately scaled so the math is the same.
1948	 *
1949	 * The basic idea here is that we're increasing the multiplier
1950	 * by one, this causes the xtime_interval to be incremented by
1951	 * one cycle_interval. This is because:
1952	 *	xtime_interval = cycle_interval * mult
1953	 * So if mult is being incremented by one:
1954	 *	xtime_interval = cycle_interval * (mult + 1)
1955	 * Its the same as:
1956	 *	xtime_interval = (cycle_interval * mult) + cycle_interval
1957	 * Which can be shortened to:
1958	 *	xtime_interval += cycle_interval
1959	 *
1960	 * So offset stores the non-accumulated cycles. Thus the current
1961	 * time (in shifted nanoseconds) is:
1962	 *	now = (offset * adj) + xtime_nsec
1963	 * Now, even though we're adjusting the clock frequency, we have
1964	 * to keep time consistent. In other words, we can't jump back
1965	 * in time, and we also want to avoid jumping forward in time.
1966	 *
1967	 * So given the same offset value, we need the time to be the same
1968	 * both before and after the freq adjustment.
1969	 *	now = (offset * adj_1) + xtime_nsec_1
1970	 *	now = (offset * adj_2) + xtime_nsec_2
1971	 * So:
1972	 *	(offset * adj_1) + xtime_nsec_1 =
1973	 *		(offset * adj_2) + xtime_nsec_2
1974	 * And we know:
1975	 *	adj_2 = adj_1 + 1
1976	 * So:
1977	 *	(offset * adj_1) + xtime_nsec_1 =
1978	 *		(offset * (adj_1+1)) + xtime_nsec_2
1979	 *	(offset * adj_1) + xtime_nsec_1 =
1980	 *		(offset * adj_1) + offset + xtime_nsec_2
1981	 * Canceling the sides:
1982	 *	xtime_nsec_1 = offset + xtime_nsec_2
1983	 * Which gives us:
1984	 *	xtime_nsec_2 = xtime_nsec_1 - offset
1985	 * Which simplifies to:
1986	 *	xtime_nsec -= offset
1987	 */
1988	if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
1989		/* NTP adjustment caused clocksource mult overflow */
1990		WARN_ON_ONCE(1);
1991		return;
1992	}
1993
1994	tk->tkr_mono.mult += mult_adj;
1995	tk->xtime_interval += interval;
1996	tk->tkr_mono.xtime_nsec -= offset;
1997}
1998
1999/*
2000 * Adjust the timekeeper's multiplier to the correct frequency
2001 * and also to reduce the accumulated error value.
2002 */
2003static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
2004{
2005	u32 mult;
2006
2007	/*
2008	 * Determine the multiplier from the current NTP tick length.
2009	 * Avoid expensive division when the tick length doesn't change.
2010	 */
2011	if (likely(tk->ntp_tick == ntp_tick_length())) {
2012		mult = tk->tkr_mono.mult - tk->ntp_err_mult;
2013	} else {
2014		tk->ntp_tick = ntp_tick_length();
2015		mult = div64_u64((tk->ntp_tick >> tk->ntp_error_shift) -
2016				 tk->xtime_remainder, tk->cycle_interval);
2017	}
2018
2019	/*
2020	 * If the clock is behind the NTP time, increase the multiplier by 1
2021	 * to catch up with it. If it's ahead and there was a remainder in the
2022	 * tick division, the clock will slow down. Otherwise it will stay
2023	 * ahead until the tick length changes to a non-divisible value.
2024	 */
2025	tk->ntp_err_mult = tk->ntp_error > 0 ? 1 : 0;
2026	mult += tk->ntp_err_mult;
2027
2028	timekeeping_apply_adjustment(tk, offset, mult - tk->tkr_mono.mult);
2029
2030	if (unlikely(tk->tkr_mono.clock->maxadj &&
2031		(abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
2032			> tk->tkr_mono.clock->maxadj))) {
2033		printk_once(KERN_WARNING
2034			"Adjusting %s more than 11%% (%ld vs %ld)\n",
2035			tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
2036			(long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
2037	}
2038
2039	/*
2040	 * It may be possible that when we entered this function, xtime_nsec
2041	 * was very small.  Further, if we're slightly speeding the clocksource
2042	 * in the code above, its possible the required corrective factor to
2043	 * xtime_nsec could cause it to underflow.
