1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * 2002-10-15  Posix Clocks & timers
4 *                           by George Anzinger george@mvista.com
5 *			     Copyright (C) 2002 2003 by MontaVista Software.
6 *
7 * 2004-06-01  Fix CLOCK_REALTIME clock/timer TIMER_ABSTIME bug.
8 *			     Copyright (C) 2004 Boris Hu
9 *
10 * These are all the functions necessary to implement POSIX clocks & timers
11 */
12#include <linux/mm.h>
13#include <linux/interrupt.h>
14#include <linux/slab.h>
15#include <linux/time.h>
16#include <linux/mutex.h>
17#include <linux/sched/task.h>
18
19#include <linux/uaccess.h>
20#include <linux/list.h>
21#include <linux/init.h>
22#include <linux/compiler.h>
23#include <linux/hash.h>
24#include <linux/posix-clock.h>
25#include <linux/posix-timers.h>
26#include <linux/syscalls.h>
27#include <linux/wait.h>
28#include <linux/workqueue.h>
29#include <linux/export.h>
30#include <linux/hashtable.h>
31#include <linux/compat.h>
32#include <linux/nospec.h>
33#include <linux/time_namespace.h>
34
35#include "timekeeping.h"
36#include "posix-timers.h"
37
38static struct kmem_cache *posix_timers_cache;
39
40/*
41 * Timers are managed in a hash table for lockless lookup. The hash key is
42 * constructed from current::signal and the timer ID and the timer is
43 * matched against current::signal and the timer ID when walking the hash
44 * bucket list.
45 *
46 * This allows checkpoint/restore to reconstruct the exact timer IDs for
47 * a process.
48 */
49static DEFINE_HASHTABLE(posix_timers_hashtable, 9);
50static DEFINE_SPINLOCK(hash_lock);
51
52static const struct k_clock * const posix_clocks[];
53static const struct k_clock *clockid_to_kclock(const clockid_t id);
54static const struct k_clock clock_realtime, clock_monotonic;
55
56/* SIGEV_THREAD_ID cannot share a bit with the other SIGEV values. */
57#if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \
58			~(SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD))
59#error "SIGEV_THREAD_ID must not share bit with other SIGEV values!"
60#endif
61
62static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags);
63
64#define lock_timer(tid, flags)						   \
65({	struct k_itimer *__timr;					   \
66	__cond_lock(&__timr->it_lock, __timr = __lock_timer(tid, flags));  \
67	__timr;								   \
68})
69
70static int hash(struct signal_struct *sig, unsigned int nr)
71{
72	return hash_32(hash32_ptr(sig) ^ nr, HASH_BITS(posix_timers_hashtable));
73}
74
75static struct k_itimer *__posix_timers_find(struct hlist_head *head,
76					    struct signal_struct *sig,
77					    timer_t id)
78{
79	struct k_itimer *timer;
80
81	hlist_for_each_entry_rcu(timer, head, t_hash, lockdep_is_held(&hash_lock)) {
82		/* timer->it_signal can be set concurrently */
83		if ((READ_ONCE(timer->it_signal) == sig) && (timer->it_id == id))
84			return timer;
85	}
86	return NULL;
87}
88
89static struct k_itimer *posix_timer_by_id(timer_t id)
90{
91	struct signal_struct *sig = current->signal;
92	struct hlist_head *head = &posix_timers_hashtable[hash(sig, id)];
93
94	return __posix_timers_find(head, sig, id);
95}
96
97static int posix_timer_add(struct k_itimer *timer)
98{
99	struct signal_struct *sig = current->signal;
100	struct hlist_head *head;
101	unsigned int cnt, id;
102
103	/*
104	 * FIXME: Replace this by a per signal struct xarray once there is
105	 * a plan to handle the resulting CRIU regression gracefully.
106	 */
107	for (cnt = 0; cnt <= INT_MAX; cnt++) {
108		spin_lock(&hash_lock);
109		id = sig->next_posix_timer_id;
110
111		/* Write the next ID back. Clamp it to the positive space */
112		sig->next_posix_timer_id = (id + 1) & INT_MAX;
113
114		head = &posix_timers_hashtable[hash(sig, id)];
115		if (!__posix_timers_find(head, sig, id)) {
116			hlist_add_head_rcu(&timer->t_hash, head);
117			spin_unlock(&hash_lock);
118			return id;
119		}
120		spin_unlock(&hash_lock);
121	}
122	/* POSIX return code when no timer ID could be allocated */
123	return -EAGAIN;
124}
125
126static inline void unlock_timer(struct k_itimer *timr, unsigned long flags)
127{
128	spin_unlock_irqrestore(&timr->it_lock, flags);
129}
130
131static int posix_get_realtime_timespec(clockid_t which_clock, struct timespec64 *tp)
132{
133	ktime_get_real_ts64(tp);
134	return 0;
135}
136
137static ktime_t posix_get_realtime_ktime(clockid_t which_clock)
138{
139	return ktime_get_real();
140}
141
142static int posix_clock_realtime_set(const clockid_t which_clock,
143				    const struct timespec64 *tp)
144{
145	return do_sys_settimeofday64(tp, NULL);
146}
147
148static int posix_clock_realtime_adj(const clockid_t which_clock,
149				    struct __kernel_timex *t)
150{
151	return do_adjtimex(t);
152}
153
154static int posix_get_monotonic_timespec(clockid_t which_clock, struct timespec64 *tp)
155{
156	ktime_get_ts64(tp);
157	timens_add_monotonic(tp);
158	return 0;
159}
160
161static ktime_t posix_get_monotonic_ktime(clockid_t which_clock)
162{
163	return ktime_get();
164}
165
166static int posix_get_monotonic_raw(clockid_t which_clock, struct timespec64 *tp)
167{
168	ktime_get_raw_ts64(tp);
169	timens_add_monotonic(tp);
170	return 0;
171}
172
173static int posix_get_realtime_coarse(clockid_t which_clock, struct timespec64 *tp)
174{
175	ktime_get_coarse_real_ts64(tp);
176	return 0;
177}
178
179static int posix_get_monotonic_coarse(clockid_t which_clock,
180						struct timespec64 *tp)
181{
182	ktime_get_coarse_ts64(tp);
183	timens_add_monotonic(tp);
184	return 0;
185}
186
187static int posix_get_coarse_res(const clockid_t which_clock, struct timespec64 *tp)
188{
189	*tp = ktime_to_timespec64(KTIME_LOW_RES);
190	return 0;
191}
192
193static int posix_get_boottime_timespec(const clockid_t which_clock, struct timespec64 *tp)
194{
195	ktime_get_boottime_ts64(tp);
196	timens_add_boottime(tp);
197	return 0;
198}
199
200static ktime_t posix_get_boottime_ktime(const clockid_t which_clock)
201{
202	return ktime_get_boottime();
203}
204
205static int posix_get_tai_timespec(clockid_t which_clock, struct timespec64 *tp)
206{
207	ktime_get_clocktai_ts64(tp);
208	return 0;
209}
210
211static ktime_t posix_get_tai_ktime(clockid_t which_clock)
212{
213	return ktime_get_clocktai();
214}
215
216static int posix_get_hrtimer_res(clockid_t which_clock, struct timespec64 *tp)
217{
218	tp->tv_sec = 0;
219	tp->tv_nsec = hrtimer_resolution;
220	return 0;
221}
222
223static __init int init_posix_timers(void)
224{
225	posix_timers_cache = kmem_cache_create("posix_timers_cache",
226					sizeof(struct k_itimer), 0,
227					SLAB_PANIC | SLAB_ACCOUNT, NULL);
228	return 0;
229}
230__initcall(init_posix_timers);
231
232/*
233 * The siginfo si_overrun field and the return value of timer_getoverrun(2)
234 * are of type int. Clamp the overrun value to INT_MAX
235 */
236static inline int timer_overrun_to_int(struct k_itimer *timr, int baseval)
237{
238	s64 sum = timr->it_overrun_last + (s64)baseval;
239
240	return sum > (s64)INT_MAX ? INT_MAX : (int)sum;
241}
242
243static void common_hrtimer_rearm(struct k_itimer *timr)
244{
245	struct hrtimer *timer = &timr->it.real.timer;
246
247	timr->it_overrun += hrtimer_forward(timer, timer->base->get_time(),
248					    timr->it_interval);
249	hrtimer_restart(timer);
250}
251
252/*
253 * This function is called from the signal delivery code if
254 * info->si_sys_private is not zero, which indicates that the timer has to
255 * be rearmed. Restart the timer and update info::si_overrun.
