1// SPDX-License-Identifier: GPL-2.0
2/*
3 *  Copyright (C) 1991, 1992  Linus Torvalds
4 *
5 *  This file contains the interface functions for the various time related
6 *  system calls: time, stime, gettimeofday, settimeofday, adjtime
7 *
8 * Modification history:
9 *
10 * 1993-09-02    Philip Gladstone
11 *      Created file with time related functions from sched/core.c and adjtimex()
12 * 1993-10-08    Torsten Duwe
13 *      adjtime interface update and CMOS clock write code
14 * 1995-08-13    Torsten Duwe
15 *      kernel PLL updated to 1994-12-13 specs (rfc-1589)
16 * 1999-01-16    Ulrich Windl
17 *	Introduced error checking for many cases in adjtimex().
18 *	Updated NTP code according to technical memorandum Jan '96
19 *	"A Kernel Model for Precision Timekeeping" by Dave Mills
20 *	Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
21 *	(Even though the technical memorandum forbids it)
22 * 2004-07-14	 Christoph Lameter
23 *	Added getnstimeofday to allow the posix timer functions to return
24 *	with nanosecond accuracy
25 */
26
27#include <linux/export.h>
28#include <linux/kernel.h>
29#include <linux/timex.h>
30#include <linux/capability.h>
31#include <linux/timekeeper_internal.h>
32#include <linux/errno.h>
33#include <linux/syscalls.h>
34#include <linux/security.h>
35#include <linux/fs.h>
36#include <linux/math64.h>
37#include <linux/ptrace.h>
38
39#include <linux/uaccess.h>
40#include <linux/compat.h>
41#include <asm/unistd.h>
42
43#include <generated/timeconst.h>
44#include "timekeeping.h"
45
46/*
47 * The timezone where the local system is located.  Used as a default by some
48 * programs who obtain this value by using gettimeofday.
49 */
50struct timezone sys_tz;
51
52EXPORT_SYMBOL(sys_tz);
53
54#ifdef __ARCH_WANT_SYS_TIME
55
56/*
57 * sys_time() can be implemented in user-level using
58 * sys_gettimeofday().  Is this for backwards compatibility?  If so,
59 * why not move it into the appropriate arch directory (for those
60 * architectures that need it).
61 */
62SYSCALL_DEFINE1(time, __kernel_old_time_t __user *, tloc)
63{
64	__kernel_old_time_t i = (__kernel_old_time_t)ktime_get_real_seconds();
65
66	if (tloc) {
67		if (put_user(i,tloc))
68			return -EFAULT;
69	}
70	force_successful_syscall_return();
71	return i;
72}
73
74/*
75 * sys_stime() can be implemented in user-level using
76 * sys_settimeofday().  Is this for backwards compatibility?  If so,
77 * why not move it into the appropriate arch directory (for those
78 * architectures that need it).
79 */
80
81SYSCALL_DEFINE1(stime, __kernel_old_time_t __user *, tptr)
82{
83	struct timespec64 tv;
84	int err;
85
86	if (get_user(tv.tv_sec, tptr))
87		return -EFAULT;
88
89	tv.tv_nsec = 0;
90
91	err = security_settime64(&tv, NULL);
92	if (err)
93		return err;
94
95	do_settimeofday64(&tv);
96	return 0;
97}
98
99#endif /* __ARCH_WANT_SYS_TIME */
100
101#ifdef CONFIG_COMPAT_32BIT_TIME
102#ifdef __ARCH_WANT_SYS_TIME32
103
104/* old_time32_t is a 32 bit "long" and needs to get converted. */
105SYSCALL_DEFINE1(time32, old_time32_t __user *, tloc)
106{
107	old_time32_t i;
108
109	i = (old_time32_t)ktime_get_real_seconds();
110
111	if (tloc) {
112		if (put_user(i,tloc))
113			return -EFAULT;
114	}
115	force_successful_syscall_return();
116	return i;
117}
118
119SYSCALL_DEFINE1(stime32, old_time32_t __user *, tptr)
120{
121	struct timespec64 tv;
122	int err;
123
124	if (get_user(tv.tv_sec, tptr))
125		return -EFAULT;
126
127	tv.tv_nsec = 0;
128
129	err = security_settime64(&tv, NULL);
130	if (err)
131		return err;
132
133	do_settimeofday64(&tv);
134	return 0;
135}
136
137#endif /* __ARCH_WANT_SYS_TIME32 */
138#endif
139
140SYSCALL_DEFINE2(gettimeofday, struct __kernel_old_timeval __user *, tv,
141		struct timezone __user *, tz)
142{
143	if (likely(tv != NULL)) {
144		struct timespec64 ts;
145
146		ktime_get_real_ts64(&ts);
147		if (put_user(ts.tv_sec, &tv->tv_sec) ||
148		    put_user(ts.tv_nsec / 1000, &tv->tv_usec))
149			return -EFAULT;
150	}
151	if (unlikely(tz != NULL)) {
152		if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
153			return -EFAULT;
154	}
155	return 0;
156}
157
158/*
159 * In case for some reason the CMOS clock has not already been running
160 * in UTC, but in some local time: The first time we set the timezone,
161 * we will warp the clock so that it is ticking UTC time instead of
162 * local time. Presumably, if someone is setting the timezone then we
163 * are running in an environment where the programs understand about
164 * timezones. This should be done at boot time in the /etc/rc script,
165 * as soon as possible, so that the clock can be set right. Otherwise,
166 * various programs will get confused when the clock gets warped.