2044	 *
2045	 * Now, since we have already accumulated the second and the NTP
2046	 * subsystem has been notified via second_overflow(), we need to skip
2047	 * the next update.
2048	 */
2049	if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
2050		tk->tkr_mono.xtime_nsec += (u64)NSEC_PER_SEC <<
2051							tk->tkr_mono.shift;
2052		tk->xtime_sec--;
2053		tk->skip_second_overflow = 1;
2054	}
2055}
2056
2057/*
2058 * accumulate_nsecs_to_secs - Accumulates nsecs into secs
2059 *
2060 * Helper function that accumulates the nsecs greater than a second
2061 * from the xtime_nsec field to the xtime_secs field.
2062 * It also calls into the NTP code to handle leapsecond processing.
2063 */
2064static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
2065{
2066	u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
2067	unsigned int clock_set = 0;
2068
2069	while (tk->tkr_mono.xtime_nsec >= nsecps) {
2070		int leap;
2071
2072		tk->tkr_mono.xtime_nsec -= nsecps;
2073		tk->xtime_sec++;
2074
2075		/*
2076		 * Skip NTP update if this second was accumulated before,
2077		 * i.e. xtime_nsec underflowed in timekeeping_adjust()
2078		 */
2079		if (unlikely(tk->skip_second_overflow)) {
2080			tk->skip_second_overflow = 0;
2081			continue;
2082		}
2083
2084		/* Figure out if its a leap sec and apply if needed */
2085		leap = second_overflow(tk->xtime_sec);
2086		if (unlikely(leap)) {
2087			struct timespec64 ts;
2088
2089			tk->xtime_sec += leap;
2090
2091			ts.tv_sec = leap;
2092			ts.tv_nsec = 0;
2093			tk_set_wall_to_mono(tk,
2094				timespec64_sub(tk->wall_to_monotonic, ts));
2095
2096			__timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
2097
2098			clock_set = TK_CLOCK_WAS_SET;
2099		}
2100	}
2101	return clock_set;
2102}
2103
2104/*
2105 * logarithmic_accumulation - shifted accumulation of cycles
2106 *
2107 * This functions accumulates a shifted interval of cycles into
2108 * a shifted interval nanoseconds. Allows for O(log) accumulation
2109 * loop.
2110 *
2111 * Returns the unconsumed cycles.
2112 */
2113static u64 logarithmic_accumulation(struct timekeeper *tk, u64 offset,
2114				    u32 shift, unsigned int *clock_set)
2115{
2116	u64 interval = tk->cycle_interval << shift;
2117	u64 snsec_per_sec;
2118
2119	/* If the offset is smaller than a shifted interval, do nothing */
2120	if (offset < interval)
2121		return offset;
2122
2123	/* Accumulate one shifted interval */
2124	offset -= interval;
2125	tk->tkr_mono.cycle_last += interval;
2126	tk->tkr_raw.cycle_last  += interval;
2127
2128	tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
2129	*clock_set |= accumulate_nsecs_to_secs(tk);
2130
2131	/* Accumulate raw time */
2132	tk->tkr_raw.xtime_nsec += tk->raw_interval << shift;
2133	snsec_per_sec = (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
2134	while (tk->tkr_raw.xtime_nsec >= snsec_per_sec) {
2135		tk->tkr_raw.xtime_nsec -= snsec_per_sec;
2136		tk->raw_sec++;
2137	}
2138
2139	/* Accumulate error between NTP and clock interval */
2140	tk->ntp_error += tk->ntp_tick << shift;
2141	tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
2142						(tk->ntp_error_shift + shift);
2143
2144	return offset;
2145}
2146
2147/*
2148 * timekeeping_advance - Updates the timekeeper to the current time and
2149 * current NTP tick length
2150 */
2151static bool timekeeping_advance(enum timekeeping_adv_mode mode)
2152{
2153	struct timekeeper *real_tk = &tk_core.timekeeper;
2154	struct timekeeper *tk = &shadow_timekeeper;
2155	u64 offset;
2156	int shift = 0, maxshift;
2157	unsigned int clock_set = 0;
2158	unsigned long flags;
2159
2160	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2161
2162	/* Make sure we're fully resumed: */
2163	if (unlikely(timekeeping_suspended))
2164		goto out;
2165
2166	offset = clocksource_delta(tk_clock_read(&tk->tkr_mono),
2167				   tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
2168
2169	/* Check if there's really nothing to do */
2170	if (offset < real_tk->cycle_interval && mode == TK_ADV_TICK)
2171		goto out;
2172
2173	/* Do some additional sanity checking */
2174	timekeeping_check_update(tk, offset);
2175
2176	/*
2177	 * With NO_HZ we may have to accumulate many cycle_intervals
2178	 * (think "ticks") worth of time at once. To do this efficiently,
2179	 * we calculate the largest doubling multiple of cycle_intervals
2180	 * that is smaller than the offset.  We then accumulate that
2181	 * chunk in one go, and then try to consume the next smaller
2182	 * doubled multiple.
