1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Simple CPU accounting cgroup controller
4 */
5
6#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
7 #include <asm/cputime.h>
8#endif
9
10#ifdef CONFIG_IRQ_TIME_ACCOUNTING
11
12/*
13 * There are no locks covering percpu hardirq/softirq time.
14 * They are only modified in vtime_account, on corresponding CPU
15 * with interrupts disabled. So, writes are safe.
16 * They are read and saved off onto struct rq in update_rq_clock().
17 * This may result in other CPU reading this CPU's irq time and can
18 * race with irq/vtime_account on this CPU. We would either get old
19 * or new value with a side effect of accounting a slice of irq time to wrong
20 * task when irq is in progress while we read rq->clock. That is a worthy
21 * compromise in place of having locks on each irq in account_system_time.
22 */
23DEFINE_PER_CPU(struct irqtime, cpu_irqtime);
24
25static int sched_clock_irqtime;
26
27void enable_sched_clock_irqtime(void)
28{
29	sched_clock_irqtime = 1;
30}
31
32void disable_sched_clock_irqtime(void)
33{
34	sched_clock_irqtime = 0;
35}
36
37static void irqtime_account_delta(struct irqtime *irqtime, u64 delta,
38				  enum cpu_usage_stat idx)
39{
40	u64 *cpustat = kcpustat_this_cpu->cpustat;
41
42	u64_stats_update_begin(&irqtime->sync);
43	cpustat[idx] += delta;
44	irqtime->total += delta;
45	irqtime->tick_delta += delta;
46	u64_stats_update_end(&irqtime->sync);
47}
48
49/*
50 * Called after incrementing preempt_count on {soft,}irq_enter
51 * and before decrementing preempt_count on {soft,}irq_exit.
52 */
53void irqtime_account_irq(struct task_struct *curr, unsigned int offset)
54{
55	struct irqtime *irqtime = this_cpu_ptr(&cpu_irqtime);
56	unsigned int pc;
57	s64 delta;
58	int cpu;
59
60	if (!sched_clock_irqtime)
61		return;
62
63	cpu = smp_processor_id();
64	delta = sched_clock_cpu(cpu) - irqtime->irq_start_time;
65	irqtime->irq_start_time += delta;
66	pc = irq_count() - offset;
67
68	/*
69	 * We do not account for softirq time from ksoftirqd here.
70	 * We want to continue accounting softirq time to ksoftirqd thread
71	 * in that case, so as not to confuse scheduler with a special task
72	 * that do not consume any time, but still wants to run.
73	 */
74	if (pc & HARDIRQ_MASK)
75		irqtime_account_delta(irqtime, delta, CPUTIME_IRQ);
76	else if ((pc & SOFTIRQ_OFFSET) && curr != this_cpu_ksoftirqd())
77		irqtime_account_delta(irqtime, delta, CPUTIME_SOFTIRQ);
78}
79
80static u64 irqtime_tick_accounted(u64 maxtime)
81{
82	struct irqtime *irqtime = this_cpu_ptr(&cpu_irqtime);
83	u64 delta;
84
85	delta = min(irqtime->tick_delta, maxtime);
86	irqtime->tick_delta -= delta;
87
88	return delta;
89}
90
91#else /* CONFIG_IRQ_TIME_ACCOUNTING */
92
93#define sched_clock_irqtime	(0)
94
95static u64 irqtime_tick_accounted(u64 dummy)
96{
97	return 0;
98}
99
100#endif /* !CONFIG_IRQ_TIME_ACCOUNTING */
101
102static inline void task_group_account_field(struct task_struct *p, int index,
103					    u64 tmp)
104{
105	/*
106	 * Since all updates are sure to touch the root cgroup, we
107	 * get ourselves ahead and touch it first. If the root cgroup
108	 * is the only cgroup, then nothing else should be necessary.
109	 *
110	 */
111	__this_cpu_add(kernel_cpustat.cpustat[index], tmp);
112
113	cgroup_account_cputime_field(p, index, tmp);
114}
115
116/*
117 * Account user CPU time to a process.
118 * @p: the process that the CPU time gets accounted to
119 * @cputime: the CPU time spent in user space since the last update
120 */
121void account_user_time(struct task_struct *p, u64 cputime)
122{
123	int index;
124
125	/* Add user time to process. */
126	p->utime += cputime;
127	account_group_user_time(p, cputime);
128
129	index = (task_nice(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
130
131	/* Add user time to cpustat. */
132	task_group_account_field(p, index, cputime);
133
134	/* Account for user time used */
135	acct_account_cputime(p);
136}
137
138/*
139 * Account guest CPU time to a process.