167 */
168
169int do_sys_settimeofday64(const struct timespec64 *tv, const struct timezone *tz)
170{
171	static int firsttime = 1;
172	int error = 0;
173
174	if (tv && !timespec64_valid_settod(tv))
175		return -EINVAL;
176
177	error = security_settime64(tv, tz);
178	if (error)
179		return error;
180
181	if (tz) {
182		/* Verify we're within the +-15 hrs range */
183		if (tz->tz_minuteswest > 15*60 || tz->tz_minuteswest < -15*60)
184			return -EINVAL;
185
186		sys_tz = *tz;
187		update_vsyscall_tz();
188		if (firsttime) {
189			firsttime = 0;
190			if (!tv)
191				timekeeping_warp_clock();
192		}
193	}
194	if (tv)
195		return do_settimeofday64(tv);
196	return 0;
197}
198
199SYSCALL_DEFINE2(settimeofday, struct __kernel_old_timeval __user *, tv,
200		struct timezone __user *, tz)
201{
202	struct timespec64 new_ts;
203	struct timezone new_tz;
204
205	if (tv) {
206		if (get_user(new_ts.tv_sec, &tv->tv_sec) ||
207		    get_user(new_ts.tv_nsec, &tv->tv_usec))
208			return -EFAULT;
209
210		if (new_ts.tv_nsec > USEC_PER_SEC || new_ts.tv_nsec < 0)
211			return -EINVAL;
212
213		new_ts.tv_nsec *= NSEC_PER_USEC;
214	}
215	if (tz) {
216		if (copy_from_user(&new_tz, tz, sizeof(*tz)))
217			return -EFAULT;
218	}
219
220	return do_sys_settimeofday64(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
221}
222
223#ifdef CONFIG_COMPAT
224COMPAT_SYSCALL_DEFINE2(gettimeofday, struct old_timeval32 __user *, tv,
225		       struct timezone __user *, tz)
226{
227	if (tv) {
228		struct timespec64 ts;
229
230		ktime_get_real_ts64(&ts);
231		if (put_user(ts.tv_sec, &tv->tv_sec) ||
232		    put_user(ts.tv_nsec / 1000, &tv->tv_usec))
233			return -EFAULT;
234	}
235	if (tz) {
236		if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
237			return -EFAULT;
238	}
239
240	return 0;
241}
242
243COMPAT_SYSCALL_DEFINE2(settimeofday, struct old_timeval32 __user *, tv,
244		       struct timezone __user *, tz)
245{
246	struct timespec64 new_ts;
247	struct timezone new_tz;
248
249	if (tv) {
250		if (get_user(new_ts.tv_sec, &tv->tv_sec) ||
251		    get_user(new_ts.tv_nsec, &tv->tv_usec))
252			return -EFAULT;
253
254		if (new_ts.tv_nsec > USEC_PER_SEC || new_ts.tv_nsec < 0)
255			return -EINVAL;
256
257		new_ts.tv_nsec *= NSEC_PER_USEC;
258	}
259	if (tz) {
260		if (copy_from_user(&new_tz, tz, sizeof(*tz)))
261			return -EFAULT;
262	}
263
264	return do_sys_settimeofday64(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
265}
266#endif
267
268#ifdef CONFIG_64BIT
269SYSCALL_DEFINE1(adjtimex, struct __kernel_timex __user *, txc_p)
270{
271	struct __kernel_timex txc;		/* Local copy of parameter */
272	int ret;
273
274	/* Copy the user data space into the kernel copy
275	 * structure. But bear in mind that the structures
276	 * may change
277	 */
278	if (copy_from_user(&txc, txc_p, sizeof(struct __kernel_timex)))
279		return -EFAULT;
280	ret = do_adjtimex(&txc);
281	return copy_to_user(txc_p, &txc, sizeof(struct __kernel_timex)) ? -EFAULT : ret;
282}
283#endif
284
285#ifdef CONFIG_COMPAT_32BIT_TIME
286int get_old_timex32(struct __kernel_timex *txc, const struct old_timex32 __user *utp)
287{
288	struct old_timex32 tx32;
289
290	memset(txc, 0, sizeof(struct __kernel_timex));