2183	 */
2184	shift = ilog2(offset) - ilog2(tk->cycle_interval);
2185	shift = max(0, shift);
2186	/* Bound shift to one less than what overflows tick_length */
2187	maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
2188	shift = min(shift, maxshift);
2189	while (offset >= tk->cycle_interval) {
2190		offset = logarithmic_accumulation(tk, offset, shift,
2191							&clock_set);
2192		if (offset < tk->cycle_interval<<shift)
2193			shift--;
2194	}
2195
2196	/* Adjust the multiplier to correct NTP error */
2197	timekeeping_adjust(tk, offset);
2198
2199	/*
2200	 * Finally, make sure that after the rounding
2201	 * xtime_nsec isn't larger than NSEC_PER_SEC
2202	 */
2203	clock_set |= accumulate_nsecs_to_secs(tk);
2204
2205	write_seqcount_begin(&tk_core.seq);
2206	/*
2207	 * Update the real timekeeper.
2208	 *
2209	 * We could avoid this memcpy by switching pointers, but that
2210	 * requires changes to all other timekeeper usage sites as
2211	 * well, i.e. move the timekeeper pointer getter into the
2212	 * spinlocked/seqcount protected sections. And we trade this
2213	 * memcpy under the tk_core.seq against one before we start
2214	 * updating.
2215	 */
2216	timekeeping_update(tk, clock_set);
2217	memcpy(real_tk, tk, sizeof(*tk));
2218	/* The memcpy must come last. Do not put anything here! */
2219	write_seqcount_end(&tk_core.seq);
2220out:
2221	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2222
2223	return !!clock_set;
2224}
2225
2226/**
2227 * update_wall_time - Uses the current clocksource to increment the wall time
2228 *
2229 */
2230void update_wall_time(void)
2231{
2232	if (timekeeping_advance(TK_ADV_TICK))
2233		clock_was_set_delayed();
2234}
2235
2236/**
2237 * getboottime64 - Return the real time of system boot.
2238 * @ts:		pointer to the timespec64 to be set
2239 *
2240 * Returns the wall-time of boot in a timespec64.
2241 *
2242 * This is based on the wall_to_monotonic offset and the total suspend
2243 * time. Calls to settimeofday will affect the value returned (which
2244 * basically means that however wrong your real time clock is at boot time,
2245 * you get the right time here).