140 * @p: the process that the CPU time gets accounted to
141 * @cputime: the CPU time spent in virtual machine since the last update
142 */
143void account_guest_time(struct task_struct *p, u64 cputime)
144{
145	u64 *cpustat = kcpustat_this_cpu->cpustat;
146
147	/* Add guest time to process. */
148	p->utime += cputime;
149	account_group_user_time(p, cputime);
150	p->gtime += cputime;
151
152	/* Add guest time to cpustat. */
153	if (task_nice(p) > 0) {
154		task_group_account_field(p, CPUTIME_NICE, cputime);
155		cpustat[CPUTIME_GUEST_NICE] += cputime;
156	} else {
157		task_group_account_field(p, CPUTIME_USER, cputime);
158		cpustat[CPUTIME_GUEST] += cputime;
159	}
160}
161
162/*
163 * Account system CPU time to a process and desired cpustat field
164 * @p: the process that the CPU time gets accounted to
165 * @cputime: the CPU time spent in kernel space since the last update
166 * @index: pointer to cpustat field that has to be updated
167 */
168void account_system_index_time(struct task_struct *p,
169			       u64 cputime, enum cpu_usage_stat index)
170{
171	/* Add system time to process. */
172	p->stime += cputime;
173	account_group_system_time(p, cputime);
174
175	/* Add system time to cpustat. */
176	task_group_account_field(p, index, cputime);
177
178	/* Account for system time used */
179	acct_account_cputime(p);
180}
181
182/*
183 * Account system CPU time to a process.
184 * @p: the process that the CPU time gets accounted to
185 * @hardirq_offset: the offset to subtract from hardirq_count()
186 * @cputime: the CPU time spent in kernel space since the last update
187 */
188void account_system_time(struct task_struct *p, int hardirq_offset, u64 cputime)
189{
190	int index;
191
192	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
193		account_guest_time(p, cputime);
194		return;
195	}
196
197	if (hardirq_count() - hardirq_offset)
198		index = CPUTIME_IRQ;
199	else if (in_serving_softirq())
200		index = CPUTIME_SOFTIRQ;
201	else
202		index = CPUTIME_SYSTEM;
203
204	account_system_index_time(p, cputime, index);
205}
206
207/*
208 * Account for involuntary wait time.
209 * @cputime: the CPU time spent in involuntary wait
210 */
211void account_steal_time(u64 cputime)
212{
213	u64 *cpustat = kcpustat_this_cpu->cpustat;
214
215	cpustat[CPUTIME_STEAL] += cputime;
216}
217
218/*
219 * Account for idle time.
220 * @cputime: the CPU time spent in idle wait
221 */
222void account_idle_time(u64 cputime)
223{
224	u64 *cpustat = kcpustat_this_cpu->cpustat;
225	struct rq *rq = this_rq();
226
227	if (atomic_read(&rq->nr_iowait) > 0)
228		cpustat[CPUTIME_IOWAIT] += cputime;
229	else
230		cpustat[CPUTIME_IDLE] += cputime;
231}
232
233
234#ifdef CONFIG_SCHED_CORE
235/*
236 * Account for forceidle time due to core scheduling.
237 *
238 * REQUIRES: schedstat is enabled.
239 */
240void __account_forceidle_time(struct task_struct *p, u64 delta)
241{
242	__schedstat_add(p->stats.core_forceidle_sum, delta);
243
244	task_group_account_field(p, CPUTIME_FORCEIDLE, delta);
245}
246#endif
247
248/*
249 * When a guest is interrupted for a longer amount of time, missed clock
250 * ticks are not redelivered later. Due to that, this function may on
251 * occasion account more time than the calling functions think elapsed.
252 */
253static __always_inline u64 steal_account_process_time(u64 maxtime)
254{
255#ifdef CONFIG_PARAVIRT
256	if (static_key_false(&paravirt_steal_enabled)) {
257		u64 steal;
258
259		steal = paravirt_steal_clock(smp_processor_id());
260		steal -= this_rq()->prev_steal_time;
261		steal = min(steal, maxtime);
262		account_steal_time(steal);
263		this_rq()->prev_steal_time += steal;
264
265		return steal;
266	}
267#endif
268	return 0;
269}
270
271/*
272 * Account how much elapsed time was spent in steal, irq, or softirq time.