291	if (copy_from_user(&tx32, utp, sizeof(struct old_timex32)))
292		return -EFAULT;
293
294	txc->modes = tx32.modes;
295	txc->offset = tx32.offset;
296	txc->freq = tx32.freq;
297	txc->maxerror = tx32.maxerror;
298	txc->esterror = tx32.esterror;
299	txc->status = tx32.status;
300	txc->constant = tx32.constant;
301	txc->precision = tx32.precision;
302	txc->tolerance = tx32.tolerance;
303	txc->time.tv_sec = tx32.time.tv_sec;
304	txc->time.tv_usec = tx32.time.tv_usec;
305	txc->tick = tx32.tick;
306	txc->ppsfreq = tx32.ppsfreq;
307	txc->jitter = tx32.jitter;
308	txc->shift = tx32.shift;
309	txc->stabil = tx32.stabil;
310	txc->jitcnt = tx32.jitcnt;
311	txc->calcnt = tx32.calcnt;
312	txc->errcnt = tx32.errcnt;
313	txc->stbcnt = tx32.stbcnt;
314
315	return 0;
316}
317
318int put_old_timex32(struct old_timex32 __user *utp, const struct __kernel_timex *txc)
319{
320	struct old_timex32 tx32;
321
322	memset(&tx32, 0, sizeof(struct old_timex32));
323	tx32.modes = txc->modes;
324	tx32.offset = txc->offset;
325	tx32.freq = txc->freq;
326	tx32.maxerror = txc->maxerror;
327	tx32.esterror = txc->esterror;
328	tx32.status = txc->status;
329	tx32.constant = txc->constant;
330	tx32.precision = txc->precision;
331	tx32.tolerance = txc->tolerance;
332	tx32.time.tv_sec = txc->time.tv_sec;
333	tx32.time.tv_usec = txc->time.tv_usec;
334	tx32.tick = txc->tick;
335	tx32.ppsfreq = txc->ppsfreq;
336	tx32.jitter = txc->jitter;
337	tx32.shift = txc->shift;
338	tx32.stabil = txc->stabil;
339	tx32.jitcnt = txc->jitcnt;
340	tx32.calcnt = txc->calcnt;
341	tx32.errcnt = txc->errcnt;
342	tx32.stbcnt = txc->stbcnt;
343	tx32.tai = txc->tai;
344	if (copy_to_user(utp, &tx32, sizeof(struct old_timex32)))
345		return -EFAULT;
346	return 0;
347}
348
349SYSCALL_DEFINE1(adjtimex_time32, struct old_timex32 __user *, utp)
350{
351	struct __kernel_timex txc;
352	int err, ret;
353
354	err = get_old_timex32(&txc, utp);
355	if (err)
356		return err;
357
358	ret = do_adjtimex(&txc);
359
360	err = put_old_timex32(utp, &txc);
361	if (err)
362		return err;
363
364	return ret;
365}
366#endif
367
368/**
369 * jiffies_to_msecs - Convert jiffies to milliseconds
370 * @j: jiffies value
371 *
372 * Avoid unnecessary multiplications/divisions in the
373 * two most common HZ cases.
374 *
375 * Return: milliseconds value
376 */
377unsigned int jiffies_to_msecs(const unsigned long j)
378{
379#if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
380	return (MSEC_PER_SEC / HZ) * j;
381#elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
382	return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC);
383#else
384# if BITS_PER_LONG == 32
385	return (HZ_TO_MSEC_MUL32 * j + (1ULL << HZ_TO_MSEC_SHR32) - 1) >>
386	       HZ_TO_MSEC_SHR32;
387# else
388	return DIV_ROUND_UP(j * HZ_TO_MSEC_NUM, HZ_TO_MSEC_DEN);
389# endif
390#endif
391}
392EXPORT_SYMBOL(jiffies_to_msecs);
393
394/**
395 * jiffies_to_usecs - Convert jiffies to microseconds
396 * @j: jiffies value
397 *
398 * Return: microseconds value
399 */
400unsigned int jiffies_to_usecs(const unsigned long j)
401{
402	/*
403	 * Hz usually doesn't go much further MSEC_PER_SEC.
404	 * jiffies_to_usecs() and usecs_to_jiffies() depend on that.