256 */
257void posixtimer_rearm(struct kernel_siginfo *info)
258{
259	struct k_itimer *timr;
260	unsigned long flags;
261
262	timr = lock_timer(info->si_tid, &flags);
263	if (!timr)
264		return;
265
266	if (timr->it_interval && timr->it_requeue_pending == info->si_sys_private) {
267		timr->kclock->timer_rearm(timr);
268
269		timr->it_active = 1;
270		timr->it_overrun_last = timr->it_overrun;
271		timr->it_overrun = -1LL;
272		++timr->it_requeue_pending;
273
274		info->si_overrun = timer_overrun_to_int(timr, info->si_overrun);
275	}
276
277	unlock_timer(timr, flags);
278}
279
280int posix_timer_event(struct k_itimer *timr, int si_private)
281{
282	enum pid_type type;
283	int ret;
284	/*
285	 * FIXME: if ->sigq is queued we can race with
286	 * dequeue_signal()->posixtimer_rearm().
287	 *
288	 * If dequeue_signal() sees the "right" value of
289	 * si_sys_private it calls posixtimer_rearm().
290	 * We re-queue ->sigq and drop ->it_lock().
291	 * posixtimer_rearm() locks the timer
292	 * and re-schedules it while ->sigq is pending.
293	 * Not really bad, but not that we want.
294	 */
295	timr->sigq->info.si_sys_private = si_private;
296
297	type = !(timr->it_sigev_notify & SIGEV_THREAD_ID) ? PIDTYPE_TGID : PIDTYPE_PID;
298	ret = send_sigqueue(timr->sigq, timr->it_pid, type);
299	/* If we failed to send the signal the timer stops. */
300	return ret > 0;
301}
302
303/*
304 * This function gets called when a POSIX.1b interval timer expires from
305 * the HRTIMER interrupt (soft interrupt on RT kernels).
306 *
307 * Handles CLOCK_REALTIME, CLOCK_MONOTONIC, CLOCK_BOOTTIME and CLOCK_TAI
308 * based timers.
309 */
310static enum hrtimer_restart posix_timer_fn(struct hrtimer *timer)
311{
312	enum hrtimer_restart ret = HRTIMER_NORESTART;
313	struct k_itimer *timr;
314	unsigned long flags;
315	int si_private = 0;
316
317	timr = container_of(timer, struct k_itimer, it.real.timer);
318	spin_lock_irqsave(&timr->it_lock, flags);
319
320	timr->it_active = 0;
321	if (timr->it_interval != 0)
322		si_private = ++timr->it_requeue_pending;
323
324	if (posix_timer_event(timr, si_private)) {
325		/*
326		 * The signal was not queued due to SIG_IGN. As a
327		 * consequence the timer is not going to be rearmed from
328		 * the signal delivery path. But as a real signal handler
329		 * can be installed later the timer must be rearmed here.
330		 */
331		if (timr->it_interval != 0) {
332			ktime_t now = hrtimer_cb_get_time(timer);
333
334			/*
335			 * FIXME: What we really want, is to stop this
336			 * timer completely and restart it in case the
337			 * SIG_IGN is removed. This is a non trivial
338			 * change to the signal handling code.
339			 *
340			 * For now let timers with an interval less than a
341			 * jiffie expire every jiffie and recheck for a
342			 * valid signal handler.
343			 *
344			 * This avoids interrupt starvation in case of a
345			 * very small interval, which would expire the
346			 * timer immediately again.
347			 *
348			 * Moving now ahead of time by one jiffie tricks
349			 * hrtimer_forward() to expire the timer later,
350			 * while it still maintains the overrun accuracy
351			 * for the price of a slight inconsistency in the
352			 * timer_gettime() case. This is at least better
353			 * than a timer storm.
354			 *
355			 * Only required when high resolution timers are
356			 * enabled as the periodic tick based timers are
357			 * automatically aligned to the next tick.
358			 */
359			if (IS_ENABLED(CONFIG_HIGH_RES_TIMERS)) {
360				ktime_t kj = TICK_NSEC;
361
362				if (timr->it_interval < kj)
363					now = ktime_add(now, kj);
364			}
365
366			timr->it_overrun += hrtimer_forward(timer, now, timr->it_interval);
367			ret = HRTIMER_RESTART;
368			++timr->it_requeue_pending;
369			timr->it_active = 1;
370		}
371	}
372
373	unlock_timer(timr, flags);
374	return ret;
375}
376
377static struct pid *good_sigevent(sigevent_t * event)
378{
379	struct pid *pid = task_tgid(current);
380	struct task_struct *rtn;
381
382	switch (event->sigev_notify) {
383	case SIGEV_SIGNAL | SIGEV_THREAD_ID:
384		pid = find_vpid(event->sigev_notify_thread_id);
385		rtn = pid_task(pid, PIDTYPE_PID);
386		if (!rtn || !same_thread_group(rtn, current))
387			return NULL;
388		fallthrough;
389	case SIGEV_SIGNAL:
390	case SIGEV_THREAD:
391		if (event->sigev_signo <= 0 || event->sigev_signo > SIGRTMAX)
392			return NULL;
393		fallthrough;
394	case SIGEV_NONE:
395		return pid;
396	default:
397		return NULL;
398	}
399}
400
401static struct k_itimer * alloc_posix_timer(void)
402{
403	struct k_itimer *tmr = kmem_cache_zalloc(posix_timers_cache, GFP_KERNEL);
404
405	if (!tmr)
406		return tmr;
407	if (unlikely(!(tmr->sigq = sigqueue_alloc()))) {
408		kmem_cache_free(posix_timers_cache, tmr);
409		return NULL;
410	}
411	clear_siginfo(&tmr->sigq->info);
412	return tmr;
413}
414
415static void k_itimer_rcu_free(struct rcu_head *head)
416{
417	struct k_itimer *tmr = container_of(head, struct k_itimer, rcu);
418
419	kmem_cache_free(posix_timers_cache, tmr);
420}
421
422static void posix_timer_free(struct k_itimer *tmr)
423{
424	put_pid(tmr->it_pid);
425	sigqueue_free(tmr->sigq);
426	call_rcu(&tmr->rcu, k_itimer_rcu_free);
427}
428
429static void posix_timer_unhash_and_free(struct k_itimer *tmr)
430{
431	spin_lock(&hash_lock);
432	hlist_del_rcu(&tmr->t_hash);
433	spin_unlock(&hash_lock);
434	posix_timer_free(tmr);
435}
436
437static int common_timer_create(struct k_itimer *new_timer)
438{
439	hrtimer_init(&new_timer->it.real.timer, new_timer->it_clock, 0);
440	return 0;
441}
442
443/* Create a POSIX.1b interval timer. */
444static int do_timer_create(clockid_t which_clock, struct sigevent *event,
445			   timer_t __user *created_timer_id)
446{
447	const struct k_clock *kc = clockid_to_kclock(which_clock);
448	struct k_itimer *new_timer;
449	int error, new_timer_id;
450
451	if (!kc)
452		return -EINVAL;
453	if (!kc->timer_create)
454		return -EOPNOTSUPP;
455
456	new_timer = alloc_posix_timer();
457	if (unlikely(!new_timer))
458		return -EAGAIN;
459
460	spin_lock_init(&new_timer->it_lock);
461
462	/*
463	 * Add the timer to the hash table. The timer is not yet valid
464	 * because new_timer::it_signal is still NULL. The timer id is also
465	 * not yet visible to user space.
