1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/kernel/power/swap.c
4 *
5 * This file provides functions for reading the suspend image from
6 * and writing it to a swap partition.
7 *
8 * Copyright (C) 1998,2001-2005 Pavel Machek <pavel@ucw.cz>
9 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
10 * Copyright (C) 2010-2012 Bojan Smojver <bojan@rexursive.com>
11 */
12
13#define pr_fmt(fmt) "PM: " fmt
14
15#include <linux/module.h>
16#include <linux/file.h>
17#include <linux/delay.h>
18#include <linux/bitops.h>
19#include <linux/device.h>
20#include <linux/bio.h>
21#include <linux/blkdev.h>
22#include <linux/swap.h>
23#include <linux/swapops.h>
24#include <linux/pm.h>
25#include <linux/slab.h>
26#include <linux/vmalloc.h>
27#include <linux/cpumask.h>
28#include <linux/atomic.h>
29#include <linux/kthread.h>
30#include <linux/crc32.h>
31#include <linux/ktime.h>
32
33#include "power.h"
34
35#define HIBERNATE_SIG	"S1SUSPEND"
36
37u32 swsusp_hardware_signature;
38
39/*
40 * When reading an {un,}compressed image, we may restore pages in place,
41 * in which case some architectures need these pages cleaning before they
42 * can be executed. We don't know which pages these may be, so clean the lot.
43 */
44static bool clean_pages_on_read;
45static bool clean_pages_on_decompress;
46
47/*
48 *	The swap map is a data structure used for keeping track of each page
49 *	written to a swap partition.  It consists of many swap_map_page
50 *	structures that contain each an array of MAP_PAGE_ENTRIES swap entries.
51 *	These structures are stored on the swap and linked together with the
52 *	help of the .next_swap member.
53 *
54 *	The swap map is created during suspend.  The swap map pages are
55 *	allocated and populated one at a time, so we only need one memory
56 *	page to set up the entire structure.
57 *
58 *	During resume we pick up all swap_map_page structures into a list.
59 */
60
61#define MAP_PAGE_ENTRIES	(PAGE_SIZE / sizeof(sector_t) - 1)
62
63/*
64 * Number of free pages that are not high.
65 */
66static inline unsigned long low_free_pages(void)
67{
68	return nr_free_pages() - nr_free_highpages();
69}
70
71/*
72 * Number of pages required to be kept free while writing the image. Always
73 * half of all available low pages before the writing starts.
74 */
75static inline unsigned long reqd_free_pages(void)
76{
77	return low_free_pages() / 2;
78}
79
80struct swap_map_page {
81	sector_t entries[MAP_PAGE_ENTRIES];
82	sector_t next_swap;
83};
84
85struct swap_map_page_list {
86	struct swap_map_page *map;
87	struct swap_map_page_list *next;
88};
89
90/*
91 *	The swap_map_handle structure is used for handling swap in
92 *	a file-alike way
93 */
94
95struct swap_map_handle {
96	struct swap_map_page *cur;
97	struct swap_map_page_list *maps;
98	sector_t cur_swap;
99	sector_t first_sector;
100	unsigned int k;
101	unsigned long reqd_free_pages;
102	u32 crc32;
103};
104
105struct swsusp_header {
106	char reserved[PAGE_SIZE - 20 - sizeof(sector_t) - sizeof(int) -
107	              sizeof(u32) - sizeof(u32)];
108	u32	hw_sig;
109	u32	crc32;
110	sector_t image;
111	unsigned int flags;	/* Flags to pass to the "boot" kernel */
112	char	orig_sig[10];
113	char	sig[10];
114} __packed;
115
116static struct swsusp_header *swsusp_header;
117
118/*
119 *	The following functions are used for tracing the allocated
120 *	swap pages, so that they can be freed in case of an error.
121 */
122
123struct swsusp_extent {
124	struct rb_node node;
125	unsigned long start;
126	unsigned long end;
127};
128
129static struct rb_root swsusp_extents = RB_ROOT;
130
131static int swsusp_extents_insert(unsigned long swap_offset)
132{
133	struct rb_node **new = &(swsusp_extents.rb_node);
134	struct rb_node *parent = NULL;
135	struct swsusp_extent *ext;
136
137	/* Figure out where to put the new node */
138	while (*new) {
139		ext = rb_entry(*new, struct swsusp_extent, node);
140		parent = *new;
141		if (swap_offset < ext->start) {
142			/* Try to merge */
143			if (swap_offset == ext->start - 1) {
144				ext->start--;
145				return 0;
146			}
147			new = &((*new)->rb_left);
148		} else if (swap_offset > ext->end) {
149			/* Try to merge */
150			if (swap_offset == ext->end + 1) {
151				ext->end++;
152				return 0;
153			}
154			new = &((*new)->rb_right);
155		} else {
156			/* It already is in the tree */
157			return -EINVAL;
158		}
159	}
160	/* Add the new node and rebalance the tree. */
161	ext = kzalloc(sizeof(struct swsusp_extent), GFP_KERNEL);
162	if (!ext)
163		return -ENOMEM;
164
165	ext->start = swap_offset;
166	ext->end = swap_offset;
167	rb_link_node(&ext->node, parent, new);
168	rb_insert_color(&ext->node, &swsusp_extents);
169	return 0;
170}
171
172/*
173 *	alloc_swapdev_block - allocate a swap page and register that it has
174 *	been allocated, so that it can be freed in case of an error.