405	 */
406	BUILD_BUG_ON(HZ > USEC_PER_SEC);
407
408#if !(USEC_PER_SEC % HZ)
409	return (USEC_PER_SEC / HZ) * j;
410#else
411# if BITS_PER_LONG == 32
412	return (HZ_TO_USEC_MUL32 * j) >> HZ_TO_USEC_SHR32;
413# else
414	return (j * HZ_TO_USEC_NUM) / HZ_TO_USEC_DEN;
415# endif
416#endif
417}
418EXPORT_SYMBOL(jiffies_to_usecs);
419
420/**
421 * mktime64 - Converts date to seconds.
422 * @year0: year to convert
423 * @mon0: month to convert
424 * @day: day to convert
425 * @hour: hour to convert
426 * @min: minute to convert
427 * @sec: second to convert
428 *
429 * Converts Gregorian date to seconds since 1970-01-01 00:00:00.
430 * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
431 * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
432 *
433 * [For the Julian calendar (which was used in Russia before 1917,
434 * Britain & colonies before 1752, anywhere else before 1582,
435 * and is still in use by some communities) leave out the
436 * -year/100+year/400 terms, and add 10.]
437 *
438 * This algorithm was first published by Gauss (I think).
439 *
440 * A leap second can be indicated by calling this function with sec as
441 * 60 (allowable under ISO 8601).  The leap second is treated the same
442 * as the following second since they don't exist in UNIX time.
443 *
444 * An encoding of midnight at the end of the day as 24:00:00 - ie. midnight
445 * tomorrow - (allowable under ISO 8601) is supported.
446 *
447 * Return: seconds since the epoch time for the given input date
448 */
449time64_t mktime64(const unsigned int year0, const unsigned int mon0,
450		const unsigned int day, const unsigned int hour,
451		const unsigned int min, const unsigned int sec)
452{
453	unsigned int mon = mon0, year = year0;
454
455	/* 1..12 -> 11,12,1..10 */
456	if (0 >= (int) (mon -= 2)) {
457		mon += 12;	/* Puts Feb last since it has leap day */
458		year -= 1;
459	}
460
461	return ((((time64_t)
462		  (year/4 - year/100 + year/400 + 367*mon/12 + day) +
463		  year*365 - 719499
464	    )*24 + hour /* now have hours - midnight tomorrow handled here */
465	  )*60 + min /* now have minutes */
466	)*60 + sec; /* finally seconds */
467}
468EXPORT_SYMBOL(mktime64);
469
470struct __kernel_old_timeval ns_to_kernel_old_timeval(s64 nsec)
471{
472	struct timespec64 ts = ns_to_timespec64(nsec);
473	struct __kernel_old_timeval tv;
474
475	tv.tv_sec = ts.tv_sec;
476	tv.tv_usec = (suseconds_t)ts.tv_nsec / 1000;
477
478	return tv;
479}
480EXPORT_SYMBOL(ns_to_kernel_old_timeval);
481
482/**
483 * set_normalized_timespec64 - set timespec sec and nsec parts and normalize
484 *
485 * @ts:		pointer to timespec variable to be set
486 * @sec:	seconds to set
487 * @nsec:	nanoseconds to set
488 *
489 * Set seconds and nanoseconds field of a timespec variable and
490 * normalize to the timespec storage format
491 *
492 * Note: The tv_nsec part is always in the range of 0 <= tv_nsec < NSEC_PER_SEC.
493 * For negative values only the tv_sec field is negative !
494 */
495void set_normalized_timespec64(struct timespec64 *ts, time64_t sec, s64 nsec)
496{
497	while (nsec >= NSEC_PER_SEC) {
498		/*
499		 * The following asm() prevents the compiler from
500		 * optimising this loop into a modulo operation. See
501		 * also __iter_div_u64_rem() in include/linux/time.h
502		 */
503		asm("" : "+rm"(nsec));
504		nsec -= NSEC_PER_SEC;
505		++sec;
506	}
507	while (nsec < 0) {
508		asm("" : "+rm"(nsec));
509		nsec += NSEC_PER_SEC;
510		--sec;
511	}
512	ts->tv_sec = sec;
513	ts->tv_nsec = nsec;
514}
515EXPORT_SYMBOL(set_normalized_timespec64);
516
517/**
518 * ns_to_timespec64 - Convert nanoseconds to timespec64
519 * @nsec:       the nanoseconds value to be converted
520 *
521 * Return: the timespec64 representation of the nsec parameter.
