1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
4 *
5 * Copyright IBM Corporation, 2008
6 *
7 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
8 *	    Manfred Spraul <manfred@colorfullife.com>
9 *	    Paul E. McKenney <paulmck@linux.ibm.com>
10 *
11 * Based on the original work by Paul McKenney <paulmck@linux.ibm.com>
12 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
13 *
14 * For detailed explanation of Read-Copy Update mechanism see -
15 *	Documentation/RCU
16 */
17
18#define pr_fmt(fmt) "rcu: " fmt
19
20#include <linux/types.h>
21#include <linux/kernel.h>
22#include <linux/init.h>
23#include <linux/spinlock.h>
24#include <linux/smp.h>
25#include <linux/rcupdate_wait.h>
26#include <linux/interrupt.h>
27#include <linux/sched.h>
28#include <linux/sched/debug.h>
29#include <linux/nmi.h>
30#include <linux/atomic.h>
31#include <linux/bitops.h>
32#include <linux/export.h>
33#include <linux/completion.h>
34#include <linux/kmemleak.h>
35#include <linux/moduleparam.h>
36#include <linux/panic.h>
37#include <linux/panic_notifier.h>
38#include <linux/percpu.h>
39#include <linux/notifier.h>
40#include <linux/cpu.h>
41#include <linux/mutex.h>
42#include <linux/time.h>
43#include <linux/kernel_stat.h>
44#include <linux/wait.h>
45#include <linux/kthread.h>
46#include <uapi/linux/sched/types.h>
47#include <linux/prefetch.h>
48#include <linux/delay.h>
49#include <linux/random.h>
50#include <linux/trace_events.h>
51#include <linux/suspend.h>
52#include <linux/ftrace.h>
53#include <linux/tick.h>
54#include <linux/sysrq.h>
55#include <linux/kprobes.h>
56#include <linux/gfp.h>
57#include <linux/oom.h>
58#include <linux/smpboot.h>
59#include <linux/jiffies.h>
60#include <linux/slab.h>
61#include <linux/sched/isolation.h>
62#include <linux/sched/clock.h>
63#include <linux/vmalloc.h>
64#include <linux/mm.h>
65#include <linux/kasan.h>
66#include <linux/context_tracking.h>
67#include "../time/tick-internal.h"
68
69#include "tree.h"
70#include "rcu.h"
71
72#ifdef MODULE_PARAM_PREFIX
73#undef MODULE_PARAM_PREFIX
74#endif
75#define MODULE_PARAM_PREFIX "rcutree."
76
77/* Data structures. */
78
79static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, rcu_data) = {
80	.gpwrap = true,
81#ifdef CONFIG_RCU_NOCB_CPU
82	.cblist.flags = SEGCBLIST_RCU_CORE,
83#endif
84};
85static struct rcu_state rcu_state = {
86	.level = { &rcu_state.node[0] },
87	.gp_state = RCU_GP_IDLE,
88	.gp_seq = (0UL - 300UL) << RCU_SEQ_CTR_SHIFT,
89	.barrier_mutex = __MUTEX_INITIALIZER(rcu_state.barrier_mutex),
90	.barrier_lock = __RAW_SPIN_LOCK_UNLOCKED(rcu_state.barrier_lock),
91	.name = RCU_NAME,
92	.abbr = RCU_ABBR,
93	.exp_mutex = __MUTEX_INITIALIZER(rcu_state.exp_mutex),
94	.exp_wake_mutex = __MUTEX_INITIALIZER(rcu_state.exp_wake_mutex),
95	.ofl_lock = __ARCH_SPIN_LOCK_UNLOCKED,
96};
97
98/* Dump rcu_node combining tree at boot to verify correct setup. */
99static bool dump_tree;
100module_param(dump_tree, bool, 0444);
101/* By default, use RCU_SOFTIRQ instead of rcuc kthreads. */
102static bool use_softirq = !IS_ENABLED(CONFIG_PREEMPT_RT);
103#ifndef CONFIG_PREEMPT_RT
104module_param(use_softirq, bool, 0444);
105#endif
106/* Control rcu_node-tree auto-balancing at boot time. */
107static bool rcu_fanout_exact;
108module_param(rcu_fanout_exact, bool, 0444);
109/* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
110static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
111module_param(rcu_fanout_leaf, int, 0444);
112int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
113/* Number of rcu_nodes at specified level. */
114int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
115int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
116
117/*
118 * The rcu_scheduler_active variable is initialized to the value
119 * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the
120 * first task is spawned.  So when this variable is RCU_SCHEDULER_INACTIVE,
121 * RCU can assume that there is but one task, allowing RCU to (for example)
122 * optimize synchronize_rcu() to a simple barrier().  When this variable
123 * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required
124 * to detect real grace periods.  This variable is also used to suppress
125 * boot-time false positives from lockdep-RCU error checking.  Finally, it
126 * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU
127 * is fully initialized, including all of its kthreads having been spawned.
128 */
129int rcu_scheduler_active __read_mostly;
130EXPORT_SYMBOL_GPL(rcu_scheduler_active);
131
132/*
133 * The rcu_scheduler_fully_active variable transitions from zero to one
134 * during the early_initcall() processing, which is after the scheduler
135 * is capable of creating new tasks.  So RCU processing (for example,
136 * creating tasks for RCU priority boosting) must be delayed until after
137 * rcu_scheduler_fully_active transitions from zero to one.  We also
138 * currently delay invocation of any RCU callbacks until after this point.
139 *
140 * It might later prove better for people registering RCU callbacks during
141 * early boot to take responsibility for these callbacks, but one step at
142 * a time.
143 */
144static int rcu_scheduler_fully_active __read_mostly;
145
146static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
147			      unsigned long gps, unsigned long flags);
148static struct task_struct *rcu_boost_task(struct rcu_node *rnp);
149static void invoke_rcu_core(void);
150static void rcu_report_exp_rdp(struct rcu_data *rdp);
151static void sync_sched_exp_online_cleanup(int cpu);
152static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp);
153static bool rcu_rdp_is_offloaded(struct rcu_data *rdp);
154static bool rcu_rdp_cpu_online(struct rcu_data *rdp);
155static bool rcu_init_invoked(void);
156static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
157static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
158
159/*
160 * rcuc/rcub/rcuop kthread realtime priority. The "rcuop"
161 * real-time priority(enabling/disabling) is controlled by
162 * the extra CONFIG_RCU_NOCB_CPU_CB_BOOST configuration.
163 */
164static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
165module_param(kthread_prio, int, 0444);
166
167/* Delay in jiffies for grace-period initialization delays, debug only. */
168
169static int gp_preinit_delay;
170module_param(gp_preinit_delay, int, 0444);
171static int gp_init_delay;
172module_param(gp_init_delay, int, 0444);
173static int gp_cleanup_delay;
174module_param(gp_cleanup_delay, int, 0444);
175
176// Add delay to rcu_read_unlock() for strict grace periods.
177static int rcu_unlock_delay;
178#ifdef CONFIG_RCU_STRICT_GRACE_PERIOD
179module_param(rcu_unlock_delay, int, 0444);
180#endif
181
182/*
183 * This rcu parameter is runtime-read-only. It reflects
184 * a minimum allowed number of objects which can be cached
185 * per-CPU. Object size is equal to one page. This value
186 * can be changed at boot time.
187 */
188static int rcu_min_cached_objs = 5;
189module_param(rcu_min_cached_objs, int, 0444);
190
191// A page shrinker can ask for pages to be freed to make them
192// available for other parts of the system. This usually happens
193// under low memory conditions, and in that case we should also
194// defer page-cache filling for a short time period.
195//
196// The default value is 5 seconds, which is long enough to reduce
197// interference with the shrinker while it asks other systems to
198// drain their caches.
199static int rcu_delay_page_cache_fill_msec = 5000;
200module_param(rcu_delay_page_cache_fill_msec, int, 0444);
201
202/* Retrieve RCU kthreads priority for rcutorture */
203int rcu_get_gp_kthreads_prio(void)
204{
205	return kthread_prio;
206}
207EXPORT_SYMBOL_GPL(rcu_get_gp_kthreads_prio);
208
209/*
210 * Number of grace periods between delays, normalized by the duration of
211 * the delay.  The longer the delay, the more the grace periods between
212 * each delay.  The reason for this normalization is that it means that,
213 * for non-zero delays, the overall slowdown of grace periods is constant
214 * regardless of the duration of the delay.  This arrangement balances
215 * the need for long delays to increase some race probabilities with the
216 * need for fast grace periods to increase other race probabilities.
217 */
218#define PER_RCU_NODE_PERIOD 3	/* Number of grace periods between delays for debugging. */
219
220/*
221 * Return true if an RCU grace period is in progress.  The READ_ONCE()s
222 * permit this function to be invoked without holding the root rcu_node
223 * structure's ->lock, but of course results can be subject to change.
224 */
225static int rcu_gp_in_progress(void)
226{
227	return rcu_seq_state(rcu_seq_current(&rcu_state.gp_seq));
228}
229
230/*
231 * Return the number of callbacks queued on the specified CPU.
232 * Handles both the nocbs and normal cases.
233 */
234static long rcu_get_n_cbs_cpu(int cpu)
235{
236	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
237
238	if (rcu_segcblist_is_enabled(&rdp->cblist))
239		return rcu_segcblist_n_cbs(&rdp->cblist);
240	return 0;
241}
242
243void rcu_softirq_qs(void)
244{
245	rcu_qs();
246	rcu_preempt_deferred_qs(current);
247	rcu_tasks_qs(current, false);
248}
249
250/*
251 * Reset the current CPU's ->dynticks counter to indicate that the
252 * newly onlined CPU is no longer in an extended quiescent state.
253 * This will either leave the counter unchanged, or increment it
254 * to the next non-quiescent value.
255 *
256 * The non-atomic test/increment sequence works because the upper bits
257 * of the ->dynticks counter are manipulated only by the corresponding CPU,
258 * or when the corresponding CPU is offline.
259 */
260static void rcu_dynticks_eqs_online(void)
261{
262	if (ct_dynticks() & RCU_DYNTICKS_IDX)
263		return;
264	ct_state_inc(RCU_DYNTICKS_IDX);
265}
266
267/*
268 * Snapshot the ->dynticks counter with full ordering so as to allow
269 * stable comparison of this counter with past and future snapshots.
270 */
271static int rcu_dynticks_snap(int cpu)
272{
273	smp_mb();  // Fundamental RCU ordering guarantee.
274	return ct_dynticks_cpu_acquire(cpu);
275}
276
277/*
278 * Return true if the snapshot returned from rcu_dynticks_snap()
279 * indicates that RCU is in an extended quiescent state.
280 */
281static bool rcu_dynticks_in_eqs(int snap)
282{
283	return !(snap & RCU_DYNTICKS_IDX);
284}
285
286/*
287 * Return true if the CPU corresponding to the specified rcu_data
288 * structure has spent some time in an extended quiescent state since
289 * rcu_dynticks_snap() returned the specified snapshot.
290 */
291static bool rcu_dynticks_in_eqs_since(struct rcu_data *rdp, int snap)
292{
293	return snap != rcu_dynticks_snap(rdp->cpu);
294}
295
296/*
297 * Return true if the referenced integer is zero while the specified
298 * CPU remains within a single extended quiescent state.
299 */
300bool rcu_dynticks_zero_in_eqs(int cpu, int *vp)
301{
302	int snap;
303
304	// If not quiescent, force back to earlier extended quiescent state.
305	snap = ct_dynticks_cpu(cpu) & ~RCU_DYNTICKS_IDX;
306	smp_rmb(); // Order ->dynticks and *vp reads.
307	if (READ_ONCE(*vp))
308		return false;  // Non-zero, so report failure;
309	smp_rmb(); // Order *vp read and ->dynticks re-read.
310
311	// If still in the same extended quiescent state, we are good!
312	return snap == ct_dynticks_cpu(cpu);
313}
314
315/*
316 * Let the RCU core know that this CPU has gone through the scheduler,
317 * which is a quiescent state.  This is called when the need for a
318 * quiescent state is urgent, so we burn an atomic operation and full
319 * memory barriers to let the RCU core know about it, regardless of what
320 * this CPU might (or might not) do in the near future.
321 *
322 * We inform the RCU core by emulating a zero-duration dyntick-idle period.
323 *
324 * The caller must have disabled interrupts and must not be idle.
325 */
326notrace void rcu_momentary_dyntick_idle(void)
327{
328	int seq;
329
330	raw_cpu_write(rcu_data.rcu_need_heavy_qs, false);
331	seq = ct_state_inc(2 * RCU_DYNTICKS_IDX);
332	/* It is illegal to call this from idle state. */
333	WARN_ON_ONCE(!(seq & RCU_DYNTICKS_IDX));
334	rcu_preempt_deferred_qs(current);
335}
336EXPORT_SYMBOL_GPL(rcu_momentary_dyntick_idle);
337
338/**
339 * rcu_is_cpu_rrupt_from_idle - see if 'interrupted' from idle
340 *
341 * If the current CPU is idle and running at a first-level (not nested)
342 * interrupt, or directly, from idle, return true.
343 *
344 * The caller must have at least disabled IRQs.
345 */
346static int rcu_is_cpu_rrupt_from_idle(void)
347{
348	long nesting;
349
350	/*
351	 * Usually called from the tick; but also used from smp_function_call()
352	 * for expedited grace periods. This latter can result in running from
353	 * the idle task, instead of an actual IPI.
354	 */
355	lockdep_assert_irqs_disabled();
356
357	/* Check for counter underflows */
358	RCU_LOCKDEP_WARN(ct_dynticks_nesting() < 0,
359			 "RCU dynticks_nesting counter underflow!");
360	RCU_LOCKDEP_WARN(ct_dynticks_nmi_nesting() <= 0,
361			 "RCU dynticks_nmi_nesting counter underflow/zero!");
362
363	/* Are we at first interrupt nesting level? */
364	nesting = ct_dynticks_nmi_nesting();
365	if (nesting > 1)
366		return false;
367
368	/*
369	 * If we're not in an interrupt, we must be in the idle task!
370	 */
371	WARN_ON_ONCE(!nesting && !is_idle_task(current));
372
373	/* Does CPU appear to be idle from an RCU standpoint? */
374	return ct_dynticks_nesting() == 0;
375}
376
377#define DEFAULT_RCU_BLIMIT (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ? 1000 : 10)
378				// Maximum callbacks per rcu_do_batch ...
379#define DEFAULT_MAX_RCU_BLIMIT 10000 // ... even during callback flood.
380static long blimit = DEFAULT_RCU_BLIMIT;
381#define DEFAULT_RCU_QHIMARK 10000 // If this many pending, ignore blimit.
382static long qhimark = DEFAULT_RCU_QHIMARK;
383#define DEFAULT_RCU_QLOMARK 100   // Once only this many pending, use blimit.
384static long qlowmark = DEFAULT_RCU_QLOMARK;
385#define DEFAULT_RCU_QOVLD_MULT 2
386#define DEFAULT_RCU_QOVLD (DEFAULT_RCU_QOVLD_MULT * DEFAULT_RCU_QHIMARK)
387static long qovld = DEFAULT_RCU_QOVLD; // If this many pending, hammer QS.
388static long qovld_calc = -1;	  // No pre-initialization lock acquisitions!
389
390module_param(blimit, long, 0444);
391module_param(qhimark, long, 0444);
392module_param(qlowmark, long, 0444);
393module_param(qovld, long, 0444);
394
395static ulong jiffies_till_first_fqs = IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ? 0 : ULONG_MAX;
396static ulong jiffies_till_next_fqs = ULONG_MAX;
397static bool rcu_kick_kthreads;
398static int rcu_divisor = 7;
399module_param(rcu_divisor, int, 0644);
400
401/* Force an exit from rcu_do_batch() after 3 milliseconds. */
402static long rcu_resched_ns = 3 * NSEC_PER_MSEC;
403module_param(rcu_resched_ns, long, 0644);
404
405/*
406 * How long the grace period must be before we start recruiting
407 * quiescent-state help from rcu_note_context_switch().
408 */
409static ulong jiffies_till_sched_qs = ULONG_MAX;
410module_param(jiffies_till_sched_qs, ulong, 0444);
411static ulong jiffies_to_sched_qs; /* See adjust_jiffies_till_sched_qs(). */
412module_param(jiffies_to_sched_qs, ulong, 0444); /* Display only! */
413
414/*
415 * Make sure that we give the grace-period kthread time to detect any
416 * idle CPUs before taking active measures to force quiescent states.
417 * However, don't go below 100 milliseconds, adjusted upwards for really
418 * large systems.
419 */
420static void adjust_jiffies_till_sched_qs(void)
421{
422	unsigned long j;
423
424	/* If jiffies_till_sched_qs was specified, respect the request. */
425	if (jiffies_till_sched_qs != ULONG_MAX) {
426		WRITE_ONCE(jiffies_to_sched_qs, jiffies_till_sched_qs);
427		return;
428	}
429	/* Otherwise, set to third fqs scan, but bound below on large system. */
430	j = READ_ONCE(jiffies_till_first_fqs) +
431		      2 * READ_ONCE(jiffies_till_next_fqs);
432	if (j < HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV)
433		j = HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
434	pr_info("RCU calculated value of scheduler-enlistment delay is %ld jiffies.\n", j);
435	WRITE_ONCE(jiffies_to_sched_qs, j);
436}
437
438static int param_set_first_fqs_jiffies(const char *val, const struct kernel_param *kp)
439{
440	ulong j;
441	int ret = kstrtoul(val, 0, &j);
442
443	if (!ret) {
444		WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : j);
445		adjust_jiffies_till_sched_qs();
446	}
447	return ret;
448}
449
450static int param_set_next_fqs_jiffies(const char *val, const struct kernel_param *kp)
451{
452	ulong j;
453	int ret = kstrtoul(val, 0, &j);
454
455	if (!ret) {
456		WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : (j ?: 1));
457		adjust_jiffies_till_sched_qs();
458	}
459	return ret;
460}
461
462static const struct kernel_param_ops first_fqs_jiffies_ops = {
463	.set = param_set_first_fqs_jiffies,
464	.get = param_get_ulong,
465};
466
467static const struct kernel_param_ops next_fqs_jiffies_ops = {
468	.set = param_set_next_fqs_jiffies,
469	.get = param_get_ulong,
470};
471
472module_param_cb(jiffies_till_first_fqs, &first_fqs_jiffies_ops, &jiffies_till_first_fqs, 0644);
473module_param_cb(jiffies_till_next_fqs, &next_fqs_jiffies_ops, &jiffies_till_next_fqs, 0644);
474module_param(rcu_kick_kthreads, bool, 0644);
475
476static void force_qs_rnp(int (*f)(struct rcu_data *rdp));
477static int rcu_pending(int user);
478
479/*
480 * Return the number of RCU GPs completed thus far for debug & stats.
481 */
482unsigned long rcu_get_gp_seq(void)
483{
484	return READ_ONCE(rcu_state.gp_seq);
485}
486EXPORT_SYMBOL_GPL(rcu_get_gp_seq);
487
488/*
489 * Return the number of RCU expedited batches completed thus far for
490 * debug & stats.  Odd numbers mean that a batch is in progress, even
491 * numbers mean idle.  The value returned will thus be roughly double
492 * the cumulative batches since boot.
493 */
494unsigned long rcu_exp_batches_completed(void)
495{
496	return rcu_state.expedited_sequence;
497}
498EXPORT_SYMBOL_GPL(rcu_exp_batches_completed);
499
500/*
501 * Return the root node of the rcu_state structure.
502 */
503static struct rcu_node *rcu_get_root(void)
504{
505	return &rcu_state.node[0];
506}
507
508/*
509 * Send along grace-period-related data for rcutorture diagnostics.
510 */
511void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
512			    unsigned long *gp_seq)
513{
514	switch (test_type) {
515	case RCU_FLAVOR:
516		*flags = READ_ONCE(rcu_state.gp_flags);
517		*gp_seq = rcu_seq_current(&rcu_state.gp_seq);
518		break;
519	default:
520		break;
521	}
522}
523EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
524
525#if defined(CONFIG_NO_HZ_FULL) && (!defined(CONFIG_GENERIC_ENTRY) || !defined(CONFIG_KVM_XFER_TO_GUEST_WORK))
526/*
527 * An empty function that will trigger a reschedule on
528 * IRQ tail once IRQs get re-enabled on userspace/guest resume.
529 */
530static void late_wakeup_func(struct irq_work *work)
531{
532}
533
534static DEFINE_PER_CPU(struct irq_work, late_wakeup_work) =
535	IRQ_WORK_INIT(late_wakeup_func);
536
537/*
538 * If either:
539 *
540 * 1) the task is about to enter in guest mode and $ARCH doesn't support KVM generic work
541 * 2) the task is about to enter in user mode and $ARCH doesn't support generic entry.
542 *
543 * In these cases the late RCU wake ups aren't supported in the resched loops and our
544 * last resort is to fire a local irq_work that will trigger a reschedule once IRQs
545 * get re-enabled again.
546 */
547noinstr void rcu_irq_work_resched(void)
548{
549	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
550
551	if (IS_ENABLED(CONFIG_GENERIC_ENTRY) && !(current->flags & PF_VCPU))
552		return;
553
554	if (IS_ENABLED(CONFIG_KVM_XFER_TO_GUEST_WORK) && (current->flags & PF_VCPU))
555		return;
556
557	instrumentation_begin();
558	if (do_nocb_deferred_wakeup(rdp) && need_resched()) {
559		irq_work_queue(this_cpu_ptr(&late_wakeup_work));
560	}
561	instrumentation_end();
562}
563#endif /* #if defined(CONFIG_NO_HZ_FULL) && (!defined(CONFIG_GENERIC_ENTRY) || !defined(CONFIG_KVM_XFER_TO_GUEST_WORK)) */
564
565#ifdef CONFIG_PROVE_RCU
566/**
567 * rcu_irq_exit_check_preempt - Validate that scheduling is possible
568 */
569void rcu_irq_exit_check_preempt(void)
570{
571	lockdep_assert_irqs_disabled();
572
573	RCU_LOCKDEP_WARN(ct_dynticks_nesting() <= 0,
574			 "RCU dynticks_nesting counter underflow/zero!");
575	RCU_LOCKDEP_WARN(ct_dynticks_nmi_nesting() !=
576			 DYNTICK_IRQ_NONIDLE,
577			 "Bad RCU  dynticks_nmi_nesting counter\n");
578	RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(),
579			 "RCU in extended quiescent state!");
580}
581#endif /* #ifdef CONFIG_PROVE_RCU */
582
583#ifdef CONFIG_NO_HZ_FULL
584/**
585 * __rcu_irq_enter_check_tick - Enable scheduler tick on CPU if RCU needs it.
586 *
587 * The scheduler tick is not normally enabled when CPUs enter the kernel
588 * from nohz_full userspace execution.  After all, nohz_full userspace
589 * execution is an RCU quiescent state and the time executing in the kernel
590 * is quite short.  Except of course when it isn't.  And it is not hard to
591 * cause a large system to spend tens of seconds or even minutes looping
592 * in the kernel, which can cause a number of problems, include RCU CPU
593 * stall warnings.
594 *
595 * Therefore, if a nohz_full CPU fails to report a quiescent state
596 * in a timely manner, the RCU grace-period kthread sets that CPU's
597 * ->rcu_urgent_qs flag with the expectation that the next interrupt or
598 * exception will invoke this function, which will turn on the scheduler
599 * tick, which will enable RCU to detect that CPU's quiescent states,
600 * for example, due to cond_resched() calls in CONFIG_PREEMPT=n kernels.
601 * The tick will be disabled once a quiescent state is reported for
602 * this CPU.
603 *
604 * Of course, in carefully tuned systems, there might never be an
605 * interrupt or exception.  In that case, the RCU grace-period kthread
606 * will eventually cause one to happen.  However, in less carefully
607 * controlled environments, this function allows RCU to get what it
608 * needs without creating otherwise useless interruptions.
609 */
610void __rcu_irq_enter_check_tick(void)
611{
612	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
613
614	// If we're here from NMI there's nothing to do.
615	if (in_nmi())
616		return;
617
618	RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(),
619			 "Illegal rcu_irq_enter_check_tick() from extended quiescent state");
620
621	if (!tick_nohz_full_cpu(rdp->cpu) ||
622	    !READ_ONCE(rdp->rcu_urgent_qs) ||
623	    READ_ONCE(rdp->rcu_forced_tick)) {
624		// RCU doesn't need nohz_full help from this CPU, or it is
625		// already getting that help.
626		return;
627	}
628
629	// We get here only when not in an extended quiescent state and
630	// from interrupts (as opposed to NMIs).  Therefore, (1) RCU is
631	// already watching and (2) The fact that we are in an interrupt
632	// handler and that the rcu_node lock is an irq-disabled lock
633	// prevents self-deadlock.  So we can safely recheck under the lock.
634	// Note that the nohz_full state currently cannot change.
635	raw_spin_lock_rcu_node(rdp->mynode);
636	if (READ_ONCE(rdp->rcu_urgent_qs) && !rdp->rcu_forced_tick) {
637		// A nohz_full CPU is in the kernel and RCU needs a
638		// quiescent state.  Turn on the tick!
639		WRITE_ONCE(rdp->rcu_forced_tick, true);
640		tick_dep_set_cpu(rdp->cpu, TICK_DEP_BIT_RCU);
641	}
642	raw_spin_unlock_rcu_node(rdp->mynode);
643}
644NOKPROBE_SYMBOL(__rcu_irq_enter_check_tick);
645#endif /* CONFIG_NO_HZ_FULL */
646
647/*
648 * Check to see if any future non-offloaded RCU-related work will need
649 * to be done by the current CPU, even if none need be done immediately,
650 * returning 1 if so.  This function is part of the RCU implementation;
651 * it is -not- an exported member of the RCU API.  This is used by
652 * the idle-entry code to figure out whether it is safe to disable the
653 * scheduler-clock interrupt.
654 *
655 * Just check whether or not this CPU has non-offloaded RCU callbacks
656 * queued.
657 */
658int rcu_needs_cpu(void)
659{
660	return !rcu_segcblist_empty(&this_cpu_ptr(&rcu_data)->cblist) &&
661		!rcu_rdp_is_offloaded(this_cpu_ptr(&rcu_data));
662}
663
664/*
665 * If any sort of urgency was applied to the current CPU (for example,
666 * the scheduler-clock interrupt was enabled on a nohz_full CPU) in order
667 * to get to a quiescent state, disable it.
668 */
669static void rcu_disable_urgency_upon_qs(struct rcu_data *rdp)
670{
671	raw_lockdep_assert_held_rcu_node(rdp->mynode);
672	WRITE_ONCE(rdp->rcu_urgent_qs, false);
673	WRITE_ONCE(rdp->rcu_need_heavy_qs, false);
674	if (tick_nohz_full_cpu(rdp->cpu) && rdp->rcu_forced_tick) {
675		tick_dep_clear_cpu(rdp->cpu, TICK_DEP_BIT_RCU);
676		WRITE_ONCE(rdp->rcu_forced_tick, false);
677	}
678}
679
680/**
681 * rcu_is_watching - RCU read-side critical sections permitted on current CPU?
682 *
683 * Return @true if RCU is watching the running CPU and @false otherwise.
684 * An @true return means that this CPU can safely enter RCU read-side
685 * critical sections.