273 */
274static inline u64 account_other_time(u64 max)
275{
276	u64 accounted;
277
278	lockdep_assert_irqs_disabled();
279
280	accounted = steal_account_process_time(max);
281
282	if (accounted < max)
283		accounted += irqtime_tick_accounted(max - accounted);
284
285	return accounted;
286}
287
288#ifdef CONFIG_64BIT
289static inline u64 read_sum_exec_runtime(struct task_struct *t)
290{
291	return t->se.sum_exec_runtime;
292}
293#else
294static u64 read_sum_exec_runtime(struct task_struct *t)
295{
296	u64 ns;
297	struct rq_flags rf;
298	struct rq *rq;
299
300	rq = task_rq_lock(t, &rf);
301	ns = t->se.sum_exec_runtime;
302	task_rq_unlock(rq, t, &rf);
303
304	return ns;
305}
306#endif
307
308/*
309 * Accumulate raw cputime values of dead tasks (sig->[us]time) and live
310 * tasks (sum on group iteration) belonging to @tsk's group.
311 */
312void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times)
313{
314	struct signal_struct *sig = tsk->signal;
315	u64 utime, stime;
316	struct task_struct *t;
317	unsigned int seq, nextseq;
318	unsigned long flags;
319
320	/*
321	 * Update current task runtime to account pending time since last
322	 * scheduler action or thread_group_cputime() call. This thread group
323	 * might have other running tasks on different CPUs, but updating
324	 * their runtime can affect syscall performance, so we skip account
325	 * those pending times and rely only on values updated on tick or
326	 * other scheduler action.
327	 */
328	if (same_thread_group(current, tsk))
329		(void) task_sched_runtime(current);
330
331	rcu_read_lock();
332	/* Attempt a lockless read on the first round. */
333	nextseq = 0;
334	do {
335		seq = nextseq;
336		flags = read_seqbegin_or_lock_irqsave(&sig->stats_lock, &seq);
337		times->utime = sig->utime;
338		times->stime = sig->stime;
339		times->sum_exec_runtime = sig->sum_sched_runtime;
340
341		for_each_thread(tsk, t) {
342			task_cputime(t, &utime, &stime);
343			times->utime += utime;
344			times->stime += stime;
345			times->sum_exec_runtime += read_sum_exec_runtime(t);
346		}
347		/* If lockless access failed, take the lock. */
348		nextseq = 1;
349	} while (need_seqretry(&sig->stats_lock, seq));
350	done_seqretry_irqrestore(&sig->stats_lock, seq, flags);
351	rcu_read_unlock();
352}
353
354#ifdef CONFIG_IRQ_TIME_ACCOUNTING
355/*
356 * Account a tick to a process and cpustat
357 * @p: the process that the CPU time gets accounted to
358 * @user_tick: is the tick from userspace
359 * @rq: the pointer to rq
360 *
361 * Tick demultiplexing follows the order
362 * - pending hardirq update
363 * - pending softirq update
364 * - user_time
365 * - idle_time
366 * - system time
367 *   - check for guest_time
368 *   - else account as system_time
369 *
370 * Check for hardirq is done both for system and user time as there is
371 * no timer going off while we are on hardirq and hence we may never get an
372 * opportunity to update it solely in system time.
373 * p->stime and friends are only updated on system time and not on irq
374 * softirq as those do not count in task exec_runtime any more.
375 */
376static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
377					 int ticks)
378{
379	u64 other, cputime = TICK_NSEC * ticks;
380
381	/*
382	 * When returning from idle, many ticks can get accounted at
383	 * once, including some ticks of steal, irq, and softirq time.
384	 * Subtract those ticks from the amount of time accounted to
385	 * idle, or potentially user or system time. Due to rounding,
386	 * other time can exceed ticks occasionally.
387	 */
388	other = account_other_time(ULONG_MAX);
389	if (other >= cputime)
390		return;
391
392	cputime -= other;
393
394	if (this_cpu_ksoftirqd() == p) {
395		/*
396		 * ksoftirqd time do not get accounted in cpu_softirq_time.
397		 * So, we have to handle it separately here.
398		 * Also, p->stime needs to be updated for ksoftirqd.