466	 */
467	new_timer_id = posix_timer_add(new_timer);
468	if (new_timer_id < 0) {
469		posix_timer_free(new_timer);
470		return new_timer_id;
471	}
472
473	new_timer->it_id = (timer_t) new_timer_id;
474	new_timer->it_clock = which_clock;
475	new_timer->kclock = kc;
476	new_timer->it_overrun = -1LL;
477
478	if (event) {
479		rcu_read_lock();
480		new_timer->it_pid = get_pid(good_sigevent(event));
481		rcu_read_unlock();
482		if (!new_timer->it_pid) {
483			error = -EINVAL;
484			goto out;
485		}
486		new_timer->it_sigev_notify     = event->sigev_notify;
487		new_timer->sigq->info.si_signo = event->sigev_signo;
488		new_timer->sigq->info.si_value = event->sigev_value;
489	} else {
490		new_timer->it_sigev_notify     = SIGEV_SIGNAL;
491		new_timer->sigq->info.si_signo = SIGALRM;
492		memset(&new_timer->sigq->info.si_value, 0, sizeof(sigval_t));
493		new_timer->sigq->info.si_value.sival_int = new_timer->it_id;
494		new_timer->it_pid = get_pid(task_tgid(current));
495	}
496
497	new_timer->sigq->info.si_tid   = new_timer->it_id;
498	new_timer->sigq->info.si_code  = SI_TIMER;
499
500	if (copy_to_user(created_timer_id, &new_timer_id, sizeof (new_timer_id))) {
501		error = -EFAULT;
502		goto out;
503	}
504	/*
505	 * After succesful copy out, the timer ID is visible to user space
506	 * now but not yet valid because new_timer::signal is still NULL.
507	 *
508	 * Complete the initialization with the clock specific create
509	 * callback.
510	 */
511	error = kc->timer_create(new_timer);
512	if (error)
513		goto out;
514
515	spin_lock_irq(&current->sighand->siglock);
516	/* This makes the timer valid in the hash table */
517	WRITE_ONCE(new_timer->it_signal, current->signal);
518	list_add(&new_timer->list, &current->signal->posix_timers);
519	spin_unlock_irq(&current->sighand->siglock);
520	/*
521	 * After unlocking sighand::siglock @new_timer is subject to
522	 * concurrent removal and cannot be touched anymore
523	 */
524	return 0;
525out:
526	posix_timer_unhash_and_free(new_timer);
527	return error;
528}
529
530SYSCALL_DEFINE3(timer_create, const clockid_t, which_clock,
531		struct sigevent __user *, timer_event_spec,
532		timer_t __user *, created_timer_id)
533{
534	if (timer_event_spec) {
535		sigevent_t event;
536
537		if (copy_from_user(&event, timer_event_spec, sizeof (event)))
538			return -EFAULT;
539		return do_timer_create(which_clock, &event, created_timer_id);
540	}
541	return do_timer_create(which_clock, NULL, created_timer_id);
542}
543
544#ifdef CONFIG_COMPAT
545COMPAT_SYSCALL_DEFINE3(timer_create, clockid_t, which_clock,
546		       struct compat_sigevent __user *, timer_event_spec,
547		       timer_t __user *, created_timer_id)
548{
549	if (timer_event_spec) {
550		sigevent_t event;
551
552		if (get_compat_sigevent(&event, timer_event_spec))
553			return -EFAULT;
554		return do_timer_create(which_clock, &event, created_timer_id);
555	}
556	return do_timer_create(which_clock, NULL, created_timer_id);
557}
558#endif
559
560static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags)
561{
562	struct k_itimer *timr;
563
564	/*
565	 * timer_t could be any type >= int and we want to make sure any
566	 * @timer_id outside positive int range fails lookup.
567	 */
568	if ((unsigned long long)timer_id > INT_MAX)
569		return NULL;
570
571	/*
572	 * The hash lookup and the timers are RCU protected.
573	 *
574	 * Timers are added to the hash in invalid state where
575	 * timr::it_signal == NULL. timer::it_signal is only set after the
576	 * rest of the initialization succeeded.
577	 *
578	 * Timer destruction happens in steps:
579	 *  1) Set timr::it_signal to NULL with timr::it_lock held
580	 *  2) Release timr::it_lock
581	 *  3) Remove from the hash under hash_lock
582	 *  4) Call RCU for removal after the grace period
583	 *
584	 * Holding rcu_read_lock() accross the lookup ensures that
585	 * the timer cannot be freed.
586	 *
587	 * The lookup validates locklessly that timr::it_signal ==
588	 * current::it_signal and timr::it_id == @timer_id. timr::it_id
589	 * can't change, but timr::it_signal becomes NULL during
590	 * destruction.
591	 */
592	rcu_read_lock();
593	timr = posix_timer_by_id(timer_id);
594	if (timr) {
595		spin_lock_irqsave(&timr->it_lock, *flags);
596		/*
597		 * Validate under timr::it_lock that timr::it_signal is
598		 * still valid. Pairs with #1 above.
599		 */
600		if (timr->it_signal == current->signal) {
601			rcu_read_unlock();
602			return timr;
603		}
604		spin_unlock_irqrestore(&timr->it_lock, *flags);
605	}
606	rcu_read_unlock();
607
608	return NULL;
609}
610
611static ktime_t common_hrtimer_remaining(struct k_itimer *timr, ktime_t now)
612{
613	struct hrtimer *timer = &timr->it.real.timer;
614
615	return __hrtimer_expires_remaining_adjusted(timer, now);
616}
617
618static s64 common_hrtimer_forward(struct k_itimer *timr, ktime_t now)
619{
620	struct hrtimer *timer = &timr->it.real.timer;
621
622	return hrtimer_forward(timer, now, timr->it_interval);
623}
624
625/*
626 * Get the time remaining on a POSIX.1b interval timer.