686 *
687 * Although calls to rcu_is_watching() from most parts of the kernel
688 * will return @true, there are important exceptions.  For example, if the
689 * current CPU is deep within its idle loop, in kernel entry/exit code,
690 * or offline, rcu_is_watching() will return @false.
691 *
692 * Make notrace because it can be called by the internal functions of
693 * ftrace, and making this notrace removes unnecessary recursion calls.
694 */
695notrace bool rcu_is_watching(void)
696{
697	bool ret;
698
699	preempt_disable_notrace();
700	ret = !rcu_dynticks_curr_cpu_in_eqs();
701	preempt_enable_notrace();
702	return ret;
703}
704EXPORT_SYMBOL_GPL(rcu_is_watching);
705
706/*
707 * If a holdout task is actually running, request an urgent quiescent
708 * state from its CPU.  This is unsynchronized, so migrations can cause
709 * the request to go to the wrong CPU.  Which is OK, all that will happen
710 * is that the CPU's next context switch will be a bit slower and next
711 * time around this task will generate another request.
712 */
713void rcu_request_urgent_qs_task(struct task_struct *t)
714{
715	int cpu;
716
717	barrier();
718	cpu = task_cpu(t);
719	if (!task_curr(t))
720		return; /* This task is not running on that CPU. */
721	smp_store_release(per_cpu_ptr(&rcu_data.rcu_urgent_qs, cpu), true);
722}
723
724/*
725 * When trying to report a quiescent state on behalf of some other CPU,
726 * it is our responsibility to check for and handle potential overflow
727 * of the rcu_node ->gp_seq counter with respect to the rcu_data counters.
728 * After all, the CPU might be in deep idle state, and thus executing no
729 * code whatsoever.
730 */
731static void rcu_gpnum_ovf(struct rcu_node *rnp, struct rcu_data *rdp)
732{
733	raw_lockdep_assert_held_rcu_node(rnp);
734	if (ULONG_CMP_LT(rcu_seq_current(&rdp->gp_seq) + ULONG_MAX / 4,
735			 rnp->gp_seq))
736		WRITE_ONCE(rdp->gpwrap, true);
737	if (ULONG_CMP_LT(rdp->rcu_iw_gp_seq + ULONG_MAX / 4, rnp->gp_seq))
738		rdp->rcu_iw_gp_seq = rnp->gp_seq + ULONG_MAX / 4;
739}
740
741/*
742 * Snapshot the specified CPU's dynticks counter so that we can later
743 * credit them with an implicit quiescent state.  Return 1 if this CPU
744 * is in dynticks idle mode, which is an extended quiescent state.
745 */
746static int dyntick_save_progress_counter(struct rcu_data *rdp)
747{
748	rdp->dynticks_snap = rcu_dynticks_snap(rdp->cpu);
749	if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) {
750		trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
751		rcu_gpnum_ovf(rdp->mynode, rdp);
752		return 1;
753	}
754	return 0;
755}
756
757/*
758 * Returns positive if the specified CPU has passed through a quiescent state
759 * by virtue of being in or having passed through an dynticks idle state since
760 * the last call to dyntick_save_progress_counter() for this same CPU, or by
761 * virtue of having been offline.
762 *
763 * Returns negative if the specified CPU needs a force resched.
764 *
765 * Returns zero otherwise.
766 */
767static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
768{
769	unsigned long jtsq;
770	int ret = 0;
771	struct rcu_node *rnp = rdp->mynode;
772
773	/*
774	 * If the CPU passed through or entered a dynticks idle phase with
775	 * no active irq/NMI handlers, then we can safely pretend that the CPU
776	 * already acknowledged the request to pass through a quiescent
777	 * state.  Either way, that CPU cannot possibly be in an RCU
778	 * read-side critical section that started before the beginning
779	 * of the current RCU grace period.
780	 */
781	if (rcu_dynticks_in_eqs_since(rdp, rdp->dynticks_snap)) {
782		trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
783		rcu_gpnum_ovf(rnp, rdp);
784		return 1;
785	}
786
787	/*
788	 * Complain if a CPU that is considered to be offline from RCU's
789	 * perspective has not yet reported a quiescent state.  After all,
790	 * the offline CPU should have reported a quiescent state during
791	 * the CPU-offline process, or, failing that, by rcu_gp_init()
792	 * if it ran concurrently with either the CPU going offline or the
793	 * last task on a leaf rcu_node structure exiting its RCU read-side
794	 * critical section while all CPUs corresponding to that structure
795	 * are offline.  This added warning detects bugs in any of these
796	 * code paths.
797	 *
798	 * The rcu_node structure's ->lock is held here, which excludes
799	 * the relevant portions the CPU-hotplug code, the grace-period
800	 * initialization code, and the rcu_read_unlock() code paths.
801	 *
802	 * For more detail, please refer to the "Hotplug CPU" section
803	 * of RCU's Requirements documentation.
804	 */
805	if (WARN_ON_ONCE(!rcu_rdp_cpu_online(rdp))) {
806		struct rcu_node *rnp1;
807
808		pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n",
809			__func__, rnp->grplo, rnp->grphi, rnp->level,
810			(long)rnp->gp_seq, (long)rnp->completedqs);
811		for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent)
812			pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx ->rcu_gp_init_mask %#lx\n",
813				__func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext, rnp1->rcu_gp_init_mask);
814		pr_info("%s %d: %c online: %ld(%d) offline: %ld(%d)\n",
815			__func__, rdp->cpu, ".o"[rcu_rdp_cpu_online(rdp)],
816			(long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags,
817			(long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags);
818		return 1; /* Break things loose after complaining. */
819	}
820
821	/*
822	 * A CPU running for an extended time within the kernel can
823	 * delay RCU grace periods: (1) At age jiffies_to_sched_qs,
824	 * set .rcu_urgent_qs, (2) At age 2*jiffies_to_sched_qs, set
825	 * both .rcu_need_heavy_qs and .rcu_urgent_qs.  Note that the
826	 * unsynchronized assignments to the per-CPU rcu_need_heavy_qs
827	 * variable are safe because the assignments are repeated if this
828	 * CPU failed to pass through a quiescent state.  This code
829	 * also checks .jiffies_resched in case jiffies_to_sched_qs
830	 * is set way high.
831	 */
832	jtsq = READ_ONCE(jiffies_to_sched_qs);
833	if (!READ_ONCE(rdp->rcu_need_heavy_qs) &&
834	    (time_after(jiffies, rcu_state.gp_start + jtsq * 2) ||
835	     time_after(jiffies, rcu_state.jiffies_resched) ||
836	     rcu_state.cbovld)) {
837		WRITE_ONCE(rdp->rcu_need_heavy_qs, true);
838		/* Store rcu_need_heavy_qs before rcu_urgent_qs. */
839		smp_store_release(&rdp->rcu_urgent_qs, true);
840	} else if (time_after(jiffies, rcu_state.gp_start + jtsq)) {
841		WRITE_ONCE(rdp->rcu_urgent_qs, true);
842	}
843
844	/*
845	 * NO_HZ_FULL CPUs can run in-kernel without rcu_sched_clock_irq!
846	 * The above code handles this, but only for straight cond_resched().
847	 * And some in-kernel loops check need_resched() before calling
848	 * cond_resched(), which defeats the above code for CPUs that are
849	 * running in-kernel with scheduling-clock interrupts disabled.
850	 * So hit them over the head with the resched_cpu() hammer!
851	 */
852	if (tick_nohz_full_cpu(rdp->cpu) &&
853	    (time_after(jiffies, READ_ONCE(rdp->last_fqs_resched) + jtsq * 3) ||
854	     rcu_state.cbovld)) {
855		WRITE_ONCE(rdp->rcu_urgent_qs, true);
856		WRITE_ONCE(rdp->last_fqs_resched, jiffies);
857		ret = -1;
858	}
859
860	/*
861	 * If more than halfway to RCU CPU stall-warning time, invoke
862	 * resched_cpu() more frequently to try to loosen things up a bit.
863	 * Also check to see if the CPU is getting hammered with interrupts,
864	 * but only once per grace period, just to keep the IPIs down to
865	 * a dull roar.
866	 */
867	if (time_after(jiffies, rcu_state.jiffies_resched)) {
868		if (time_after(jiffies,
869			       READ_ONCE(rdp->last_fqs_resched) + jtsq)) {
870			WRITE_ONCE(rdp->last_fqs_resched, jiffies);
871			ret = -1;
872		}
873		if (IS_ENABLED(CONFIG_IRQ_WORK) &&
874		    !rdp->rcu_iw_pending && rdp->rcu_iw_gp_seq != rnp->gp_seq &&
875		    (rnp->ffmask & rdp->grpmask)) {
876			rdp->rcu_iw_pending = true;
877			rdp->rcu_iw_gp_seq = rnp->gp_seq;
878			irq_work_queue_on(&rdp->rcu_iw, rdp->cpu);
879		}
880
881		if (rcu_cpu_stall_cputime && rdp->snap_record.gp_seq != rdp->gp_seq) {
882			int cpu = rdp->cpu;
883			struct rcu_snap_record *rsrp;
884			struct kernel_cpustat *kcsp;
885
886			kcsp = &kcpustat_cpu(cpu);
887
888			rsrp = &rdp->snap_record;
889			rsrp->cputime_irq     = kcpustat_field(kcsp, CPUTIME_IRQ, cpu);
890			rsrp->cputime_softirq = kcpustat_field(kcsp, CPUTIME_SOFTIRQ, cpu);
891			rsrp->cputime_system  = kcpustat_field(kcsp, CPUTIME_SYSTEM, cpu);
892			rsrp->nr_hardirqs = kstat_cpu_irqs_sum(rdp->cpu);
893			rsrp->nr_softirqs = kstat_cpu_softirqs_sum(rdp->cpu);
894			rsrp->nr_csw = nr_context_switches_cpu(rdp->cpu);
895			rsrp->jiffies = jiffies;
896			rsrp->gp_seq = rdp->gp_seq;
897		}
898	}
899
900	return ret;
901}
902
903/* Trace-event wrapper function for trace_rcu_future_grace_period.  */
904static void trace_rcu_this_gp(struct rcu_node *rnp, struct rcu_data *rdp,
905			      unsigned long gp_seq_req, const char *s)
906{
907	trace_rcu_future_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq),
908				      gp_seq_req, rnp->level,
909				      rnp->grplo, rnp->grphi, s);
910}
911
912/*
913 * rcu_start_this_gp - Request the start of a particular grace period
914 * @rnp_start: The leaf node of the CPU from which to start.
915 * @rdp: The rcu_data corresponding to the CPU from which to start.
916 * @gp_seq_req: The gp_seq of the grace period to start.
917 *
918 * Start the specified grace period, as needed to handle newly arrived
919 * callbacks.  The required future grace periods are recorded in each
920 * rcu_node structure's ->gp_seq_needed field.  Returns true if there
921 * is reason to awaken the grace-period kthread.
922 *
923 * The caller must hold the specified rcu_node structure's ->lock, which
924 * is why the caller is responsible for waking the grace-period kthread.
925 *
926 * Returns true if the GP thread needs to be awakened else false.
927 */
928static bool rcu_start_this_gp(struct rcu_node *rnp_start, struct rcu_data *rdp,
929			      unsigned long gp_seq_req)
930{
931	bool ret = false;
932	struct rcu_node *rnp;
933
934	/*
935	 * Use funnel locking to either acquire the root rcu_node
936	 * structure's lock or bail out if the need for this grace period
937	 * has already been recorded -- or if that grace period has in
938	 * fact already started.  If there is already a grace period in
939	 * progress in a non-leaf node, no recording is needed because the
940	 * end of the grace period will scan the leaf rcu_node structures.
941	 * Note that rnp_start->lock must not be released.
942	 */
943	raw_lockdep_assert_held_rcu_node(rnp_start);
944	trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, TPS("Startleaf"));
945	for (rnp = rnp_start; 1; rnp = rnp->parent) {
946		if (rnp != rnp_start)
947			raw_spin_lock_rcu_node(rnp);
948		if (ULONG_CMP_GE(rnp->gp_seq_needed, gp_seq_req) ||
949		    rcu_seq_started(&rnp->gp_seq, gp_seq_req) ||
950		    (rnp != rnp_start &&
951		     rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))) {
952			trace_rcu_this_gp(rnp, rdp, gp_seq_req,
953					  TPS("Prestarted"));
954			goto unlock_out;
955		}
956		WRITE_ONCE(rnp->gp_seq_needed, gp_seq_req);
957		if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq))) {
958			/*
959			 * We just marked the leaf or internal node, and a
960			 * grace period is in progress, which means that
961			 * rcu_gp_cleanup() will see the marking.  Bail to
962			 * reduce contention.
963			 */
964			trace_rcu_this_gp(rnp_start, rdp, gp_seq_req,
965					  TPS("Startedleaf"));
966			goto unlock_out;
967		}
968		if (rnp != rnp_start && rnp->parent != NULL)
969			raw_spin_unlock_rcu_node(rnp);
970		if (!rnp->parent)
971			break;  /* At root, and perhaps also leaf. */
972	}
973
974	/* If GP already in progress, just leave, otherwise start one. */
975	if (rcu_gp_in_progress()) {
976		trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedleafroot"));
977		goto unlock_out;
978	}
979	trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedroot"));
980	WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags | RCU_GP_FLAG_INIT);
981	WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
982	if (!READ_ONCE(rcu_state.gp_kthread)) {
983		trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("NoGPkthread"));
984		goto unlock_out;
985	}
986	trace_rcu_grace_period(rcu_state.name, data_race(rcu_state.gp_seq), TPS("newreq"));
987	ret = true;  /* Caller must wake GP kthread. */
988unlock_out:
989	/* Push furthest requested GP to leaf node and rcu_data structure. */
990	if (ULONG_CMP_LT(gp_seq_req, rnp->gp_seq_needed)) {
991		WRITE_ONCE(rnp_start->gp_seq_needed, rnp->gp_seq_needed);
992		WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed);
993	}
994	if (rnp != rnp_start)
995		raw_spin_unlock_rcu_node(rnp);
996	return ret;
997}
998
999/*
1000 * Clean up any old requests for the just-ended grace period.  Also return
1001 * whether any additional grace periods have been requested.
1002 */
1003static bool rcu_future_gp_cleanup(struct rcu_node *rnp)
1004{
1005	bool needmore;
1006	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1007
1008	needmore = ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed);
1009	if (!needmore)
1010		rnp->gp_seq_needed = rnp->gp_seq; /* Avoid counter wrap. */
1011	trace_rcu_this_gp(rnp, rdp, rnp->gp_seq,
1012			  needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1013	return needmore;
1014}
1015
1016static void swake_up_one_online_ipi(void *arg)
1017{
1018	struct swait_queue_head *wqh = arg;
1019
1020	swake_up_one(wqh);
1021}
1022
1023static void swake_up_one_online(struct swait_queue_head *wqh)
1024{
1025	int cpu = get_cpu();
1026
1027	/*
1028	 * If called from rcutree_report_cpu_starting(), wake up
1029	 * is dangerous that late in the CPU-down hotplug process. The
1030	 * scheduler might queue an ignored hrtimer. Defer the wake up
1031	 * to an online CPU instead.
1032	 */
1033	if (unlikely(cpu_is_offline(cpu))) {
1034		int target;
1035
1036		target = cpumask_any_and(housekeeping_cpumask(HK_TYPE_RCU),
1037					 cpu_online_mask);
1038
1039		smp_call_function_single(target, swake_up_one_online_ipi,
1040					 wqh, 0);
1041		put_cpu();
1042	} else {
1043		put_cpu();
1044		swake_up_one(wqh);
1045	}
1046}
1047
1048/*
1049 * Awaken the grace-period kthread.  Don't do a self-awaken (unless in an
1050 * interrupt or softirq handler, in which case we just might immediately
1051 * sleep upon return, resulting in a grace-period hang), and don't bother
1052 * awakening when there is nothing for the grace-period kthread to do
1053 * (as in several CPUs raced to awaken, we lost), and finally don't try
1054 * to awaken a kthread that has not yet been created.  If all those checks
1055 * are passed, track some debug information and awaken.
1056 *
1057 * So why do the self-wakeup when in an interrupt or softirq handler
1058 * in the grace-period kthread's context?  Because the kthread might have
1059 * been interrupted just as it was going to sleep, and just after the final
1060 * pre-sleep check of the awaken condition.  In this case, a wakeup really
1061 * is required, and is therefore supplied.
1062 */
1063static void rcu_gp_kthread_wake(void)
1064{
1065	struct task_struct *t = READ_ONCE(rcu_state.gp_kthread);
1066
1067	if ((current == t && !in_hardirq() && !in_serving_softirq()) ||
1068	    !READ_ONCE(rcu_state.gp_flags) || !t)
1069		return;
1070	WRITE_ONCE(rcu_state.gp_wake_time, jiffies);
1071	WRITE_ONCE(rcu_state.gp_wake_seq, READ_ONCE(rcu_state.gp_seq));
1072	swake_up_one_online(&rcu_state.gp_wq);
1073}
1074
1075/*
1076 * If there is room, assign a ->gp_seq number to any callbacks on this
1077 * CPU that have not already been assigned.  Also accelerate any callbacks
1078 * that were previously assigned a ->gp_seq number that has since proven
1079 * to be too conservative, which can happen if callbacks get assigned a
1080 * ->gp_seq number while RCU is idle, but with reference to a non-root
1081 * rcu_node structure.  This function is idempotent, so it does not hurt
1082 * to call it repeatedly.  Returns an flag saying that we should awaken
1083 * the RCU grace-period kthread.
1084 *
1085 * The caller must hold rnp->lock with interrupts disabled.
1086 */
1087static bool rcu_accelerate_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
1088{
1089	unsigned long gp_seq_req;
1090	bool ret = false;
1091
1092	rcu_lockdep_assert_cblist_protected(rdp);
1093	raw_lockdep_assert_held_rcu_node(rnp);
1094
1095	/* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1096	if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1097		return false;
1098
1099	trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbPreAcc"));
1100
1101	/*
1102	 * Callbacks are often registered with incomplete grace-period
1103	 * information.  Something about the fact that getting exact
1104	 * information requires acquiring a global lock...  RCU therefore
1105	 * makes a conservative estimate of the grace period number at which
1106	 * a given callback will become ready to invoke.	The following
1107	 * code checks this estimate and improves it when possible, thus
1108	 * accelerating callback invocation to an earlier grace-period
1109	 * number.
1110	 */
1111	gp_seq_req = rcu_seq_snap(&rcu_state.gp_seq);
1112	if (rcu_segcblist_accelerate(&rdp->cblist, gp_seq_req))
1113		ret = rcu_start_this_gp(rnp, rdp, gp_seq_req);
1114
1115	/* Trace depending on how much we were able to accelerate. */
1116	if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL))
1117		trace_rcu_grace_period(rcu_state.name, gp_seq_req, TPS("AccWaitCB"));
1118	else
1119		trace_rcu_grace_period(rcu_state.name, gp_seq_req, TPS("AccReadyCB"));
1120
1121	trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbPostAcc"));
1122
1123	return ret;
1124}
1125
1126/*
1127 * Similar to rcu_accelerate_cbs(), but does not require that the leaf
1128 * rcu_node structure's ->lock be held.  It consults the cached value
1129 * of ->gp_seq_needed in the rcu_data structure, and if that indicates
1130 * that a new grace-period request be made, invokes rcu_accelerate_cbs()
1131 * while holding the leaf rcu_node structure's ->lock.
1132 */
1133static void rcu_accelerate_cbs_unlocked(struct rcu_node *rnp,
1134					struct rcu_data *rdp)
1135{
1136	unsigned long c;
1137	bool needwake;
1138
1139	rcu_lockdep_assert_cblist_protected(rdp);
1140	c = rcu_seq_snap(&rcu_state.gp_seq);
1141	if (!READ_ONCE(rdp->gpwrap) && ULONG_CMP_GE(rdp->gp_seq_needed, c)) {
1142		/* Old request still live, so mark recent callbacks. */
1143		(void)rcu_segcblist_accelerate(&rdp->cblist, c);
1144		return;
1145	}
1146	raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
1147	needwake = rcu_accelerate_cbs(rnp, rdp);
1148	raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
1149	if (needwake)
1150		rcu_gp_kthread_wake();
1151}
1152
1153/*
1154 * Move any callbacks whose grace period has completed to the
1155 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1156 * assign ->gp_seq numbers to any callbacks in the RCU_NEXT_TAIL
1157 * sublist.  This function is idempotent, so it does not hurt to
1158 * invoke it repeatedly.  As long as it is not invoked -too- often...
1159 * Returns true if the RCU grace-period kthread needs to be awakened.
1160 *
1161 * The caller must hold rnp->lock with interrupts disabled.
1162 */
1163static bool rcu_advance_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
1164{
1165	rcu_lockdep_assert_cblist_protected(rdp);
1166	raw_lockdep_assert_held_rcu_node(rnp);
1167
1168	/* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1169	if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1170		return false;
1171
1172	/*
1173	 * Find all callbacks whose ->gp_seq numbers indicate that they
1174	 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1175	 */
1176	rcu_segcblist_advance(&rdp->cblist, rnp->gp_seq);
1177
1178	/* Classify any remaining callbacks. */
1179	return rcu_accelerate_cbs(rnp, rdp);
1180}
1181
1182/*
1183 * Move and classify callbacks, but only if doing so won't require
1184 * that the RCU grace-period kthread be awakened.
1185 */
1186static void __maybe_unused rcu_advance_cbs_nowake(struct rcu_node *rnp,
1187						  struct rcu_data *rdp)
1188{
1189	rcu_lockdep_assert_cblist_protected(rdp);
1190	if (!rcu_seq_state(rcu_seq_current(&rnp->gp_seq)) || !raw_spin_trylock_rcu_node(rnp))
1191		return;
1192	// The grace period cannot end while we hold the rcu_node lock.
1193	if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))
1194		WARN_ON_ONCE(rcu_advance_cbs(rnp, rdp));
1195	raw_spin_unlock_rcu_node(rnp);
1196}
1197
1198/*
1199 * In CONFIG_RCU_STRICT_GRACE_PERIOD=y kernels, attempt to generate a
1200 * quiescent state.  This is intended to be invoked when the CPU notices
1201 * a new grace period.
1202 */
1203static void rcu_strict_gp_check_qs(void)
1204{
1205	if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) {
1206		rcu_read_lock();
1207		rcu_read_unlock();
1208	}
1209}
1210
1211/*
1212 * Update CPU-local rcu_data state to record the beginnings and ends of
1213 * grace periods.  The caller must hold the ->lock of the leaf rcu_node
1214 * structure corresponding to the current CPU, and must have irqs disabled.
1215 * Returns true if the grace-period kthread needs to be awakened.
1216 */
1217static bool __note_gp_changes(struct rcu_node *rnp, struct rcu_data *rdp)
1218{
1219	bool ret = false;
1220	bool need_qs;
1221	const bool offloaded = rcu_rdp_is_offloaded(rdp);
1222
1223	raw_lockdep_assert_held_rcu_node(rnp);
1224
1225	if (rdp->gp_seq == rnp->gp_seq)
1226		return false; /* Nothing to do. */
1227
1228	/* Handle the ends of any preceding grace periods first. */
1229	if (rcu_seq_completed_gp(rdp->gp_seq, rnp->gp_seq) ||
1230	    unlikely(READ_ONCE(rdp->gpwrap))) {
1231		if (!offloaded)
1232			ret = rcu_advance_cbs(rnp, rdp); /* Advance CBs. */
1233		rdp->core_needs_qs = false;
1234		trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuend"));
1235	} else {
1236		if (!offloaded)
1237			ret = rcu_accelerate_cbs(rnp, rdp); /* Recent CBs. */
1238		if (rdp->core_needs_qs)
1239			rdp->core_needs_qs = !!(rnp->qsmask & rdp->grpmask);
1240	}
1241
1242	/* Now handle the beginnings of any new-to-this-CPU grace periods. */
1243	if (rcu_seq_new_gp(rdp->gp_seq, rnp->gp_seq) ||
1244	    unlikely(READ_ONCE(rdp->gpwrap))) {
1245		/*
1246		 * If the current grace period is waiting for this CPU,
1247		 * set up to detect a quiescent state, otherwise don't
1248		 * go looking for one.
1249		 */
1250		trace_rcu_grace_period(rcu_state.name, rnp->gp_seq, TPS("cpustart"));
1251		need_qs = !!(rnp->qsmask & rdp->grpmask);
1252		rdp->cpu_no_qs.b.norm = need_qs;
1253		rdp->core_needs_qs = need_qs;
1254		zero_cpu_stall_ticks(rdp);
1255	}
1256	rdp->gp_seq = rnp->gp_seq;  /* Remember new grace-period state. */
1257	if (ULONG_CMP_LT(rdp->gp_seq_needed, rnp->gp_seq_needed) || rdp->gpwrap)
1258		WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed);
1259	if (IS_ENABLED(CONFIG_PROVE_RCU) && READ_ONCE(rdp->gpwrap))
1260		WRITE_ONCE(rdp->last_sched_clock, jiffies);
1261	WRITE_ONCE(rdp->gpwrap, false);
1262	rcu_gpnum_ovf(rnp, rdp);
1263	return ret;
1264}
1265
1266static void note_gp_changes(struct rcu_data *rdp)
1267{
1268	unsigned long flags;
1269	bool needwake;
1270	struct rcu_node *rnp;
1271
1272	local_irq_save(flags);
1273	rnp = rdp->mynode;
1274	if ((rdp->gp_seq == rcu_seq_current(&rnp->gp_seq) &&
1275	     !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
1276	    !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
1277		local_irq_restore(flags);
1278		return;
1279	}
1280	needwake = __note_gp_changes(rnp, rdp);
1281	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1282	rcu_strict_gp_check_qs();
1283	if (needwake)
1284		rcu_gp_kthread_wake();
1285}
1286
1287static atomic_t *rcu_gp_slow_suppress;
1288
1289/* Register a counter to suppress debugging grace-period delays. */
1290void rcu_gp_slow_register(atomic_t *rgssp)
1291{
1292	WARN_ON_ONCE(rcu_gp_slow_suppress);
1293
1294	WRITE_ONCE(rcu_gp_slow_suppress, rgssp);
1295}
1296EXPORT_SYMBOL_GPL(rcu_gp_slow_register);
1297
1298/* Unregister a counter, with NULL for not caring which. */
1299void rcu_gp_slow_unregister(atomic_t *rgssp)
1300{
1301	WARN_ON_ONCE(rgssp && rgssp != rcu_gp_slow_suppress && rcu_gp_slow_suppress != NULL);
1302
1303	WRITE_ONCE(rcu_gp_slow_suppress, NULL);
1304}
1305EXPORT_SYMBOL_GPL(rcu_gp_slow_unregister);
1306
1307static bool rcu_gp_slow_is_suppressed(void)
1308{
1309	atomic_t *rgssp = READ_ONCE(rcu_gp_slow_suppress);
1310
1311	return rgssp && atomic_read(rgssp);
1312}
1313
1314static void rcu_gp_slow(int delay)
1315{
1316	if (!rcu_gp_slow_is_suppressed() && delay > 0 &&
1317	    !(rcu_seq_ctr(rcu_state.gp_seq) % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
1318		schedule_timeout_idle(delay);
1319}
1320
1321static unsigned long sleep_duration;
1322
1323/* Allow rcutorture to stall the grace-period kthread. */
1324void rcu_gp_set_torture_wait(int duration)
1325{
1326	if (IS_ENABLED(CONFIG_RCU_TORTURE_TEST) && duration > 0)
1327		WRITE_ONCE(sleep_duration, duration);
1328}
1329EXPORT_SYMBOL_GPL(rcu_gp_set_torture_wait);
1330
1331/* Actually implement the aforementioned wait. */
1332static void rcu_gp_torture_wait(void)
1333{
1334	unsigned long duration;
1335
1336	if (!IS_ENABLED(CONFIG_RCU_TORTURE_TEST))
1337		return;
1338	duration = xchg(&sleep_duration, 0UL);
1339	if (duration > 0) {
1340		pr_alert("%s: Waiting %lu jiffies\n", __func__, duration);
1341		schedule_timeout_idle(duration);
1342		pr_alert("%s: Wait complete\n", __func__);
1343	}
1344}
1345
1346/*
1347 * Handler for on_each_cpu() to invoke the target CPU's RCU core
1348 * processing.