399		 */
400		account_system_index_time(p, cputime, CPUTIME_SOFTIRQ);
401	} else if (user_tick) {
402		account_user_time(p, cputime);
403	} else if (p == this_rq()->idle) {
404		account_idle_time(cputime);
405	} else if (p->flags & PF_VCPU) { /* System time or guest time */
406		account_guest_time(p, cputime);
407	} else {
408		account_system_index_time(p, cputime, CPUTIME_SYSTEM);
409	}
410}
411
412static void irqtime_account_idle_ticks(int ticks)
413{
414	irqtime_account_process_tick(current, 0, ticks);
415}
416#else /* CONFIG_IRQ_TIME_ACCOUNTING */
417static inline void irqtime_account_idle_ticks(int ticks) { }
418static inline void irqtime_account_process_tick(struct task_struct *p, int user_tick,
419						int nr_ticks) { }
420#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
421
422/*
423 * Use precise platform statistics if available:
424 */
425#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
426
427# ifndef __ARCH_HAS_VTIME_TASK_SWITCH
428void vtime_task_switch(struct task_struct *prev)
429{
430	if (is_idle_task(prev))
431		vtime_account_idle(prev);
432	else
433		vtime_account_kernel(prev);
434
435	vtime_flush(prev);
436	arch_vtime_task_switch(prev);
437}
438# endif
439
440void vtime_account_irq(struct task_struct *tsk, unsigned int offset)
441{
442	unsigned int pc = irq_count() - offset;
443
444	if (pc & HARDIRQ_OFFSET) {
445		vtime_account_hardirq(tsk);
446	} else if (pc & SOFTIRQ_OFFSET) {
447		vtime_account_softirq(tsk);
448	} else if (!IS_ENABLED(CONFIG_HAVE_VIRT_CPU_ACCOUNTING_IDLE) &&
449		   is_idle_task(tsk)) {
450		vtime_account_idle(tsk);
451	} else {
452		vtime_account_kernel(tsk);
453	}
454}
455
456void cputime_adjust(struct task_cputime *curr, struct prev_cputime *prev,
457		    u64 *ut, u64 *st)
458{
459	*ut = curr->utime;
460	*st = curr->stime;
461}
462
463void task_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
464{
465	*ut = p->utime;
466	*st = p->stime;
467}
468EXPORT_SYMBOL_GPL(task_cputime_adjusted);
469
470void thread_group_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
471{
472	struct task_cputime cputime;
473
474	thread_group_cputime(p, &cputime);
475
476	*ut = cputime.utime;
477	*st = cputime.stime;
478}
479
480#else /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE: */
481
482/*
483 * Account a single tick of CPU time.
484 * @p: the process that the CPU time gets accounted to
485 * @user_tick: indicates if the tick is a user or a system tick
486 */
487void account_process_tick(struct task_struct *p, int user_tick)
488{
489	u64 cputime, steal;
490
491	if (vtime_accounting_enabled_this_cpu())
492		return;
493
494	if (sched_clock_irqtime) {
495		irqtime_account_process_tick(p, user_tick, 1);
496		return;
497	}
498
499	cputime = TICK_NSEC;
500	steal = steal_account_process_time(ULONG_MAX);
501
502	if (steal >= cputime)
503		return;
504
505	cputime -= steal;
506
507	if (user_tick)
508		account_user_time(p, cputime);
509	else if ((p != this_rq()->idle) || (irq_count() != HARDIRQ_OFFSET))
510		account_system_time(p, HARDIRQ_OFFSET, cputime);
511	else
512		account_idle_time(cputime);
513}
514
515/*
516 * Account multiple ticks of idle time.
517 * @ticks: number of stolen ticks
518 */
519void account_idle_ticks(unsigned long ticks)
520{
521	u64 cputime, steal;
522
523	if (sched_clock_irqtime) {
524		irqtime_account_idle_ticks(ticks);
525		return;
526	}
527
528	cputime = ticks * TICK_NSEC;
529	steal = steal_account_process_time(ULONG_MAX);
530
531	if (steal >= cputime)
532		return;
533
534	cputime -= steal;
535	account_idle_time(cputime);
536}
537
538/*
539 * Adjust tick based cputime random precision against scheduler runtime
540 * accounting.
541 *
542 * Tick based cputime accounting depend on random scheduling timeslices of a
543 * task to be interrupted or not by the timer.  Depending on these
544 * circumstances, the number of these interrupts may be over or
545 * under-optimistic, matching the real user and system cputime with a variable
546 * precision.
547 *
548 * Fix this by scaling these tick based values against the total runtime
549 * accounted by the CFS scheduler.
550 *
551 * This code provides the following guarantees:
552 *
553 *   stime + utime == rtime
554 *   stime_i+1 >= stime_i, utime_i+1 >= utime_i
555 *
556 * Assuming that rtime_i+1 >= rtime_i.