522 */
523struct timespec64 ns_to_timespec64(s64 nsec)
524{
525	struct timespec64 ts = { 0, 0 };
526	s32 rem;
527
528	if (likely(nsec > 0)) {
529		ts.tv_sec = div_u64_rem(nsec, NSEC_PER_SEC, &rem);
530		ts.tv_nsec = rem;
531	} else if (nsec < 0) {
532		/*
533		 * With negative times, tv_sec points to the earlier
534		 * second, and tv_nsec counts the nanoseconds since
535		 * then, so tv_nsec is always a positive number.
536		 */
537		ts.tv_sec = -div_u64_rem(-nsec - 1, NSEC_PER_SEC, &rem) - 1;
538		ts.tv_nsec = NSEC_PER_SEC - rem - 1;
539	}
540
541	return ts;
542}
543EXPORT_SYMBOL(ns_to_timespec64);
544
545/**
546 * __msecs_to_jiffies: - convert milliseconds to jiffies
547 * @m:	time in milliseconds
548 *
549 * conversion is done as follows:
550 *
551 * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
552 *
553 * - 'too large' values [that would result in larger than
554 *   MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
555 *
556 * - all other values are converted to jiffies by either multiplying
557 *   the input value by a factor or dividing it with a factor and
558 *   handling any 32-bit overflows.
559 *   for the details see __msecs_to_jiffies()
560 *
561 * __msecs_to_jiffies() checks for the passed in value being a constant
562 * via __builtin_constant_p() allowing gcc to eliminate most of the
563 * code, __msecs_to_jiffies() is called if the value passed does not
564 * allow constant folding and the actual conversion must be done at
565 * runtime.
566 * The _msecs_to_jiffies helpers are the HZ dependent conversion
567 * routines found in include/linux/jiffies.h
568 *
569 * Return: jiffies value
570 */
571unsigned long __msecs_to_jiffies(const unsigned int m)
572{
573	/*
574	 * Negative value, means infinite timeout:
575	 */
576	if ((int)m < 0)
577		return MAX_JIFFY_OFFSET;
578	return _msecs_to_jiffies(m);
579}
580EXPORT_SYMBOL(__msecs_to_jiffies);
581
582/**
583 * __usecs_to_jiffies: - convert microseconds to jiffies
584 * @u:	time in milliseconds
585 *
586 * Return: jiffies value
587 */
588unsigned long __usecs_to_jiffies(const unsigned int u)
589{
590	if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
591		return MAX_JIFFY_OFFSET;
592	return _usecs_to_jiffies(u);
593}
594EXPORT_SYMBOL(__usecs_to_jiffies);
595
596/**
597 * timespec64_to_jiffies - convert a timespec64 value to jiffies
598 * @value: pointer to &struct timespec64
599 *
600 * The TICK_NSEC - 1 rounds up the value to the next resolution.  Note
601 * that a remainder subtract here would not do the right thing as the
602 * resolution values don't fall on second boundaries.  I.e. the line:
603 * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
604 * Note that due to the small error in the multiplier here, this
605 * rounding is incorrect for sufficiently large values of tv_nsec, but
606 * well formed timespecs should have tv_nsec < NSEC_PER_SEC, so we're
607 * OK.
608 *
609 * Rather, we just shift the bits off the right.
610 *
611 * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
612 * value to a scaled second value.
613 *
614 * Return: jiffies value
615 */
616unsigned long
617timespec64_to_jiffies(const struct timespec64 *value)
618{
619	u64 sec = value->tv_sec;
620	long nsec = value->tv_nsec + TICK_NSEC - 1;
621
622	if (sec >= MAX_SEC_IN_JIFFIES){
623		sec = MAX_SEC_IN_JIFFIES;
624		nsec = 0;
625	}
626	return ((sec * SEC_CONVERSION) +
627		(((u64)nsec * NSEC_CONVERSION) >>
628		 (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
629
630}
631EXPORT_SYMBOL(timespec64_to_jiffies);
632
633/**
634 * jiffies_to_timespec64 - convert jiffies value to &struct timespec64
635 * @jiffies: jiffies value
636 * @value: pointer to &struct timespec64
637 */
638void
639jiffies_to_timespec64(const unsigned long jiffies, struct timespec64 *value)
640{
641	/*
642	 * Convert jiffies to nanoseconds and separate with
643	 * one divide.
644	 */
645	u32 rem;
646	value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
647				    NSEC_PER_SEC, &rem);
648	value->tv_nsec = rem;
649}
650EXPORT_SYMBOL(jiffies_to_timespec64);
651
652/*
653 * Convert jiffies/jiffies_64 to clock_t and back.