1349 */
1350static void rcu_strict_gp_boundary(void *unused)
1351{
1352	invoke_rcu_core();
1353}
1354
1355// Make the polled API aware of the beginning of a grace period.
1356static void rcu_poll_gp_seq_start(unsigned long *snap)
1357{
1358	struct rcu_node *rnp = rcu_get_root();
1359
1360	if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE)
1361		raw_lockdep_assert_held_rcu_node(rnp);
1362
1363	// If RCU was idle, note beginning of GP.
1364	if (!rcu_seq_state(rcu_state.gp_seq_polled))
1365		rcu_seq_start(&rcu_state.gp_seq_polled);
1366
1367	// Either way, record current state.
1368	*snap = rcu_state.gp_seq_polled;
1369}
1370
1371// Make the polled API aware of the end of a grace period.
1372static void rcu_poll_gp_seq_end(unsigned long *snap)
1373{
1374	struct rcu_node *rnp = rcu_get_root();
1375
1376	if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE)
1377		raw_lockdep_assert_held_rcu_node(rnp);
1378
1379	// If the previously noted GP is still in effect, record the
1380	// end of that GP.  Either way, zero counter to avoid counter-wrap
1381	// problems.
1382	if (*snap && *snap == rcu_state.gp_seq_polled) {
1383		rcu_seq_end(&rcu_state.gp_seq_polled);
1384		rcu_state.gp_seq_polled_snap = 0;
1385		rcu_state.gp_seq_polled_exp_snap = 0;
1386	} else {
1387		*snap = 0;
1388	}
1389}
1390
1391// Make the polled API aware of the beginning of a grace period, but
1392// where caller does not hold the root rcu_node structure's lock.
1393static void rcu_poll_gp_seq_start_unlocked(unsigned long *snap)
1394{
1395	unsigned long flags;
1396	struct rcu_node *rnp = rcu_get_root();
1397
1398	if (rcu_init_invoked()) {
1399		if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE)
1400			lockdep_assert_irqs_enabled();
1401		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1402	}
1403	rcu_poll_gp_seq_start(snap);
1404	if (rcu_init_invoked())
1405		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1406}
1407
1408// Make the polled API aware of the end of a grace period, but where
1409// caller does not hold the root rcu_node structure's lock.
1410static void rcu_poll_gp_seq_end_unlocked(unsigned long *snap)
1411{
1412	unsigned long flags;
1413	struct rcu_node *rnp = rcu_get_root();
1414
1415	if (rcu_init_invoked()) {
1416		if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE)
1417			lockdep_assert_irqs_enabled();
1418		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1419	}
1420	rcu_poll_gp_seq_end(snap);
1421	if (rcu_init_invoked())
1422		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1423}
1424
1425/*
1426 * Initialize a new grace period.  Return false if no grace period required.
1427 */
1428static noinline_for_stack bool rcu_gp_init(void)
1429{
1430	unsigned long flags;
1431	unsigned long oldmask;
1432	unsigned long mask;
1433	struct rcu_data *rdp;
1434	struct rcu_node *rnp = rcu_get_root();
1435
1436	WRITE_ONCE(rcu_state.gp_activity, jiffies);
1437	raw_spin_lock_irq_rcu_node(rnp);
1438	if (!READ_ONCE(rcu_state.gp_flags)) {
1439		/* Spurious wakeup, tell caller to go back to sleep.  */
1440		raw_spin_unlock_irq_rcu_node(rnp);
1441		return false;
1442	}
1443	WRITE_ONCE(rcu_state.gp_flags, 0); /* Clear all flags: New GP. */
1444
1445	if (WARN_ON_ONCE(rcu_gp_in_progress())) {
1446		/*
1447		 * Grace period already in progress, don't start another.
1448		 * Not supposed to be able to happen.
1449		 */
1450		raw_spin_unlock_irq_rcu_node(rnp);
1451		return false;
1452	}
1453
1454	/* Advance to a new grace period and initialize state. */
1455	record_gp_stall_check_time();
1456	/* Record GP times before starting GP, hence rcu_seq_start(). */
1457	rcu_seq_start(&rcu_state.gp_seq);
1458	ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq);
1459	trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("start"));
1460	rcu_poll_gp_seq_start(&rcu_state.gp_seq_polled_snap);
1461	raw_spin_unlock_irq_rcu_node(rnp);
1462
1463	/*
1464	 * Apply per-leaf buffered online and offline operations to
1465	 * the rcu_node tree. Note that this new grace period need not
1466	 * wait for subsequent online CPUs, and that RCU hooks in the CPU
1467	 * offlining path, when combined with checks in this function,
1468	 * will handle CPUs that are currently going offline or that will
1469	 * go offline later.  Please also refer to "Hotplug CPU" section
1470	 * of RCU's Requirements documentation.
1471	 */
1472	WRITE_ONCE(rcu_state.gp_state, RCU_GP_ONOFF);
1473	/* Exclude CPU hotplug operations. */
1474	rcu_for_each_leaf_node(rnp) {
1475		local_irq_save(flags);
1476		arch_spin_lock(&rcu_state.ofl_lock);
1477		raw_spin_lock_rcu_node(rnp);
1478		if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
1479		    !rnp->wait_blkd_tasks) {
1480			/* Nothing to do on this leaf rcu_node structure. */
1481			raw_spin_unlock_rcu_node(rnp);
1482			arch_spin_unlock(&rcu_state.ofl_lock);
1483			local_irq_restore(flags);
1484			continue;
1485		}
1486
1487		/* Record old state, apply changes to ->qsmaskinit field. */
1488		oldmask = rnp->qsmaskinit;
1489		rnp->qsmaskinit = rnp->qsmaskinitnext;
1490
1491		/* If zero-ness of ->qsmaskinit changed, propagate up tree. */
1492		if (!oldmask != !rnp->qsmaskinit) {
1493			if (!oldmask) { /* First online CPU for rcu_node. */
1494				if (!rnp->wait_blkd_tasks) /* Ever offline? */
1495					rcu_init_new_rnp(rnp);
1496			} else if (rcu_preempt_has_tasks(rnp)) {
1497				rnp->wait_blkd_tasks = true; /* blocked tasks */
1498			} else { /* Last offline CPU and can propagate. */
1499				rcu_cleanup_dead_rnp(rnp);
1500			}
1501		}
1502
1503		/*
1504		 * If all waited-on tasks from prior grace period are
1505		 * done, and if all this rcu_node structure's CPUs are
1506		 * still offline, propagate up the rcu_node tree and
1507		 * clear ->wait_blkd_tasks.  Otherwise, if one of this
1508		 * rcu_node structure's CPUs has since come back online,
1509		 * simply clear ->wait_blkd_tasks.
1510		 */
1511		if (rnp->wait_blkd_tasks &&
1512		    (!rcu_preempt_has_tasks(rnp) || rnp->qsmaskinit)) {
1513			rnp->wait_blkd_tasks = false;
1514			if (!rnp->qsmaskinit)
1515				rcu_cleanup_dead_rnp(rnp);
1516		}
1517
1518		raw_spin_unlock_rcu_node(rnp);
1519		arch_spin_unlock(&rcu_state.ofl_lock);
1520		local_irq_restore(flags);
1521	}
1522	rcu_gp_slow(gp_preinit_delay); /* Races with CPU hotplug. */
1523
1524	/*
1525	 * Set the quiescent-state-needed bits in all the rcu_node
1526	 * structures for all currently online CPUs in breadth-first
1527	 * order, starting from the root rcu_node structure, relying on the
1528	 * layout of the tree within the rcu_state.node[] array.  Note that
1529	 * other CPUs will access only the leaves of the hierarchy, thus
1530	 * seeing that no grace period is in progress, at least until the
1531	 * corresponding leaf node has been initialized.
1532	 *
1533	 * The grace period cannot complete until the initialization
1534	 * process finishes, because this kthread handles both.
1535	 */
1536	WRITE_ONCE(rcu_state.gp_state, RCU_GP_INIT);
1537	rcu_for_each_node_breadth_first(rnp) {
1538		rcu_gp_slow(gp_init_delay);
1539		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1540		rdp = this_cpu_ptr(&rcu_data);
1541		rcu_preempt_check_blocked_tasks(rnp);
1542		rnp->qsmask = rnp->qsmaskinit;
1543		WRITE_ONCE(rnp->gp_seq, rcu_state.gp_seq);
1544		if (rnp == rdp->mynode)
1545			(void)__note_gp_changes(rnp, rdp);
1546		rcu_preempt_boost_start_gp(rnp);
1547		trace_rcu_grace_period_init(rcu_state.name, rnp->gp_seq,
1548					    rnp->level, rnp->grplo,
1549					    rnp->grphi, rnp->qsmask);
1550		/* Quiescent states for tasks on any now-offline CPUs. */
1551		mask = rnp->qsmask & ~rnp->qsmaskinitnext;
1552		rnp->rcu_gp_init_mask = mask;
1553		if ((mask || rnp->wait_blkd_tasks) && rcu_is_leaf_node(rnp))
1554			rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
1555		else
1556			raw_spin_unlock_irq_rcu_node(rnp);
1557		cond_resched_tasks_rcu_qs();
1558		WRITE_ONCE(rcu_state.gp_activity, jiffies);
1559	}
1560
1561	// If strict, make all CPUs aware of new grace period.
1562	if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
1563		on_each_cpu(rcu_strict_gp_boundary, NULL, 0);
1564
1565	return true;
1566}
1567
1568/*
1569 * Helper function for swait_event_idle_exclusive() wakeup at force-quiescent-state
1570 * time.
1571 */
1572static bool rcu_gp_fqs_check_wake(int *gfp)
1573{
1574	struct rcu_node *rnp = rcu_get_root();
1575
1576	// If under overload conditions, force an immediate FQS scan.
1577	if (*gfp & RCU_GP_FLAG_OVLD)
1578		return true;
1579
1580	// Someone like call_rcu() requested a force-quiescent-state scan.
1581	*gfp = READ_ONCE(rcu_state.gp_flags);
1582	if (*gfp & RCU_GP_FLAG_FQS)
1583		return true;
1584
1585	// The current grace period has completed.
1586	if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
1587		return true;
1588
1589	return false;
1590}
1591
1592/*
1593 * Do one round of quiescent-state forcing.
1594 */
1595static void rcu_gp_fqs(bool first_time)
1596{
1597	int nr_fqs = READ_ONCE(rcu_state.nr_fqs_jiffies_stall);
1598	struct rcu_node *rnp = rcu_get_root();
1599
1600	WRITE_ONCE(rcu_state.gp_activity, jiffies);
1601	WRITE_ONCE(rcu_state.n_force_qs, rcu_state.n_force_qs + 1);
1602
1603	WARN_ON_ONCE(nr_fqs > 3);
1604	/* Only countdown nr_fqs for stall purposes if jiffies moves. */
1605	if (nr_fqs) {
1606		if (nr_fqs == 1) {
1607			WRITE_ONCE(rcu_state.jiffies_stall,
1608				   jiffies + rcu_jiffies_till_stall_check());
1609		}
1610		WRITE_ONCE(rcu_state.nr_fqs_jiffies_stall, --nr_fqs);
1611	}
1612
1613	if (first_time) {
1614		/* Collect dyntick-idle snapshots. */
1615		force_qs_rnp(dyntick_save_progress_counter);
1616	} else {
1617		/* Handle dyntick-idle and offline CPUs. */
1618		force_qs_rnp(rcu_implicit_dynticks_qs);
1619	}
1620	/* Clear flag to prevent immediate re-entry. */
1621	if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
1622		raw_spin_lock_irq_rcu_node(rnp);
1623		WRITE_ONCE(rcu_state.gp_flags,
1624			   READ_ONCE(rcu_state.gp_flags) & ~RCU_GP_FLAG_FQS);
1625		raw_spin_unlock_irq_rcu_node(rnp);
1626	}
1627}
1628
1629/*
1630 * Loop doing repeated quiescent-state forcing until the grace period ends.
1631 */
1632static noinline_for_stack void rcu_gp_fqs_loop(void)
1633{
1634	bool first_gp_fqs = true;
1635	int gf = 0;
1636	unsigned long j;
1637	int ret;
1638	struct rcu_node *rnp = rcu_get_root();
1639
1640	j = READ_ONCE(jiffies_till_first_fqs);
1641	if (rcu_state.cbovld)
1642		gf = RCU_GP_FLAG_OVLD;
1643	ret = 0;
1644	for (;;) {
1645		if (rcu_state.cbovld) {
1646			j = (j + 2) / 3;
1647			if (j <= 0)
1648				j = 1;
1649		}
1650		if (!ret || time_before(jiffies + j, rcu_state.jiffies_force_qs)) {
1651			WRITE_ONCE(rcu_state.jiffies_force_qs, jiffies + j);
1652			/*
1653			 * jiffies_force_qs before RCU_GP_WAIT_FQS state
1654			 * update; required for stall checks.
1655			 */
1656			smp_wmb();
1657			WRITE_ONCE(rcu_state.jiffies_kick_kthreads,
1658				   jiffies + (j ? 3 * j : 2));
1659		}
1660		trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1661				       TPS("fqswait"));
1662		WRITE_ONCE(rcu_state.gp_state, RCU_GP_WAIT_FQS);
1663		(void)swait_event_idle_timeout_exclusive(rcu_state.gp_wq,
1664				 rcu_gp_fqs_check_wake(&gf), j);
1665		rcu_gp_torture_wait();
1666		WRITE_ONCE(rcu_state.gp_state, RCU_GP_DOING_FQS);
1667		/* Locking provides needed memory barriers. */
1668		/*
1669		 * Exit the loop if the root rcu_node structure indicates that the grace period
1670		 * has ended, leave the loop.  The rcu_preempt_blocked_readers_cgp(rnp) check
1671		 * is required only for single-node rcu_node trees because readers blocking
1672		 * the current grace period are queued only on leaf rcu_node structures.
1673		 * For multi-node trees, checking the root node's ->qsmask suffices, because a
1674		 * given root node's ->qsmask bit is cleared only when all CPUs and tasks from
1675		 * the corresponding leaf nodes have passed through their quiescent state.
1676		 */
1677		if (!READ_ONCE(rnp->qsmask) &&
1678		    !rcu_preempt_blocked_readers_cgp(rnp))
1679			break;
1680		/* If time for quiescent-state forcing, do it. */
1681		if (!time_after(rcu_state.jiffies_force_qs, jiffies) ||
1682		    (gf & (RCU_GP_FLAG_FQS | RCU_GP_FLAG_OVLD))) {
1683			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1684					       TPS("fqsstart"));
1685			rcu_gp_fqs(first_gp_fqs);
1686			gf = 0;
1687			if (first_gp_fqs) {
1688				first_gp_fqs = false;
1689				gf = rcu_state.cbovld ? RCU_GP_FLAG_OVLD : 0;
1690			}
1691			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1692					       TPS("fqsend"));
1693			cond_resched_tasks_rcu_qs();
1694			WRITE_ONCE(rcu_state.gp_activity, jiffies);
1695			ret = 0; /* Force full wait till next FQS. */
1696			j = READ_ONCE(jiffies_till_next_fqs);
1697		} else {
1698			/* Deal with stray signal. */
1699			cond_resched_tasks_rcu_qs();
1700			WRITE_ONCE(rcu_state.gp_activity, jiffies);
1701			WARN_ON(signal_pending(current));
1702			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1703					       TPS("fqswaitsig"));
1704			ret = 1; /* Keep old FQS timing. */
1705			j = jiffies;
1706			if (time_after(jiffies, rcu_state.jiffies_force_qs))
1707				j = 1;
1708			else
1709				j = rcu_state.jiffies_force_qs - j;
1710			gf = 0;
1711		}
1712	}
1713}
1714
1715/*
1716 * Clean up after the old grace period.
1717 */
1718static noinline void rcu_gp_cleanup(void)
1719{
1720	int cpu;
1721	bool needgp = false;
1722	unsigned long gp_duration;
1723	unsigned long new_gp_seq;
1724	bool offloaded;
1725	struct rcu_data *rdp;
1726	struct rcu_node *rnp = rcu_get_root();
1727	struct swait_queue_head *sq;
1728
1729	WRITE_ONCE(rcu_state.gp_activity, jiffies);
1730	raw_spin_lock_irq_rcu_node(rnp);
1731	rcu_state.gp_end = jiffies;
1732	gp_duration = rcu_state.gp_end - rcu_state.gp_start;
1733	if (gp_duration > rcu_state.gp_max)
1734		rcu_state.gp_max = gp_duration;
1735
1736	/*
1737	 * We know the grace period is complete, but to everyone else
1738	 * it appears to still be ongoing.  But it is also the case
1739	 * that to everyone else it looks like there is nothing that
1740	 * they can do to advance the grace period.  It is therefore
1741	 * safe for us to drop the lock in order to mark the grace
1742	 * period as completed in all of the rcu_node structures.
1743	 */
1744	rcu_poll_gp_seq_end(&rcu_state.gp_seq_polled_snap);
1745	raw_spin_unlock_irq_rcu_node(rnp);
1746
1747	/*
1748	 * Propagate new ->gp_seq value to rcu_node structures so that
1749	 * other CPUs don't have to wait until the start of the next grace
1750	 * period to process their callbacks.  This also avoids some nasty
1751	 * RCU grace-period initialization races by forcing the end of
1752	 * the current grace period to be completely recorded in all of
1753	 * the rcu_node structures before the beginning of the next grace
1754	 * period is recorded in any of the rcu_node structures.
1755	 */
1756	new_gp_seq = rcu_state.gp_seq;
1757	rcu_seq_end(&new_gp_seq);
1758	rcu_for_each_node_breadth_first(rnp) {
1759		raw_spin_lock_irq_rcu_node(rnp);
1760		if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)))
1761			dump_blkd_tasks(rnp, 10);
1762		WARN_ON_ONCE(rnp->qsmask);
1763		WRITE_ONCE(rnp->gp_seq, new_gp_seq);
1764		if (!rnp->parent)
1765			smp_mb(); // Order against failing poll_state_synchronize_rcu_full().
1766		rdp = this_cpu_ptr(&rcu_data);
1767		if (rnp == rdp->mynode)
1768			needgp = __note_gp_changes(rnp, rdp) || needgp;
1769		/* smp_mb() provided by prior unlock-lock pair. */
1770		needgp = rcu_future_gp_cleanup(rnp) || needgp;
1771		// Reset overload indication for CPUs no longer overloaded
1772		if (rcu_is_leaf_node(rnp))
1773			for_each_leaf_node_cpu_mask(rnp, cpu, rnp->cbovldmask) {
1774				rdp = per_cpu_ptr(&rcu_data, cpu);
1775				check_cb_ovld_locked(rdp, rnp);
1776			}
1777		sq = rcu_nocb_gp_get(rnp);
1778		raw_spin_unlock_irq_rcu_node(rnp);
1779		rcu_nocb_gp_cleanup(sq);
1780		cond_resched_tasks_rcu_qs();
1781		WRITE_ONCE(rcu_state.gp_activity, jiffies);
1782		rcu_gp_slow(gp_cleanup_delay);
1783	}
1784	rnp = rcu_get_root();
1785	raw_spin_lock_irq_rcu_node(rnp); /* GP before ->gp_seq update. */
1786
1787	/* Declare grace period done, trace first to use old GP number. */
1788	trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("end"));
1789	rcu_seq_end(&rcu_state.gp_seq);
1790	ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq);
1791	WRITE_ONCE(rcu_state.gp_state, RCU_GP_IDLE);
1792	/* Check for GP requests since above loop. */
1793	rdp = this_cpu_ptr(&rcu_data);
1794	if (!needgp && ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed)) {
1795		trace_rcu_this_gp(rnp, rdp, rnp->gp_seq_needed,
1796				  TPS("CleanupMore"));
1797		needgp = true;
1798	}
1799	/* Advance CBs to reduce false positives below. */
1800	offloaded = rcu_rdp_is_offloaded(rdp);
1801	if ((offloaded || !rcu_accelerate_cbs(rnp, rdp)) && needgp) {
1802
1803		// We get here if a grace period was needed (���needgp���)
1804		// and the above call to rcu_accelerate_cbs() did not set
1805		// the RCU_GP_FLAG_INIT bit in ->gp_state (which records
1806		// the need for another grace period).�� The purpose
1807		// of the ���offloaded��� check is to avoid invoking
1808		// rcu_accelerate_cbs() on an offloaded CPU because we do not
1809		// hold the ->nocb_lock needed to safely access an offloaded
1810		// ->cblist.�� We do not want to acquire that lock because
1811		// it can be heavily contended during callback floods.
1812
1813		WRITE_ONCE(rcu_state.gp_flags, RCU_GP_FLAG_INIT);
1814		WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
1815		trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("newreq"));
1816	} else {
1817
1818		// We get here either if there is no need for an
1819		// additional grace period or if rcu_accelerate_cbs() has
1820		// already set the RCU_GP_FLAG_INIT bit in ->gp_flags.��
1821		// So all we need to do is to clear all of the other
1822		// ->gp_flags bits.
1823
1824		WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags & RCU_GP_FLAG_INIT);
1825	}
1826	raw_spin_unlock_irq_rcu_node(rnp);
1827
1828	// If strict, make all CPUs aware of the end of the old grace period.
1829	if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
1830		on_each_cpu(rcu_strict_gp_boundary, NULL, 0);
1831}
1832
1833/*
1834 * Body of kthread that handles grace periods.
1835 */
1836static int __noreturn rcu_gp_kthread(void *unused)
1837{
1838	rcu_bind_gp_kthread();
1839	for (;;) {
1840
1841		/* Handle grace-period start. */
1842		for (;;) {
1843			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1844					       TPS("reqwait"));
1845			WRITE_ONCE(rcu_state.gp_state, RCU_GP_WAIT_GPS);
1846			swait_event_idle_exclusive(rcu_state.gp_wq,
1847					 READ_ONCE(rcu_state.gp_flags) &
1848					 RCU_GP_FLAG_INIT);
1849			rcu_gp_torture_wait();
1850			WRITE_ONCE(rcu_state.gp_state, RCU_GP_DONE_GPS);
1851			/* Locking provides needed memory barrier. */
1852			if (rcu_gp_init())
1853				break;
1854			cond_resched_tasks_rcu_qs();
1855			WRITE_ONCE(rcu_state.gp_activity, jiffies);
1856			WARN_ON(signal_pending(current));
1857			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1858					       TPS("reqwaitsig"));
1859		}
1860
1861		/* Handle quiescent-state forcing. */
1862		rcu_gp_fqs_loop();
1863
1864		/* Handle grace-period end. */
1865		WRITE_ONCE(rcu_state.gp_state, RCU_GP_CLEANUP);
1866		rcu_gp_cleanup();
1867		WRITE_ONCE(rcu_state.gp_state, RCU_GP_CLEANED);
1868	}
1869}
1870
1871/*
1872 * Report a full set of quiescent states to the rcu_state data structure.
1873 * Invoke rcu_gp_kthread_wake() to awaken the grace-period kthread if
1874 * another grace period is required.  Whether we wake the grace-period
1875 * kthread or it awakens itself for the next round of quiescent-state
1876 * forcing, that kthread will clean up after the just-completed grace
1877 * period.  Note that the caller must hold rnp->lock, which is released
1878 * before return.
1879 */
1880static void rcu_report_qs_rsp(unsigned long flags)
1881	__releases(rcu_get_root()->lock)
1882{
1883	raw_lockdep_assert_held_rcu_node(rcu_get_root());
1884	WARN_ON_ONCE(!rcu_gp_in_progress());
1885	WRITE_ONCE(rcu_state.gp_flags,
1886		   READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS);
1887	raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(), flags);
1888	rcu_gp_kthread_wake();
1889}
1890
1891/*
1892 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
1893 * Allows quiescent states for a group of CPUs to be reported at one go
1894 * to the specified rcu_node structure, though all the CPUs in the group
1895 * must be represented by the same rcu_node structure (which need not be a
1896 * leaf rcu_node structure, though it often will be).  The gps parameter
1897 * is the grace-period snapshot, which means that the quiescent states
1898 * are valid only if rnp->gp_seq is equal to gps.  That structure's lock
1899 * must be held upon entry, and it is released before return.
1900 *
1901 * As a special case, if mask is zero, the bit-already-cleared check is
1902 * disabled.  This allows propagating quiescent state due to resumed tasks
1903 * during grace-period initialization.
1904 */
1905static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
1906			      unsigned long gps, unsigned long flags)
1907	__releases(rnp->lock)
1908{
1909	unsigned long oldmask = 0;
1910	struct rcu_node *rnp_c;
1911
1912	raw_lockdep_assert_held_rcu_node(rnp);
1913
1914	/* Walk up the rcu_node hierarchy. */
1915	for (;;) {
1916		if ((!(rnp->qsmask & mask) && mask) || rnp->gp_seq != gps) {
1917
1918			/*
1919			 * Our bit has already been cleared, or the
1920			 * relevant grace period is already over, so done.
1921			 */
1922			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1923			return;
1924		}
1925		WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
1926		WARN_ON_ONCE(!rcu_is_leaf_node(rnp) &&
1927			     rcu_preempt_blocked_readers_cgp(rnp));
1928		WRITE_ONCE(rnp->qsmask, rnp->qsmask & ~mask);
1929		trace_rcu_quiescent_state_report(rcu_state.name, rnp->gp_seq,
1930						 mask, rnp->qsmask, rnp->level,
1931						 rnp->grplo, rnp->grphi,
1932						 !!rnp->gp_tasks);
1933		if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
1934
1935			/* Other bits still set at this level, so done. */
1936			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1937			return;
1938		}
1939		rnp->completedqs = rnp->gp_seq;
1940		mask = rnp->grpmask;
1941		if (rnp->parent == NULL) {
1942
1943			/* No more levels.  Exit loop holding root lock. */
1944
1945			break;
1946		}
1947		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1948		rnp_c = rnp;
1949		rnp = rnp->parent;
1950		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1951		oldmask = READ_ONCE(rnp_c->qsmask);
1952	}
1953
1954	/*
1955	 * Get here if we are the last CPU to pass through a quiescent
1956	 * state for this grace period.  Invoke rcu_report_qs_rsp()
1957	 * to clean up and start the next grace period if one is needed.
1958	 */
1959	rcu_report_qs_rsp(flags); /* releases rnp->lock. */
1960}
1961
1962/*
1963 * Record a quiescent state for all tasks that were previously queued
1964 * on the specified rcu_node structure and that were blocking the current
1965 * RCU grace period.  The caller must hold the corresponding rnp->lock with
1966 * irqs disabled, and this lock is released upon return, but irqs remain
1967 * disabled.