557 */
558void cputime_adjust(struct task_cputime *curr, struct prev_cputime *prev,
559		    u64 *ut, u64 *st)
560{
561	u64 rtime, stime, utime;
562	unsigned long flags;
563
564	/* Serialize concurrent callers such that we can honour our guarantees */
565	raw_spin_lock_irqsave(&prev->lock, flags);
566	rtime = curr->sum_exec_runtime;
567
568	/*
569	 * This is possible under two circumstances:
570	 *  - rtime isn't monotonic after all (a bug);
571	 *  - we got reordered by the lock.
572	 *
573	 * In both cases this acts as a filter such that the rest of the code
574	 * can assume it is monotonic regardless of anything else.
575	 */
576	if (prev->stime + prev->utime >= rtime)
577		goto out;
578
579	stime = curr->stime;
580	utime = curr->utime;
581
582	/*
583	 * If either stime or utime are 0, assume all runtime is userspace.
584	 * Once a task gets some ticks, the monotonicity code at 'update:'
585	 * will ensure things converge to the observed ratio.
586	 */
587	if (stime == 0) {
588		utime = rtime;
589		goto update;
590	}
591
592	if (utime == 0) {
593		stime = rtime;
594		goto update;
595	}
596
597	stime = mul_u64_u64_div_u64(stime, rtime, stime + utime);
598
599update:
600	/*
601	 * Make sure stime doesn't go backwards; this preserves monotonicity
602	 * for utime because rtime is monotonic.
603	 *
604	 *  utime_i+1 = rtime_i+1 - stime_i
605	 *            = rtime_i+1 - (rtime_i - utime_i)
606	 *            = (rtime_i+1 - rtime_i) + utime_i
607	 *            >= utime_i
608	 */
609	if (stime < prev->stime)
610		stime = prev->stime;
611	utime = rtime - stime;
612
613	/*
614	 * Make sure utime doesn't go backwards; this still preserves
615	 * monotonicity for stime, analogous argument to above.
616	 */
617	if (utime < prev->utime) {
618		utime = prev->utime;
619		stime = rtime - utime;
620	}
621
622	prev->stime = stime;
623	prev->utime = utime;
624out:
625	*ut = prev->utime;
626	*st = prev->stime;
627	raw_spin_unlock_irqrestore(&prev->lock, flags);
628}
629
630void task_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
631{
632	struct task_cputime cputime = {
633		.sum_exec_runtime = p->se.sum_exec_runtime,
634	};
635
636	if (task_cputime(p, &cputime.utime, &cputime.stime))
637		cputime.sum_exec_runtime = task_sched_runtime(p);
638	cputime_adjust(&cputime, &p->prev_cputime, ut, st);
639}
640EXPORT_SYMBOL_GPL(task_cputime_adjusted);
641
642void thread_group_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
643{
644	struct task_cputime cputime;
645
646	thread_group_cputime(p, &cputime);
647	cputime_adjust(&cputime, &p->signal->prev_cputime, ut, st);
648}
649#endif /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
650
651#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
652static u64 vtime_delta(struct vtime *vtime)
653{
654	unsigned long long clock;
655
656	clock = sched_clock();
657	if (clock < vtime->starttime)
658		return 0;
659
660	return clock - vtime->starttime;
661}
662
663static u64 get_vtime_delta(struct vtime *vtime)
664{
665	u64 delta = vtime_delta(vtime);
666	u64 other;
667
668	/*
669	 * Unlike tick based timing, vtime based timing never has lost
670	 * ticks, and no need for steal time accounting to make up for
671	 * lost ticks. Vtime accounts a rounded version of actual
672	 * elapsed time. Limit account_other_time to prevent rounding
673	 * errors from causing elapsed vtime to go negative.