654 */
655
656/**
657 * jiffies_to_clock_t - Convert jiffies to clock_t
658 * @x: jiffies value
659 *
660 * Return: jiffies converted to clock_t (CLOCKS_PER_SEC)
661 */
662clock_t jiffies_to_clock_t(unsigned long x)
663{
664#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
665# if HZ < USER_HZ
666	return x * (USER_HZ / HZ);
667# else
668	return x / (HZ / USER_HZ);
669# endif
670#else
671	return div_u64((u64)x * TICK_NSEC, NSEC_PER_SEC / USER_HZ);
672#endif
673}
674EXPORT_SYMBOL(jiffies_to_clock_t);
675
676/**
677 * clock_t_to_jiffies - Convert clock_t to jiffies
678 * @x: clock_t value
679 *
680 * Return: clock_t value converted to jiffies
681 */
682unsigned long clock_t_to_jiffies(unsigned long x)
683{
684#if (HZ % USER_HZ)==0
685	if (x >= ~0UL / (HZ / USER_HZ))
686		return ~0UL;
687	return x * (HZ / USER_HZ);
688#else
689	/* Don't worry about loss of precision here .. */
690	if (x >= ~0UL / HZ * USER_HZ)
691		return ~0UL;
692
693	/* .. but do try to contain it here */
694	return div_u64((u64)x * HZ, USER_HZ);
695#endif
696}
697EXPORT_SYMBOL(clock_t_to_jiffies);
698
699/**
700 * jiffies_64_to_clock_t - Convert jiffies_64 to clock_t
701 * @x: jiffies_64 value
702 *
703 * Return: jiffies_64 value converted to 64-bit "clock_t" (CLOCKS_PER_SEC)
704 */
705u64 jiffies_64_to_clock_t(u64 x)
706{
707#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
708# if HZ < USER_HZ
709	x = div_u64(x * USER_HZ, HZ);
710# elif HZ > USER_HZ
711	x = div_u64(x, HZ / USER_HZ);
712# else
713	/* Nothing to do */
714# endif
715#else
716	/*
717	 * There are better ways that don't overflow early,
718	 * but even this doesn't overflow in hundreds of years
719	 * in 64 bits, so..
720	 */
721	x = div_u64(x * TICK_NSEC, (NSEC_PER_SEC / USER_HZ));
722#endif
723	return x;
724}
725EXPORT_SYMBOL(jiffies_64_to_clock_t);
726
727/**
728 * nsec_to_clock_t - Convert nsec value to clock_t
729 * @x: nsec value
730 *
731 * Return: nsec value converted to 64-bit "clock_t" (CLOCKS_PER_SEC)
732 */
733u64 nsec_to_clock_t(u64 x)
734{
735#if (NSEC_PER_SEC % USER_HZ) == 0
736	return div_u64(x, NSEC_PER_SEC / USER_HZ);
737#elif (USER_HZ % 512) == 0
738	return div_u64(x * USER_HZ / 512, NSEC_PER_SEC / 512);
739#else
740	/*
741         * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
742         * overflow after 64.99 years.
743         * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
744         */
745	return div_u64(x * 9, (9ull * NSEC_PER_SEC + (USER_HZ / 2)) / USER_HZ);
746#endif
747}
748
749/**
750 * jiffies64_to_nsecs - Convert jiffies64 to nanoseconds
751 * @j: jiffies64 value
752 *
753 * Return: nanoseconds value
754 */
755u64 jiffies64_to_nsecs(u64 j)
756{
757#if !(NSEC_PER_SEC % HZ)
758	return (NSEC_PER_SEC / HZ) * j;
759# else
760	return div_u64(j * HZ_TO_NSEC_NUM, HZ_TO_NSEC_DEN);
761#endif
762}
763EXPORT_SYMBOL(jiffies64_to_nsecs);
764
765/**
766 * jiffies64_to_msecs - Convert jiffies64 to milliseconds
767 * @j: jiffies64 value
768 *
769 * Return: milliseconds value
770 */
771u64 jiffies64_to_msecs(const u64 j)
772{
773#if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
774	return (MSEC_PER_SEC / HZ) * j;
775#else
776	return div_u64(j * HZ_TO_MSEC_NUM, HZ_TO_MSEC_DEN);
777#endif
778}
779EXPORT_SYMBOL(jiffies64_to_msecs);
780
781/**
782 * nsecs_to_jiffies64 - Convert nsecs in u64 to jiffies64
783 *
784 * @n:	nsecs in u64
785 *
786 * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
787 * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
788 * for scheduler, not for use in device drivers to calculate timeout value.