1968 */
1969static void __maybe_unused
1970rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
1971	__releases(rnp->lock)
1972{
1973	unsigned long gps;
1974	unsigned long mask;
1975	struct rcu_node *rnp_p;
1976
1977	raw_lockdep_assert_held_rcu_node(rnp);
1978	if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT_RCU)) ||
1979	    WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)) ||
1980	    rnp->qsmask != 0) {
1981		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1982		return;  /* Still need more quiescent states! */
1983	}
1984
1985	rnp->completedqs = rnp->gp_seq;
1986	rnp_p = rnp->parent;
1987	if (rnp_p == NULL) {
1988		/*
1989		 * Only one rcu_node structure in the tree, so don't
1990		 * try to report up to its nonexistent parent!
1991		 */
1992		rcu_report_qs_rsp(flags);
1993		return;
1994	}
1995
1996	/* Report up the rest of the hierarchy, tracking current ->gp_seq. */
1997	gps = rnp->gp_seq;
1998	mask = rnp->grpmask;
1999	raw_spin_unlock_rcu_node(rnp);	/* irqs remain disabled. */
2000	raw_spin_lock_rcu_node(rnp_p);	/* irqs already disabled. */
2001	rcu_report_qs_rnp(mask, rnp_p, gps, flags);
2002}
2003
2004/*
2005 * Record a quiescent state for the specified CPU to that CPU's rcu_data
2006 * structure.  This must be called from the specified CPU.
2007 */
2008static void
2009rcu_report_qs_rdp(struct rcu_data *rdp)
2010{
2011	unsigned long flags;
2012	unsigned long mask;
2013	bool needacc = false;
2014	struct rcu_node *rnp;
2015
2016	WARN_ON_ONCE(rdp->cpu != smp_processor_id());
2017	rnp = rdp->mynode;
2018	raw_spin_lock_irqsave_rcu_node(rnp, flags);
2019	if (rdp->cpu_no_qs.b.norm || rdp->gp_seq != rnp->gp_seq ||
2020	    rdp->gpwrap) {
2021
2022		/*
2023		 * The grace period in which this quiescent state was
2024		 * recorded has ended, so don't report it upwards.
2025		 * We will instead need a new quiescent state that lies
2026		 * within the current grace period.
2027		 */
2028		rdp->cpu_no_qs.b.norm = true;	/* need qs for new gp. */
2029		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2030		return;
2031	}
2032	mask = rdp->grpmask;
2033	rdp->core_needs_qs = false;
2034	if ((rnp->qsmask & mask) == 0) {
2035		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2036	} else {
2037		/*
2038		 * This GP can't end until cpu checks in, so all of our
2039		 * callbacks can be processed during the next GP.
2040		 *
2041		 * NOCB kthreads have their own way to deal with that...
2042		 */
2043		if (!rcu_rdp_is_offloaded(rdp)) {
2044			/*
2045			 * The current GP has not yet ended, so it
2046			 * should not be possible for rcu_accelerate_cbs()
2047			 * to return true.  So complain, but don't awaken.
2048			 */
2049			WARN_ON_ONCE(rcu_accelerate_cbs(rnp, rdp));
2050		} else if (!rcu_segcblist_completely_offloaded(&rdp->cblist)) {
2051			/*
2052			 * ...but NOCB kthreads may miss or delay callbacks acceleration
2053			 * if in the middle of a (de-)offloading process.
2054			 */
2055			needacc = true;
2056		}
2057
2058		rcu_disable_urgency_upon_qs(rdp);
2059		rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
2060		/* ^^^ Released rnp->lock */
2061
2062		if (needacc) {
2063			rcu_nocb_lock_irqsave(rdp, flags);
2064			rcu_accelerate_cbs_unlocked(rnp, rdp);
2065			rcu_nocb_unlock_irqrestore(rdp, flags);
2066		}
2067	}
2068}
2069
2070/*
2071 * Check to see if there is a new grace period of which this CPU
2072 * is not yet aware, and if so, set up local rcu_data state for it.
2073 * Otherwise, see if this CPU has just passed through its first
2074 * quiescent state for this grace period, and record that fact if so.
2075 */
2076static void
2077rcu_check_quiescent_state(struct rcu_data *rdp)
2078{
2079	/* Check for grace-period ends and beginnings. */
2080	note_gp_changes(rdp);
2081
2082	/*
2083	 * Does this CPU still need to do its part for current grace period?
2084	 * If no, return and let the other CPUs do their part as well.
2085	 */
2086	if (!rdp->core_needs_qs)
2087		return;
2088
2089	/*
2090	 * Was there a quiescent state since the beginning of the grace
2091	 * period? If no, then exit and wait for the next call.
2092	 */
2093	if (rdp->cpu_no_qs.b.norm)
2094		return;
2095
2096	/*
2097	 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2098	 * judge of that).
2099	 */
2100	rcu_report_qs_rdp(rdp);
2101}
2102
2103/* Return true if callback-invocation time limit exceeded. */
2104static bool rcu_do_batch_check_time(long count, long tlimit,
2105				    bool jlimit_check, unsigned long jlimit)
2106{
2107	// Invoke local_clock() only once per 32 consecutive callbacks.
2108	return unlikely(tlimit) &&
2109	       (!likely(count & 31) ||
2110		(IS_ENABLED(CONFIG_RCU_DOUBLE_CHECK_CB_TIME) &&
2111		 jlimit_check && time_after(jiffies, jlimit))) &&
2112	       local_clock() >= tlimit;
2113}
2114
2115/*
2116 * Invoke any RCU callbacks that have made it to the end of their grace
2117 * period.  Throttle as specified by rdp->blimit.
2118 */
2119static void rcu_do_batch(struct rcu_data *rdp)
2120{
2121	long bl;
2122	long count = 0;
2123	int div;
2124	bool __maybe_unused empty;
2125	unsigned long flags;
2126	unsigned long jlimit;
2127	bool jlimit_check = false;
2128	long pending;
2129	struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl);
2130	struct rcu_head *rhp;
2131	long tlimit = 0;
2132
2133	/* If no callbacks are ready, just return. */
2134	if (!rcu_segcblist_ready_cbs(&rdp->cblist)) {
2135		trace_rcu_batch_start(rcu_state.name,
2136				      rcu_segcblist_n_cbs(&rdp->cblist), 0);
2137		trace_rcu_batch_end(rcu_state.name, 0,
2138				    !rcu_segcblist_empty(&rdp->cblist),
2139				    need_resched(), is_idle_task(current),
2140				    rcu_is_callbacks_kthread(rdp));
2141		return;
2142	}
2143
2144	/*
2145	 * Extract the list of ready callbacks, disabling IRQs to prevent
2146	 * races with call_rcu() from interrupt handlers.  Leave the
2147	 * callback counts, as rcu_barrier() needs to be conservative.
2148	 *
2149	 * Callbacks execution is fully ordered against preceding grace period
2150	 * completion (materialized by rnp->gp_seq update) thanks to the
2151	 * smp_mb__after_unlock_lock() upon node locking required for callbacks
2152	 * advancing. In NOCB mode this ordering is then further relayed through
2153	 * the nocb locking that protects both callbacks advancing and extraction.
2154	 */
2155	rcu_nocb_lock_irqsave(rdp, flags);
2156	WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2157	pending = rcu_segcblist_get_seglen(&rdp->cblist, RCU_DONE_TAIL);
2158	div = READ_ONCE(rcu_divisor);
2159	div = div < 0 ? 7 : div > sizeof(long) * 8 - 2 ? sizeof(long) * 8 - 2 : div;
2160	bl = max(rdp->blimit, pending >> div);
2161	if ((in_serving_softirq() || rdp->rcu_cpu_kthread_status == RCU_KTHREAD_RUNNING) &&
2162	    (IS_ENABLED(CONFIG_RCU_DOUBLE_CHECK_CB_TIME) || unlikely(bl > 100))) {
2163		const long npj = NSEC_PER_SEC / HZ;
2164		long rrn = READ_ONCE(rcu_resched_ns);
2165
2166		rrn = rrn < NSEC_PER_MSEC ? NSEC_PER_MSEC : rrn > NSEC_PER_SEC ? NSEC_PER_SEC : rrn;
2167		tlimit = local_clock() + rrn;
2168		jlimit = jiffies + (rrn + npj + 1) / npj;
2169		jlimit_check = true;
2170	}
2171	trace_rcu_batch_start(rcu_state.name,
2172			      rcu_segcblist_n_cbs(&rdp->cblist), bl);
2173	rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl);
2174	if (rcu_rdp_is_offloaded(rdp))
2175		rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
2176
2177	trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbDequeued"));
2178	rcu_nocb_unlock_irqrestore(rdp, flags);
2179
2180	/* Invoke callbacks. */
2181	tick_dep_set_task(current, TICK_DEP_BIT_RCU);
2182	rhp = rcu_cblist_dequeue(&rcl);
2183
2184	for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) {
2185		rcu_callback_t f;
2186
2187		count++;
2188		debug_rcu_head_unqueue(rhp);
2189
2190		rcu_lock_acquire(&rcu_callback_map);
2191		trace_rcu_invoke_callback(rcu_state.name, rhp);
2192
2193		f = rhp->func;
2194		debug_rcu_head_callback(rhp);
2195		WRITE_ONCE(rhp->func, (rcu_callback_t)0L);
2196		f(rhp);
2197
2198		rcu_lock_release(&rcu_callback_map);
2199
2200		/*
2201		 * Stop only if limit reached and CPU has something to do.
2202		 */
2203		if (in_serving_softirq()) {
2204			if (count >= bl && (need_resched() || !is_idle_task(current)))
2205				break;
2206			/*
2207			 * Make sure we don't spend too much time here and deprive other
2208			 * softirq vectors of CPU cycles.
2209			 */
2210			if (rcu_do_batch_check_time(count, tlimit, jlimit_check, jlimit))
2211				break;
2212		} else {
2213			// In rcuc/rcuoc context, so no worries about
2214			// depriving other softirq vectors of CPU cycles.
2215			local_bh_enable();
2216			lockdep_assert_irqs_enabled();
2217			cond_resched_tasks_rcu_qs();
2218			lockdep_assert_irqs_enabled();
2219			local_bh_disable();
2220			// But rcuc kthreads can delay quiescent-state
2221			// reporting, so check time limits for them.
2222			if (rdp->rcu_cpu_kthread_status == RCU_KTHREAD_RUNNING &&
2223			    rcu_do_batch_check_time(count, tlimit, jlimit_check, jlimit)) {
2224				rdp->rcu_cpu_has_work = 1;
2225				break;
2226			}
2227		}
2228	}
2229
2230	rcu_nocb_lock_irqsave(rdp, flags);
2231	rdp->n_cbs_invoked += count;
2232	trace_rcu_batch_end(rcu_state.name, count, !!rcl.head, need_resched(),
2233			    is_idle_task(current), rcu_is_callbacks_kthread(rdp));
2234
2235	/* Update counts and requeue any remaining callbacks. */
2236	rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl);
2237	rcu_segcblist_add_len(&rdp->cblist, -count);
2238
2239	/* Reinstate batch limit if we have worked down the excess. */
2240	count = rcu_segcblist_n_cbs(&rdp->cblist);
2241	if (rdp->blimit >= DEFAULT_MAX_RCU_BLIMIT && count <= qlowmark)
2242		rdp->blimit = blimit;
2243
2244	/* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2245	if (count == 0 && rdp->qlen_last_fqs_check != 0) {
2246		rdp->qlen_last_fqs_check = 0;
2247		rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs);
2248	} else if (count < rdp->qlen_last_fqs_check - qhimark)
2249		rdp->qlen_last_fqs_check = count;
2250
2251	/*
2252	 * The following usually indicates a double call_rcu().  To track
2253	 * this down, try building with CONFIG_DEBUG_OBJECTS_RCU_HEAD=y.
2254	 */
2255	empty = rcu_segcblist_empty(&rdp->cblist);
2256	WARN_ON_ONCE(count == 0 && !empty);
2257	WARN_ON_ONCE(!IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
2258		     count != 0 && empty);
2259	WARN_ON_ONCE(count == 0 && rcu_segcblist_n_segment_cbs(&rdp->cblist) != 0);
2260	WARN_ON_ONCE(!empty && rcu_segcblist_n_segment_cbs(&rdp->cblist) == 0);
2261
2262	rcu_nocb_unlock_irqrestore(rdp, flags);
2263
2264	tick_dep_clear_task(current, TICK_DEP_BIT_RCU);
2265}
2266
2267/*
2268 * This function is invoked from each scheduling-clock interrupt,
2269 * and checks to see if this CPU is in a non-context-switch quiescent
2270 * state, for example, user mode or idle loop.  It also schedules RCU
2271 * core processing.  If the current grace period has gone on too long,
2272 * it will ask the scheduler to manufacture a context switch for the sole
2273 * purpose of providing the needed quiescent state.
2274 */
2275void rcu_sched_clock_irq(int user)
2276{
2277	unsigned long j;
2278
2279	if (IS_ENABLED(CONFIG_PROVE_RCU)) {
2280		j = jiffies;
2281		WARN_ON_ONCE(time_before(j, __this_cpu_read(rcu_data.last_sched_clock)));
2282		__this_cpu_write(rcu_data.last_sched_clock, j);
2283	}
2284	trace_rcu_utilization(TPS("Start scheduler-tick"));
2285	lockdep_assert_irqs_disabled();
2286	raw_cpu_inc(rcu_data.ticks_this_gp);
2287	/* The load-acquire pairs with the store-release setting to true. */
2288	if (smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) {
2289		/* Idle and userspace execution already are quiescent states. */
2290		if (!rcu_is_cpu_rrupt_from_idle() && !user) {
2291			set_tsk_need_resched(current);
2292			set_preempt_need_resched();
2293		}
2294		__this_cpu_write(rcu_data.rcu_urgent_qs, false);
2295	}
2296	rcu_flavor_sched_clock_irq(user);
2297	if (rcu_pending(user))
2298		invoke_rcu_core();
2299	if (user || rcu_is_cpu_rrupt_from_idle())
2300		rcu_note_voluntary_context_switch(current);
2301	lockdep_assert_irqs_disabled();
2302
2303	trace_rcu_utilization(TPS("End scheduler-tick"));
2304}
2305
2306/*
2307 * Scan the leaf rcu_node structures.  For each structure on which all
2308 * CPUs have reported a quiescent state and on which there are tasks
2309 * blocking the current grace period, initiate RCU priority boosting.
2310 * Otherwise, invoke the specified function to check dyntick state for
2311 * each CPU that has not yet reported a quiescent state.
2312 */
2313static void force_qs_rnp(int (*f)(struct rcu_data *rdp))
2314{
2315	int cpu;
2316	unsigned long flags;
2317	struct rcu_node *rnp;
2318
2319	rcu_state.cbovld = rcu_state.cbovldnext;
2320	rcu_state.cbovldnext = false;
2321	rcu_for_each_leaf_node(rnp) {
2322		unsigned long mask = 0;
2323		unsigned long rsmask = 0;
2324
2325		cond_resched_tasks_rcu_qs();
2326		raw_spin_lock_irqsave_rcu_node(rnp, flags);
2327		rcu_state.cbovldnext |= !!rnp->cbovldmask;
2328		if (rnp->qsmask == 0) {
2329			if (rcu_preempt_blocked_readers_cgp(rnp)) {
2330				/*
2331				 * No point in scanning bits because they
2332				 * are all zero.  But we might need to
2333				 * priority-boost blocked readers.
2334				 */
2335				rcu_initiate_boost(rnp, flags);
2336				/* rcu_initiate_boost() releases rnp->lock */
2337				continue;
2338			}
2339			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2340			continue;
2341		}
2342		for_each_leaf_node_cpu_mask(rnp, cpu, rnp->qsmask) {
2343			struct rcu_data *rdp;
2344			int ret;
2345
2346			rdp = per_cpu_ptr(&rcu_data, cpu);
2347			ret = f(rdp);
2348			if (ret > 0) {
2349				mask |= rdp->grpmask;
2350				rcu_disable_urgency_upon_qs(rdp);
2351			}
2352			if (ret < 0)
2353				rsmask |= rdp->grpmask;
2354		}
2355		if (mask != 0) {
2356			/* Idle/offline CPUs, report (releases rnp->lock). */
2357			rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
2358		} else {
2359			/* Nothing to do here, so just drop the lock. */
2360			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2361		}
2362
2363		for_each_leaf_node_cpu_mask(rnp, cpu, rsmask)
2364			resched_cpu(cpu);
2365	}
2366}
2367
2368/*
2369 * Force quiescent states on reluctant CPUs, and also detect which
2370 * CPUs are in dyntick-idle mode.
2371 */
2372void rcu_force_quiescent_state(void)
2373{
2374	unsigned long flags;
2375	bool ret;
2376	struct rcu_node *rnp;
2377	struct rcu_node *rnp_old = NULL;
2378
2379	if (!rcu_gp_in_progress())
2380		return;
2381	/* Funnel through hierarchy to reduce memory contention. */
2382	rnp = raw_cpu_read(rcu_data.mynode);
2383	for (; rnp != NULL; rnp = rnp->parent) {
2384		ret = (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) ||
2385		       !raw_spin_trylock(&rnp->fqslock);
2386		if (rnp_old != NULL)
2387			raw_spin_unlock(&rnp_old->fqslock);
2388		if (ret)
2389			return;
2390		rnp_old = rnp;
2391	}
2392	/* rnp_old == rcu_get_root(), rnp == NULL. */
2393
2394	/* Reached the root of the rcu_node tree, acquire lock. */
2395	raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
2396	raw_spin_unlock(&rnp_old->fqslock);
2397	if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
2398		raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2399		return;  /* Someone beat us to it. */
2400	}
2401	WRITE_ONCE(rcu_state.gp_flags,
2402		   READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS);
2403	raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2404	rcu_gp_kthread_wake();
2405}
2406EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
2407
2408// Workqueue handler for an RCU reader for kernels enforcing struct RCU
2409// grace periods.
2410static void strict_work_handler(struct work_struct *work)
2411{
2412	rcu_read_lock();
2413	rcu_read_unlock();
2414}
2415
2416/* Perform RCU core processing work for the current CPU.  */
2417static __latent_entropy void rcu_core(void)
2418{
2419	unsigned long flags;
2420	struct rcu_data *rdp = raw_cpu_ptr(&rcu_data);
2421	struct rcu_node *rnp = rdp->mynode;
2422	/*
2423	 * On RT rcu_core() can be preempted when IRQs aren't disabled.
2424	 * Therefore this function can race with concurrent NOCB (de-)offloading
2425	 * on this CPU and the below condition must be considered volatile.
2426	 * However if we race with:
2427	 *
2428	 * _ Offloading:   In the worst case we accelerate or process callbacks
2429	 *                 concurrently with NOCB kthreads. We are guaranteed to
2430	 *                 call rcu_nocb_lock() if that happens.
2431	 *
2432	 * _ Deoffloading: In the worst case we miss callbacks acceleration or
2433	 *                 processing. This is fine because the early stage
2434	 *                 of deoffloading invokes rcu_core() after setting
2435	 *                 SEGCBLIST_RCU_CORE. So we guarantee that we'll process
2436	 *                 what could have been dismissed without the need to wait
2437	 *                 for the next rcu_pending() check in the next jiffy.
2438	 */
2439	const bool do_batch = !rcu_segcblist_completely_offloaded(&rdp->cblist);
2440
2441	if (cpu_is_offline(smp_processor_id()))
2442		return;
2443	trace_rcu_utilization(TPS("Start RCU core"));
2444	WARN_ON_ONCE(!rdp->beenonline);
2445
2446	/* Report any deferred quiescent states if preemption enabled. */
2447	if (IS_ENABLED(CONFIG_PREEMPT_COUNT) && (!(preempt_count() & PREEMPT_MASK))) {
2448		rcu_preempt_deferred_qs(current);
2449	} else if (rcu_preempt_need_deferred_qs(current)) {
2450		set_tsk_need_resched(current);
2451		set_preempt_need_resched();
2452	}
2453
2454	/* Update RCU state based on any recent quiescent states. */
2455	rcu_check_quiescent_state(rdp);
2456
2457	/* No grace period and unregistered callbacks? */
2458	if (!rcu_gp_in_progress() &&
2459	    rcu_segcblist_is_enabled(&rdp->cblist) && do_batch) {
2460		rcu_nocb_lock_irqsave(rdp, flags);
2461		if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
2462			rcu_accelerate_cbs_unlocked(rnp, rdp);
2463		rcu_nocb_unlock_irqrestore(rdp, flags);
2464	}
2465
2466	rcu_check_gp_start_stall(rnp, rdp, rcu_jiffies_till_stall_check());
2467
2468	/* If there are callbacks ready, invoke them. */
2469	if (do_batch && rcu_segcblist_ready_cbs(&rdp->cblist) &&
2470	    likely(READ_ONCE(rcu_scheduler_fully_active))) {
2471		rcu_do_batch(rdp);
2472		/* Re-invoke RCU core processing if there are callbacks remaining. */
2473		if (rcu_segcblist_ready_cbs(&rdp->cblist))
2474			invoke_rcu_core();
2475	}
2476
2477	/* Do any needed deferred wakeups of rcuo kthreads. */
2478	do_nocb_deferred_wakeup(rdp);
2479	trace_rcu_utilization(TPS("End RCU core"));
2480
2481	// If strict GPs, schedule an RCU reader in a clean environment.
2482	if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
2483		queue_work_on(rdp->cpu, rcu_gp_wq, &rdp->strict_work);
2484}
2485
2486static void rcu_core_si(struct softirq_action *h)
2487{
2488	rcu_core();
2489}
2490
2491static void rcu_wake_cond(struct task_struct *t, int status)
2492{
2493	/*
2494	 * If the thread is yielding, only wake it when this
2495	 * is invoked from idle
2496	 */
2497	if (t && (status != RCU_KTHREAD_YIELDING || is_idle_task(current)))
2498		wake_up_process(t);
2499}
2500
2501static void invoke_rcu_core_kthread(void)
2502{
2503	struct task_struct *t;
2504	unsigned long flags;
2505
2506	local_irq_save(flags);
2507	__this_cpu_write(rcu_data.rcu_cpu_has_work, 1);
2508	t = __this_cpu_read(rcu_data.rcu_cpu_kthread_task);
2509	if (t != NULL && t != current)
2510		rcu_wake_cond(t, __this_cpu_read(rcu_data.rcu_cpu_kthread_status));
2511	local_irq_restore(flags);
2512}
2513
2514/*
2515 * Wake up this CPU's rcuc kthread to do RCU core processing.
2516 */
2517static void invoke_rcu_core(void)
2518{
2519	if (!cpu_online(smp_processor_id()))
2520		return;
2521	if (use_softirq)
2522		raise_softirq(RCU_SOFTIRQ);
2523	else
2524		invoke_rcu_core_kthread();
2525}
2526
2527static void rcu_cpu_kthread_park(unsigned int cpu)
2528{
2529	per_cpu(rcu_data.rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
2530}
2531
2532static int rcu_cpu_kthread_should_run(unsigned int cpu)
2533{
2534	return __this_cpu_read(rcu_data.rcu_cpu_has_work);
2535}
2536
2537/*
2538 * Per-CPU kernel thread that invokes RCU callbacks.  This replaces
2539 * the RCU softirq used in configurations of RCU that do not support RCU
2540 * priority boosting.
2541 */
2542static void rcu_cpu_kthread(unsigned int cpu)
2543{
2544	unsigned int *statusp = this_cpu_ptr(&rcu_data.rcu_cpu_kthread_status);
2545	char work, *workp = this_cpu_ptr(&rcu_data.rcu_cpu_has_work);
2546	unsigned long *j = this_cpu_ptr(&rcu_data.rcuc_activity);
2547	int spincnt;
2548
2549	trace_rcu_utilization(TPS("Start CPU kthread@rcu_run"));
2550	for (spincnt = 0; spincnt < 10; spincnt++) {
2551		WRITE_ONCE(*j, jiffies);
2552		local_bh_disable();
2553		*statusp = RCU_KTHREAD_RUNNING;
2554		local_irq_disable();
2555		work = *workp;
2556		WRITE_ONCE(*workp, 0);
2557		local_irq_enable();
2558		if (work)
2559			rcu_core();
2560		local_bh_enable();
2561		if (!READ_ONCE(*workp)) {
2562			trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
2563			*statusp = RCU_KTHREAD_WAITING;
2564			return;
2565		}
2566	}
2567	*statusp = RCU_KTHREAD_YIELDING;
2568	trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
2569	schedule_timeout_idle(2);
2570	trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
2571	*statusp = RCU_KTHREAD_WAITING;
2572	WRITE_ONCE(*j, jiffies);
2573}
2574
2575static struct smp_hotplug_thread rcu_cpu_thread_spec = {
2576	.store			= &rcu_data.rcu_cpu_kthread_task,
2577	.thread_should_run	= rcu_cpu_kthread_should_run,
2578	.thread_fn		= rcu_cpu_kthread,
2579	.thread_comm		= "rcuc/%u",
2580	.setup			= rcu_cpu_kthread_setup,
2581	.park			= rcu_cpu_kthread_park,
2582};
2583
2584/*
2585 * Spawn per-CPU RCU core processing kthreads.
2586 */
2587static int __init rcu_spawn_core_kthreads(void)
2588{
2589	int cpu;
2590
2591	for_each_possible_cpu(cpu)
2592		per_cpu(rcu_data.rcu_cpu_has_work, cpu) = 0;
2593	if (use_softirq)
2594		return 0;
2595	WARN_ONCE(smpboot_register_percpu_thread(&rcu_cpu_thread_spec),
2596		  "%s: Could not start rcuc kthread, OOM is now expected behavior\n", __func__);
2597	return 0;
2598}
2599
2600static void rcutree_enqueue(struct rcu_data *rdp, struct rcu_head *head, rcu_callback_t func)
2601{
2602	rcu_segcblist_enqueue(&rdp->cblist, head);
2603	if (__is_kvfree_rcu_offset((unsigned long)func))
2604		trace_rcu_kvfree_callback(rcu_state.name, head,
2605					 (unsigned long)func,
2606					 rcu_segcblist_n_cbs(&rdp->cblist));
2607	else
2608		trace_rcu_callback(rcu_state.name, head,
2609				   rcu_segcblist_n_cbs(&rdp->cblist));
2610	trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCBQueued"));
2611}
2612
2613/*
2614 * Handle any core-RCU processing required by a call_rcu() invocation.
2615 */
2616static void call_rcu_core(struct rcu_data *rdp, struct rcu_head *head,
2617			  rcu_callback_t func, unsigned long flags)
2618{
2619	rcutree_enqueue(rdp, head, func);
2620	/*
2621	 * If called from an extended quiescent state, invoke the RCU
2622	 * core in order to force a re-evaluation of RCU's idleness.
2623	 */
2624	if (!rcu_is_watching())
2625		invoke_rcu_core();
2626
2627	/* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2628	if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2629		return;
2630
2631	/*
2632	 * Force the grace period if too many callbacks or too long waiting.
2633	 * Enforce hysteresis, and don't invoke rcu_force_quiescent_state()
2634	 * if some other CPU has recently done so.  Also, don't bother
2635	 * invoking rcu_force_quiescent_state() if the newly enqueued callback
2636	 * is the only one waiting for a grace period to complete.