674	 */
675	other = account_other_time(delta);
676	WARN_ON_ONCE(vtime->state == VTIME_INACTIVE);
677	vtime->starttime += delta;
678
679	return delta - other;
680}
681
682static void vtime_account_system(struct task_struct *tsk,
683				 struct vtime *vtime)
684{
685	vtime->stime += get_vtime_delta(vtime);
686	if (vtime->stime >= TICK_NSEC) {
687		account_system_time(tsk, irq_count(), vtime->stime);
688		vtime->stime = 0;
689	}
690}
691
692static void vtime_account_guest(struct task_struct *tsk,
693				struct vtime *vtime)
694{
695	vtime->gtime += get_vtime_delta(vtime);
696	if (vtime->gtime >= TICK_NSEC) {
697		account_guest_time(tsk, vtime->gtime);
698		vtime->gtime = 0;
699	}
700}
701
702static void __vtime_account_kernel(struct task_struct *tsk,
703				   struct vtime *vtime)
704{
705	/* We might have scheduled out from guest path */
706	if (vtime->state == VTIME_GUEST)
707		vtime_account_guest(tsk, vtime);
708	else
709		vtime_account_system(tsk, vtime);
710}
711
712void vtime_account_kernel(struct task_struct *tsk)
713{
714	struct vtime *vtime = &tsk->vtime;
715
716	if (!vtime_delta(vtime))
717		return;
718
719	write_seqcount_begin(&vtime->seqcount);
720	__vtime_account_kernel(tsk, vtime);
721	write_seqcount_end(&vtime->seqcount);
722}
723
724void vtime_user_enter(struct task_struct *tsk)
725{
726	struct vtime *vtime = &tsk->vtime;
727
728	write_seqcount_begin(&vtime->seqcount);
729	vtime_account_system(tsk, vtime);
730	vtime->state = VTIME_USER;
731	write_seqcount_end(&vtime->seqcount);
732}
733
734void vtime_user_exit(struct task_struct *tsk)
735{
736	struct vtime *vtime = &tsk->vtime;
737
738	write_seqcount_begin(&vtime->seqcount);
739	vtime->utime += get_vtime_delta(vtime);
740	if (vtime->utime >= TICK_NSEC) {
741		account_user_time(tsk, vtime->utime);
742		vtime->utime = 0;
743	}
744	vtime->state = VTIME_SYS;
745	write_seqcount_end(&vtime->seqcount);
746}
747
748void vtime_guest_enter(struct task_struct *tsk)
749{
750	struct vtime *vtime = &tsk->vtime;
751	/*
752	 * The flags must be updated under the lock with
753	 * the vtime_starttime flush and update.
754	 * That enforces a right ordering and update sequence
755	 * synchronization against the reader (task_gtime())
756	 * that can thus safely catch up with a tickless delta.
757	 */
758	write_seqcount_begin(&vtime->seqcount);
759	vtime_account_system(tsk, vtime);
760	tsk->flags |= PF_VCPU;
761	vtime->state = VTIME_GUEST;
762	write_seqcount_end(&vtime->seqcount);
763}
764EXPORT_SYMBOL_GPL(vtime_guest_enter);
765
766void vtime_guest_exit(struct task_struct *tsk)
767{
768	struct vtime *vtime = &tsk->vtime;
769
770	write_seqcount_begin(&vtime->seqcount);
771	vtime_account_guest(tsk, vtime);
772	tsk->flags &= ~PF_VCPU;
773	vtime->state = VTIME_SYS;
774	write_seqcount_end(&vtime->seqcount);
775}
776EXPORT_SYMBOL_GPL(vtime_guest_exit);
777
778void vtime_account_idle(struct task_struct *tsk)
779{
780	account_idle_time(get_vtime_delta(&tsk->vtime));
781}
782
783void vtime_task_switch_generic(struct task_struct *prev)
784{
785	struct vtime *vtime = &prev->vtime;
786
787	write_seqcount_begin(&vtime->seqcount);
788	if (vtime->state == VTIME_IDLE)
789		vtime_account_idle(prev);
790	else
791		__vtime_account_kernel(prev, vtime);
792	vtime->state = VTIME_INACTIVE;
793	vtime->cpu = -1;
794	write_seqcount_end(&vtime->seqcount);
795
796	vtime = &current->vtime;
797
798	write_seqcount_begin(&vtime->seqcount);
799	if (is_idle_task(current))
800		vtime->state = VTIME_IDLE;
801	else if (current->flags & PF_VCPU)
802		vtime->state = VTIME_GUEST;
803	else
804		vtime->state = VTIME_SYS;
805	vtime->starttime = sched_clock();
806	vtime->cpu = smp_processor_id();
807	write_seqcount_end(&vtime->seqcount);
808}
809
810void vtime_init_idle(struct task_struct *t, int cpu)
811{
812	struct vtime *vtime = &t->vtime;
813	unsigned long flags;
814
815	local_irq_save(flags);
816	write_seqcount_begin(&vtime->seqcount);
817	vtime->state = VTIME_IDLE;
818	vtime->starttime = sched_clock();
819	vtime->cpu = cpu;
820	write_seqcount_end(&vtime->seqcount);
821	local_irq_restore(flags);
822}
823
824u64 task_gtime(struct task_struct *t)
825{
826	struct vtime *vtime = &t->vtime;
827	unsigned int seq;
828	u64 gtime;
829
830	if (!vtime_accounting_enabled())
831		return t->gtime;
832
833	do {
834		seq = read_seqcount_begin(&vtime->seqcount);
835
836		gtime = t->gtime;
837		if (vtime->state == VTIME_GUEST)
838			gtime += vtime->gtime + vtime_delta(vtime);
839
840	} while (read_seqcount_retry(&vtime->seqcount, seq));
841
842	return gtime;
843}
844
845/*
846 * Fetch cputime raw values from fields of task_struct and
847 * add up the pending nohz execution time since the last
848 * cputime snapshot.