627 *
628 * Two issues to handle here:
629 *
630 *  1) The timer has a requeue pending. The return value must appear as
631 *     if the timer has been requeued right now.
632 *
633 *  2) The timer is a SIGEV_NONE timer. These timers are never enqueued
634 *     into the hrtimer queue and therefore never expired. Emulate expiry
635 *     here taking #1 into account.
636 */
637void common_timer_get(struct k_itimer *timr, struct itimerspec64 *cur_setting)
638{
639	const struct k_clock *kc = timr->kclock;
640	ktime_t now, remaining, iv;
641	bool sig_none;
642
643	sig_none = timr->it_sigev_notify == SIGEV_NONE;
644	iv = timr->it_interval;
645
646	/* interval timer ? */
647	if (iv) {
648		cur_setting->it_interval = ktime_to_timespec64(iv);
649	} else if (!timr->it_active) {
650		/*
651		 * SIGEV_NONE oneshot timers are never queued and therefore
652		 * timr->it_active is always false. The check below
653		 * vs. remaining time will handle this case.
654		 *
655		 * For all other timers there is nothing to update here, so
656		 * return.
657		 */
658		if (!sig_none)
659			return;
660	}
661
662	now = kc->clock_get_ktime(timr->it_clock);
663
664	/*
665	 * If this is an interval timer and either has requeue pending or
666	 * is a SIGEV_NONE timer move the expiry time forward by intervals,
667	 * so expiry is > now.
668	 */
669	if (iv && (timr->it_requeue_pending & REQUEUE_PENDING || sig_none))
670		timr->it_overrun += kc->timer_forward(timr, now);
671
672	remaining = kc->timer_remaining(timr, now);
673	/*
674	 * As @now is retrieved before a possible timer_forward() and
675	 * cannot be reevaluated by the compiler @remaining is based on the
676	 * same @now value. Therefore @remaining is consistent vs. @now.
677	 *
678	 * Consequently all interval timers, i.e. @iv > 0, cannot have a
679	 * remaining time <= 0 because timer_forward() guarantees to move
680	 * them forward so that the next timer expiry is > @now.
681	 */
682	if (remaining <= 0) {
683		/*
684		 * A single shot SIGEV_NONE timer must return 0, when it is
685		 * expired! Timers which have a real signal delivery mode
686		 * must return a remaining time greater than 0 because the
687		 * signal has not yet been delivered.
688		 */
689		if (!sig_none)
690			cur_setting->it_value.tv_nsec = 1;
691	} else {
692		cur_setting->it_value = ktime_to_timespec64(remaining);
693	}
694}
695
696static int do_timer_gettime(timer_t timer_id,  struct itimerspec64 *setting)
697{
698	const struct k_clock *kc;
699	struct k_itimer *timr;
700	unsigned long flags;
701	int ret = 0;
702
703	timr = lock_timer(timer_id, &flags);
704	if (!timr)
705		return -EINVAL;
706
707	memset(setting, 0, sizeof(*setting));
708	kc = timr->kclock;
709	if (WARN_ON_ONCE(!kc || !kc->timer_get))
710		ret = -EINVAL;
711	else
712		kc->timer_get(timr, setting);
713
714	unlock_timer(timr, flags);
715	return ret;
716}
717
718/* Get the time remaining on a POSIX.1b interval timer. */
719SYSCALL_DEFINE2(timer_gettime, timer_t, timer_id,
720		struct __kernel_itimerspec __user *, setting)
721{
722	struct itimerspec64 cur_setting;
723
724	int ret = do_timer_gettime(timer_id, &cur_setting);
725	if (!ret) {
726		if (put_itimerspec64(&cur_setting, setting))
727			ret = -EFAULT;
728	}
729	return ret;
730}
731
732#ifdef CONFIG_COMPAT_32BIT_TIME
733
734SYSCALL_DEFINE2(timer_gettime32, timer_t, timer_id,
735		struct old_itimerspec32 __user *, setting)
736{
737	struct itimerspec64 cur_setting;
738
739	int ret = do_timer_gettime(timer_id, &cur_setting);
740	if (!ret) {
741		if (put_old_itimerspec32(&cur_setting, setting))
742			ret = -EFAULT;
743	}
744	return ret;
745}
746
747#endif
748
749/**
750 * sys_timer_getoverrun - Get the number of overruns of a POSIX.1b interval timer
751 * @timer_id:	The timer ID which identifies the timer
752 *
753 * The "overrun count" of a timer is one plus the number of expiration
754 * intervals which have elapsed between the first expiry, which queues the
755 * signal and the actual signal delivery. On signal delivery the "overrun
756 * count" is calculated and cached, so it can be returned directly here.
757 *
758 * As this is relative to the last queued signal the returned overrun count
759 * is meaningless outside of the signal delivery path and even there it
760 * does not accurately reflect the current state when user space evaluates
761 * it.
762 *
763 * Returns:
764 *	-EINVAL		@timer_id is invalid
765 *	1..INT_MAX	The number of overruns related to the last delivered signal
766 */
767SYSCALL_DEFINE1(timer_getoverrun, timer_t, timer_id)
768{
769	struct k_itimer *timr;
770	unsigned long flags;
771	int overrun;
772
773	timr = lock_timer(timer_id, &flags);
774	if (!timr)
775		return -EINVAL;
776
777	overrun = timer_overrun_to_int(timr, 0);
778	unlock_timer(timr, flags);
779
780	return overrun;
781}
782
783static void common_hrtimer_arm(struct k_itimer *timr, ktime_t expires,
784			       bool absolute, bool sigev_none)
785{
786	struct hrtimer *timer = &timr->it.real.timer;
787	enum hrtimer_mode mode;
788
789	mode = absolute ? HRTIMER_MODE_ABS : HRTIMER_MODE_REL;
790	/*
791	 * Posix magic: Relative CLOCK_REALTIME timers are not affected by
792	 * clock modifications, so they become CLOCK_MONOTONIC based under the
793	 * hood. See hrtimer_init(). Update timr->kclock, so the generic
794	 * functions which use timr->kclock->clock_get_*() work.
795	 *
796	 * Note: it_clock stays unmodified, because the next timer_set() might
797	 * use ABSTIME, so it needs to switch back.