175 */
176
177sector_t alloc_swapdev_block(int swap)
178{
179	unsigned long offset;
180
181	offset = swp_offset(get_swap_page_of_type(swap));
182	if (offset) {
183		if (swsusp_extents_insert(offset))
184			swap_free(swp_entry(swap, offset));
185		else
186			return swapdev_block(swap, offset);
187	}
188	return 0;
189}
190
191/*
192 *	free_all_swap_pages - free swap pages allocated for saving image data.
193 *	It also frees the extents used to register which swap entries had been
194 *	allocated.
195 */
196
197void free_all_swap_pages(int swap)
198{
199	struct rb_node *node;
200
201	while ((node = swsusp_extents.rb_node)) {
202		struct swsusp_extent *ext;
203		unsigned long offset;
204
205		ext = rb_entry(node, struct swsusp_extent, node);
206		rb_erase(node, &swsusp_extents);
207		for (offset = ext->start; offset <= ext->end; offset++)
208			swap_free(swp_entry(swap, offset));
209
210		kfree(ext);
211	}
212}
213
214int swsusp_swap_in_use(void)
215{
216	return (swsusp_extents.rb_node != NULL);
217}
218
219/*
220 * General things
221 */
222
223static unsigned short root_swap = 0xffff;
224static struct file *hib_resume_bdev_file;
225
226struct hib_bio_batch {
227	atomic_t		count;
228	wait_queue_head_t	wait;
229	blk_status_t		error;
230	struct blk_plug		plug;
231};
232
233static void hib_init_batch(struct hib_bio_batch *hb)
234{
235	atomic_set(&hb->count, 0);
236	init_waitqueue_head(&hb->wait);
237	hb->error = BLK_STS_OK;
238	blk_start_plug(&hb->plug);
239}
240
241static void hib_finish_batch(struct hib_bio_batch *hb)
242{
243	blk_finish_plug(&hb->plug);
244}
245
246static void hib_end_io(struct bio *bio)
247{
248	struct hib_bio_batch *hb = bio->bi_private;
249	struct page *page = bio_first_page_all(bio);
250
251	if (bio->bi_status) {
252		pr_alert("Read-error on swap-device (%u:%u:%Lu)\n",
253			 MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)),
254			 (unsigned long long)bio->bi_iter.bi_sector);
255	}
256
257	if (bio_data_dir(bio) == WRITE)
258		put_page(page);
259	else if (clean_pages_on_read)
260		flush_icache_range((unsigned long)page_address(page),
261				   (unsigned long)page_address(page) + PAGE_SIZE);
262
263	if (bio->bi_status && !hb->error)
264		hb->error = bio->bi_status;
265	if (atomic_dec_and_test(&hb->count))
266		wake_up(&hb->wait);
267
268	bio_put(bio);
269}
270
271static int hib_submit_io(blk_opf_t opf, pgoff_t page_off, void *addr,
272			 struct hib_bio_batch *hb)
273{
274	struct page *page = virt_to_page(addr);
275	struct bio *bio;
276	int error = 0;
277
278	bio = bio_alloc(file_bdev(hib_resume_bdev_file), 1, opf,
279			GFP_NOIO | __GFP_HIGH);
280	bio->bi_iter.bi_sector = page_off * (PAGE_SIZE >> 9);
281
282	if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
283		pr_err("Adding page to bio failed at %llu\n",
284		       (unsigned long long)bio->bi_iter.bi_sector);
285		bio_put(bio);
286		return -EFAULT;
287	}
288
289	if (hb) {
290		bio->bi_end_io = hib_end_io;
291		bio->bi_private = hb;
292		atomic_inc(&hb->count);
293		submit_bio(bio);
294	} else {
295		error = submit_bio_wait(bio);
296		bio_put(bio);
297	}
298
299	return error;
300}
301
302static int hib_wait_io(struct hib_bio_batch *hb)
303{
304	/*
305	 * We are relying on the behavior of blk_plug that a thread with
306	 * a plug will flush the plug list before sleeping.