2637	 */
2638	if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) >
2639		     rdp->qlen_last_fqs_check + qhimark)) {
2640
2641		/* Are we ignoring a completed grace period? */
2642		note_gp_changes(rdp);
2643
2644		/* Start a new grace period if one not already started. */
2645		if (!rcu_gp_in_progress()) {
2646			rcu_accelerate_cbs_unlocked(rdp->mynode, rdp);
2647		} else {
2648			/* Give the grace period a kick. */
2649			rdp->blimit = DEFAULT_MAX_RCU_BLIMIT;
2650			if (READ_ONCE(rcu_state.n_force_qs) == rdp->n_force_qs_snap &&
2651			    rcu_segcblist_first_pend_cb(&rdp->cblist) != head)
2652				rcu_force_quiescent_state();
2653			rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs);
2654			rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
2655		}
2656	}
2657}
2658
2659/*
2660 * RCU callback function to leak a callback.
2661 */
2662static void rcu_leak_callback(struct rcu_head *rhp)
2663{
2664}
2665
2666/*
2667 * Check and if necessary update the leaf rcu_node structure's
2668 * ->cbovldmask bit corresponding to the current CPU based on that CPU's
2669 * number of queued RCU callbacks.  The caller must hold the leaf rcu_node
2670 * structure's ->lock.
2671 */
2672static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp)
2673{
2674	raw_lockdep_assert_held_rcu_node(rnp);
2675	if (qovld_calc <= 0)
2676		return; // Early boot and wildcard value set.
2677	if (rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc)
2678		WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask | rdp->grpmask);
2679	else
2680		WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask & ~rdp->grpmask);
2681}
2682
2683/*
2684 * Check and if necessary update the leaf rcu_node structure's
2685 * ->cbovldmask bit corresponding to the current CPU based on that CPU's
2686 * number of queued RCU callbacks.  No locks need be held, but the
2687 * caller must have disabled interrupts.
2688 *
2689 * Note that this function ignores the possibility that there are a lot
2690 * of callbacks all of which have already seen the end of their respective
2691 * grace periods.  This omission is due to the need for no-CBs CPUs to
2692 * be holding ->nocb_lock to do this check, which is too heavy for a
2693 * common-case operation.
2694 */
2695static void check_cb_ovld(struct rcu_data *rdp)
2696{
2697	struct rcu_node *const rnp = rdp->mynode;
2698
2699	if (qovld_calc <= 0 ||
2700	    ((rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc) ==
2701	     !!(READ_ONCE(rnp->cbovldmask) & rdp->grpmask)))
2702		return; // Early boot wildcard value or already set correctly.
2703	raw_spin_lock_rcu_node(rnp);
2704	check_cb_ovld_locked(rdp, rnp);
2705	raw_spin_unlock_rcu_node(rnp);
2706}
2707
2708static void
2709__call_rcu_common(struct rcu_head *head, rcu_callback_t func, bool lazy_in)
2710{
2711	static atomic_t doublefrees;
2712	unsigned long flags;
2713	bool lazy;
2714	struct rcu_data *rdp;
2715
2716	/* Misaligned rcu_head! */
2717	WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1));
2718
2719	if (debug_rcu_head_queue(head)) {
2720		/*
2721		 * Probable double call_rcu(), so leak the callback.
2722		 * Use rcu:rcu_callback trace event to find the previous
2723		 * time callback was passed to call_rcu().
2724		 */
2725		if (atomic_inc_return(&doublefrees) < 4) {
2726			pr_err("%s(): Double-freed CB %p->%pS()!!!  ", __func__, head, head->func);
2727			mem_dump_obj(head);
2728		}
2729		WRITE_ONCE(head->func, rcu_leak_callback);
2730		return;
2731	}
2732	head->func = func;
2733	head->next = NULL;
2734	kasan_record_aux_stack_noalloc(head);
2735	local_irq_save(flags);
2736	rdp = this_cpu_ptr(&rcu_data);
2737	lazy = lazy_in && !rcu_async_should_hurry();
2738
2739	/* Add the callback to our list. */
2740	if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist))) {
2741		// This can trigger due to call_rcu() from offline CPU:
2742		WARN_ON_ONCE(rcu_scheduler_active != RCU_SCHEDULER_INACTIVE);
2743		WARN_ON_ONCE(!rcu_is_watching());
2744		// Very early boot, before rcu_init().  Initialize if needed
2745		// and then drop through to queue the callback.
2746		if (rcu_segcblist_empty(&rdp->cblist))
2747			rcu_segcblist_init(&rdp->cblist);
2748	}
2749
2750	check_cb_ovld(rdp);
2751
2752	if (unlikely(rcu_rdp_is_offloaded(rdp)))
2753		call_rcu_nocb(rdp, head, func, flags, lazy);
2754	else
2755		call_rcu_core(rdp, head, func, flags);
2756	local_irq_restore(flags);
2757}
2758
2759#ifdef CONFIG_RCU_LAZY
2760static bool enable_rcu_lazy __read_mostly = !IS_ENABLED(CONFIG_RCU_LAZY_DEFAULT_OFF);
2761module_param(enable_rcu_lazy, bool, 0444);
2762
2763/**
2764 * call_rcu_hurry() - Queue RCU callback for invocation after grace period, and
2765 * flush all lazy callbacks (including the new one) to the main ->cblist while
2766 * doing so.
2767 *
2768 * @head: structure to be used for queueing the RCU updates.
2769 * @func: actual callback function to be invoked after the grace period
2770 *
2771 * The callback function will be invoked some time after a full grace
2772 * period elapses, in other words after all pre-existing RCU read-side
2773 * critical sections have completed.
2774 *
2775 * Use this API instead of call_rcu() if you don't want the callback to be
2776 * invoked after very long periods of time, which can happen on systems without
2777 * memory pressure and on systems which are lightly loaded or mostly idle.
2778 * This function will cause callbacks to be invoked sooner than later at the
2779 * expense of extra power. Other than that, this function is identical to, and
2780 * reuses call_rcu()'s logic. Refer to call_rcu() for more details about memory
2781 * ordering and other functionality.
2782 */
2783void call_rcu_hurry(struct rcu_head *head, rcu_callback_t func)
2784{
2785	__call_rcu_common(head, func, false);
2786}
2787EXPORT_SYMBOL_GPL(call_rcu_hurry);
2788#else
2789#define enable_rcu_lazy		false
2790#endif
2791
2792/**
2793 * call_rcu() - Queue an RCU callback for invocation after a grace period.
2794 * By default the callbacks are 'lazy' and are kept hidden from the main
2795 * ->cblist to prevent starting of grace periods too soon.
2796 * If you desire grace periods to start very soon, use call_rcu_hurry().
2797 *
2798 * @head: structure to be used for queueing the RCU updates.
2799 * @func: actual callback function to be invoked after the grace period
2800 *
2801 * The callback function will be invoked some time after a full grace
2802 * period elapses, in other words after all pre-existing RCU read-side
2803 * critical sections have completed.  However, the callback function
2804 * might well execute concurrently with RCU read-side critical sections
2805 * that started after call_rcu() was invoked.
2806 *
2807 * RCU read-side critical sections are delimited by rcu_read_lock()
2808 * and rcu_read_unlock(), and may be nested.  In addition, but only in
2809 * v5.0 and later, regions of code across which interrupts, preemption,
2810 * or softirqs have been disabled also serve as RCU read-side critical
2811 * sections.  This includes hardware interrupt handlers, softirq handlers,
2812 * and NMI handlers.
2813 *
2814 * Note that all CPUs must agree that the grace period extended beyond
2815 * all pre-existing RCU read-side critical section.  On systems with more
2816 * than one CPU, this means that when "func()" is invoked, each CPU is
2817 * guaranteed to have executed a full memory barrier since the end of its
2818 * last RCU read-side critical section whose beginning preceded the call
2819 * to call_rcu().  It also means that each CPU executing an RCU read-side
2820 * critical section that continues beyond the start of "func()" must have
2821 * executed a memory barrier after the call_rcu() but before the beginning
2822 * of that RCU read-side critical section.  Note that these guarantees
2823 * include CPUs that are offline, idle, or executing in user mode, as
2824 * well as CPUs that are executing in the kernel.
2825 *
2826 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
2827 * resulting RCU callback function "func()", then both CPU A and CPU B are
2828 * guaranteed to execute a full memory barrier during the time interval
2829 * between the call to call_rcu() and the invocation of "func()" -- even
2830 * if CPU A and CPU B are the same CPU (but again only if the system has
2831 * more than one CPU).
2832 *
2833 * Implementation of these memory-ordering guarantees is described here:
2834 * Documentation/RCU/Design/Memory-Ordering/Tree-RCU-Memory-Ordering.rst.
2835 */
2836void call_rcu(struct rcu_head *head, rcu_callback_t func)
2837{
2838	__call_rcu_common(head, func, enable_rcu_lazy);
2839}
2840EXPORT_SYMBOL_GPL(call_rcu);
2841
2842/* Maximum number of jiffies to wait before draining a batch. */
2843#define KFREE_DRAIN_JIFFIES (5 * HZ)
2844#define KFREE_N_BATCHES 2
2845#define FREE_N_CHANNELS 2
2846
2847/**
2848 * struct kvfree_rcu_bulk_data - single block to store kvfree_rcu() pointers
2849 * @list: List node. All blocks are linked between each other
2850 * @gp_snap: Snapshot of RCU state for objects placed to this bulk
2851 * @nr_records: Number of active pointers in the array
2852 * @records: Array of the kvfree_rcu() pointers
2853 */
2854struct kvfree_rcu_bulk_data {
2855	struct list_head list;
2856	struct rcu_gp_oldstate gp_snap;
2857	unsigned long nr_records;
2858	void *records[];
2859};
2860
2861/*
2862 * This macro defines how many entries the "records" array
2863 * will contain. It is based on the fact that the size of
2864 * kvfree_rcu_bulk_data structure becomes exactly one page.
2865 */
2866#define KVFREE_BULK_MAX_ENTR \
2867	((PAGE_SIZE - sizeof(struct kvfree_rcu_bulk_data)) / sizeof(void *))
2868
2869/**
2870 * struct kfree_rcu_cpu_work - single batch of kfree_rcu() requests
2871 * @rcu_work: Let queue_rcu_work() invoke workqueue handler after grace period
2872 * @head_free: List of kfree_rcu() objects waiting for a grace period
2873 * @head_free_gp_snap: Grace-period snapshot to check for attempted premature frees.
2874 * @bulk_head_free: Bulk-List of kvfree_rcu() objects waiting for a grace period
2875 * @krcp: Pointer to @kfree_rcu_cpu structure
2876 */
2877
2878struct kfree_rcu_cpu_work {
2879	struct rcu_work rcu_work;
2880	struct rcu_head *head_free;
2881	struct rcu_gp_oldstate head_free_gp_snap;
2882	struct list_head bulk_head_free[FREE_N_CHANNELS];
2883	struct kfree_rcu_cpu *krcp;
2884};
2885
2886/**
2887 * struct kfree_rcu_cpu - batch up kfree_rcu() requests for RCU grace period
2888 * @head: List of kfree_rcu() objects not yet waiting for a grace period
2889 * @head_gp_snap: Snapshot of RCU state for objects placed to "@head"
2890 * @bulk_head: Bulk-List of kvfree_rcu() objects not yet waiting for a grace period
2891 * @krw_arr: Array of batches of kfree_rcu() objects waiting for a grace period
2892 * @lock: Synchronize access to this structure
2893 * @monitor_work: Promote @head to @head_free after KFREE_DRAIN_JIFFIES
2894 * @initialized: The @rcu_work fields have been initialized
2895 * @head_count: Number of objects in rcu_head singular list
2896 * @bulk_count: Number of objects in bulk-list
2897 * @bkvcache:
2898 *	A simple cache list that contains objects for reuse purpose.
2899 *	In order to save some per-cpu space the list is singular.
2900 *	Even though it is lockless an access has to be protected by the
2901 *	per-cpu lock.
2902 * @page_cache_work: A work to refill the cache when it is empty
2903 * @backoff_page_cache_fill: Delay cache refills
2904 * @work_in_progress: Indicates that page_cache_work is running
2905 * @hrtimer: A hrtimer for scheduling a page_cache_work
2906 * @nr_bkv_objs: number of allocated objects at @bkvcache.
2907 *
2908 * This is a per-CPU structure.  The reason that it is not included in
2909 * the rcu_data structure is to permit this code to be extracted from
2910 * the RCU files.  Such extraction could allow further optimization of
2911 * the interactions with the slab allocators.
2912 */
2913struct kfree_rcu_cpu {
2914	// Objects queued on a linked list
2915	// through their rcu_head structures.
2916	struct rcu_head *head;
2917	unsigned long head_gp_snap;
2918	atomic_t head_count;
2919
2920	// Objects queued on a bulk-list.
2921	struct list_head bulk_head[FREE_N_CHANNELS];
2922	atomic_t bulk_count[FREE_N_CHANNELS];
2923
2924	struct kfree_rcu_cpu_work krw_arr[KFREE_N_BATCHES];
2925	raw_spinlock_t lock;
2926	struct delayed_work monitor_work;
2927	bool initialized;
2928
2929	struct delayed_work page_cache_work;
2930	atomic_t backoff_page_cache_fill;
2931	atomic_t work_in_progress;
2932	struct hrtimer hrtimer;
2933
2934	struct llist_head bkvcache;
2935	int nr_bkv_objs;
2936};
2937
2938static DEFINE_PER_CPU(struct kfree_rcu_cpu, krc) = {
2939	.lock = __RAW_SPIN_LOCK_UNLOCKED(krc.lock),
2940};
2941
2942static __always_inline void
2943debug_rcu_bhead_unqueue(struct kvfree_rcu_bulk_data *bhead)
2944{
2945#ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
2946	int i;
2947
2948	for (i = 0; i < bhead->nr_records; i++)
2949		debug_rcu_head_unqueue((struct rcu_head *)(bhead->records[i]));
2950#endif
2951}
2952
2953static inline struct kfree_rcu_cpu *
2954krc_this_cpu_lock(unsigned long *flags)
2955{
2956	struct kfree_rcu_cpu *krcp;
2957
2958	local_irq_save(*flags);	// For safely calling this_cpu_ptr().
2959	krcp = this_cpu_ptr(&krc);
2960	raw_spin_lock(&krcp->lock);
2961
2962	return krcp;
2963}
2964
2965static inline void
2966krc_this_cpu_unlock(struct kfree_rcu_cpu *krcp, unsigned long flags)
2967{
2968	raw_spin_unlock_irqrestore(&krcp->lock, flags);
2969}
2970
2971static inline struct kvfree_rcu_bulk_data *
2972get_cached_bnode(struct kfree_rcu_cpu *krcp)
2973{
2974	if (!krcp->nr_bkv_objs)
2975		return NULL;
2976
2977	WRITE_ONCE(krcp->nr_bkv_objs, krcp->nr_bkv_objs - 1);
2978	return (struct kvfree_rcu_bulk_data *)
2979		llist_del_first(&krcp->bkvcache);
2980}
2981
2982static inline bool
2983put_cached_bnode(struct kfree_rcu_cpu *krcp,
2984	struct kvfree_rcu_bulk_data *bnode)
2985{
2986	// Check the limit.
2987	if (krcp->nr_bkv_objs >= rcu_min_cached_objs)
2988		return false;
2989
2990	llist_add((struct llist_node *) bnode, &krcp->bkvcache);
2991	WRITE_ONCE(krcp->nr_bkv_objs, krcp->nr_bkv_objs + 1);
2992	return true;
2993}
2994
2995static int
2996drain_page_cache(struct kfree_rcu_cpu *krcp)
2997{
2998	unsigned long flags;
2999	struct llist_node *page_list, *pos, *n;
3000	int freed = 0;
3001
3002	if (!rcu_min_cached_objs)
3003		return 0;
3004
3005	raw_spin_lock_irqsave(&krcp->lock, flags);
3006	page_list = llist_del_all(&krcp->bkvcache);
3007	WRITE_ONCE(krcp->nr_bkv_objs, 0);
3008	raw_spin_unlock_irqrestore(&krcp->lock, flags);
3009
3010	llist_for_each_safe(pos, n, page_list) {
3011		free_page((unsigned long)pos);
3012		freed++;
3013	}
3014
3015	return freed;
3016}
3017
3018static void
3019kvfree_rcu_bulk(struct kfree_rcu_cpu *krcp,
3020	struct kvfree_rcu_bulk_data *bnode, int idx)
3021{
3022	unsigned long flags;
3023	int i;
3024
3025	if (!WARN_ON_ONCE(!poll_state_synchronize_rcu_full(&bnode->gp_snap))) {
3026		debug_rcu_bhead_unqueue(bnode);
3027		rcu_lock_acquire(&rcu_callback_map);
3028		if (idx == 0) { // kmalloc() / kfree().
3029			trace_rcu_invoke_kfree_bulk_callback(
3030				rcu_state.name, bnode->nr_records,
3031				bnode->records);
3032
3033			kfree_bulk(bnode->nr_records, bnode->records);
3034		} else { // vmalloc() / vfree().
3035			for (i = 0; i < bnode->nr_records; i++) {
3036				trace_rcu_invoke_kvfree_callback(
3037					rcu_state.name, bnode->records[i], 0);
3038
3039				vfree(bnode->records[i]);
3040			}
3041		}
3042		rcu_lock_release(&rcu_callback_map);
3043	}
3044
3045	raw_spin_lock_irqsave(&krcp->lock, flags);
3046	if (put_cached_bnode(krcp, bnode))
3047		bnode = NULL;
3048	raw_spin_unlock_irqrestore(&krcp->lock, flags);
3049
3050	if (bnode)
3051		free_page((unsigned long) bnode);
3052
3053	cond_resched_tasks_rcu_qs();
3054}
3055
3056static void
3057kvfree_rcu_list(struct rcu_head *head)
3058{
3059	struct rcu_head *next;
3060
3061	for (; head; head = next) {
3062		void *ptr = (void *) head->func;
3063		unsigned long offset = (void *) head - ptr;
3064
3065		next = head->next;
3066		debug_rcu_head_unqueue((struct rcu_head *)ptr);
3067		rcu_lock_acquire(&rcu_callback_map);
3068		trace_rcu_invoke_kvfree_callback(rcu_state.name, head, offset);
3069
3070		if (!WARN_ON_ONCE(!__is_kvfree_rcu_offset(offset)))
3071			kvfree(ptr);
3072
3073		rcu_lock_release(&rcu_callback_map);
3074		cond_resched_tasks_rcu_qs();
3075	}
3076}
3077
3078/*
3079 * This function is invoked in workqueue context after a grace period.
3080 * It frees all the objects queued on ->bulk_head_free or ->head_free.
3081 */
3082static void kfree_rcu_work(struct work_struct *work)
3083{
3084	unsigned long flags;
3085	struct kvfree_rcu_bulk_data *bnode, *n;
3086	struct list_head bulk_head[FREE_N_CHANNELS];
3087	struct rcu_head *head;
3088	struct kfree_rcu_cpu *krcp;
3089	struct kfree_rcu_cpu_work *krwp;
3090	struct rcu_gp_oldstate head_gp_snap;
3091	int i;
3092
3093	krwp = container_of(to_rcu_work(work),
3094		struct kfree_rcu_cpu_work, rcu_work);
3095	krcp = krwp->krcp;
3096
3097	raw_spin_lock_irqsave(&krcp->lock, flags);
3098	// Channels 1 and 2.
3099	for (i = 0; i < FREE_N_CHANNELS; i++)
3100		list_replace_init(&krwp->bulk_head_free[i], &bulk_head[i]);
3101
3102	// Channel 3.
3103	head = krwp->head_free;
3104	krwp->head_free = NULL;
3105	head_gp_snap = krwp->head_free_gp_snap;
3106	raw_spin_unlock_irqrestore(&krcp->lock, flags);
3107
3108	// Handle the first two channels.
3109	for (i = 0; i < FREE_N_CHANNELS; i++) {
3110		// Start from the tail page, so a GP is likely passed for it.
3111		list_for_each_entry_safe(bnode, n, &bulk_head[i], list)
3112			kvfree_rcu_bulk(krcp, bnode, i);
3113	}
3114
3115	/*
3116	 * This is used when the "bulk" path can not be used for the
3117	 * double-argument of kvfree_rcu().  This happens when the
3118	 * page-cache is empty, which means that objects are instead
3119	 * queued on a linked list through their rcu_head structures.
3120	 * This list is named "Channel 3".
3121	 */
3122	if (head && !WARN_ON_ONCE(!poll_state_synchronize_rcu_full(&head_gp_snap)))
3123		kvfree_rcu_list(head);
3124}
3125
3126static bool
3127need_offload_krc(struct kfree_rcu_cpu *krcp)
3128{
3129	int i;
3130
3131	for (i = 0; i < FREE_N_CHANNELS; i++)
3132		if (!list_empty(&krcp->bulk_head[i]))
3133			return true;
3134
3135	return !!READ_ONCE(krcp->head);
3136}
3137
3138static bool
3139need_wait_for_krwp_work(struct kfree_rcu_cpu_work *krwp)
3140{
3141	int i;
3142
3143	for (i = 0; i < FREE_N_CHANNELS; i++)
3144		if (!list_empty(&krwp->bulk_head_free[i]))
3145			return true;
3146
3147	return !!krwp->head_free;
3148}
3149
3150static int krc_count(struct kfree_rcu_cpu *krcp)
3151{
3152	int sum = atomic_read(&krcp->head_count);
3153	int i;
3154
3155	for (i = 0; i < FREE_N_CHANNELS; i++)
3156		sum += atomic_read(&krcp->bulk_count[i]);
3157
3158	return sum;
3159}
3160
3161static void
3162schedule_delayed_monitor_work(struct kfree_rcu_cpu *krcp)
3163{
3164	long delay, delay_left;
3165
3166	delay = krc_count(krcp) >= KVFREE_BULK_MAX_ENTR ? 1:KFREE_DRAIN_JIFFIES;
3167	if (delayed_work_pending(&krcp->monitor_work)) {
3168		delay_left = krcp->monitor_work.timer.expires - jiffies;
3169		if (delay < delay_left)
3170			mod_delayed_work(system_wq, &krcp->monitor_work, delay);
3171		return;
3172	}
3173	queue_delayed_work(system_wq, &krcp->monitor_work, delay);
3174}
3175
3176static void
3177kvfree_rcu_drain_ready(struct kfree_rcu_cpu *krcp)
3178{
3179	struct list_head bulk_ready[FREE_N_CHANNELS];
3180	struct kvfree_rcu_bulk_data *bnode, *n;
3181	struct rcu_head *head_ready = NULL;
3182	unsigned long flags;
3183	int i;
3184
3185	raw_spin_lock_irqsave(&krcp->lock, flags);
3186	for (i = 0; i < FREE_N_CHANNELS; i++) {
3187		INIT_LIST_HEAD(&bulk_ready[i]);
3188
3189		list_for_each_entry_safe_reverse(bnode, n, &krcp->bulk_head[i], list) {
3190			if (!poll_state_synchronize_rcu_full(&bnode->gp_snap))
3191				break;
3192
3193			atomic_sub(bnode->nr_records, &krcp->bulk_count[i]);
3194			list_move(&bnode->list, &bulk_ready[i]);
3195		}
3196	}
3197
3198	if (krcp->head && poll_state_synchronize_rcu(krcp->head_gp_snap)) {
3199		head_ready = krcp->head;
3200		atomic_set(&krcp->head_count, 0);
3201		WRITE_ONCE(krcp->head, NULL);
3202	}
3203	raw_spin_unlock_irqrestore(&krcp->lock, flags);
3204
3205	for (i = 0; i < FREE_N_CHANNELS; i++) {
3206		list_for_each_entry_safe(bnode, n, &bulk_ready[i], list)
3207			kvfree_rcu_bulk(krcp, bnode, i);
3208	}
3209
3210	if (head_ready)
3211		kvfree_rcu_list(head_ready);
3212}
3213
3214/*
3215 * This function is invoked after the KFREE_DRAIN_JIFFIES timeout.
3216 */
3217static void kfree_rcu_monitor(struct work_struct *work)
3218{
3219	struct kfree_rcu_cpu *krcp = container_of(work,
3220		struct kfree_rcu_cpu, monitor_work.work);
3221	unsigned long flags;
3222	int i, j;
3223
3224	// Drain ready for reclaim.
3225	kvfree_rcu_drain_ready(krcp);
3226
3227	raw_spin_lock_irqsave(&krcp->lock, flags);
3228
3229	// Attempt to start a new batch.
3230	for (i = 0; i < KFREE_N_BATCHES; i++) {
3231		struct kfree_rcu_cpu_work *krwp = &(krcp->krw_arr[i]);
3232
3233		// Try to detach bulk_head or head and attach it, only when
3234		// all channels are free.  Any channel is not free means at krwp
3235		// there is on-going rcu work to handle krwp's free business.
3236		if (need_wait_for_krwp_work(krwp))
3237			continue;
3238
3239		// kvfree_rcu_drain_ready() might handle this krcp, if so give up.
3240		if (need_offload_krc(krcp)) {
3241			// Channel 1 corresponds to the SLAB-pointer bulk path.
3242			// Channel 2 corresponds to vmalloc-pointer bulk path.
3243			for (j = 0; j < FREE_N_CHANNELS; j++) {
3244				if (list_empty(&krwp->bulk_head_free[j])) {
3245					atomic_set(&krcp->bulk_count[j], 0);
3246					list_replace_init(&krcp->bulk_head[j],
3247						&krwp->bulk_head_free[j]);
3248				}
3249			}
3250
3251			// Channel 3 corresponds to both SLAB and vmalloc
3252			// objects queued on the linked list.
3253			if (!krwp->head_free) {
3254				krwp->head_free = krcp->head;
3255				get_state_synchronize_rcu_full(&krwp->head_free_gp_snap);
3256				atomic_set(&krcp->head_count, 0);
3257				WRITE_ONCE(krcp->head, NULL);
3258			}
3259
3260			// One work is per one batch, so there are three
3261			// "free channels", the batch can handle. It can
3262			// be that the work is in the pending state when
3263			// channels have been detached following by each
3264			// other.
3265			queue_rcu_work(system_wq, &krwp->rcu_work);
3266		}
3267	}
3268
3269	raw_spin_unlock_irqrestore(&krcp->lock, flags);
3270
3271	// If there is nothing to detach, it means that our job is
3272	// successfully done here. In case of having at least one
3273	// of the channels that is still busy we should rearm the
3274	// work to repeat an attempt. Because previous batches are
3275	// still in progress.
3276	if (need_offload_krc(krcp))
3277		schedule_delayed_monitor_work(krcp);
3278}
3279
3280static enum hrtimer_restart
3281schedule_page_work_fn(struct hrtimer *t)
3282{
3283	struct kfree_rcu_cpu *krcp =
3284		container_of(t, struct kfree_rcu_cpu, hrtimer);
3285
3286	queue_delayed_work(system_highpri_wq, &krcp->page_cache_work, 0);
3287	return HRTIMER_NORESTART;
3288}
3289
3290static void fill_page_cache_func(struct work_struct *work)
3291{
3292	struct kvfree_rcu_bulk_data *bnode;
3293	struct kfree_rcu_cpu *krcp =
3294		container_of(work, struct kfree_rcu_cpu,
3295			page_cache_work.work);
3296	unsigned long flags;
3297	int nr_pages;
3298	bool pushed;
3299	int i;
3300
3301	nr_pages = atomic_read(&krcp->backoff_page_cache_fill) ?