798	 */
799	if (timr->it_clock == CLOCK_REALTIME)
800		timr->kclock = absolute ? &clock_realtime : &clock_monotonic;
801
802	hrtimer_init(&timr->it.real.timer, timr->it_clock, mode);
803	timr->it.real.timer.function = posix_timer_fn;
804
805	if (!absolute)
806		expires = ktime_add_safe(expires, timer->base->get_time());
807	hrtimer_set_expires(timer, expires);
808
809	if (!sigev_none)
810		hrtimer_start_expires(timer, HRTIMER_MODE_ABS);
811}
812
813static int common_hrtimer_try_to_cancel(struct k_itimer *timr)
814{
815	return hrtimer_try_to_cancel(&timr->it.real.timer);
816}
817
818static void common_timer_wait_running(struct k_itimer *timer)
819{
820	hrtimer_cancel_wait_running(&timer->it.real.timer);
821}
822
823/*
824 * On PREEMPT_RT this prevents priority inversion and a potential livelock
825 * against the ksoftirqd thread in case that ksoftirqd gets preempted while
826 * executing a hrtimer callback.
827 *
828 * See the comments in hrtimer_cancel_wait_running(). For PREEMPT_RT=n this
829 * just results in a cpu_relax().
830 *
831 * For POSIX CPU timers with CONFIG_POSIX_CPU_TIMERS_TASK_WORK=n this is
832 * just a cpu_relax(). With CONFIG_POSIX_CPU_TIMERS_TASK_WORK=y this
833 * prevents spinning on an eventually scheduled out task and a livelock
834 * when the task which tries to delete or disarm the timer has preempted
835 * the task which runs the expiry in task work context.
836 */
837static struct k_itimer *timer_wait_running(struct k_itimer *timer,
838					   unsigned long *flags)
839{
840	const struct k_clock *kc = READ_ONCE(timer->kclock);
841	timer_t timer_id = READ_ONCE(timer->it_id);
842
843	/* Prevent kfree(timer) after dropping the lock */
844	rcu_read_lock();
845	unlock_timer(timer, *flags);
846
847	/*
848	 * kc->timer_wait_running() might drop RCU lock. So @timer
849	 * cannot be touched anymore after the function returns!
850	 */
851	if (!WARN_ON_ONCE(!kc->timer_wait_running))
852		kc->timer_wait_running(timer);
853
854	rcu_read_unlock();
855	/* Relock the timer. It might be not longer hashed. */
856	return lock_timer(timer_id, flags);
857}
858
859/* Set a POSIX.1b interval timer. */
860int common_timer_set(struct k_itimer *timr, int flags,
861		     struct itimerspec64 *new_setting,
862		     struct itimerspec64 *old_setting)
863{
864	const struct k_clock *kc = timr->kclock;
865	bool sigev_none;
866	ktime_t expires;
867
868	if (old_setting)
869		common_timer_get(timr, old_setting);
870
871	/* Prevent rearming by clearing the interval */
872	timr->it_interval = 0;
873	/*
874	 * Careful here. On SMP systems the timer expiry function could be
875	 * active and spinning on timr->it_lock.
876	 */
877	if (kc->timer_try_to_cancel(timr) < 0)
878		return TIMER_RETRY;
879
880	timr->it_active = 0;
881	timr->it_requeue_pending = (timr->it_requeue_pending + 2) &
882		~REQUEUE_PENDING;
883	timr->it_overrun_last = 0;
884
885	/* Switch off the timer when it_value is zero */
886	if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec)
887		return 0;
888
889	timr->it_interval = timespec64_to_ktime(new_setting->it_interval);
890	expires = timespec64_to_ktime(new_setting->it_value);
891	if (flags & TIMER_ABSTIME)
892		expires = timens_ktime_to_host(timr->it_clock, expires);
893	sigev_none = timr->it_sigev_notify == SIGEV_NONE;
894
895	kc->timer_arm(timr, expires, flags & TIMER_ABSTIME, sigev_none);
896	timr->it_active = !sigev_none;
897	return 0;
898}
899
900static int do_timer_settime(timer_t timer_id, int tmr_flags,
901			    struct itimerspec64 *new_spec64,
902			    struct itimerspec64 *old_spec64)
903{
904	const struct k_clock *kc;
905	struct k_itimer *timr;
906	unsigned long flags;
907	int error = 0;
908
909	if (!timespec64_valid(&new_spec64->it_interval) ||
910	    !timespec64_valid(&new_spec64->it_value))
911		return -EINVAL;
912
913	if (old_spec64)
914		memset(old_spec64, 0, sizeof(*old_spec64));
915
916	timr = lock_timer(timer_id, &flags);
917retry:
918	if (!timr)
919		return -EINVAL;
920
921	kc = timr->kclock;
922	if (WARN_ON_ONCE(!kc || !kc->timer_set))
923		error = -EINVAL;
924	else
925		error = kc->timer_set(timr, tmr_flags, new_spec64, old_spec64);
926
927	if (error == TIMER_RETRY) {
928		// We already got the old time...
929		old_spec64 = NULL;
930		/* Unlocks and relocks the timer if it still exists */
931		timr = timer_wait_running(timr, &flags);
932		goto retry;
933	}
934	unlock_timer(timr, flags);
935
936	return error;
937}
938
939/* Set a POSIX.1b interval timer */
940SYSCALL_DEFINE4(timer_settime, timer_t, timer_id, int, flags,
941		const struct __kernel_itimerspec __user *, new_setting,
942		struct __kernel_itimerspec __user *, old_setting)
943{
944	struct itimerspec64 new_spec, old_spec, *rtn;
945	int error = 0;
946
947	if (!new_setting)
948		return -EINVAL;
949
950	if (get_itimerspec64(&new_spec, new_setting))
951		return -EFAULT;
952
953	rtn = old_setting ? &old_spec : NULL;
954	error = do_timer_settime(timer_id, flags, &new_spec, rtn);
955	if (!error && old_setting) {
956		if (put_itimerspec64(&old_spec, old_setting))
957			error = -EFAULT;
958	}
959	return error;
960}
961
962#ifdef CONFIG_COMPAT_32BIT_TIME
963SYSCALL_DEFINE4(timer_settime32, timer_t, timer_id, int, flags,
964		struct old_itimerspec32 __user *, new,
965		struct old_itimerspec32 __user *, old)
966{
967	struct itimerspec64 new_spec, old_spec;
968	struct itimerspec64 *rtn = old ? &old_spec : NULL;
969	int error = 0;
970
971	if (!new)
972		return -EINVAL;
973	if (get_old_itimerspec32(&new_spec, new))
974		return -EFAULT;
975
976	error = do_timer_settime(timer_id, flags, &new_spec, rtn);
977	if (!error && old) {
978		if (put_old_itimerspec32(&old_spec, old))
979			error = -EFAULT;
980	}
981	return error;
982}
983#endif
984
985int common_timer_del(struct k_itimer *timer)
986{
987	const struct k_clock *kc = timer->kclock;
988
989	timer->it_interval = 0;
990	if (kc->timer_try_to_cancel(timer) < 0)
991		return TIMER_RETRY;
992	timer->it_active = 0;
993	return 0;
994}
995
996static inline int timer_delete_hook(struct k_itimer *timer)
997{
998	const struct k_clock *kc = timer->kclock;
999
1000	if (WARN_ON_ONCE(!kc || !kc->timer_del))
1001		return -EINVAL;
1002	return kc->timer_del(timer);
1003}
1004
1005/* Delete a POSIX.1b interval timer. */
1006SYSCALL_DEFINE1(timer_delete, timer_t, timer_id)
1007{
1008	struct k_itimer *timer;
1009	unsigned long flags;
1010
1011	timer = lock_timer(timer_id, &flags);
1012
1013retry_delete:
1014	if (!timer)
1015		return -EINVAL;
1016
1017	if (unlikely(timer_delete_hook(timer) == TIMER_RETRY)) {
1018		/* Unlocks and relocks the timer if it still exists */
1019		timer = timer_wait_running(timer, &flags);
1020		goto retry_delete;
1021	}
1022
1023	spin_lock(&current->sighand->siglock);
1024	list_del(&timer->list);
1025	spin_unlock(&current->sighand->siglock);
1026	/*
1027	 * A concurrent lookup could check timer::it_signal lockless. It
1028	 * will reevaluate with timer::it_lock held and observe the NULL.