2246 */
2247void getboottime64(struct timespec64 *ts)
2248{
2249	struct timekeeper *tk = &tk_core.timekeeper;
2250	ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
2251
2252	*ts = ktime_to_timespec64(t);
2253}
2254EXPORT_SYMBOL_GPL(getboottime64);
2255
2256void ktime_get_coarse_real_ts64(struct timespec64 *ts)
2257{
2258	struct timekeeper *tk = &tk_core.timekeeper;
2259	unsigned int seq;
2260
2261	do {
2262		seq = read_seqcount_begin(&tk_core.seq);
2263
2264		*ts = tk_xtime(tk);
2265	} while (read_seqcount_retry(&tk_core.seq, seq));
2266}
2267EXPORT_SYMBOL(ktime_get_coarse_real_ts64);
2268
2269void ktime_get_coarse_ts64(struct timespec64 *ts)
2270{
2271	struct timekeeper *tk = &tk_core.timekeeper;
2272	struct timespec64 now, mono;
2273	unsigned int seq;
2274
2275	do {
2276		seq = read_seqcount_begin(&tk_core.seq);
2277
2278		now = tk_xtime(tk);
2279		mono = tk->wall_to_monotonic;
2280	} while (read_seqcount_retry(&tk_core.seq, seq));
2281
2282	set_normalized_timespec64(ts, now.tv_sec + mono.tv_sec,
2283				now.tv_nsec + mono.tv_nsec);
2284}
2285EXPORT_SYMBOL(ktime_get_coarse_ts64);
2286
2287/*
2288 * Must hold jiffies_lock
2289 */
2290void do_timer(unsigned long ticks)
2291{
2292	jiffies_64 += ticks;
2293	calc_global_load();
2294}
2295
2296/**
2297 * ktime_get_update_offsets_now - hrtimer helper
2298 * @cwsseq:	pointer to check and store the clock was set sequence number
2299 * @offs_real:	pointer to storage for monotonic -> realtime offset
2300 * @offs_boot:	pointer to storage for monotonic -> boottime offset
2301 * @offs_tai:	pointer to storage for monotonic -> clock tai offset
2302 *
2303 * Returns current monotonic time and updates the offsets if the
2304 * sequence number in @cwsseq and timekeeper.clock_was_set_seq are
2305 * different.
2306 *
2307 * Called from hrtimer_interrupt() or retrigger_next_event()
2308 */
2309ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real,
2310				     ktime_t *offs_boot, ktime_t *offs_tai)
2311{
2312	struct timekeeper *tk = &tk_core.timekeeper;
2313	unsigned int seq;
2314	ktime_t base;
2315	u64 nsecs;
2316
2317	do {
2318		seq = read_seqcount_begin(&tk_core.seq);
2319
2320		base = tk->tkr_mono.base;
2321		nsecs = timekeeping_get_ns(&tk->tkr_mono);
2322		base = ktime_add_ns(base, nsecs);
2323
2324		if (*cwsseq != tk->clock_was_set_seq) {
2325			*cwsseq = tk->clock_was_set_seq;
2326			*offs_real = tk->offs_real;
2327			*offs_boot = tk->offs_boot;
2328			*offs_tai = tk->offs_tai;
2329		}
2330
2331		/* Handle leapsecond insertion adjustments */
2332		if (unlikely(base >= tk->next_leap_ktime))
2333			*offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0));
2334
2335	} while (read_seqcount_retry(&tk_core.seq, seq));
2336
2337	return base;
2338}
2339
2340/*
2341 * timekeeping_validate_timex - Ensures the timex is ok for use in do_adjtimex
2342 */
2343static int timekeeping_validate_timex(const struct __kernel_timex *txc)
2344{
2345	if (txc->modes & ADJ_ADJTIME) {
2346		/* singleshot must not be used with any other mode bits */
2347		if (!(txc->modes & ADJ_OFFSET_SINGLESHOT))
2348			return -EINVAL;
2349		if (!(txc->modes & ADJ_OFFSET_READONLY) &&
2350		    !capable(CAP_SYS_TIME))
2351			return -EPERM;
2352	} else {
2353		/* In order to modify anything, you gotta be super-user! */
2354		if (txc->modes && !capable(CAP_SYS_TIME))
2355			return -EPERM;
2356		/*
2357		 * if the quartz is off by more than 10% then
2358		 * something is VERY wrong!
2359		 */
2360		if (txc->modes & ADJ_TICK &&
2361		    (txc->tick <  900000/USER_HZ ||
2362		     txc->tick > 1100000/USER_HZ))
2363			return -EINVAL;
2364	}
2365
2366	if (txc->modes & ADJ_SETOFFSET) {
2367		/* In order to inject time, you gotta be super-user! */
2368		if (!capable(CAP_SYS_TIME))
2369			return -EPERM;
2370
2371		/*
2372		 * Validate if a timespec/timeval used to inject a time
2373		 * offset is valid.  Offsets can be positive or negative, so
2374		 * we don't check tv_sec. The value of the timeval/timespec
2375		 * is the sum of its fields,but *NOTE*:
2376		 * The field tv_usec/tv_nsec must always be non-negative and
2377		 * we can't have more nanoseconds/microseconds than a second.