3302		1 : rcu_min_cached_objs;
3303
3304	for (i = READ_ONCE(krcp->nr_bkv_objs); i < nr_pages; i++) {
3305		bnode = (struct kvfree_rcu_bulk_data *)
3306			__get_free_page(GFP_KERNEL | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
3307
3308		if (!bnode)
3309			break;
3310
3311		raw_spin_lock_irqsave(&krcp->lock, flags);
3312		pushed = put_cached_bnode(krcp, bnode);
3313		raw_spin_unlock_irqrestore(&krcp->lock, flags);
3314
3315		if (!pushed) {
3316			free_page((unsigned long) bnode);
3317			break;
3318		}
3319	}
3320
3321	atomic_set(&krcp->work_in_progress, 0);
3322	atomic_set(&krcp->backoff_page_cache_fill, 0);
3323}
3324
3325static void
3326run_page_cache_worker(struct kfree_rcu_cpu *krcp)
3327{
3328	// If cache disabled, bail out.
3329	if (!rcu_min_cached_objs)
3330		return;
3331
3332	if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING &&
3333			!atomic_xchg(&krcp->work_in_progress, 1)) {
3334		if (atomic_read(&krcp->backoff_page_cache_fill)) {
3335			queue_delayed_work(system_wq,
3336				&krcp->page_cache_work,
3337					msecs_to_jiffies(rcu_delay_page_cache_fill_msec));
3338		} else {
3339			hrtimer_init(&krcp->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3340			krcp->hrtimer.function = schedule_page_work_fn;
3341			hrtimer_start(&krcp->hrtimer, 0, HRTIMER_MODE_REL);
3342		}
3343	}
3344}
3345
3346// Record ptr in a page managed by krcp, with the pre-krc_this_cpu_lock()
3347// state specified by flags.  If can_alloc is true, the caller must
3348// be schedulable and not be holding any locks or mutexes that might be
3349// acquired by the memory allocator or anything that it might invoke.
3350// Returns true if ptr was successfully recorded, else the caller must
3351// use a fallback.
3352static inline bool
3353add_ptr_to_bulk_krc_lock(struct kfree_rcu_cpu **krcp,
3354	unsigned long *flags, void *ptr, bool can_alloc)
3355{
3356	struct kvfree_rcu_bulk_data *bnode;
3357	int idx;
3358
3359	*krcp = krc_this_cpu_lock(flags);
3360	if (unlikely(!(*krcp)->initialized))
3361		return false;
3362
3363	idx = !!is_vmalloc_addr(ptr);
3364	bnode = list_first_entry_or_null(&(*krcp)->bulk_head[idx],
3365		struct kvfree_rcu_bulk_data, list);
3366
3367	/* Check if a new block is required. */
3368	if (!bnode || bnode->nr_records == KVFREE_BULK_MAX_ENTR) {
3369		bnode = get_cached_bnode(*krcp);
3370		if (!bnode && can_alloc) {
3371			krc_this_cpu_unlock(*krcp, *flags);
3372
3373			// __GFP_NORETRY - allows a light-weight direct reclaim
3374			// what is OK from minimizing of fallback hitting point of
3375			// view. Apart of that it forbids any OOM invoking what is
3376			// also beneficial since we are about to release memory soon.
3377			//
3378			// __GFP_NOMEMALLOC - prevents from consuming of all the
3379			// memory reserves. Please note we have a fallback path.
3380			//
3381			// __GFP_NOWARN - it is supposed that an allocation can
3382			// be failed under low memory or high memory pressure
3383			// scenarios.
3384			bnode = (struct kvfree_rcu_bulk_data *)
3385				__get_free_page(GFP_KERNEL | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
3386			raw_spin_lock_irqsave(&(*krcp)->lock, *flags);
3387		}
3388
3389		if (!bnode)
3390			return false;
3391
3392		// Initialize the new block and attach it.
3393		bnode->nr_records = 0;
3394		list_add(&bnode->list, &(*krcp)->bulk_head[idx]);
3395	}
3396
3397	// Finally insert and update the GP for this page.
3398	bnode->records[bnode->nr_records++] = ptr;
3399	get_state_synchronize_rcu_full(&bnode->gp_snap);
3400	atomic_inc(&(*krcp)->bulk_count[idx]);
3401
3402	return true;
3403}
3404
3405/*
3406 * Queue a request for lazy invocation of the appropriate free routine
3407 * after a grace period.  Please note that three paths are maintained,
3408 * two for the common case using arrays of pointers and a third one that
3409 * is used only when the main paths cannot be used, for example, due to
3410 * memory pressure.
3411 *
3412 * Each kvfree_call_rcu() request is added to a batch. The batch will be drained
3413 * every KFREE_DRAIN_JIFFIES number of jiffies. All the objects in the batch will
3414 * be free'd in workqueue context. This allows us to: batch requests together to
3415 * reduce the number of grace periods during heavy kfree_rcu()/kvfree_rcu() load.
3416 */
3417void kvfree_call_rcu(struct rcu_head *head, void *ptr)
3418{
3419	unsigned long flags;
3420	struct kfree_rcu_cpu *krcp;
3421	bool success;
3422
3423	/*
3424	 * Please note there is a limitation for the head-less
3425	 * variant, that is why there is a clear rule for such
3426	 * objects: it can be used from might_sleep() context
3427	 * only. For other places please embed an rcu_head to
3428	 * your data.
3429	 */
3430	if (!head)
3431		might_sleep();
3432
3433	// Queue the object but don't yet schedule the batch.
3434	if (debug_rcu_head_queue(ptr)) {
3435		// Probable double kfree_rcu(), just leak.
3436		WARN_ONCE(1, "%s(): Double-freed call. rcu_head %p\n",
3437			  __func__, head);
3438
3439		// Mark as success and leave.
3440		return;
3441	}
3442
3443	kasan_record_aux_stack_noalloc(ptr);
3444	success = add_ptr_to_bulk_krc_lock(&krcp, &flags, ptr, !head);
3445	if (!success) {
3446		run_page_cache_worker(krcp);
3447
3448		if (head == NULL)
3449			// Inline if kvfree_rcu(one_arg) call.
3450			goto unlock_return;
3451
3452		head->func = ptr;
3453		head->next = krcp->head;
3454		WRITE_ONCE(krcp->head, head);
3455		atomic_inc(&krcp->head_count);
3456
3457		// Take a snapshot for this krcp.
3458		krcp->head_gp_snap = get_state_synchronize_rcu();
3459		success = true;
3460	}
3461
3462	/*
3463	 * The kvfree_rcu() caller considers the pointer freed at this point
3464	 * and likely removes any references to it. Since the actual slab
3465	 * freeing (and kmemleak_free()) is deferred, tell kmemleak to ignore
3466	 * this object (no scanning or false positives reporting).
3467	 */
3468	kmemleak_ignore(ptr);
3469
3470	// Set timer to drain after KFREE_DRAIN_JIFFIES.
3471	if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING)
3472		schedule_delayed_monitor_work(krcp);
3473
3474unlock_return:
3475	krc_this_cpu_unlock(krcp, flags);
3476
3477	/*
3478	 * Inline kvfree() after synchronize_rcu(). We can do
3479	 * it from might_sleep() context only, so the current
3480	 * CPU can pass the QS state.
3481	 */
3482	if (!success) {
3483		debug_rcu_head_unqueue((struct rcu_head *) ptr);
3484		synchronize_rcu();
3485		kvfree(ptr);
3486	}
3487}
3488EXPORT_SYMBOL_GPL(kvfree_call_rcu);
3489
3490static unsigned long
3491kfree_rcu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
3492{
3493	int cpu;
3494	unsigned long count = 0;
3495
3496	/* Snapshot count of all CPUs */
3497	for_each_possible_cpu(cpu) {
3498		struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
3499
3500		count += krc_count(krcp);
3501		count += READ_ONCE(krcp->nr_bkv_objs);
3502		atomic_set(&krcp->backoff_page_cache_fill, 1);
3503	}
3504
3505	return count == 0 ? SHRINK_EMPTY : count;
3506}
3507
3508static unsigned long
3509kfree_rcu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
3510{
3511	int cpu, freed = 0;
3512
3513	for_each_possible_cpu(cpu) {
3514		int count;
3515		struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
3516
3517		count = krc_count(krcp);
3518		count += drain_page_cache(krcp);
3519		kfree_rcu_monitor(&krcp->monitor_work.work);
3520
3521		sc->nr_to_scan -= count;
3522		freed += count;
3523
3524		if (sc->nr_to_scan <= 0)
3525			break;
3526	}
3527
3528	return freed == 0 ? SHRINK_STOP : freed;
3529}
3530
3531void __init kfree_rcu_scheduler_running(void)
3532{
3533	int cpu;
3534
3535	for_each_possible_cpu(cpu) {
3536		struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
3537
3538		if (need_offload_krc(krcp))
3539			schedule_delayed_monitor_work(krcp);
3540	}
3541}
3542
3543/*
3544 * During early boot, any blocking grace-period wait automatically
3545 * implies a grace period.
3546 *
3547 * Later on, this could in theory be the case for kernels built with
3548 * CONFIG_SMP=y && CONFIG_PREEMPTION=y running on a single CPU, but this
3549 * is not a common case.  Furthermore, this optimization would cause
3550 * the rcu_gp_oldstate structure to expand by 50%, so this potential
3551 * grace-period optimization is ignored once the scheduler is running.
3552 */
3553static int rcu_blocking_is_gp(void)
3554{
3555	if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE) {
3556		might_sleep();
3557		return false;
3558	}
3559	return true;
3560}
3561
3562/**
3563 * synchronize_rcu - wait until a grace period has elapsed.
3564 *
3565 * Control will return to the caller some time after a full grace
3566 * period has elapsed, in other words after all currently executing RCU
3567 * read-side critical sections have completed.  Note, however, that
3568 * upon return from synchronize_rcu(), the caller might well be executing
3569 * concurrently with new RCU read-side critical sections that began while
3570 * synchronize_rcu() was waiting.
3571 *
3572 * RCU read-side critical sections are delimited by rcu_read_lock()
3573 * and rcu_read_unlock(), and may be nested.  In addition, but only in
3574 * v5.0 and later, regions of code across which interrupts, preemption,
3575 * or softirqs have been disabled also serve as RCU read-side critical
3576 * sections.  This includes hardware interrupt handlers, softirq handlers,
3577 * and NMI handlers.
3578 *
3579 * Note that this guarantee implies further memory-ordering guarantees.
3580 * On systems with more than one CPU, when synchronize_rcu() returns,
3581 * each CPU is guaranteed to have executed a full memory barrier since
3582 * the end of its last RCU read-side critical section whose beginning
3583 * preceded the call to synchronize_rcu().  In addition, each CPU having
3584 * an RCU read-side critical section that extends beyond the return from
3585 * synchronize_rcu() is guaranteed to have executed a full memory barrier
3586 * after the beginning of synchronize_rcu() and before the beginning of
3587 * that RCU read-side critical section.  Note that these guarantees include
3588 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
3589 * that are executing in the kernel.
3590 *
3591 * Furthermore, if CPU A invoked synchronize_rcu(), which returned
3592 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
3593 * to have executed a full memory barrier during the execution of
3594 * synchronize_rcu() -- even if CPU A and CPU B are the same CPU (but
3595 * again only if the system has more than one CPU).
3596 *
3597 * Implementation of these memory-ordering guarantees is described here:
3598 * Documentation/RCU/Design/Memory-Ordering/Tree-RCU-Memory-Ordering.rst.
3599 */
3600void synchronize_rcu(void)
3601{
3602	unsigned long flags;
3603	struct rcu_node *rnp;
3604
3605	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3606			 lock_is_held(&rcu_lock_map) ||
3607			 lock_is_held(&rcu_sched_lock_map),
3608			 "Illegal synchronize_rcu() in RCU read-side critical section");
3609	if (!rcu_blocking_is_gp()) {
3610		if (rcu_gp_is_expedited())
3611			synchronize_rcu_expedited();
3612		else
3613			wait_rcu_gp(call_rcu_hurry);
3614		return;
3615	}
3616
3617	// Context allows vacuous grace periods.
3618	// Note well that this code runs with !PREEMPT && !SMP.
3619	// In addition, all code that advances grace periods runs at
3620	// process level.  Therefore, this normal GP overlaps with other
3621	// normal GPs only by being fully nested within them, which allows
3622	// reuse of ->gp_seq_polled_snap.
3623	rcu_poll_gp_seq_start_unlocked(&rcu_state.gp_seq_polled_snap);
3624	rcu_poll_gp_seq_end_unlocked(&rcu_state.gp_seq_polled_snap);
3625
3626	// Update the normal grace-period counters to record
3627	// this grace period, but only those used by the boot CPU.
3628	// The rcu_scheduler_starting() will take care of the rest of
3629	// these counters.
3630	local_irq_save(flags);
3631	WARN_ON_ONCE(num_online_cpus() > 1);
3632	rcu_state.gp_seq += (1 << RCU_SEQ_CTR_SHIFT);
3633	for (rnp = this_cpu_ptr(&rcu_data)->mynode; rnp; rnp = rnp->parent)
3634		rnp->gp_seq_needed = rnp->gp_seq = rcu_state.gp_seq;
3635	local_irq_restore(flags);
3636}
3637EXPORT_SYMBOL_GPL(synchronize_rcu);
3638
3639/**
3640 * get_completed_synchronize_rcu_full - Return a full pre-completed polled state cookie
3641 * @rgosp: Place to put state cookie
3642 *
3643 * Stores into @rgosp a value that will always be treated by functions
3644 * like poll_state_synchronize_rcu_full() as a cookie whose grace period
3645 * has already completed.
3646 */
3647void get_completed_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp)
3648{
3649	rgosp->rgos_norm = RCU_GET_STATE_COMPLETED;
3650	rgosp->rgos_exp = RCU_GET_STATE_COMPLETED;
3651}
3652EXPORT_SYMBOL_GPL(get_completed_synchronize_rcu_full);
3653
3654/**
3655 * get_state_synchronize_rcu - Snapshot current RCU state
3656 *
3657 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3658 * or poll_state_synchronize_rcu() to determine whether or not a full
3659 * grace period has elapsed in the meantime.
3660 */
3661unsigned long get_state_synchronize_rcu(void)
3662{
3663	/*
3664	 * Any prior manipulation of RCU-protected data must happen
3665	 * before the load from ->gp_seq.
3666	 */
3667	smp_mb();  /* ^^^ */
3668	return rcu_seq_snap(&rcu_state.gp_seq_polled);
3669}
3670EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
3671
3672/**
3673 * get_state_synchronize_rcu_full - Snapshot RCU state, both normal and expedited
3674 * @rgosp: location to place combined normal/expedited grace-period state
3675 *
3676 * Places the normal and expedited grace-period states in @rgosp.  This
3677 * state value can be passed to a later call to cond_synchronize_rcu_full()
3678 * or poll_state_synchronize_rcu_full() to determine whether or not a
3679 * grace period (whether normal or expedited) has elapsed in the meantime.
3680 * The rcu_gp_oldstate structure takes up twice the memory of an unsigned
3681 * long, but is guaranteed to see all grace periods.  In contrast, the
3682 * combined state occupies less memory, but can sometimes fail to take
3683 * grace periods into account.
3684 *
3685 * This does not guarantee that the needed grace period will actually
3686 * start.
3687 */
3688void get_state_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp)
3689{
3690	struct rcu_node *rnp = rcu_get_root();
3691
3692	/*
3693	 * Any prior manipulation of RCU-protected data must happen
3694	 * before the loads from ->gp_seq and ->expedited_sequence.
3695	 */
3696	smp_mb();  /* ^^^ */
3697	rgosp->rgos_norm = rcu_seq_snap(&rnp->gp_seq);
3698	rgosp->rgos_exp = rcu_seq_snap(&rcu_state.expedited_sequence);
3699}
3700EXPORT_SYMBOL_GPL(get_state_synchronize_rcu_full);
3701
3702/*
3703 * Helper function for start_poll_synchronize_rcu() and
3704 * start_poll_synchronize_rcu_full().
3705 */
3706static void start_poll_synchronize_rcu_common(void)
3707{
3708	unsigned long flags;
3709	bool needwake;
3710	struct rcu_data *rdp;
3711	struct rcu_node *rnp;
3712
3713	lockdep_assert_irqs_enabled();
3714	local_irq_save(flags);
3715	rdp = this_cpu_ptr(&rcu_data);
3716	rnp = rdp->mynode;
3717	raw_spin_lock_rcu_node(rnp); // irqs already disabled.
3718	// Note it is possible for a grace period to have elapsed between
3719	// the above call to get_state_synchronize_rcu() and the below call
3720	// to rcu_seq_snap.  This is OK, the worst that happens is that we
3721	// get a grace period that no one needed.  These accesses are ordered
3722	// by smp_mb(), and we are accessing them in the opposite order
3723	// from which they are updated at grace-period start, as required.
3724	needwake = rcu_start_this_gp(rnp, rdp, rcu_seq_snap(&rcu_state.gp_seq));
3725	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3726	if (needwake)
3727		rcu_gp_kthread_wake();
3728}
3729
3730/**
3731 * start_poll_synchronize_rcu - Snapshot and start RCU grace period
3732 *
3733 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3734 * or poll_state_synchronize_rcu() to determine whether or not a full
3735 * grace period has elapsed in the meantime.  If the needed grace period
3736 * is not already slated to start, notifies RCU core of the need for that
3737 * grace period.
3738 *
3739 * Interrupts must be enabled for the case where it is necessary to awaken
3740 * the grace-period kthread.
3741 */
3742unsigned long start_poll_synchronize_rcu(void)
3743{
3744	unsigned long gp_seq = get_state_synchronize_rcu();
3745
3746	start_poll_synchronize_rcu_common();
3747	return gp_seq;
3748}
3749EXPORT_SYMBOL_GPL(start_poll_synchronize_rcu);
3750
3751/**
3752 * start_poll_synchronize_rcu_full - Take a full snapshot and start RCU grace period
3753 * @rgosp: value from get_state_synchronize_rcu_full() or start_poll_synchronize_rcu_full()
3754 *
3755 * Places the normal and expedited grace-period states in *@rgos.  This
3756 * state value can be passed to a later call to cond_synchronize_rcu_full()
3757 * or poll_state_synchronize_rcu_full() to determine whether or not a
3758 * grace period (whether normal or expedited) has elapsed in the meantime.
3759 * If the needed grace period is not already slated to start, notifies
3760 * RCU core of the need for that grace period.
3761 *
3762 * Interrupts must be enabled for the case where it is necessary to awaken
3763 * the grace-period kthread.
3764 */
3765void start_poll_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp)
3766{
3767	get_state_synchronize_rcu_full(rgosp);
3768
3769	start_poll_synchronize_rcu_common();
3770}
3771EXPORT_SYMBOL_GPL(start_poll_synchronize_rcu_full);
3772
3773/**
3774 * poll_state_synchronize_rcu - Has the specified RCU grace period completed?
3775 * @oldstate: value from get_state_synchronize_rcu() or start_poll_synchronize_rcu()
3776 *
3777 * If a full RCU grace period has elapsed since the earlier call from
3778 * which @oldstate was obtained, return @true, otherwise return @false.
3779 * If @false is returned, it is the caller's responsibility to invoke this
3780 * function later on until it does return @true.  Alternatively, the caller
3781 * can explicitly wait for a grace period, for example, by passing @oldstate
3782 * to either cond_synchronize_rcu() or cond_synchronize_rcu_expedited()
3783 * on the one hand or by directly invoking either synchronize_rcu() or
3784 * synchronize_rcu_expedited() on the other.
3785 *
3786 * Yes, this function does not take counter wrap into account.
3787 * But counter wrap is harmless.  If the counter wraps, we have waited for
3788 * more than a billion grace periods (and way more on a 64-bit system!).
3789 * Those needing to keep old state values for very long time periods
3790 * (many hours even on 32-bit systems) should check them occasionally and
3791 * either refresh them or set a flag indicating that the grace period has
3792 * completed.  Alternatively, they can use get_completed_synchronize_rcu()
3793 * to get a guaranteed-completed grace-period state.
3794 *
3795 * In addition, because oldstate compresses the grace-period state for
3796 * both normal and expedited grace periods into a single unsigned long,
3797 * it can miss a grace period when synchronize_rcu() runs concurrently
3798 * with synchronize_rcu_expedited().  If this is unacceptable, please
3799 * instead use the _full() variant of these polling APIs.
3800 *
3801 * This function provides the same memory-ordering guarantees that
3802 * would be provided by a synchronize_rcu() that was invoked at the call
3803 * to the function that provided @oldstate, and that returned at the end
3804 * of this function.
3805 */
3806bool poll_state_synchronize_rcu(unsigned long oldstate)
3807{
3808	if (oldstate == RCU_GET_STATE_COMPLETED ||
3809	    rcu_seq_done_exact(&rcu_state.gp_seq_polled, oldstate)) {
3810		smp_mb(); /* Ensure GP ends before subsequent accesses. */
3811		return true;
3812	}
3813	return false;
3814}
3815EXPORT_SYMBOL_GPL(poll_state_synchronize_rcu);
3816
3817/**
3818 * poll_state_synchronize_rcu_full - Has the specified RCU grace period completed?
3819 * @rgosp: value from get_state_synchronize_rcu_full() or start_poll_synchronize_rcu_full()
3820 *
3821 * If a full RCU grace period has elapsed since the earlier call from
3822 * which *rgosp was obtained, return @true, otherwise return @false.
3823 * If @false is returned, it is the caller's responsibility to invoke this
3824 * function later on until it does return @true.  Alternatively, the caller
3825 * can explicitly wait for a grace period, for example, by passing @rgosp
3826 * to cond_synchronize_rcu() or by directly invoking synchronize_rcu().
3827 *
3828 * Yes, this function does not take counter wrap into account.
3829 * But counter wrap is harmless.  If the counter wraps, we have waited
3830 * for more than a billion grace periods (and way more on a 64-bit
3831 * system!).  Those needing to keep rcu_gp_oldstate values for very
3832 * long time periods (many hours even on 32-bit systems) should check
3833 * them occasionally and either refresh them or set a flag indicating
3834 * that the grace period has completed.  Alternatively, they can use
3835 * get_completed_synchronize_rcu_full() to get a guaranteed-completed
3836 * grace-period state.
3837 *
3838 * This function provides the same memory-ordering guarantees that would
3839 * be provided by a synchronize_rcu() that was invoked at the call to
3840 * the function that provided @rgosp, and that returned at the end of this
3841 * function.  And this guarantee requires that the root rcu_node structure's
3842 * ->gp_seq field be checked instead of that of the rcu_state structure.
3843 * The problem is that the just-ending grace-period's callbacks can be
3844 * invoked between the time that the root rcu_node structure's ->gp_seq
3845 * field is updated and the time that the rcu_state structure's ->gp_seq
3846 * field is updated.  Therefore, if a single synchronize_rcu() is to
3847 * cause a subsequent poll_state_synchronize_rcu_full() to return @true,
3848 * then the root rcu_node structure is the one that needs to be polled.
3849 */
3850bool poll_state_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp)
3851{
3852	struct rcu_node *rnp = rcu_get_root();
3853
3854	smp_mb(); // Order against root rcu_node structure grace-period cleanup.
3855	if (rgosp->rgos_norm == RCU_GET_STATE_COMPLETED ||
3856	    rcu_seq_done_exact(&rnp->gp_seq, rgosp->rgos_norm) ||
3857	    rgosp->rgos_exp == RCU_GET_STATE_COMPLETED ||
3858	    rcu_seq_done_exact(&rcu_state.expedited_sequence, rgosp->rgos_exp)) {
3859		smp_mb(); /* Ensure GP ends before subsequent accesses. */
3860		return true;
3861	}
3862	return false;
3863}
3864EXPORT_SYMBOL_GPL(poll_state_synchronize_rcu_full);
3865
3866/**
3867 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
3868 * @oldstate: value from get_state_synchronize_rcu(), start_poll_synchronize_rcu(), or start_poll_synchronize_rcu_expedited()
3869 *
3870 * If a full RCU grace period has elapsed since the earlier call to
3871 * get_state_synchronize_rcu() or start_poll_synchronize_rcu(), just return.
3872 * Otherwise, invoke synchronize_rcu() to wait for a full grace period.
3873 *
3874 * Yes, this function does not take counter wrap into account.
3875 * But counter wrap is harmless.  If the counter wraps, we have waited for
3876 * more than 2 billion grace periods (and way more on a 64-bit system!),
3877 * so waiting for a couple of additional grace periods should be just fine.
3878 *
3879 * This function provides the same memory-ordering guarantees that
3880 * would be provided by a synchronize_rcu() that was invoked at the call
3881 * to the function that provided @oldstate and that returned at the end
3882 * of this function.
3883 */
3884void cond_synchronize_rcu(unsigned long oldstate)
3885{
3886	if (!poll_state_synchronize_rcu(oldstate))
3887		synchronize_rcu();
3888}
3889EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
3890
3891/**
3892 * cond_synchronize_rcu_full - Conditionally wait for an RCU grace period
3893 * @rgosp: value from get_state_synchronize_rcu_full(), start_poll_synchronize_rcu_full(), or start_poll_synchronize_rcu_expedited_full()
3894 *
3895 * If a full RCU grace period has elapsed since the call to
3896 * get_state_synchronize_rcu_full(), start_poll_synchronize_rcu_full(),
3897 * or start_poll_synchronize_rcu_expedited_full() from which @rgosp was
3898 * obtained, just return.  Otherwise, invoke synchronize_rcu() to wait
3899 * for a full grace period.
3900 *
3901 * Yes, this function does not take counter wrap into account.
3902 * But counter wrap is harmless.  If the counter wraps, we have waited for
3903 * more than 2 billion grace periods (and way more on a 64-bit system!),
3904 * so waiting for a couple of additional grace periods should be just fine.
3905 *
3906 * This function provides the same memory-ordering guarantees that
3907 * would be provided by a synchronize_rcu() that was invoked at the call
3908 * to the function that provided @rgosp and that returned at the end of
3909 * this function.
3910 */
3911void cond_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp)
3912{
3913	if (!poll_state_synchronize_rcu_full(rgosp))
3914		synchronize_rcu();
3915}
3916EXPORT_SYMBOL_GPL(cond_synchronize_rcu_full);
3917
3918/*
3919 * Check to see if there is any immediate RCU-related work to be done by
3920 * the current CPU, returning 1 if so and zero otherwise.  The checks are
3921 * in order of increasing expense: checks that can be carried out against
3922 * CPU-local state are performed first.  However, we must check for CPU
3923 * stalls first, else we might not get a chance.