1029	 */
1030	WRITE_ONCE(timer->it_signal, NULL);
1031
1032	unlock_timer(timer, flags);
1033	posix_timer_unhash_and_free(timer);
1034	return 0;
1035}
1036
1037/*
1038 * Delete a timer if it is armed, remove it from the hash and schedule it
1039 * for RCU freeing.
1040 */
1041static void itimer_delete(struct k_itimer *timer)
1042{
1043	unsigned long flags;
1044
1045	/*
1046	 * irqsave is required to make timer_wait_running() work.
1047	 */
1048	spin_lock_irqsave(&timer->it_lock, flags);
1049
1050retry_delete:
1051	/*
1052	 * Even if the timer is not longer accessible from other tasks
1053	 * it still might be armed and queued in the underlying timer
1054	 * mechanism. Worse, that timer mechanism might run the expiry
1055	 * function concurrently.
1056	 */
1057	if (timer_delete_hook(timer) == TIMER_RETRY) {
1058		/*
1059		 * Timer is expired concurrently, prevent livelocks
1060		 * and pointless spinning on RT.
1061		 *
1062		 * timer_wait_running() drops timer::it_lock, which opens
1063		 * the possibility for another task to delete the timer.
1064		 *
1065		 * That's not possible here because this is invoked from
1066		 * do_exit() only for the last thread of the thread group.
1067		 * So no other task can access and delete that timer.
1068		 */
1069		if (WARN_ON_ONCE(timer_wait_running(timer, &flags) != timer))
1070			return;
1071
1072		goto retry_delete;
1073	}
1074	list_del(&timer->list);
1075
1076	/*
1077	 * Setting timer::it_signal to NULL is technically not required
1078	 * here as nothing can access the timer anymore legitimately via
1079	 * the hash table. Set it to NULL nevertheless so that all deletion
1080	 * paths are consistent.
1081	 */
1082	WRITE_ONCE(timer->it_signal, NULL);
1083
1084	spin_unlock_irqrestore(&timer->it_lock, flags);
1085	posix_timer_unhash_and_free(timer);
1086}
1087
1088/*
1089 * Invoked from do_exit() when the last thread of a thread group exits.
1090 * At that point no other task can access the timers of the dying
1091 * task anymore.
1092 */
1093void exit_itimers(struct task_struct *tsk)
1094{
1095	struct list_head timers;
1096	struct k_itimer *tmr;
1097
1098	if (list_empty(&tsk->signal->posix_timers))
1099		return;
1100
1101	/* Protect against concurrent read via /proc/$PID/timers */
1102	spin_lock_irq(&tsk->sighand->siglock);
1103	list_replace_init(&tsk->signal->posix_timers, &timers);
1104	spin_unlock_irq(&tsk->sighand->siglock);
1105
1106	/* The timers are not longer accessible via tsk::signal */
1107	while (!list_empty(&timers)) {
1108		tmr = list_first_entry(&timers, struct k_itimer, list);
1109		itimer_delete(tmr);
1110	}
1111}
1112
1113SYSCALL_DEFINE2(clock_settime, const clockid_t, which_clock,
1114		const struct __kernel_timespec __user *, tp)
1115{
1116	const struct k_clock *kc = clockid_to_kclock(which_clock);
1117	struct timespec64 new_tp;
1118
1119	if (!kc || !kc->clock_set)
1120		return -EINVAL;
1121
1122	if (get_timespec64(&new_tp, tp))
1123		return -EFAULT;
1124
1125	/*
1126	 * Permission checks have to be done inside the clock specific
1127	 * setter callback.
1128	 */
1129	return kc->clock_set(which_clock, &new_tp);
1130}
1131
1132SYSCALL_DEFINE2(clock_gettime, const clockid_t, which_clock,
1133		struct __kernel_timespec __user *, tp)
1134{
1135	const struct k_clock *kc = clockid_to_kclock(which_clock);
1136	struct timespec64 kernel_tp;
1137	int error;
1138
1139	if (!kc)
1140		return -EINVAL;
1141
1142	error = kc->clock_get_timespec(which_clock, &kernel_tp);
1143
1144	if (!error && put_timespec64(&kernel_tp, tp))
1145		error = -EFAULT;
1146
1147	return error;
1148}
1149
1150int do_clock_adjtime(const clockid_t which_clock, struct __kernel_timex * ktx)
1151{
1152	const struct k_clock *kc = clockid_to_kclock(which_clock);
1153
1154	if (!kc)
1155		return -EINVAL;
1156	if (!kc->clock_adj)
1157		return -EOPNOTSUPP;
1158
1159	return kc->clock_adj(which_clock, ktx);
1160}
1161
1162SYSCALL_DEFINE2(clock_adjtime, const clockid_t, which_clock,
1163		struct __kernel_timex __user *, utx)
1164{
1165	struct __kernel_timex ktx;
1166	int err;
1167
1168	if (copy_from_user(&ktx, utx, sizeof(ktx)))
1169		return -EFAULT;
1170
1171	err = do_clock_adjtime(which_clock, &ktx);
1172
1173	if (err >= 0 && copy_to_user(utx, &ktx, sizeof(ktx)))
1174		return -EFAULT;
1175
1176	return err;
1177}
1178
1179/**
1180 * sys_clock_getres - Get the resolution of a clock
1181 * @which_clock:	The clock to get the resolution for
1182 * @tp:			Pointer to a a user space timespec64 for storage
1183 *
1184 * POSIX defines:
1185 *
1186 * "The clock_getres() function shall return the resolution of any
1187 * clock. Clock resolutions are implementation-defined and cannot be set by
1188 * a process. If the argument res is not NULL, the resolution of the
1189 * specified clock shall be stored in the location pointed to by res. If
1190 * res is NULL, the clock resolution is not returned. If the time argument
1191 * of clock_settime() is not a multiple of res, then the value is truncated
1192 * to a multiple of res."
1193 *
1194 * Due to the various hardware constraints the real resolution can vary
1195 * wildly and even change during runtime when the underlying devices are
1196 * replaced. The kernel also can use hardware devices with different
1197 * resolutions for reading the time and for arming timers.