789 *
790 * note:
791 *   NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
792 *   ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
793 *
794 * Return: nsecs converted to jiffies64 value
795 */
796u64 nsecs_to_jiffies64(u64 n)
797{
798#if (NSEC_PER_SEC % HZ) == 0
799	/* Common case, HZ = 100, 128, 200, 250, 256, 500, 512, 1000 etc. */
800	return div_u64(n, NSEC_PER_SEC / HZ);
801#elif (HZ % 512) == 0
802	/* overflow after 292 years if HZ = 1024 */
803	return div_u64(n * HZ / 512, NSEC_PER_SEC / 512);
804#else
805	/*
806	 * Generic case - optimized for cases where HZ is a multiple of 3.
807	 * overflow after 64.99 years, exact for HZ = 60, 72, 90, 120 etc.
808	 */
809	return div_u64(n * 9, (9ull * NSEC_PER_SEC + HZ / 2) / HZ);
810#endif
811}
812EXPORT_SYMBOL(nsecs_to_jiffies64);
813
814/**
815 * nsecs_to_jiffies - Convert nsecs in u64 to jiffies
816 *
817 * @n:	nsecs in u64
818 *
819 * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
820 * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
821 * for scheduler, not for use in device drivers to calculate timeout value.
822 *
823 * note:
824 *   NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
825 *   ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
826 *
827 * Return: nsecs converted to jiffies value
828 */
829unsigned long nsecs_to_jiffies(u64 n)
830{
831	return (unsigned long)nsecs_to_jiffies64(n);
832}
833EXPORT_SYMBOL_GPL(nsecs_to_jiffies);
834
835/**
836 * timespec64_add_safe - Add two timespec64 values and do a safety check
837 * for overflow.
838 * @lhs: first (left) timespec64 to add
839 * @rhs: second (right) timespec64 to add
840 *
841 * It's assumed that both values are valid (>= 0).
842 * And, each timespec64 is in normalized form.
843 *
844 * Return: sum of @lhs + @rhs
845 */
846struct timespec64 timespec64_add_safe(const struct timespec64 lhs,
847				const struct timespec64 rhs)
848{
849	struct timespec64 res;
850
851	set_normalized_timespec64(&res, (timeu64_t) lhs.tv_sec + rhs.tv_sec,
852			lhs.tv_nsec + rhs.tv_nsec);
853
854	if (unlikely(res.tv_sec < lhs.tv_sec || res.tv_sec < rhs.tv_sec)) {
855		res.tv_sec = TIME64_MAX;
856		res.tv_nsec = 0;
857	}
858
859	return res;
860}
861
862/**
863 * get_timespec64 - get user's time value into kernel space
864 * @ts: destination &struct timespec64
865 * @uts: user's time value as &struct __kernel_timespec
866 *
867 * Handles compat or 32-bit modes.
868 *
869 * Return: %0 on success or negative errno on error
870 */
871int get_timespec64(struct timespec64 *ts,
872		   const struct __kernel_timespec __user *uts)
873{
874	struct __kernel_timespec kts;
875	int ret;
876
877	ret = copy_from_user(&kts, uts, sizeof(kts));
878	if (ret)
879		return -EFAULT;
880
881	ts->tv_sec = kts.tv_sec;
882
883	/* Zero out the padding in compat mode */
884	if (in_compat_syscall())
885		kts.tv_nsec &= 0xFFFFFFFFUL;
886
887	/* In 32-bit mode, this drops the padding */
888	ts->tv_nsec = kts.tv_nsec;
889
890	return 0;
891}
892EXPORT_SYMBOL_GPL(get_timespec64);
893
894/**
895 * put_timespec64 - convert timespec64 value to __kernel_timespec format and
896 * 		    copy the latter to userspace
897 * @ts: input &struct timespec64
898 * @uts: user's &struct __kernel_timespec
899 *
900 * Return: %0 on success or negative errno on error
901 */
902int put_timespec64(const struct timespec64 *ts,
903		   struct __kernel_timespec __user *uts)
904{
905	struct __kernel_timespec kts = {
906		.tv_sec = ts->tv_sec,
907		.tv_nsec = ts->tv_nsec
908	};
909
910	return copy_to_user(uts, &kts, sizeof(kts)) ? -EFAULT : 0;
911}
912EXPORT_SYMBOL_GPL(put_timespec64);
913
914static int __get_old_timespec32(struct timespec64 *ts64,
915				   const struct old_timespec32 __user *cts)
916{
917	struct old_timespec32 ts;
918	int ret;
919
920	ret = copy_from_user(&ts, cts, sizeof(ts));
921	if (ret)
922		return -EFAULT;
923
924	ts64->tv_sec = ts.tv_sec;
925	ts64->tv_nsec = ts.tv_nsec;
926
927	return 0;
928}
929
930static int __put_old_timespec32(const struct timespec64 *ts64,
931				   struct old_timespec32 __user *cts)
932{
933	struct old_timespec32 ts = {
934		.tv_sec = ts64->tv_sec,
935		.tv_nsec = ts64->tv_nsec
936	};
937	return copy_to_user(cts, &ts, sizeof(ts)) ? -EFAULT : 0;
938}
939
940/**
941 * get_old_timespec32 - get user's old-format time value into kernel space
942 * @ts: destination &struct timespec64
943 * @uts: user's old-format time value (&struct old_timespec32)
944 *
945 * Handles X86_X32_ABI compatibility conversion.
