1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Generic waiting primitives.
4 *
5 * (C) 2004 Nadia Yvette Chambers, Oracle
6 */
7
8void __init_waitqueue_head(struct wait_queue_head *wq_head, const char *name, struct lock_class_key *key)
9{
10	spin_lock_init(&wq_head->lock);
11	lockdep_set_class_and_name(&wq_head->lock, key, name);
12	INIT_LIST_HEAD(&wq_head->head);
13}
14
15EXPORT_SYMBOL(__init_waitqueue_head);
16
17void add_wait_queue(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry)
18{
19	unsigned long flags;
20
21	wq_entry->flags &= ~WQ_FLAG_EXCLUSIVE;
22	spin_lock_irqsave(&wq_head->lock, flags);
23	__add_wait_queue(wq_head, wq_entry);
24	spin_unlock_irqrestore(&wq_head->lock, flags);
25}
26EXPORT_SYMBOL(add_wait_queue);
27
28void add_wait_queue_exclusive(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry)
29{
30	unsigned long flags;
31
32	wq_entry->flags |= WQ_FLAG_EXCLUSIVE;
33	spin_lock_irqsave(&wq_head->lock, flags);
34	__add_wait_queue_entry_tail(wq_head, wq_entry);
35	spin_unlock_irqrestore(&wq_head->lock, flags);
36}
37EXPORT_SYMBOL(add_wait_queue_exclusive);
38
39void add_wait_queue_priority(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry)
40{
41	unsigned long flags;
42
43	wq_entry->flags |= WQ_FLAG_EXCLUSIVE | WQ_FLAG_PRIORITY;
44	spin_lock_irqsave(&wq_head->lock, flags);
45	__add_wait_queue(wq_head, wq_entry);
46	spin_unlock_irqrestore(&wq_head->lock, flags);
47}
48EXPORT_SYMBOL_GPL(add_wait_queue_priority);
49
50void remove_wait_queue(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry)
51{
52	unsigned long flags;
53
54	spin_lock_irqsave(&wq_head->lock, flags);
55	__remove_wait_queue(wq_head, wq_entry);
56	spin_unlock_irqrestore(&wq_head->lock, flags);
57}
58EXPORT_SYMBOL(remove_wait_queue);
59
60/*
61 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
62 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
63 * number) then we wake that number of exclusive tasks, and potentially all
64 * the non-exclusive tasks. Normally, exclusive tasks will be at the end of
65 * the list and any non-exclusive tasks will be woken first. A priority task
66 * may be at the head of the list, and can consume the event without any other
67 * tasks being woken.
68 *
69 * There are circumstances in which we can try to wake a task which has already
70 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
71 * zero in this (rare) case, and we handle it by continuing to scan the queue.
72 */
73static int __wake_up_common(struct wait_queue_head *wq_head, unsigned int mode,
74			int nr_exclusive, int wake_flags, void *key)
75{
76	wait_queue_entry_t *curr, *next;
77
78	lockdep_assert_held(&wq_head->lock);
79
80	curr = list_first_entry(&wq_head->head, wait_queue_entry_t, entry);
81
82	if (&curr->entry == &wq_head->head)
83		return nr_exclusive;
84
85	list_for_each_entry_safe_from(curr, next, &wq_head->head, entry) {
86		unsigned flags = curr->flags;
87		int ret;
88
89		ret = curr->func(curr, mode, wake_flags, key);
90		if (ret < 0)
91			break;
92		if (ret && (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
93			break;
94	}
95
96	return nr_exclusive;
97}
98
99static int __wake_up_common_lock(struct wait_queue_head *wq_head, unsigned int mode,
100			int nr_exclusive, int wake_flags, void *key)
101{
102	unsigned long flags;
103	int remaining;
104
105	spin_lock_irqsave(&wq_head->lock, flags);
106	remaining = __wake_up_common(wq_head, mode, nr_exclusive, wake_flags,
107			key);
108	spin_unlock_irqrestore(&wq_head->lock, flags);
109
110	return nr_exclusive - remaining;
111}
112
113/**
114 * __wake_up - wake up threads blocked on a waitqueue.