1198 *
1199 * The kernel therefore deviates from the POSIX spec in various aspects:
1200 *
1201 * 1) The resolution returned to user space
1202 *
1203 *    For CLOCK_REALTIME, CLOCK_MONOTONIC, CLOCK_BOOTTIME, CLOCK_TAI,
1204 *    CLOCK_REALTIME_ALARM, CLOCK_BOOTTIME_ALAREM and CLOCK_MONOTONIC_RAW
1205 *    the kernel differentiates only two cases:
1206 *
1207 *    I)  Low resolution mode:
1208 *
1209 *	  When high resolution timers are disabled at compile or runtime
1210 *	  the resolution returned is nanoseconds per tick, which represents
1211 *	  the precision at which timers expire.
1212 *
1213 *    II) High resolution mode:
1214 *
1215 *	  When high resolution timers are enabled the resolution returned
1216 *	  is always one nanosecond independent of the actual resolution of
1217 *	  the underlying hardware devices.
1218 *
1219 *	  For CLOCK_*_ALARM the actual resolution depends on system
1220 *	  state. When system is running the resolution is the same as the
1221 *	  resolution of the other clocks. During suspend the actual
1222 *	  resolution is the resolution of the underlying RTC device which
1223 *	  might be way less precise than the clockevent device used during
1224 *	  running state.
1225 *
1226 *   For CLOCK_REALTIME_COARSE and CLOCK_MONOTONIC_COARSE the resolution
1227 *   returned is always nanoseconds per tick.
1228 *
1229 *   For CLOCK_PROCESS_CPUTIME and CLOCK_THREAD_CPUTIME the resolution
1230 *   returned is always one nanosecond under the assumption that the
1231 *   underlying scheduler clock has a better resolution than nanoseconds
1232 *   per tick.
1233 *
1234 *   For dynamic POSIX clocks (PTP devices) the resolution returned is
1235 *   always one nanosecond.
1236 *
1237 * 2) Affect on sys_clock_settime()
1238 *
1239 *    The kernel does not truncate the time which is handed in to
1240 *    sys_clock_settime(). The kernel internal timekeeping is always using
1241 *    nanoseconds precision independent of the clocksource device which is
1242 *    used to read the time from. The resolution of that device only
1243 *    affects the presicion of the time returned by sys_clock_gettime().
1244 *
1245 * Returns:
1246 *	0		Success. @tp contains the resolution
1247 *	-EINVAL		@which_clock is not a valid clock ID
1248 *	-EFAULT		Copying the resolution to @tp faulted
1249 *	-ENODEV		Dynamic POSIX clock is not backed by a device
1250 *	-EOPNOTSUPP	Dynamic POSIX clock does not support getres()
1251 */
1252SYSCALL_DEFINE2(clock_getres, const clockid_t, which_clock,
1253		struct __kernel_timespec __user *, tp)
1254{
1255	const struct k_clock *kc = clockid_to_kclock(which_clock);
1256	struct timespec64 rtn_tp;
1257	int error;
1258
1259	if (!kc)
1260		return -EINVAL;
1261
1262	error = kc->clock_getres(which_clock, &rtn_tp);
1263
1264	if (!error && tp && put_timespec64(&rtn_tp, tp))
1265		error = -EFAULT;
1266
1267	return error;
1268}
1269
1270#ifdef CONFIG_COMPAT_32BIT_TIME
1271
1272SYSCALL_DEFINE2(clock_settime32, clockid_t, which_clock,
1273		struct old_timespec32 __user *, tp)
1274{
1275	const struct k_clock *kc = clockid_to_kclock(which_clock);
1276	struct timespec64 ts;
1277
1278	if (!kc || !kc->clock_set)
1279		return -EINVAL;
1280
1281	if (get_old_timespec32(&ts, tp))
1282		return -EFAULT;
1283
1284	return kc->clock_set(which_clock, &ts);
1285}
1286
1287SYSCALL_DEFINE2(clock_gettime32, clockid_t, which_clock,
1288		struct old_timespec32 __user *, tp)
1289{
1290	const struct k_clock *kc = clockid_to_kclock(which_clock);
1291	struct timespec64 ts;
1292	int err;
1293
1294	if (!kc)
1295		return -EINVAL;
1296
1297	err = kc->clock_get_timespec(which_clock, &ts);
1298
1299	if (!err && put_old_timespec32(&ts, tp))
1300		err = -EFAULT;
1301
1302	return err;
1303}
1304
1305SYSCALL_DEFINE2(clock_adjtime32, clockid_t, which_clock,
1306		struct old_timex32 __user *, utp)
1307{
1308	struct __kernel_timex ktx;
1309	int err;
1310
1311	err = get_old_timex32(&ktx, utp);
1312	if (err)
1313		return err;
1314
1315	err = do_clock_adjtime(which_clock, &ktx);
1316
1317	if (err >= 0 && put_old_timex32(utp, &ktx))
1318		return -EFAULT;
1319
1320	return err;
1321}
1322
1323SYSCALL_DEFINE2(clock_getres_time32, clockid_t, which_clock,
1324		struct old_timespec32 __user *, tp)
1325{
1326	const struct k_clock *kc = clockid_to_kclock(which_clock);
1327	struct timespec64 ts;
1328	int err;
1329
1330	if (!kc)
1331		return -EINVAL;
1332
1333	err = kc->clock_getres(which_clock, &ts);
1334	if (!err && tp && put_old_timespec32(&ts, tp))
1335		return -EFAULT;
1336
1337	return err;
1338}
1339
1340#endif
1341
1342/*
1343 * sys_clock_nanosleep() for CLOCK_REALTIME and CLOCK_TAI
1344 */
1345static int common_nsleep(const clockid_t which_clock, int flags,
1346			 const struct timespec64 *rqtp)
1347{
1348	ktime_t texp = timespec64_to_ktime(*rqtp);
1349
1350	return hrtimer_nanosleep(texp, flags & TIMER_ABSTIME ?
1351				 HRTIMER_MODE_ABS : HRTIMER_MODE_REL,
1352				 which_clock);
1353}
1354
1355/*
1356 * sys_clock_nanosleep() for CLOCK_MONOTONIC and CLOCK_BOOTTIME
1357 *
1358 * Absolute nanosleeps for these clocks are time-namespace adjusted.
1359 */
1360static int common_nsleep_timens(const clockid_t which_clock, int flags,
1361				const struct timespec64 *rqtp)
1362{
1363	ktime_t texp = timespec64_to_ktime(*rqtp);
1364
1365	if (flags & TIMER_ABSTIME)
1366		texp = timens_ktime_to_host(which_clock, texp);
1367
1368	return hrtimer_nanosleep(texp, flags & TIMER_ABSTIME ?