3924 */
3925static int rcu_pending(int user)
3926{
3927	bool gp_in_progress;
3928	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
3929	struct rcu_node *rnp = rdp->mynode;
3930
3931	lockdep_assert_irqs_disabled();
3932
3933	/* Check for CPU stalls, if enabled. */
3934	check_cpu_stall(rdp);
3935
3936	/* Does this CPU need a deferred NOCB wakeup? */
3937	if (rcu_nocb_need_deferred_wakeup(rdp, RCU_NOCB_WAKE))
3938		return 1;
3939
3940	/* Is this a nohz_full CPU in userspace or idle?  (Ignore RCU if so.) */
3941	if ((user || rcu_is_cpu_rrupt_from_idle()) && rcu_nohz_full_cpu())
3942		return 0;
3943
3944	/* Is the RCU core waiting for a quiescent state from this CPU? */
3945	gp_in_progress = rcu_gp_in_progress();
3946	if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm && gp_in_progress)
3947		return 1;
3948
3949	/* Does this CPU have callbacks ready to invoke? */
3950	if (!rcu_rdp_is_offloaded(rdp) &&
3951	    rcu_segcblist_ready_cbs(&rdp->cblist))
3952		return 1;
3953
3954	/* Has RCU gone idle with this CPU needing another grace period? */
3955	if (!gp_in_progress && rcu_segcblist_is_enabled(&rdp->cblist) &&
3956	    !rcu_rdp_is_offloaded(rdp) &&
3957	    !rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
3958		return 1;
3959
3960	/* Have RCU grace period completed or started?  */
3961	if (rcu_seq_current(&rnp->gp_seq) != rdp->gp_seq ||
3962	    unlikely(READ_ONCE(rdp->gpwrap))) /* outside lock */
3963		return 1;
3964
3965	/* nothing to do */
3966	return 0;
3967}
3968
3969/*
3970 * Helper function for rcu_barrier() tracing.  If tracing is disabled,
3971 * the compiler is expected to optimize this away.
3972 */
3973static void rcu_barrier_trace(const char *s, int cpu, unsigned long done)
3974{
3975	trace_rcu_barrier(rcu_state.name, s, cpu,
3976			  atomic_read(&rcu_state.barrier_cpu_count), done);
3977}
3978
3979/*
3980 * RCU callback function for rcu_barrier().  If we are last, wake
3981 * up the task executing rcu_barrier().
3982 *
3983 * Note that the value of rcu_state.barrier_sequence must be captured
3984 * before the atomic_dec_and_test().  Otherwise, if this CPU is not last,
3985 * other CPUs might count the value down to zero before this CPU gets
3986 * around to invoking rcu_barrier_trace(), which might result in bogus
3987 * data from the next instance of rcu_barrier().
3988 */
3989static void rcu_barrier_callback(struct rcu_head *rhp)
3990{
3991	unsigned long __maybe_unused s = rcu_state.barrier_sequence;
3992
3993	if (atomic_dec_and_test(&rcu_state.barrier_cpu_count)) {
3994		rcu_barrier_trace(TPS("LastCB"), -1, s);
3995		complete(&rcu_state.barrier_completion);
3996	} else {
3997		rcu_barrier_trace(TPS("CB"), -1, s);
3998	}
3999}
4000
4001/*
4002 * If needed, entrain an rcu_barrier() callback on rdp->cblist.
4003 */
4004static void rcu_barrier_entrain(struct rcu_data *rdp)
4005{
4006	unsigned long gseq = READ_ONCE(rcu_state.barrier_sequence);
4007	unsigned long lseq = READ_ONCE(rdp->barrier_seq_snap);
4008	bool wake_nocb = false;
4009	bool was_alldone = false;
4010
4011	lockdep_assert_held(&rcu_state.barrier_lock);
4012	if (rcu_seq_state(lseq) || !rcu_seq_state(gseq) || rcu_seq_ctr(lseq) != rcu_seq_ctr(gseq))
4013		return;
4014	rcu_barrier_trace(TPS("IRQ"), -1, rcu_state.barrier_sequence);
4015	rdp->barrier_head.func = rcu_barrier_callback;
4016	debug_rcu_head_queue(&rdp->barrier_head);
4017	rcu_nocb_lock(rdp);
4018	/*
4019	 * Flush bypass and wakeup rcuog if we add callbacks to an empty regular
4020	 * queue. This way we don't wait for bypass timer that can reach seconds
4021	 * if it's fully lazy.
4022	 */
4023	was_alldone = rcu_rdp_is_offloaded(rdp) && !rcu_segcblist_pend_cbs(&rdp->cblist);
4024	WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, jiffies, false));
4025	wake_nocb = was_alldone && rcu_segcblist_pend_cbs(&rdp->cblist);
4026	if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head)) {
4027		atomic_inc(&rcu_state.barrier_cpu_count);
4028	} else {
4029		debug_rcu_head_unqueue(&rdp->barrier_head);
4030		rcu_barrier_trace(TPS("IRQNQ"), -1, rcu_state.barrier_sequence);
4031	}
4032	rcu_nocb_unlock(rdp);
4033	if (wake_nocb)
4034		wake_nocb_gp(rdp, false);
4035	smp_store_release(&rdp->barrier_seq_snap, gseq);
4036}
4037
4038/*
4039 * Called with preemption disabled, and from cross-cpu IRQ context.
4040 */
4041static void rcu_barrier_handler(void *cpu_in)
4042{
4043	uintptr_t cpu = (uintptr_t)cpu_in;
4044	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4045
4046	lockdep_assert_irqs_disabled();
4047	WARN_ON_ONCE(cpu != rdp->cpu);
4048	WARN_ON_ONCE(cpu != smp_processor_id());
4049	raw_spin_lock(&rcu_state.barrier_lock);
4050	rcu_barrier_entrain(rdp);
4051	raw_spin_unlock(&rcu_state.barrier_lock);
4052}
4053
4054/**
4055 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
4056 *
4057 * Note that this primitive does not necessarily wait for an RCU grace period
4058 * to complete.  For example, if there are no RCU callbacks queued anywhere
4059 * in the system, then rcu_barrier() is within its rights to return
4060 * immediately, without waiting for anything, much less an RCU grace period.
4061 */
4062void rcu_barrier(void)
4063{
4064	uintptr_t cpu;
4065	unsigned long flags;
4066	unsigned long gseq;
4067	struct rcu_data *rdp;
4068	unsigned long s = rcu_seq_snap(&rcu_state.barrier_sequence);
4069
4070	rcu_barrier_trace(TPS("Begin"), -1, s);
4071
4072	/* Take mutex to serialize concurrent rcu_barrier() requests. */
4073	mutex_lock(&rcu_state.barrier_mutex);
4074
4075	/* Did someone else do our work for us? */
4076	if (rcu_seq_done(&rcu_state.barrier_sequence, s)) {
4077		rcu_barrier_trace(TPS("EarlyExit"), -1, rcu_state.barrier_sequence);
4078		smp_mb(); /* caller's subsequent code after above check. */
4079		mutex_unlock(&rcu_state.barrier_mutex);
4080		return;
4081	}
4082
4083	/* Mark the start of the barrier operation. */
4084	raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags);
4085	rcu_seq_start(&rcu_state.barrier_sequence);
4086	gseq = rcu_state.barrier_sequence;
4087	rcu_barrier_trace(TPS("Inc1"), -1, rcu_state.barrier_sequence);
4088
4089	/*
4090	 * Initialize the count to two rather than to zero in order
4091	 * to avoid a too-soon return to zero in case of an immediate
4092	 * invocation of the just-enqueued callback (or preemption of
4093	 * this task).  Exclude CPU-hotplug operations to ensure that no
4094	 * offline non-offloaded CPU has callbacks queued.
4095	 */
4096	init_completion(&rcu_state.barrier_completion);
4097	atomic_set(&rcu_state.barrier_cpu_count, 2);
4098	raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags);
4099
4100	/*
4101	 * Force each CPU with callbacks to register a new callback.
4102	 * When that callback is invoked, we will know that all of the
4103	 * corresponding CPU's preceding callbacks have been invoked.
4104	 */
4105	for_each_possible_cpu(cpu) {
4106		rdp = per_cpu_ptr(&rcu_data, cpu);
4107retry:
4108		if (smp_load_acquire(&rdp->barrier_seq_snap) == gseq)
4109			continue;
4110		raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags);
4111		if (!rcu_segcblist_n_cbs(&rdp->cblist)) {
4112			WRITE_ONCE(rdp->barrier_seq_snap, gseq);
4113			raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags);
4114			rcu_barrier_trace(TPS("NQ"), cpu, rcu_state.barrier_sequence);
4115			continue;
4116		}
4117		if (!rcu_rdp_cpu_online(rdp)) {
4118			rcu_barrier_entrain(rdp);
4119			WARN_ON_ONCE(READ_ONCE(rdp->barrier_seq_snap) != gseq);
4120			raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags);
4121			rcu_barrier_trace(TPS("OfflineNoCBQ"), cpu, rcu_state.barrier_sequence);
4122			continue;
4123		}
4124		raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags);
4125		if (smp_call_function_single(cpu, rcu_barrier_handler, (void *)cpu, 1)) {
4126			schedule_timeout_uninterruptible(1);
4127			goto retry;
4128		}
4129		WARN_ON_ONCE(READ_ONCE(rdp->barrier_seq_snap) != gseq);
4130		rcu_barrier_trace(TPS("OnlineQ"), cpu, rcu_state.barrier_sequence);
4131	}
4132
4133	/*
4134	 * Now that we have an rcu_barrier_callback() callback on each
4135	 * CPU, and thus each counted, remove the initial count.
4136	 */
4137	if (atomic_sub_and_test(2, &rcu_state.barrier_cpu_count))
4138		complete(&rcu_state.barrier_completion);
4139
4140	/* Wait for all rcu_barrier_callback() callbacks to be invoked. */
4141	wait_for_completion(&rcu_state.barrier_completion);
4142
4143	/* Mark the end of the barrier operation. */
4144	rcu_barrier_trace(TPS("Inc2"), -1, rcu_state.barrier_sequence);
4145	rcu_seq_end(&rcu_state.barrier_sequence);
4146	gseq = rcu_state.barrier_sequence;
4147	for_each_possible_cpu(cpu) {
4148		rdp = per_cpu_ptr(&rcu_data, cpu);
4149
4150		WRITE_ONCE(rdp->barrier_seq_snap, gseq);
4151	}
4152
4153	/* Other rcu_barrier() invocations can now safely proceed. */
4154	mutex_unlock(&rcu_state.barrier_mutex);
4155}
4156EXPORT_SYMBOL_GPL(rcu_barrier);
4157
4158static unsigned long rcu_barrier_last_throttle;
4159
4160/**
4161 * rcu_barrier_throttled - Do rcu_barrier(), but limit to one per second
4162 *
4163 * This can be thought of as guard rails around rcu_barrier() that
4164 * permits unrestricted userspace use, at least assuming the hardware's
4165 * try_cmpxchg() is robust.  There will be at most one call per second to
4166 * rcu_barrier() system-wide from use of this function, which means that
4167 * callers might needlessly wait a second or three.
4168 *
4169 * This is intended for use by test suites to avoid OOM by flushing RCU
4170 * callbacks from the previous test before starting the next.  See the
4171 * rcutree.do_rcu_barrier module parameter for more information.
4172 *
4173 * Why not simply make rcu_barrier() more scalable?  That might be
4174 * the eventual endpoint, but let's keep it simple for the time being.
4175 * Note that the module parameter infrastructure serializes calls to a
4176 * given .set() function, but should concurrent .set() invocation ever be
4177 * possible, we are ready!
4178 */
4179static void rcu_barrier_throttled(void)
4180{
4181	unsigned long j = jiffies;
4182	unsigned long old = READ_ONCE(rcu_barrier_last_throttle);
4183	unsigned long s = rcu_seq_snap(&rcu_state.barrier_sequence);
4184
4185	while (time_in_range(j, old, old + HZ / 16) ||
4186	       !try_cmpxchg(&rcu_barrier_last_throttle, &old, j)) {
4187		schedule_timeout_idle(HZ / 16);
4188		if (rcu_seq_done(&rcu_state.barrier_sequence, s)) {
4189			smp_mb(); /* caller's subsequent code after above check. */
4190			return;
4191		}
4192		j = jiffies;
4193		old = READ_ONCE(rcu_barrier_last_throttle);
4194	}
4195	rcu_barrier();
4196}
4197
4198/*
4199 * Invoke rcu_barrier_throttled() when a rcutree.do_rcu_barrier
4200 * request arrives.  We insist on a true value to allow for possible
4201 * future expansion.
4202 */
4203static int param_set_do_rcu_barrier(const char *val, const struct kernel_param *kp)
4204{
4205	bool b;
4206	int ret;
4207
4208	if (rcu_scheduler_active != RCU_SCHEDULER_RUNNING)
4209		return -EAGAIN;
4210	ret = kstrtobool(val, &b);
4211	if (!ret && b) {
4212		atomic_inc((atomic_t *)kp->arg);
4213		rcu_barrier_throttled();
4214		atomic_dec((atomic_t *)kp->arg);
4215	}
4216	return ret;
4217}
4218
4219/*
4220 * Output the number of outstanding rcutree.do_rcu_barrier requests.
4221 */
4222static int param_get_do_rcu_barrier(char *buffer, const struct kernel_param *kp)
4223{
4224	return sprintf(buffer, "%d\n", atomic_read((atomic_t *)kp->arg));
4225}
4226
4227static const struct kernel_param_ops do_rcu_barrier_ops = {
4228	.set = param_set_do_rcu_barrier,
4229	.get = param_get_do_rcu_barrier,
4230};
4231static atomic_t do_rcu_barrier;
4232module_param_cb(do_rcu_barrier, &do_rcu_barrier_ops, &do_rcu_barrier, 0644);
4233
4234/*
4235 * Compute the mask of online CPUs for the specified rcu_node structure.
4236 * This will not be stable unless the rcu_node structure's ->lock is
4237 * held, but the bit corresponding to the current CPU will be stable
4238 * in most contexts.
4239 */
4240static unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
4241{
4242	return READ_ONCE(rnp->qsmaskinitnext);
4243}
4244
4245/*
4246 * Is the CPU corresponding to the specified rcu_data structure online
4247 * from RCU's perspective?  This perspective is given by that structure's
4248 * ->qsmaskinitnext field rather than by the global cpu_online_mask.
4249 */
4250static bool rcu_rdp_cpu_online(struct rcu_data *rdp)
4251{
4252	return !!(rdp->grpmask & rcu_rnp_online_cpus(rdp->mynode));
4253}
4254
4255bool rcu_cpu_online(int cpu)
4256{
4257	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4258
4259	return rcu_rdp_cpu_online(rdp);
4260}
4261
4262#if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
4263
4264/*
4265 * Is the current CPU online as far as RCU is concerned?
4266 *
4267 * Disable preemption to avoid false positives that could otherwise
4268 * happen due to the current CPU number being sampled, this task being
4269 * preempted, its old CPU being taken offline, resuming on some other CPU,
4270 * then determining that its old CPU is now offline.
4271 *
4272 * Disable checking if in an NMI handler because we cannot safely
4273 * report errors from NMI handlers anyway.  In addition, it is OK to use
4274 * RCU on an offline processor during initial boot, hence the check for
4275 * rcu_scheduler_fully_active.
4276 */
4277bool rcu_lockdep_current_cpu_online(void)
4278{
4279	struct rcu_data *rdp;
4280	bool ret = false;
4281
4282	if (in_nmi() || !rcu_scheduler_fully_active)
4283		return true;
4284	preempt_disable_notrace();
4285	rdp = this_cpu_ptr(&rcu_data);
4286	/*
4287	 * Strictly, we care here about the case where the current CPU is
4288	 * in rcutree_report_cpu_starting() and thus has an excuse for rdp->grpmask
4289	 * not being up to date. So arch_spin_is_locked() might have a
4290	 * false positive if it's held by some *other* CPU, but that's
4291	 * OK because that just means a false *negative* on the warning.
4292	 */
4293	if (rcu_rdp_cpu_online(rdp) || arch_spin_is_locked(&rcu_state.ofl_lock))
4294		ret = true;
4295	preempt_enable_notrace();
4296	return ret;
4297}
4298EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
4299
4300#endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
4301
4302// Has rcu_init() been invoked?  This is used (for example) to determine
4303// whether spinlocks may be acquired safely.
4304static bool rcu_init_invoked(void)
4305{
4306	return !!rcu_state.n_online_cpus;
4307}
4308
4309/*
4310 * All CPUs for the specified rcu_node structure have gone offline,
4311 * and all tasks that were preempted within an RCU read-side critical
4312 * section while running on one of those CPUs have since exited their RCU
4313 * read-side critical section.  Some other CPU is reporting this fact with
4314 * the specified rcu_node structure's ->lock held and interrupts disabled.
4315 * This function therefore goes up the tree of rcu_node structures,
4316 * clearing the corresponding bits in the ->qsmaskinit fields.  Note that
4317 * the leaf rcu_node structure's ->qsmaskinit field has already been
4318 * updated.
4319 *
4320 * This function does check that the specified rcu_node structure has
4321 * all CPUs offline and no blocked tasks, so it is OK to invoke it
4322 * prematurely.  That said, invoking it after the fact will cost you
4323 * a needless lock acquisition.  So once it has done its work, don't
4324 * invoke it again.
4325 */
4326static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
4327{
4328	long mask;
4329	struct rcu_node *rnp = rnp_leaf;
4330
4331	raw_lockdep_assert_held_rcu_node(rnp_leaf);
4332	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
4333	    WARN_ON_ONCE(rnp_leaf->qsmaskinit) ||
4334	    WARN_ON_ONCE(rcu_preempt_has_tasks(rnp_leaf)))
4335		return;
4336	for (;;) {
4337		mask = rnp->grpmask;
4338		rnp = rnp->parent;
4339		if (!rnp)
4340			break;
4341		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
4342		rnp->qsmaskinit &= ~mask;
4343		/* Between grace periods, so better already be zero! */
4344		WARN_ON_ONCE(rnp->qsmask);
4345		if (rnp->qsmaskinit) {
4346			raw_spin_unlock_rcu_node(rnp);
4347			/* irqs remain disabled. */
4348			return;
4349		}
4350		raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
4351	}
4352}
4353
4354/*
4355 * Propagate ->qsinitmask bits up the rcu_node tree to account for the
4356 * first CPU in a given leaf rcu_node structure coming online.  The caller
4357 * must hold the corresponding leaf rcu_node ->lock with interrupts
4358 * disabled.
4359 */
4360static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
4361{
4362	long mask;
4363	long oldmask;
4364	struct rcu_node *rnp = rnp_leaf;
4365
4366	raw_lockdep_assert_held_rcu_node(rnp_leaf);
4367	WARN_ON_ONCE(rnp->wait_blkd_tasks);
4368	for (;;) {
4369		mask = rnp->grpmask;
4370		rnp = rnp->parent;
4371		if (rnp == NULL)
4372			return;
4373		raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
4374		oldmask = rnp->qsmaskinit;
4375		rnp->qsmaskinit |= mask;
4376		raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
4377		if (oldmask)
4378			return;
4379	}
4380}
4381
4382/*
4383 * Do boot-time initialization of a CPU's per-CPU RCU data.
4384 */
4385static void __init
4386rcu_boot_init_percpu_data(int cpu)
4387{
4388	struct context_tracking *ct = this_cpu_ptr(&context_tracking);
4389	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4390
4391	/* Set up local state, ensuring consistent view of global state. */
4392	rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu);
4393	INIT_WORK(&rdp->strict_work, strict_work_handler);
4394	WARN_ON_ONCE(ct->dynticks_nesting != 1);
4395	WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(cpu)));
4396	rdp->barrier_seq_snap = rcu_state.barrier_sequence;
4397	rdp->rcu_ofl_gp_seq = rcu_state.gp_seq;
4398	rdp->rcu_ofl_gp_flags = RCU_GP_CLEANED;
4399	rdp->rcu_onl_gp_seq = rcu_state.gp_seq;
4400	rdp->rcu_onl_gp_flags = RCU_GP_CLEANED;
4401	rdp->last_sched_clock = jiffies;
4402	rdp->cpu = cpu;
4403	rcu_boot_init_nocb_percpu_data(rdp);
4404}
4405
4406struct kthread_worker *rcu_exp_gp_kworker;
4407
4408static void rcu_spawn_exp_par_gp_kworker(struct rcu_node *rnp)
4409{
4410	struct kthread_worker *kworker;
4411	const char *name = "rcu_exp_par_gp_kthread_worker/%d";
4412	struct sched_param param = { .sched_priority = kthread_prio };
4413	int rnp_index = rnp - rcu_get_root();
4414
4415	if (rnp->exp_kworker)
4416		return;
4417
4418	kworker = kthread_create_worker(0, name, rnp_index);
4419	if (IS_ERR_OR_NULL(kworker)) {
4420		pr_err("Failed to create par gp kworker on %d/%d\n",
4421		       rnp->grplo, rnp->grphi);
4422		return;
4423	}
4424	WRITE_ONCE(rnp->exp_kworker, kworker);
4425
4426	if (IS_ENABLED(CONFIG_RCU_EXP_KTHREAD))
4427		sched_setscheduler_nocheck(kworker->task, SCHED_FIFO, &param);
4428}
4429
4430static struct task_struct *rcu_exp_par_gp_task(struct rcu_node *rnp)
4431{
4432	struct kthread_worker *kworker = READ_ONCE(rnp->exp_kworker);
4433
4434	if (!kworker)
4435		return NULL;
4436
4437	return kworker->task;
4438}
4439
4440static void __init rcu_start_exp_gp_kworker(void)
4441{
4442	const char *name = "rcu_exp_gp_kthread_worker";
4443	struct sched_param param = { .sched_priority = kthread_prio };
4444
4445	rcu_exp_gp_kworker = kthread_create_worker(0, name);
4446	if (IS_ERR_OR_NULL(rcu_exp_gp_kworker)) {
4447		pr_err("Failed to create %s!\n", name);
4448		rcu_exp_gp_kworker = NULL;
4449		return;
4450	}
4451
4452	if (IS_ENABLED(CONFIG_RCU_EXP_KTHREAD))
4453		sched_setscheduler_nocheck(rcu_exp_gp_kworker->task, SCHED_FIFO, &param);
4454}
4455
4456static void rcu_spawn_rnp_kthreads(struct rcu_node *rnp)
4457{
4458	if (rcu_scheduler_fully_active) {
4459		mutex_lock(&rnp->kthread_mutex);
4460		rcu_spawn_one_boost_kthread(rnp);
4461		rcu_spawn_exp_par_gp_kworker(rnp);
4462		mutex_unlock(&rnp->kthread_mutex);
4463	}
4464}
4465
4466/*
4467 * Invoked early in the CPU-online process, when pretty much all services
4468 * are available.  The incoming CPU is not present.
4469 *
4470 * Initializes a CPU's per-CPU RCU data.  Note that only one online or
4471 * offline event can be happening at a given time.  Note also that we can
4472 * accept some slop in the rsp->gp_seq access due to the fact that this
4473 * CPU cannot possibly have any non-offloaded RCU callbacks in flight yet.
4474 * And any offloaded callbacks are being numbered elsewhere.
4475 */
4476int rcutree_prepare_cpu(unsigned int cpu)
4477{
4478	unsigned long flags;
4479	struct context_tracking *ct = per_cpu_ptr(&context_tracking, cpu);
4480	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4481	struct rcu_node *rnp = rcu_get_root();
4482
4483	/* Set up local state, ensuring consistent view of global state. */
4484	raw_spin_lock_irqsave_rcu_node(rnp, flags);
4485	rdp->qlen_last_fqs_check = 0;
4486	rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs);
4487	rdp->blimit = blimit;
4488	ct->dynticks_nesting = 1;	/* CPU not up, no tearing. */
4489	raw_spin_unlock_rcu_node(rnp);		/* irqs remain disabled. */
4490
4491	/*
4492	 * Only non-NOCB CPUs that didn't have early-boot callbacks need to be
4493	 * (re-)initialized.
4494	 */
4495	if (!rcu_segcblist_is_enabled(&rdp->cblist))
4496		rcu_segcblist_init(&rdp->cblist);  /* Re-enable callbacks. */
4497
4498	/*
4499	 * Add CPU to leaf rcu_node pending-online bitmask.  Any needed
4500	 * propagation up the rcu_node tree will happen at the beginning
4501	 * of the next grace period.
4502	 */
4503	rnp = rdp->mynode;
4504	raw_spin_lock_rcu_node(rnp);		/* irqs already disabled. */
4505	rdp->gp_seq = READ_ONCE(rnp->gp_seq);
4506	rdp->gp_seq_needed = rdp->gp_seq;
4507	rdp->cpu_no_qs.b.norm = true;
4508	rdp->core_needs_qs = false;
4509	rdp->rcu_iw_pending = false;
4510	rdp->rcu_iw = IRQ_WORK_INIT_HARD(rcu_iw_handler);
4511	rdp->rcu_iw_gp_seq = rdp->gp_seq - 1;
4512	trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuonl"));
4513	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4514	rcu_spawn_rnp_kthreads(rnp);
4515	rcu_spawn_cpu_nocb_kthread(cpu);
4516	WRITE_ONCE(rcu_state.n_online_cpus, rcu_state.n_online_cpus + 1);
4517
4518	return 0;
4519}
4520
4521/*
4522 * Update kthreads affinity during CPU-hotplug changes.
4523 *
4524 * Set the per-rcu_node kthread's affinity to cover all CPUs that are
4525 * served by the rcu_node in question.  The CPU hotplug lock is still
4526 * held, so the value of rnp->qsmaskinit will be stable.
4527 *
4528 * We don't include outgoingcpu in the affinity set, use -1 if there is
4529 * no outgoing CPU.  If there are no CPUs left in the affinity set,
4530 * this function allows the kthread to execute on any CPU.
4531 *
4532 * Any future concurrent calls are serialized via ->kthread_mutex.
4533 */
4534static void rcutree_affinity_setting(unsigned int cpu, int outgoingcpu)
4535{
4536	cpumask_var_t cm;
4537	unsigned long mask;
4538	struct rcu_data *rdp;
4539	struct rcu_node *rnp;
4540	struct task_struct *task_boost, *task_exp;
4541
4542	rdp = per_cpu_ptr(&rcu_data, cpu);
4543	rnp = rdp->mynode;
4544
4545	task_boost = rcu_boost_task(rnp);
4546	task_exp = rcu_exp_par_gp_task(rnp);
4547
4548	/*
4549	 * If CPU is the boot one, those tasks are created later from early
4550	 * initcall since kthreadd must be created first.
4551	 */
4552	if (!task_boost && !task_exp)
4553		return;
4554
4555	if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
4556		return;
4557
4558	mutex_lock(&rnp->kthread_mutex);
4559	mask = rcu_rnp_online_cpus(rnp);
4560	for_each_leaf_node_possible_cpu(rnp, cpu)
4561		if ((mask & leaf_node_cpu_bit(rnp, cpu)) &&
4562		    cpu != outgoingcpu)
4563			cpumask_set_cpu(cpu, cm);
4564	cpumask_and(cm, cm, housekeeping_cpumask(HK_TYPE_RCU));
4565	if (cpumask_empty(cm)) {
4566		cpumask_copy(cm, housekeeping_cpumask(HK_TYPE_RCU));
4567		if (outgoingcpu >= 0)
4568			cpumask_clear_cpu(outgoingcpu, cm);
4569	}
4570
4571	if (task_exp)
4572		set_cpus_allowed_ptr(task_exp, cm);
4573
4574	if (task_boost)
4575		set_cpus_allowed_ptr(task_boost, cm);
4576
4577	mutex_unlock(&rnp->kthread_mutex);
4578
4579	free_cpumask_var(cm);
4580}
4581
4582/*
4583 * Has the specified (known valid) CPU ever been fully online?