115 * @wq_head: the waitqueue
116 * @mode: which threads
117 * @nr_exclusive: how many wake-one or wake-many threads to wake up
118 * @key: is directly passed to the wakeup function
119 *
120 * If this function wakes up a task, it executes a full memory barrier
121 * before accessing the task state.  Returns the number of exclusive
122 * tasks that were awaken.
123 */
124int __wake_up(struct wait_queue_head *wq_head, unsigned int mode,
125	      int nr_exclusive, void *key)
126{
127	return __wake_up_common_lock(wq_head, mode, nr_exclusive, 0, key);
128}
129EXPORT_SYMBOL(__wake_up);
130
131void __wake_up_on_current_cpu(struct wait_queue_head *wq_head, unsigned int mode, void *key)
132{
133	__wake_up_common_lock(wq_head, mode, 1, WF_CURRENT_CPU, key);
134}
135
136/*
137 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
138 */
139void __wake_up_locked(struct wait_queue_head *wq_head, unsigned int mode, int nr)
140{
141	__wake_up_common(wq_head, mode, nr, 0, NULL);
142}
143EXPORT_SYMBOL_GPL(__wake_up_locked);
144
145void __wake_up_locked_key(struct wait_queue_head *wq_head, unsigned int mode, void *key)
146{
147	__wake_up_common(wq_head, mode, 1, 0, key);
148}
149EXPORT_SYMBOL_GPL(__wake_up_locked_key);
150
151/**
152 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
153 * @wq_head: the waitqueue
154 * @mode: which threads
155 * @key: opaque value to be passed to wakeup targets
156 *
157 * The sync wakeup differs that the waker knows that it will schedule
158 * away soon, so while the target thread will be woken up, it will not
159 * be migrated to another CPU - ie. the two threads are 'synchronized'
160 * with each other. This can prevent needless bouncing between CPUs.
161 *
162 * On UP it can prevent extra preemption.
163 *
164 * If this function wakes up a task, it executes a full memory barrier before
165 * accessing the task state.
166 */
167void __wake_up_sync_key(struct wait_queue_head *wq_head, unsigned int mode,
168			void *key)
169{
170	if (unlikely(!wq_head))
171		return;
172
173	__wake_up_common_lock(wq_head, mode, 1, WF_SYNC, key);
174}
175EXPORT_SYMBOL_GPL(__wake_up_sync_key);
176
177/**
178 * __wake_up_locked_sync_key - wake up a thread blocked on a locked waitqueue.
179 * @wq_head: the waitqueue
180 * @mode: which threads
181 * @key: opaque value to be passed to wakeup targets
182 *
183 * The sync wakeup differs in that the waker knows that it will schedule
184 * away soon, so while the target thread will be woken up, it will not
185 * be migrated to another CPU - ie. the two threads are 'synchronized'
186 * with each other. This can prevent needless bouncing between CPUs.
187 *
188 * On UP it can prevent extra preemption.
189 *
190 * If this function wakes up a task, it executes a full memory barrier before
191 * accessing the task state.
192 */
193void __wake_up_locked_sync_key(struct wait_queue_head *wq_head,
194			       unsigned int mode, void *key)
195{
196        __wake_up_common(wq_head, mode, 1, WF_SYNC, key);
197}
198EXPORT_SYMBOL_GPL(__wake_up_locked_sync_key);
199
200/*
201 * __wake_up_sync - see __wake_up_sync_key()
202 */
203void __wake_up_sync(struct wait_queue_head *wq_head, unsigned int mode)
204{
205	__wake_up_sync_key(wq_head, mode, NULL);
206}
207EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */
208
209void __wake_up_pollfree(struct wait_queue_head *wq_head)
210{
211	__wake_up(wq_head, TASK_NORMAL, 0, poll_to_key(EPOLLHUP | POLLFREE));
212	/* POLLFREE must have cleared the queue. */
213	WARN_ON_ONCE(waitqueue_active(wq_head));
214}
215
216/*
217 * Note: we use "set_current_state()" _after_ the wait-queue add,
218 * because we need a memory barrier there on SMP, so that any
219 * wake-function that tests for the wait-queue being active
220 * will be guaranteed to see waitqueue addition _or_ subsequent
221 * tests in this thread will see the wakeup having taken place.
222 *
223 * The spin_unlock() itself is semi-permeable and only protects
224 * one way (it only protects stuff inside the critical region and
225 * stops them from bleeding out - it would still allow subsequent
226 * loads to move into the critical region).