849 */
850bool task_cputime(struct task_struct *t, u64 *utime, u64 *stime)
851{
852	struct vtime *vtime = &t->vtime;
853	unsigned int seq;
854	u64 delta;
855	int ret;
856
857	if (!vtime_accounting_enabled()) {
858		*utime = t->utime;
859		*stime = t->stime;
860		return false;
861	}
862
863	do {
864		ret = false;
865		seq = read_seqcount_begin(&vtime->seqcount);
866
867		*utime = t->utime;
868		*stime = t->stime;
869
870		/* Task is sleeping or idle, nothing to add */
871		if (vtime->state < VTIME_SYS)
872			continue;
873
874		ret = true;
875		delta = vtime_delta(vtime);
876
877		/*
878		 * Task runs either in user (including guest) or kernel space,
879		 * add pending nohz time to the right place.
880		 */
881		if (vtime->state == VTIME_SYS)
882			*stime += vtime->stime + delta;
883		else
884			*utime += vtime->utime + delta;
885	} while (read_seqcount_retry(&vtime->seqcount, seq));
886
887	return ret;
888}
889
890static int vtime_state_fetch(struct vtime *vtime, int cpu)
891{
892	int state = READ_ONCE(vtime->state);
893
894	/*
895	 * We raced against a context switch, fetch the
896	 * kcpustat task again.
897	 */
898	if (vtime->cpu != cpu && vtime->cpu != -1)
899		return -EAGAIN;
900
901	/*
902	 * Two possible things here:
903	 * 1) We are seeing the scheduling out task (prev) or any past one.
904	 * 2) We are seeing the scheduling in task (next) but it hasn't
905	 *    passed though vtime_task_switch() yet so the pending
906	 *    cputime of the prev task may not be flushed yet.
907	 *
908	 * Case 1) is ok but 2) is not. So wait for a safe VTIME state.
909	 */
910	if (state == VTIME_INACTIVE)
911		return -EAGAIN;
912
913	return state;
914}
915
916static u64 kcpustat_user_vtime(struct vtime *vtime)
917{
918	if (vtime->state == VTIME_USER)
919		return vtime->utime + vtime_delta(vtime);
920	else if (vtime->state == VTIME_GUEST)
921		return vtime->gtime + vtime_delta(vtime);
922	return 0;
923}
924
925static int kcpustat_field_vtime(u64 *cpustat,
926				struct task_struct *tsk,
927				enum cpu_usage_stat usage,
928				int cpu, u64 *val)
929{
930	struct vtime *vtime = &tsk->vtime;
931	unsigned int seq;
932
933	do {
934		int state;
935
936		seq = read_seqcount_begin(&vtime->seqcount);
937
938		state = vtime_state_fetch(vtime, cpu);
939		if (state < 0)
940			return state;
941
942		*val = cpustat[usage];
943
944		/*
945		 * Nice VS unnice cputime accounting may be inaccurate if
946		 * the nice value has changed since the last vtime update.
947		 * But proper fix would involve interrupting target on nice
948		 * updates which is a no go on nohz_full (although the scheduler
949		 * may still interrupt the target if rescheduling is needed...)