4584 */
4585bool rcu_cpu_beenfullyonline(int cpu)
4586{
4587	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4588
4589	return smp_load_acquire(&rdp->beenonline);
4590}
4591
4592/*
4593 * Near the end of the CPU-online process.  Pretty much all services
4594 * enabled, and the CPU is now very much alive.
4595 */
4596int rcutree_online_cpu(unsigned int cpu)
4597{
4598	unsigned long flags;
4599	struct rcu_data *rdp;
4600	struct rcu_node *rnp;
4601
4602	rdp = per_cpu_ptr(&rcu_data, cpu);
4603	rnp = rdp->mynode;
4604	raw_spin_lock_irqsave_rcu_node(rnp, flags);
4605	rnp->ffmask |= rdp->grpmask;
4606	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4607	if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
4608		return 0; /* Too early in boot for scheduler work. */
4609	sync_sched_exp_online_cleanup(cpu);
4610	rcutree_affinity_setting(cpu, -1);
4611
4612	// Stop-machine done, so allow nohz_full to disable tick.
4613	tick_dep_clear(TICK_DEP_BIT_RCU);
4614	return 0;
4615}
4616
4617/*
4618 * Mark the specified CPU as being online so that subsequent grace periods
4619 * (both expedited and normal) will wait on it.  Note that this means that
4620 * incoming CPUs are not allowed to use RCU read-side critical sections
4621 * until this function is called.  Failing to observe this restriction
4622 * will result in lockdep splats.
4623 *
4624 * Note that this function is special in that it is invoked directly
4625 * from the incoming CPU rather than from the cpuhp_step mechanism.
4626 * This is because this function must be invoked at a precise location.
4627 * This incoming CPU must not have enabled interrupts yet.
4628 *
4629 * This mirrors the effects of rcutree_report_cpu_dead().
4630 */
4631void rcutree_report_cpu_starting(unsigned int cpu)
4632{
4633	unsigned long mask;
4634	struct rcu_data *rdp;
4635	struct rcu_node *rnp;
4636	bool newcpu;
4637
4638	lockdep_assert_irqs_disabled();
4639	rdp = per_cpu_ptr(&rcu_data, cpu);
4640	if (rdp->cpu_started)
4641		return;
4642	rdp->cpu_started = true;
4643
4644	rnp = rdp->mynode;
4645	mask = rdp->grpmask;
4646	arch_spin_lock(&rcu_state.ofl_lock);
4647	rcu_dynticks_eqs_online();
4648	raw_spin_lock(&rcu_state.barrier_lock);
4649	raw_spin_lock_rcu_node(rnp);
4650	WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext | mask);
4651	raw_spin_unlock(&rcu_state.barrier_lock);
4652	newcpu = !(rnp->expmaskinitnext & mask);
4653	rnp->expmaskinitnext |= mask;
4654	/* Allow lockless access for expedited grace periods. */
4655	smp_store_release(&rcu_state.ncpus, rcu_state.ncpus + newcpu); /* ^^^ */
4656	ASSERT_EXCLUSIVE_WRITER(rcu_state.ncpus);
4657	rcu_gpnum_ovf(rnp, rdp); /* Offline-induced counter wrap? */
4658	rdp->rcu_onl_gp_seq = READ_ONCE(rcu_state.gp_seq);
4659	rdp->rcu_onl_gp_flags = READ_ONCE(rcu_state.gp_flags);
4660
4661	/* An incoming CPU should never be blocking a grace period. */
4662	if (WARN_ON_ONCE(rnp->qsmask & mask)) { /* RCU waiting on incoming CPU? */
4663		/* rcu_report_qs_rnp() *really* wants some flags to restore */
4664		unsigned long flags;
4665
4666		local_irq_save(flags);
4667		rcu_disable_urgency_upon_qs(rdp);
4668		/* Report QS -after- changing ->qsmaskinitnext! */
4669		rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
4670	} else {
4671		raw_spin_unlock_rcu_node(rnp);
4672	}
4673	arch_spin_unlock(&rcu_state.ofl_lock);
4674	smp_store_release(&rdp->beenonline, true);
4675	smp_mb(); /* Ensure RCU read-side usage follows above initialization. */
4676}
4677
4678/*
4679 * The outgoing function has no further need of RCU, so remove it from
4680 * the rcu_node tree's ->qsmaskinitnext bit masks.
4681 *
4682 * Note that this function is special in that it is invoked directly
4683 * from the outgoing CPU rather than from the cpuhp_step mechanism.
4684 * This is because this function must be invoked at a precise location.
4685 *
4686 * This mirrors the effect of rcutree_report_cpu_starting().
4687 */
4688void rcutree_report_cpu_dead(void)
4689{
4690	unsigned long flags;
4691	unsigned long mask;
4692	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
4693	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
4694
4695	/*
4696	 * IRQS must be disabled from now on and until the CPU dies, or an interrupt
4697	 * may introduce a new READ-side while it is actually off the QS masks.
4698	 */
4699	lockdep_assert_irqs_disabled();
4700	// Do any dangling deferred wakeups.
4701	do_nocb_deferred_wakeup(rdp);
4702
4703	rcu_preempt_deferred_qs(current);
4704
4705	/* Remove outgoing CPU from mask in the leaf rcu_node structure. */
4706	mask = rdp->grpmask;
4707	arch_spin_lock(&rcu_state.ofl_lock);
4708	raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
4709	rdp->rcu_ofl_gp_seq = READ_ONCE(rcu_state.gp_seq);
4710	rdp->rcu_ofl_gp_flags = READ_ONCE(rcu_state.gp_flags);
4711	if (rnp->qsmask & mask) { /* RCU waiting on outgoing CPU? */
4712		/* Report quiescent state -before- changing ->qsmaskinitnext! */
4713		rcu_disable_urgency_upon_qs(rdp);
4714		rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
4715		raw_spin_lock_irqsave_rcu_node(rnp, flags);
4716	}
4717	WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext & ~mask);
4718	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4719	arch_spin_unlock(&rcu_state.ofl_lock);
4720	rdp->cpu_started = false;
4721}
4722
4723#ifdef CONFIG_HOTPLUG_CPU
4724/*
4725 * The outgoing CPU has just passed through the dying-idle state, and we
4726 * are being invoked from the CPU that was IPIed to continue the offline
4727 * operation.  Migrate the outgoing CPU's callbacks to the current CPU.
4728 */
4729void rcutree_migrate_callbacks(int cpu)
4730{
4731	unsigned long flags;
4732	struct rcu_data *my_rdp;
4733	struct rcu_node *my_rnp;
4734	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4735	bool needwake;
4736
4737	if (rcu_rdp_is_offloaded(rdp) ||
4738	    rcu_segcblist_empty(&rdp->cblist))
4739		return;  /* No callbacks to migrate. */
4740
4741	raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags);
4742	WARN_ON_ONCE(rcu_rdp_cpu_online(rdp));
4743	rcu_barrier_entrain(rdp);
4744	my_rdp = this_cpu_ptr(&rcu_data);
4745	my_rnp = my_rdp->mynode;
4746	rcu_nocb_lock(my_rdp); /* irqs already disabled. */
4747	WARN_ON_ONCE(!rcu_nocb_flush_bypass(my_rdp, NULL, jiffies, false));
4748	raw_spin_lock_rcu_node(my_rnp); /* irqs already disabled. */
4749	/* Leverage recent GPs and set GP for new callbacks. */
4750	needwake = rcu_advance_cbs(my_rnp, rdp) ||
4751		   rcu_advance_cbs(my_rnp, my_rdp);
4752	rcu_segcblist_merge(&my_rdp->cblist, &rdp->cblist);
4753	raw_spin_unlock(&rcu_state.barrier_lock); /* irqs remain disabled. */
4754	needwake = needwake || rcu_advance_cbs(my_rnp, my_rdp);
4755	rcu_segcblist_disable(&rdp->cblist);
4756	WARN_ON_ONCE(rcu_segcblist_empty(&my_rdp->cblist) != !rcu_segcblist_n_cbs(&my_rdp->cblist));
4757	check_cb_ovld_locked(my_rdp, my_rnp);
4758	if (rcu_rdp_is_offloaded(my_rdp)) {
4759		raw_spin_unlock_rcu_node(my_rnp); /* irqs remain disabled. */
4760		__call_rcu_nocb_wake(my_rdp, true, flags);
4761	} else {
4762		rcu_nocb_unlock(my_rdp); /* irqs remain disabled. */
4763		raw_spin_unlock_rcu_node(my_rnp); /* irqs remain disabled. */
4764	}
4765	local_irq_restore(flags);
4766	if (needwake)
4767		rcu_gp_kthread_wake();
4768	lockdep_assert_irqs_enabled();
4769	WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 ||
4770		  !rcu_segcblist_empty(&rdp->cblist),
4771		  "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n",
4772		  cpu, rcu_segcblist_n_cbs(&rdp->cblist),
4773		  rcu_segcblist_first_cb(&rdp->cblist));
4774}
4775
4776/*
4777 * The CPU has been completely removed, and some other CPU is reporting
4778 * this fact from process context.  Do the remainder of the cleanup.
4779 * There can only be one CPU hotplug operation at a time, so no need for
4780 * explicit locking.
4781 */
4782int rcutree_dead_cpu(unsigned int cpu)
4783{
4784	WRITE_ONCE(rcu_state.n_online_cpus, rcu_state.n_online_cpus - 1);
4785	// Stop-machine done, so allow nohz_full to disable tick.
4786	tick_dep_clear(TICK_DEP_BIT_RCU);
4787	return 0;
4788}
4789
4790/*
4791 * Near the end of the offline process.  Trace the fact that this CPU
4792 * is going offline.
4793 */
4794int rcutree_dying_cpu(unsigned int cpu)
4795{
4796	bool blkd;
4797	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4798	struct rcu_node *rnp = rdp->mynode;
4799
4800	blkd = !!(READ_ONCE(rnp->qsmask) & rdp->grpmask);
4801	trace_rcu_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq),
4802			       blkd ? TPS("cpuofl-bgp") : TPS("cpuofl"));
4803	return 0;
4804}
4805
4806/*
4807 * Near the beginning of the process.  The CPU is still very much alive
4808 * with pretty much all services enabled.
4809 */
4810int rcutree_offline_cpu(unsigned int cpu)
4811{
4812	unsigned long flags;
4813	struct rcu_data *rdp;
4814	struct rcu_node *rnp;
4815
4816	rdp = per_cpu_ptr(&rcu_data, cpu);
4817	rnp = rdp->mynode;
4818	raw_spin_lock_irqsave_rcu_node(rnp, flags);
4819	rnp->ffmask &= ~rdp->grpmask;
4820	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4821
4822	rcutree_affinity_setting(cpu, cpu);
4823
4824	// nohz_full CPUs need the tick for stop-machine to work quickly
4825	tick_dep_set(TICK_DEP_BIT_RCU);
4826	return 0;
4827}
4828#endif /* #ifdef CONFIG_HOTPLUG_CPU */
4829
4830/*
4831 * On non-huge systems, use expedited RCU grace periods to make suspend
4832 * and hibernation run faster.
4833 */
4834static int rcu_pm_notify(struct notifier_block *self,
4835			 unsigned long action, void *hcpu)
4836{
4837	switch (action) {
4838	case PM_HIBERNATION_PREPARE:
4839	case PM_SUSPEND_PREPARE:
4840		rcu_async_hurry();
4841		rcu_expedite_gp();
4842		break;
4843	case PM_POST_HIBERNATION:
4844	case PM_POST_SUSPEND:
4845		rcu_unexpedite_gp();
4846		rcu_async_relax();
4847		break;
4848	default:
4849		break;
4850	}
4851	return NOTIFY_OK;
4852}
4853
4854/*
4855 * Spawn the kthreads that handle RCU's grace periods.
4856 */
4857static int __init rcu_spawn_gp_kthread(void)
4858{
4859	unsigned long flags;
4860	struct rcu_node *rnp;
4861	struct sched_param sp;
4862	struct task_struct *t;
4863	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
4864
4865	rcu_scheduler_fully_active = 1;
4866	t = kthread_create(rcu_gp_kthread, NULL, "%s", rcu_state.name);
4867	if (WARN_ONCE(IS_ERR(t), "%s: Could not start grace-period kthread, OOM is now expected behavior\n", __func__))
4868		return 0;
4869	if (kthread_prio) {
4870		sp.sched_priority = kthread_prio;
4871		sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
4872	}
4873	rnp = rcu_get_root();
4874	raw_spin_lock_irqsave_rcu_node(rnp, flags);
4875	WRITE_ONCE(rcu_state.gp_activity, jiffies);
4876	WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
4877	// Reset .gp_activity and .gp_req_activity before setting .gp_kthread.
4878	smp_store_release(&rcu_state.gp_kthread, t);  /* ^^^ */
4879	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4880	wake_up_process(t);
4881	/* This is a pre-SMP initcall, we expect a single CPU */
4882	WARN_ON(num_online_cpus() > 1);
4883	/*
4884	 * Those kthreads couldn't be created on rcu_init() -> rcutree_prepare_cpu()
4885	 * due to rcu_scheduler_fully_active.
4886	 */
4887	rcu_spawn_cpu_nocb_kthread(smp_processor_id());
4888	rcu_spawn_rnp_kthreads(rdp->mynode);
4889	rcu_spawn_core_kthreads();
4890	/* Create kthread worker for expedited GPs */
4891	rcu_start_exp_gp_kworker();
4892	return 0;
4893}
4894early_initcall(rcu_spawn_gp_kthread);
4895
4896/*
4897 * This function is invoked towards the end of the scheduler's
4898 * initialization process.  Before this is called, the idle task might
4899 * contain synchronous grace-period primitives (during which time, this idle
4900 * task is booting the system, and such primitives are no-ops).  After this
4901 * function is called, any synchronous grace-period primitives are run as
4902 * expedited, with the requesting task driving the grace period forward.
4903 * A later core_initcall() rcu_set_runtime_mode() will switch to full
4904 * runtime RCU functionality.
4905 */
4906void rcu_scheduler_starting(void)
4907{
4908	unsigned long flags;
4909	struct rcu_node *rnp;
4910
4911	WARN_ON(num_online_cpus() != 1);
4912	WARN_ON(nr_context_switches() > 0);
4913	rcu_test_sync_prims();
4914
4915	// Fix up the ->gp_seq counters.
4916	local_irq_save(flags);
4917	rcu_for_each_node_breadth_first(rnp)
4918		rnp->gp_seq_needed = rnp->gp_seq = rcu_state.gp_seq;
4919	local_irq_restore(flags);
4920
4921	// Switch out of early boot mode.
4922	rcu_scheduler_active = RCU_SCHEDULER_INIT;
4923	rcu_test_sync_prims();
4924}
4925
4926/*
4927 * Helper function for rcu_init() that initializes the rcu_state structure.
4928 */
4929static void __init rcu_init_one(void)
4930{
4931	static const char * const buf[] = RCU_NODE_NAME_INIT;
4932	static const char * const fqs[] = RCU_FQS_NAME_INIT;
4933	static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
4934	static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
4935
4936	int levelspread[RCU_NUM_LVLS];		/* kids/node in each level. */
4937	int cpustride = 1;
4938	int i;
4939	int j;
4940	struct rcu_node *rnp;
4941
4942	BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf));  /* Fix buf[] init! */
4943
4944	/* Silence gcc 4.8 false positive about array index out of range. */
4945	if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
4946		panic("rcu_init_one: rcu_num_lvls out of range");
4947
4948	/* Initialize the level-tracking arrays. */
4949
4950	for (i = 1; i < rcu_num_lvls; i++)
4951		rcu_state.level[i] =
4952			rcu_state.level[i - 1] + num_rcu_lvl[i - 1];
4953	rcu_init_levelspread(levelspread, num_rcu_lvl);
4954
4955	/* Initialize the elements themselves, starting from the leaves. */
4956
4957	for (i = rcu_num_lvls - 1; i >= 0; i--) {
4958		cpustride *= levelspread[i];
4959		rnp = rcu_state.level[i];
4960		for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) {
4961			raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
4962			lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
4963						   &rcu_node_class[i], buf[i]);
4964			raw_spin_lock_init(&rnp->fqslock);
4965			lockdep_set_class_and_name(&rnp->fqslock,
4966						   &rcu_fqs_class[i], fqs[i]);
4967			rnp->gp_seq = rcu_state.gp_seq;
4968			rnp->gp_seq_needed = rcu_state.gp_seq;
4969			rnp->completedqs = rcu_state.gp_seq;
4970			rnp->qsmask = 0;
4971			rnp->qsmaskinit = 0;
4972			rnp->grplo = j * cpustride;
4973			rnp->grphi = (j + 1) * cpustride - 1;
4974			if (rnp->grphi >= nr_cpu_ids)
4975				rnp->grphi = nr_cpu_ids - 1;
4976			if (i == 0) {
4977				rnp->grpnum = 0;
4978				rnp->grpmask = 0;
4979				rnp->parent = NULL;
4980			} else {
4981				rnp->grpnum = j % levelspread[i - 1];
4982				rnp->grpmask = BIT(rnp->grpnum);
4983				rnp->parent = rcu_state.level[i - 1] +
4984					      j / levelspread[i - 1];
4985			}
4986			rnp->level = i;
4987			INIT_LIST_HEAD(&rnp->blkd_tasks);
4988			rcu_init_one_nocb(rnp);
4989			init_waitqueue_head(&rnp->exp_wq[0]);
4990			init_waitqueue_head(&rnp->exp_wq[1]);
4991			init_waitqueue_head(&rnp->exp_wq[2]);
4992			init_waitqueue_head(&rnp->exp_wq[3]);
4993			spin_lock_init(&rnp->exp_lock);
4994			mutex_init(&rnp->kthread_mutex);
4995			raw_spin_lock_init(&rnp->exp_poll_lock);
4996			rnp->exp_seq_poll_rq = RCU_GET_STATE_COMPLETED;
4997			INIT_WORK(&rnp->exp_poll_wq, sync_rcu_do_polled_gp);
4998		}
4999	}
5000
5001	init_swait_queue_head(&rcu_state.gp_wq);
5002	init_swait_queue_head(&rcu_state.expedited_wq);
5003	rnp = rcu_first_leaf_node();
5004	for_each_possible_cpu(i) {
5005		while (i > rnp->grphi)
5006			rnp++;
5007		per_cpu_ptr(&rcu_data, i)->mynode = rnp;
5008		rcu_boot_init_percpu_data(i);
5009	}
5010}
5011
5012/*
5013 * Force priority from the kernel command-line into range.
5014 */
5015static void __init sanitize_kthread_prio(void)
5016{
5017	int kthread_prio_in = kthread_prio;
5018
5019	if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 2
5020	    && IS_BUILTIN(CONFIG_RCU_TORTURE_TEST))
5021		kthread_prio = 2;
5022	else if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
5023		kthread_prio = 1;
5024	else if (kthread_prio < 0)
5025		kthread_prio = 0;
5026	else if (kthread_prio > 99)
5027		kthread_prio = 99;
5028
5029	if (kthread_prio != kthread_prio_in)
5030		pr_alert("%s: Limited prio to %d from %d\n",
5031			 __func__, kthread_prio, kthread_prio_in);
5032}
5033
5034/*
5035 * Compute the rcu_node tree geometry from kernel parameters.  This cannot
5036 * replace the definitions in tree.h because those are needed to size
5037 * the ->node array in the rcu_state structure.
5038 */
5039void rcu_init_geometry(void)
5040{
5041	ulong d;
5042	int i;
5043	static unsigned long old_nr_cpu_ids;
5044	int rcu_capacity[RCU_NUM_LVLS];
5045	static bool initialized;
5046
5047	if (initialized) {
5048		/*
5049		 * Warn if setup_nr_cpu_ids() had not yet been invoked,
5050		 * unless nr_cpus_ids == NR_CPUS, in which case who cares?
5051		 */
5052		WARN_ON_ONCE(old_nr_cpu_ids != nr_cpu_ids);
5053		return;
5054	}
5055
5056	old_nr_cpu_ids = nr_cpu_ids;
5057	initialized = true;
5058
5059	/*
5060	 * Initialize any unspecified boot parameters.
5061	 * The default values of jiffies_till_first_fqs and
5062	 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
5063	 * value, which is a function of HZ, then adding one for each
5064	 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
5065	 */
5066	d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
5067	if (jiffies_till_first_fqs == ULONG_MAX)
5068		jiffies_till_first_fqs = d;
5069	if (jiffies_till_next_fqs == ULONG_MAX)
5070		jiffies_till_next_fqs = d;
5071	adjust_jiffies_till_sched_qs();
5072
5073	/* If the compile-time values are accurate, just leave. */
5074	if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
5075	    nr_cpu_ids == NR_CPUS)
5076		return;
5077	pr_info("Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%u\n",
5078		rcu_fanout_leaf, nr_cpu_ids);
5079
5080	/*
5081	 * The boot-time rcu_fanout_leaf parameter must be at least two
5082	 * and cannot exceed the number of bits in the rcu_node masks.
5083	 * Complain and fall back to the compile-time values if this
5084	 * limit is exceeded.
5085	 */
5086	if (rcu_fanout_leaf < 2 ||
5087	    rcu_fanout_leaf > sizeof(unsigned long) * 8) {
5088		rcu_fanout_leaf = RCU_FANOUT_LEAF;
5089		WARN_ON(1);
5090		return;
5091	}
5092
5093	/*
5094	 * Compute number of nodes that can be handled an rcu_node tree
5095	 * with the given number of levels.
5096	 */
5097	rcu_capacity[0] = rcu_fanout_leaf;
5098	for (i = 1; i < RCU_NUM_LVLS; i++)
5099		rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
5100
5101	/*
5102	 * The tree must be able to accommodate the configured number of CPUs.
5103	 * If this limit is exceeded, fall back to the compile-time values.
5104	 */
5105	if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
5106		rcu_fanout_leaf = RCU_FANOUT_LEAF;
5107		WARN_ON(1);
5108		return;
5109	}
5110
5111	/* Calculate the number of levels in the tree. */
5112	for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
5113	}
5114	rcu_num_lvls = i + 1;
5115
5116	/* Calculate the number of rcu_nodes at each level of the tree. */
5117	for (i = 0; i < rcu_num_lvls; i++) {
5118		int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
5119		num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
5120	}
5121
5122	/* Calculate the total number of rcu_node structures. */
5123	rcu_num_nodes = 0;
5124	for (i = 0; i < rcu_num_lvls; i++)
5125		rcu_num_nodes += num_rcu_lvl[i];
5126}
5127
5128/*
5129 * Dump out the structure of the rcu_node combining tree associated
5130 * with the rcu_state structure.
5131 */
5132static void __init rcu_dump_rcu_node_tree(void)
5133{
5134	int level = 0;
5135	struct rcu_node *rnp;
5136
5137	pr_info("rcu_node tree layout dump\n");
5138	pr_info(" ");
5139	rcu_for_each_node_breadth_first(rnp) {
5140		if (rnp->level != level) {
5141			pr_cont("\n");
5142			pr_info(" ");
5143			level = rnp->level;
5144		}
5145		pr_cont("%d:%d ^%d  ", rnp->grplo, rnp->grphi, rnp->grpnum);
5146	}
5147	pr_cont("\n");
5148}
5149
5150struct workqueue_struct *rcu_gp_wq;
5151
5152static void __init kfree_rcu_batch_init(void)
5153{
5154	int cpu;
5155	int i, j;
5156	struct shrinker *kfree_rcu_shrinker;
5157
5158	/* Clamp it to [0:100] seconds interval. */
5159	if (rcu_delay_page_cache_fill_msec < 0 ||
5160		rcu_delay_page_cache_fill_msec > 100 * MSEC_PER_SEC) {
5161
5162		rcu_delay_page_cache_fill_msec =
5163			clamp(rcu_delay_page_cache_fill_msec, 0,
5164				(int) (100 * MSEC_PER_SEC));
5165
5166		pr_info("Adjusting rcutree.rcu_delay_page_cache_fill_msec to %d ms.\n",
5167			rcu_delay_page_cache_fill_msec);
5168	}
5169
5170	for_each_possible_cpu(cpu) {
5171		struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
5172
5173		for (i = 0; i < KFREE_N_BATCHES; i++) {
5174			INIT_RCU_WORK(&krcp->krw_arr[i].rcu_work, kfree_rcu_work);
5175			krcp->krw_arr[i].krcp = krcp;
5176
5177			for (j = 0; j < FREE_N_CHANNELS; j++)
5178				INIT_LIST_HEAD(&krcp->krw_arr[i].bulk_head_free[j]);
5179		}
5180
5181		for (i = 0; i < FREE_N_CHANNELS; i++)
5182			INIT_LIST_HEAD(&krcp->bulk_head[i]);
5183
5184		INIT_DELAYED_WORK(&krcp->monitor_work, kfree_rcu_monitor);
5185		INIT_DELAYED_WORK(&krcp->page_cache_work, fill_page_cache_func);
5186		krcp->initialized = true;
5187	}
5188
5189	kfree_rcu_shrinker = shrinker_alloc(0, "rcu-kfree");
5190	if (!kfree_rcu_shrinker) {
5191		pr_err("Failed to allocate kfree_rcu() shrinker!\n");
5192		return;
5193	}
5194
5195	kfree_rcu_shrinker->count_objects = kfree_rcu_shrink_count;
5196	kfree_rcu_shrinker->scan_objects = kfree_rcu_shrink_scan;
5197
5198	shrinker_register(kfree_rcu_shrinker);
5199}
5200
5201void __init rcu_init(void)
5202{
5203	int cpu = smp_processor_id();
5204
5205	rcu_early_boot_tests();
5206
5207	kfree_rcu_batch_init();
5208	rcu_bootup_announce();
5209	sanitize_kthread_prio();
5210	rcu_init_geometry();
5211	rcu_init_one();
5212	if (dump_tree)
5213		rcu_dump_rcu_node_tree();
5214	if (use_softirq)
5215		open_softirq(RCU_SOFTIRQ, rcu_core_si);
5216
5217	/*
5218	 * We don't need protection against CPU-hotplug here because
5219	 * this is called early in boot, before either interrupts
5220	 * or the scheduler are operational.
5221	 */
5222	pm_notifier(rcu_pm_notify, 0);
5223	WARN_ON(num_online_cpus() > 1); // Only one CPU this early in boot.
5224	rcutree_prepare_cpu(cpu);
5225	rcutree_report_cpu_starting(cpu);
5226	rcutree_online_cpu(cpu);
5227
5228	/* Create workqueue for Tree SRCU and for expedited GPs. */
5229	rcu_gp_wq = alloc_workqueue("rcu_gp", WQ_MEM_RECLAIM, 0);
5230	WARN_ON(!rcu_gp_wq);
5231
5232	/* Fill in default value for rcutree.qovld boot parameter. */
5233	/* -After- the rcu_node ->lock fields are initialized! */
5234	if (qovld < 0)
5235		qovld_calc = DEFAULT_RCU_QOVLD_MULT * qhimark;
5236	else
5237		qovld_calc = qovld;
5238
5239	// Kick-start in case any polled grace periods started early.
5240	(void)start_poll_synchronize_rcu_expedited();
5241
5242	rcu_test_sync_prims();
5243
5244	tasks_cblist_init_generic();
5245}
5246
5247#include "tree_stall.h"
5248#include "tree_exp.h"
5249#include "tree_nocb.h"
5250#include "tree_plugin.h"
5251