227 */
228void
229prepare_to_wait(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry, int state)
230{
231	unsigned long flags;
232
233	wq_entry->flags &= ~WQ_FLAG_EXCLUSIVE;
234	spin_lock_irqsave(&wq_head->lock, flags);
235	if (list_empty(&wq_entry->entry))
236		__add_wait_queue(wq_head, wq_entry);
237	set_current_state(state);
238	spin_unlock_irqrestore(&wq_head->lock, flags);
239}
240EXPORT_SYMBOL(prepare_to_wait);
241
242/* Returns true if we are the first waiter in the queue, false otherwise. */
243bool
244prepare_to_wait_exclusive(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry, int state)
245{
246	unsigned long flags;
247	bool was_empty = false;
248
249	wq_entry->flags |= WQ_FLAG_EXCLUSIVE;
250	spin_lock_irqsave(&wq_head->lock, flags);
251	if (list_empty(&wq_entry->entry)) {
252		was_empty = list_empty(&wq_head->head);
253		__add_wait_queue_entry_tail(wq_head, wq_entry);
254	}
255	set_current_state(state);
256	spin_unlock_irqrestore(&wq_head->lock, flags);
257	return was_empty;
258}
259EXPORT_SYMBOL(prepare_to_wait_exclusive);
260
261void init_wait_entry(struct wait_queue_entry *wq_entry, int flags)
262{
263	wq_entry->flags = flags;
264	wq_entry->private = current;
265	wq_entry->func = autoremove_wake_function;
266	INIT_LIST_HEAD(&wq_entry->entry);
267}
268EXPORT_SYMBOL(init_wait_entry);
269
270long prepare_to_wait_event(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry, int state)
271{
272	unsigned long flags;
273	long ret = 0;
274
275	spin_lock_irqsave(&wq_head->lock, flags);
276	if (signal_pending_state(state, current)) {
277		/*
278		 * Exclusive waiter must not fail if it was selected by wakeup,
279		 * it should "consume" the condition we were waiting for.
280		 *
281		 * The caller will recheck the condition and return success if
282		 * we were already woken up, we can not miss the event because
283		 * wakeup locks/unlocks the same wq_head->lock.
284		 *
285		 * But we need to ensure that set-condition + wakeup after that
286		 * can't see us, it should wake up another exclusive waiter if
287		 * we fail.
288		 */
289		list_del_init(&wq_entry->entry);
290		ret = -ERESTARTSYS;
291	} else {
292		if (list_empty(&wq_entry->entry)) {
293			if (wq_entry->flags & WQ_FLAG_EXCLUSIVE)
294				__add_wait_queue_entry_tail(wq_head, wq_entry);
295			else
296				__add_wait_queue(wq_head, wq_entry);
297		}
298		set_current_state(state);
299	}
300	spin_unlock_irqrestore(&wq_head->lock, flags);
301
302	return ret;
303}
304EXPORT_SYMBOL(prepare_to_wait_event);
305
306/*
307 * Note! These two wait functions are entered with the
308 * wait-queue lock held (and interrupts off in the _irq
309 * case), so there is no race with testing the wakeup
310 * condition in the caller before they add the wait
311 * entry to the wake queue.
312 */
313int do_wait_intr(wait_queue_head_t *wq, wait_queue_entry_t *wait)
314{
315	if (likely(list_empty(&wait->entry)))
316		__add_wait_queue_entry_tail(wq, wait);
317
318	set_current_state(TASK_INTERRUPTIBLE);
319	if (signal_pending(current))
320		return -ERESTARTSYS;
321
322	spin_unlock(&wq->lock);
323	schedule();
324	spin_lock(&wq->lock);
325
326	return 0;
327}
328EXPORT_SYMBOL(do_wait_intr);
329
330int do_wait_intr_irq(wait_queue_head_t *wq, wait_queue_entry_t *wait)
331{
332	if (likely(list_empty(&wait->entry)))
333		__add_wait_queue_entry_tail(wq, wait);
334
335	set_current_state(TASK_INTERRUPTIBLE);
336	if (signal_pending(current))
337		return -ERESTARTSYS;
338
339	spin_unlock_irq(&wq->lock);
340	schedule();
341	spin_lock_irq(&wq->lock);
342
343	return 0;
344}
345EXPORT_SYMBOL(do_wait_intr_irq);
346
347/**
348 * finish_wait - clean up after waiting in a queue
349 * @wq_head: waitqueue waited on
350 * @wq_entry: wait descriptor
351 *
352 * Sets current thread back to running state and removes
353 * the wait descriptor from the given waitqueue if still
354 * queued.