950		 */
951		switch (usage) {
952		case CPUTIME_SYSTEM:
953			if (state == VTIME_SYS)
954				*val += vtime->stime + vtime_delta(vtime);
955			break;
956		case CPUTIME_USER:
957			if (task_nice(tsk) <= 0)
958				*val += kcpustat_user_vtime(vtime);
959			break;
960		case CPUTIME_NICE:
961			if (task_nice(tsk) > 0)
962				*val += kcpustat_user_vtime(vtime);
963			break;
964		case CPUTIME_GUEST:
965			if (state == VTIME_GUEST && task_nice(tsk) <= 0)
966				*val += vtime->gtime + vtime_delta(vtime);
967			break;
968		case CPUTIME_GUEST_NICE:
969			if (state == VTIME_GUEST && task_nice(tsk) > 0)
970				*val += vtime->gtime + vtime_delta(vtime);
971			break;
972		default:
973			break;
974		}
975	} while (read_seqcount_retry(&vtime->seqcount, seq));
976
977	return 0;
978}
979
980u64 kcpustat_field(struct kernel_cpustat *kcpustat,
981		   enum cpu_usage_stat usage, int cpu)
982{
983	u64 *cpustat = kcpustat->cpustat;
984	u64 val = cpustat[usage];
985	struct rq *rq;
986	int err;
987
988	if (!vtime_accounting_enabled_cpu(cpu))
989		return val;
990
991	rq = cpu_rq(cpu);
992
993	for (;;) {
994		struct task_struct *curr;
995
996		rcu_read_lock();
997		curr = rcu_dereference(rq->curr);
998		if (WARN_ON_ONCE(!curr)) {
999			rcu_read_unlock();
1000			return cpustat[usage];
1001		}
1002
1003		err = kcpustat_field_vtime(cpustat, curr, usage, cpu, &val);
1004		rcu_read_unlock();
1005
1006		if (!err)
1007			return val;
1008
1009		cpu_relax();
1010	}
1011}
1012EXPORT_SYMBOL_GPL(kcpustat_field);
1013
1014static int kcpustat_cpu_fetch_vtime(struct kernel_cpustat *dst,
1015				    const struct kernel_cpustat *src,
1016				    struct task_struct *tsk, int cpu)
1017{
1018	struct vtime *vtime = &tsk->vtime;
1019	unsigned int seq;
1020
1021	do {
1022		u64 *cpustat;
1023		u64 delta;
1024		int state;
1025
1026		seq = read_seqcount_begin(&vtime->seqcount);
1027
1028		state = vtime_state_fetch(vtime, cpu);
1029		if (state < 0)
1030			return state;
1031
1032		*dst = *src;
1033		cpustat = dst->cpustat;
1034
1035		/* Task is sleeping, dead or idle, nothing to add */
1036		if (state < VTIME_SYS)
1037			continue;
1038
1039		delta = vtime_delta(vtime);
1040
1041		/*
1042		 * Task runs either in user (including guest) or kernel space,
1043		 * add pending nohz time to the right place.
1044		 */
1045		if (state == VTIME_SYS) {
1046			cpustat[CPUTIME_SYSTEM] += vtime->stime + delta;
1047		} else if (state == VTIME_USER) {
1048			if (task_nice(tsk) > 0)
1049				cpustat[CPUTIME_NICE] += vtime->utime + delta;
1050			else
1051				cpustat[CPUTIME_USER] += vtime->utime + delta;
1052		} else {
1053			WARN_ON_ONCE(state != VTIME_GUEST);
1054			if (task_nice(tsk) > 0) {
1055				cpustat[CPUTIME_GUEST_NICE] += vtime->gtime + delta;
1056				cpustat[CPUTIME_NICE] += vtime->gtime + delta;
1057			} else {
1058				cpustat[CPUTIME_GUEST] += vtime->gtime + delta;
1059				cpustat[CPUTIME_USER] += vtime->gtime + delta;
1060			}
1061		}
1062	} while (read_seqcount_retry(&vtime->seqcount, seq));
1063
1064	return 0;
1065}
1066
1067void kcpustat_cpu_fetch(struct kernel_cpustat *dst, int cpu)
1068{
1069	const struct kernel_cpustat *src = &kcpustat_cpu(cpu);
1070	struct rq *rq;
1071	int err;
1072
1073	if (!vtime_accounting_enabled_cpu(cpu)) {
1074		*dst = *src;
1075		return;
1076	}
1077
1078	rq = cpu_rq(cpu);
1079
1080	for (;;) {
1081		struct task_struct *curr;
1082
1083		rcu_read_lock();
1084		curr = rcu_dereference(rq->curr);
1085		if (WARN_ON_ONCE(!curr)) {
1086			rcu_read_unlock();
1087			*dst = *src;
1088			return;
1089		}
1090
1091		err = kcpustat_cpu_fetch_vtime(dst, src, curr, cpu);
1092		rcu_read_unlock();
1093
1094		if (!err)
1095			return;
1096
1097		cpu_relax();
1098	}
1099}
1100EXPORT_SYMBOL_GPL(kcpustat_cpu_fetch);
1101
1102#endif /* CONFIG_VIRT_CPU_ACCOUNTING_GEN */
1103