2378		 */
2379		if (txc->time.tv_usec < 0)
2380			return -EINVAL;
2381
2382		if (txc->modes & ADJ_NANO) {
2383			if (txc->time.tv_usec >= NSEC_PER_SEC)
2384				return -EINVAL;
2385		} else {
2386			if (txc->time.tv_usec >= USEC_PER_SEC)
2387				return -EINVAL;
2388		}
2389	}
2390
2391	/*
2392	 * Check for potential multiplication overflows that can
2393	 * only happen on 64-bit systems:
2394	 */
2395	if ((txc->modes & ADJ_FREQUENCY) && (BITS_PER_LONG == 64)) {
2396		if (LLONG_MIN / PPM_SCALE > txc->freq)
2397			return -EINVAL;
2398		if (LLONG_MAX / PPM_SCALE < txc->freq)
2399			return -EINVAL;
2400	}
2401
2402	return 0;
2403}
2404
2405/**
2406 * random_get_entropy_fallback - Returns the raw clock source value,
2407 * used by random.c for platforms with no valid random_get_entropy().
2408 */
2409unsigned long random_get_entropy_fallback(void)
2410{
2411	struct tk_read_base *tkr = &tk_core.timekeeper.tkr_mono;
2412	struct clocksource *clock = READ_ONCE(tkr->clock);
2413
2414	if (unlikely(timekeeping_suspended || !clock))
2415		return 0;
2416	return clock->read(clock);
2417}
2418EXPORT_SYMBOL_GPL(random_get_entropy_fallback);
2419
2420/**
2421 * do_adjtimex() - Accessor function to NTP __do_adjtimex function
2422 */
2423int do_adjtimex(struct __kernel_timex *txc)
2424{
2425	struct timekeeper *tk = &tk_core.timekeeper;
2426	struct audit_ntp_data ad;
2427	bool clock_set = false;
2428	struct timespec64 ts;
2429	unsigned long flags;
2430	s32 orig_tai, tai;
2431	int ret;
2432
2433	/* Validate the data before disabling interrupts */
2434	ret = timekeeping_validate_timex(txc);
2435	if (ret)
2436		return ret;
2437	add_device_randomness(txc, sizeof(*txc));
2438
2439	if (txc->modes & ADJ_SETOFFSET) {
2440		struct timespec64 delta;
2441		delta.tv_sec  = txc->time.tv_sec;
2442		delta.tv_nsec = txc->time.tv_usec;
2443		if (!(txc->modes & ADJ_NANO))
2444			delta.tv_nsec *= 1000;
2445		ret = timekeeping_inject_offset(&delta);
2446		if (ret)
2447			return ret;
2448
2449		audit_tk_injoffset(delta);
2450	}
2451
2452	audit_ntp_init(&ad);
2453
2454	ktime_get_real_ts64(&ts);
2455	add_device_randomness(&ts, sizeof(ts));
2456
2457	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2458	write_seqcount_begin(&tk_core.seq);
2459
2460	orig_tai = tai = tk->tai_offset;
2461	ret = __do_adjtimex(txc, &ts, &tai, &ad);
2462
2463	if (tai != orig_tai) {
2464		__timekeeping_set_tai_offset(tk, tai);
2465		timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
2466		clock_set = true;
2467	}
2468	tk_update_leap_state(tk);
2469
2470	write_seqcount_end(&tk_core.seq);
2471	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2472
2473	audit_ntp_log(&ad);
2474
2475	/* Update the multiplier immediately if frequency was set directly */
2476	if (txc->modes & (ADJ_FREQUENCY | ADJ_TICK))
2477		clock_set |= timekeeping_advance(TK_ADV_FREQ);
2478
2479	if (clock_set)
2480		clock_was_set(CLOCK_REALTIME);
2481
2482	ntp_notify_cmos_timer();
2483
2484	return ret;
2485}
2486
2487#ifdef CONFIG_NTP_PPS
2488/**
2489 * hardpps() - Accessor function to NTP __hardpps function
2490 */
2491void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
2492{
2493	unsigned long flags;
2494
2495	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2496	write_seqcount_begin(&tk_core.seq);
2497
2498	__hardpps(phase_ts, raw_ts);
2499
2500	write_seqcount_end(&tk_core.seq);
2501	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2502}
2503EXPORT_SYMBOL(hardpps);
2504#endif /* CONFIG_NTP_PPS */
2505