1369				 HRTIMER_MODE_ABS : HRTIMER_MODE_REL,
1370				 which_clock);
1371}
1372
1373SYSCALL_DEFINE4(clock_nanosleep, const clockid_t, which_clock, int, flags,
1374		const struct __kernel_timespec __user *, rqtp,
1375		struct __kernel_timespec __user *, rmtp)
1376{
1377	const struct k_clock *kc = clockid_to_kclock(which_clock);
1378	struct timespec64 t;
1379
1380	if (!kc)
1381		return -EINVAL;
1382	if (!kc->nsleep)
1383		return -EOPNOTSUPP;
1384
1385	if (get_timespec64(&t, rqtp))
1386		return -EFAULT;
1387
1388	if (!timespec64_valid(&t))
1389		return -EINVAL;
1390	if (flags & TIMER_ABSTIME)
1391		rmtp = NULL;
1392	current->restart_block.fn = do_no_restart_syscall;
1393	current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE;
1394	current->restart_block.nanosleep.rmtp = rmtp;
1395
1396	return kc->nsleep(which_clock, flags, &t);
1397}
1398
1399#ifdef CONFIG_COMPAT_32BIT_TIME
1400
1401SYSCALL_DEFINE4(clock_nanosleep_time32, clockid_t, which_clock, int, flags,
1402		struct old_timespec32 __user *, rqtp,
1403		struct old_timespec32 __user *, rmtp)
1404{
1405	const struct k_clock *kc = clockid_to_kclock(which_clock);
1406	struct timespec64 t;
1407
1408	if (!kc)
1409		return -EINVAL;
1410	if (!kc->nsleep)
1411		return -EOPNOTSUPP;
1412
1413	if (get_old_timespec32(&t, rqtp))
1414		return -EFAULT;
1415
1416	if (!timespec64_valid(&t))
1417		return -EINVAL;
1418	if (flags & TIMER_ABSTIME)
1419		rmtp = NULL;
1420	current->restart_block.fn = do_no_restart_syscall;
1421	current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE;
1422	current->restart_block.nanosleep.compat_rmtp = rmtp;
1423
1424	return kc->nsleep(which_clock, flags, &t);
1425}
1426
1427#endif
1428
1429static const struct k_clock clock_realtime = {
1430	.clock_getres		= posix_get_hrtimer_res,
1431	.clock_get_timespec	= posix_get_realtime_timespec,
1432	.clock_get_ktime	= posix_get_realtime_ktime,
1433	.clock_set		= posix_clock_realtime_set,
1434	.clock_adj		= posix_clock_realtime_adj,
1435	.nsleep			= common_nsleep,
1436	.timer_create		= common_timer_create,
1437	.timer_set		= common_timer_set,
1438	.timer_get		= common_timer_get,
1439	.timer_del		= common_timer_del,
1440	.timer_rearm		= common_hrtimer_rearm,
1441	.timer_forward		= common_hrtimer_forward,
1442	.timer_remaining	= common_hrtimer_remaining,
1443	.timer_try_to_cancel	= common_hrtimer_try_to_cancel,
1444	.timer_wait_running	= common_timer_wait_running,
1445	.timer_arm		= common_hrtimer_arm,
1446};
1447
1448static const struct k_clock clock_monotonic = {
1449	.clock_getres		= posix_get_hrtimer_res,
1450	.clock_get_timespec	= posix_get_monotonic_timespec,
1451	.clock_get_ktime	= posix_get_monotonic_ktime,
1452	.nsleep			= common_nsleep_timens,
1453	.timer_create		= common_timer_create,
1454	.timer_set		= common_timer_set,
1455	.timer_get		= common_timer_get,
1456	.timer_del		= common_timer_del,
1457	.timer_rearm		= common_hrtimer_rearm,
1458	.timer_forward		= common_hrtimer_forward,
1459	.timer_remaining	= common_hrtimer_remaining,
1460	.timer_try_to_cancel	= common_hrtimer_try_to_cancel,
1461	.timer_wait_running	= common_timer_wait_running,
1462	.timer_arm		= common_hrtimer_arm,
1463};
1464
1465static const struct k_clock clock_monotonic_raw = {
1466	.clock_getres		= posix_get_hrtimer_res,
1467	.clock_get_timespec	= posix_get_monotonic_raw,
1468};
1469
1470static const struct k_clock clock_realtime_coarse = {
1471	.clock_getres		= posix_get_coarse_res,
1472	.clock_get_timespec	= posix_get_realtime_coarse,
1473};
1474
1475static const struct k_clock clock_monotonic_coarse = {
1476	.clock_getres		= posix_get_coarse_res,
1477	.clock_get_timespec	= posix_get_monotonic_coarse,
1478};
1479
1480static const struct k_clock clock_tai = {
1481	.clock_getres		= posix_get_hrtimer_res,
1482	.clock_get_ktime	= posix_get_tai_ktime,
1483	.clock_get_timespec	= posix_get_tai_timespec,
1484	.nsleep			= common_nsleep,
1485	.timer_create		= common_timer_create,
1486	.timer_set		= common_timer_set,
1487	.timer_get		= common_timer_get,
1488	.timer_del		= common_timer_del,
1489	.timer_rearm		= common_hrtimer_rearm,
1490	.timer_forward		= common_hrtimer_forward,
1491	.timer_remaining	= common_hrtimer_remaining,
1492	.timer_try_to_cancel	= common_hrtimer_try_to_cancel,
1493	.timer_wait_running	= common_timer_wait_running,
1494	.timer_arm		= common_hrtimer_arm,
1495};
1496
1497static const struct k_clock clock_boottime = {
1498	.clock_getres		= posix_get_hrtimer_res,
1499	.clock_get_ktime	= posix_get_boottime_ktime,
1500	.clock_get_timespec	= posix_get_boottime_timespec,
1501	.nsleep			= common_nsleep_timens,
1502	.timer_create		= common_timer_create,
1503	.timer_set		= common_timer_set,
1504	.timer_get		= common_timer_get,
1505	.timer_del		= common_timer_del,
1506	.timer_rearm		= common_hrtimer_rearm,
1507	.timer_forward		= common_hrtimer_forward,
1508	.timer_remaining	= common_hrtimer_remaining,
1509	.timer_try_to_cancel	= common_hrtimer_try_to_cancel,
1510	.timer_wait_running	= common_timer_wait_running,
1511	.timer_arm		= common_hrtimer_arm,
1512};
1513
1514static const struct k_clock * const posix_clocks[] = {
1515	[CLOCK_REALTIME]		= &clock_realtime,
1516	[CLOCK_MONOTONIC]		= &clock_monotonic,
1517	[CLOCK_PROCESS_CPUTIME_ID]	= &clock_process,
1518	[CLOCK_THREAD_CPUTIME_ID]	= &clock_thread,
1519	[CLOCK_MONOTONIC_RAW]		= &clock_monotonic_raw,
1520	[CLOCK_REALTIME_COARSE]		= &clock_realtime_coarse,
1521	[CLOCK_MONOTONIC_COARSE]	= &clock_monotonic_coarse,
1522	[CLOCK_BOOTTIME]		= &clock_boottime,
1523	[CLOCK_REALTIME_ALARM]		= &alarm_clock,
1524	[CLOCK_BOOTTIME_ALARM]		= &alarm_clock,
1525	[CLOCK_TAI]			= &clock_tai,
1526};
1527
1528static const struct k_clock *clockid_to_kclock(const clockid_t id)
1529{
1530	clockid_t idx = id;
1531
1532	if (id < 0) {
1533		return (id & CLOCKFD_MASK) == CLOCKFD ?
1534			&clock_posix_dynamic : &clock_posix_cpu;
1535	}
1536
1537	if (id >= ARRAY_SIZE(posix_clocks))
1538		return NULL;
1539
1540	return posix_clocks[array_index_nospec(idx, ARRAY_SIZE(posix_clocks))];
1541}
1542