946 *
947 * Return: %0 on success or negative errno on error
948 */
949int get_old_timespec32(struct timespec64 *ts, const void __user *uts)
950{
951	if (COMPAT_USE_64BIT_TIME)
952		return copy_from_user(ts, uts, sizeof(*ts)) ? -EFAULT : 0;
953	else
954		return __get_old_timespec32(ts, uts);
955}
956EXPORT_SYMBOL_GPL(get_old_timespec32);
957
958/**
959 * put_old_timespec32 - convert timespec64 value to &struct old_timespec32 and
960 * 			copy the latter to userspace
961 * @ts: input &struct timespec64
962 * @uts: user's &struct old_timespec32
963 *
964 * Handles X86_X32_ABI compatibility conversion.
965 *
966 * Return: %0 on success or negative errno on error
967 */
968int put_old_timespec32(const struct timespec64 *ts, void __user *uts)
969{
970	if (COMPAT_USE_64BIT_TIME)
971		return copy_to_user(uts, ts, sizeof(*ts)) ? -EFAULT : 0;
972	else
973		return __put_old_timespec32(ts, uts);
974}
975EXPORT_SYMBOL_GPL(put_old_timespec32);
976
977/**
978 * get_itimerspec64 - get user's &struct __kernel_itimerspec into kernel space
979 * @it: destination &struct itimerspec64
980 * @uit: user's &struct __kernel_itimerspec
981 *
982 * Return: %0 on success or negative errno on error
983 */
984int get_itimerspec64(struct itimerspec64 *it,
985			const struct __kernel_itimerspec __user *uit)
986{
987	int ret;
988
989	ret = get_timespec64(&it->it_interval, &uit->it_interval);
990	if (ret)
991		return ret;
992
993	ret = get_timespec64(&it->it_value, &uit->it_value);
994
995	return ret;
996}
997EXPORT_SYMBOL_GPL(get_itimerspec64);
998
999/**
1000 * put_itimerspec64 - convert &struct itimerspec64 to __kernel_itimerspec format
1001 * 		      and copy the latter to userspace
1002 * @it: input &struct itimerspec64
1003 * @uit: user's &struct __kernel_itimerspec
1004 *
1005 * Return: %0 on success or negative errno on error
1006 */
1007int put_itimerspec64(const struct itimerspec64 *it,
1008			struct __kernel_itimerspec __user *uit)
1009{
1010	int ret;
1011
1012	ret = put_timespec64(&it->it_interval, &uit->it_interval);
1013	if (ret)
1014		return ret;
1015
1016	ret = put_timespec64(&it->it_value, &uit->it_value);
1017
1018	return ret;
1019}
1020EXPORT_SYMBOL_GPL(put_itimerspec64);
1021
1022/**
1023 * get_old_itimerspec32 - get user's &struct old_itimerspec32 into kernel space
1024 * @its: destination &struct itimerspec64
1025 * @uits: user's &struct old_itimerspec32
1026 *
1027 * Return: %0 on success or negative errno on error
1028 */
1029int get_old_itimerspec32(struct itimerspec64 *its,
1030			const struct old_itimerspec32 __user *uits)
1031{
1032
1033	if (__get_old_timespec32(&its->it_interval, &uits->it_interval) ||
1034	    __get_old_timespec32(&its->it_value, &uits->it_value))
1035		return -EFAULT;
1036	return 0;
1037}
1038EXPORT_SYMBOL_GPL(get_old_itimerspec32);
1039
1040/**
1041 * put_old_itimerspec32 - convert &struct itimerspec64 to &struct
1042 *			  old_itimerspec32 and copy the latter to userspace
1043 * @its: input &struct itimerspec64
1044 * @uits: user's &struct old_itimerspec32
1045 *
1046 * Return: %0 on success or negative errno on error
1047 */
1048int put_old_itimerspec32(const struct itimerspec64 *its,
1049			struct old_itimerspec32 __user *uits)
1050{
1051	if (__put_old_timespec32(&its->it_interval, &uits->it_interval) ||
1052	    __put_old_timespec32(&its->it_value, &uits->it_value))
1053		return -EFAULT;
1054	return 0;
1055}
1056EXPORT_SYMBOL_GPL(put_old_itimerspec32);
1057