355 */
356void finish_wait(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry)
357{
358	unsigned long flags;
359
360	__set_current_state(TASK_RUNNING);
361	/*
362	 * We can check for list emptiness outside the lock
363	 * IFF:
364	 *  - we use the "careful" check that verifies both
365	 *    the next and prev pointers, so that there cannot
366	 *    be any half-pending updates in progress on other
367	 *    CPU's that we haven't seen yet (and that might
368	 *    still change the stack area.
369	 * and
370	 *  - all other users take the lock (ie we can only
371	 *    have _one_ other CPU that looks at or modifies
372	 *    the list).
373	 */
374	if (!list_empty_careful(&wq_entry->entry)) {
375		spin_lock_irqsave(&wq_head->lock, flags);
376		list_del_init(&wq_entry->entry);
377		spin_unlock_irqrestore(&wq_head->lock, flags);
378	}
379}
380EXPORT_SYMBOL(finish_wait);
381
382int autoremove_wake_function(struct wait_queue_entry *wq_entry, unsigned mode, int sync, void *key)
383{
384	int ret = default_wake_function(wq_entry, mode, sync, key);
385
386	if (ret)
387		list_del_init_careful(&wq_entry->entry);
388
389	return ret;
390}
391EXPORT_SYMBOL(autoremove_wake_function);
392
393/*
394 * DEFINE_WAIT_FUNC(wait, woken_wake_func);
395 *
396 * add_wait_queue(&wq_head, &wait);
397 * for (;;) {
398 *     if (condition)
399 *         break;
400 *
401 *     // in wait_woken()			// in woken_wake_function()
402 *
403 *     p->state = mode;				wq_entry->flags |= WQ_FLAG_WOKEN;
404 *     smp_mb(); // A				try_to_wake_up():
405 *     if (!(wq_entry->flags & WQ_FLAG_WOKEN))	   <full barrier>
406 *         schedule()				   if (p->state & mode)
407 *     p->state = TASK_RUNNING;			      p->state = TASK_RUNNING;
408 *     wq_entry->flags &= ~WQ_FLAG_WOKEN;	~~~~~~~~~~~~~~~~~~
409 *     smp_mb(); // B				condition = true;
410 * }						smp_mb(); // C
411 * remove_wait_queue(&wq_head, &wait);		wq_entry->flags |= WQ_FLAG_WOKEN;
412 */
413long wait_woken(struct wait_queue_entry *wq_entry, unsigned mode, long timeout)
414{
415	/*
416	 * The below executes an smp_mb(), which matches with the full barrier
417	 * executed by the try_to_wake_up() in woken_wake_function() such that
418	 * either we see the store to wq_entry->flags in woken_wake_function()
419	 * or woken_wake_function() sees our store to current->state.
420	 */
421	set_current_state(mode); /* A */
422	if (!(wq_entry->flags & WQ_FLAG_WOKEN) && !kthread_should_stop_or_park())
423		timeout = schedule_timeout(timeout);
424	__set_current_state(TASK_RUNNING);
425
426	/*
427	 * The below executes an smp_mb(), which matches with the smp_mb() (C)
428	 * in woken_wake_function() such that either we see the wait condition
429	 * being true or the store to wq_entry->flags in woken_wake_function()
430	 * follows ours in the coherence order.
431	 */
432	smp_store_mb(wq_entry->flags, wq_entry->flags & ~WQ_FLAG_WOKEN); /* B */
433
434	return timeout;
435}
436EXPORT_SYMBOL(wait_woken);
437
438int woken_wake_function(struct wait_queue_entry *wq_entry, unsigned mode, int sync, void *key)
439{
440	/* Pairs with the smp_store_mb() in wait_woken(). */
441	smp_mb(); /* C */
442	wq_entry->flags |= WQ_FLAG_WOKEN;
443
444	return default_wake_function(wq_entry, mode, sync, key);
445}
446EXPORT_SYMBOL(woken_wake_function);
447