307	 */
308	wait_event(hb->wait, atomic_read(&hb->count) == 0);
309	return blk_status_to_errno(hb->error);
310}
311
312/*
313 * Saving part
314 */
315static int mark_swapfiles(struct swap_map_handle *handle, unsigned int flags)
316{
317	int error;
318
319	hib_submit_io(REQ_OP_READ, swsusp_resume_block, swsusp_header, NULL);
320	if (!memcmp("SWAP-SPACE",swsusp_header->sig, 10) ||
321	    !memcmp("SWAPSPACE2",swsusp_header->sig, 10)) {
322		memcpy(swsusp_header->orig_sig,swsusp_header->sig, 10);
323		memcpy(swsusp_header->sig, HIBERNATE_SIG, 10);
324		swsusp_header->image = handle->first_sector;
325		if (swsusp_hardware_signature) {
326			swsusp_header->hw_sig = swsusp_hardware_signature;
327			flags |= SF_HW_SIG;
328		}
329		swsusp_header->flags = flags;
330		if (flags & SF_CRC32_MODE)
331			swsusp_header->crc32 = handle->crc32;
332		error = hib_submit_io(REQ_OP_WRITE | REQ_SYNC,
333				      swsusp_resume_block, swsusp_header, NULL);
334	} else {
335		pr_err("Swap header not found!\n");
336		error = -ENODEV;
337	}
338	return error;
339}
340
341/*
342 * Hold the swsusp_header flag. This is used in software_resume() in
343 * 'kernel/power/hibernate' to check if the image is compressed and query
344 * for the compression algorithm support(if so).
345 */
346unsigned int swsusp_header_flags;
347
348/**
349 *	swsusp_swap_check - check if the resume device is a swap device
350 *	and get its index (if so)
351 *
352 *	This is called before saving image
353 */
354static int swsusp_swap_check(void)
355{
356	int res;
357
358	if (swsusp_resume_device)
359		res = swap_type_of(swsusp_resume_device, swsusp_resume_block);
360	else
361		res = find_first_swap(&swsusp_resume_device);
362	if (res < 0)
363		return res;
364	root_swap = res;
365
366	hib_resume_bdev_file = bdev_file_open_by_dev(swsusp_resume_device,
367			BLK_OPEN_WRITE, NULL, NULL);
368	if (IS_ERR(hib_resume_bdev_file))
369		return PTR_ERR(hib_resume_bdev_file);
370
371	res = set_blocksize(file_bdev(hib_resume_bdev_file), PAGE_SIZE);
372	if (res < 0)
373		fput(hib_resume_bdev_file);
374
375	return res;
376}
377
378/**
379 *	write_page - Write one page to given swap location.
380 *	@buf:		Address we're writing.
381 *	@offset:	Offset of the swap page we're writing to.
382 *	@hb:		bio completion batch
383 */
384
385static int write_page(void *buf, sector_t offset, struct hib_bio_batch *hb)
386{
387	void *src;
388	int ret;
389
390	if (!offset)
391		return -ENOSPC;
392
393	if (hb) {
394		src = (void *)__get_free_page(GFP_NOIO | __GFP_NOWARN |
395		                              __GFP_NORETRY);
396		if (src) {
397			copy_page(src, buf);
398		} else {
399			ret = hib_wait_io(hb); /* Free pages */
400			if (ret)
401				return ret;
402			src = (void *)__get_free_page(GFP_NOIO |
403			                              __GFP_NOWARN |
404			                              __GFP_NORETRY);
405			if (src) {
406				copy_page(src, buf);
407			} else {
408				WARN_ON_ONCE(1);
409				hb = NULL;	/* Go synchronous */
410				src = buf;
411			}
412		}
413	} else {
414		src = buf;
415	}
416	return hib_submit_io(REQ_OP_WRITE | REQ_SYNC, offset, src, hb);
417}
418
419static void release_swap_writer(struct swap_map_handle *handle)
420{
421	if (handle->cur)
422		free_page((unsigned long)handle->cur);
423	handle->cur = NULL;
424}
425
426static int get_swap_writer(struct swap_map_handle *handle)
427{
428	int ret;
429
430	ret = swsusp_swap_check();
431	if (ret) {
432		if (ret != -ENOSPC)
433			pr_err("Cannot find swap device, try swapon -a\n");
434		return ret;
435	}
436	handle->cur = (struct swap_map_page *)get_zeroed_page(GFP_KERNEL);
437	if (!handle->cur) {
438		ret = -ENOMEM;
439		goto err_close;
440	}
441	handle->cur_swap = alloc_swapdev_block(root_swap);
442	if (!handle->cur_swap) {
443		ret = -ENOSPC;
444		goto err_rel;
445	}
446	handle->k = 0;
447	handle->reqd_free_pages = reqd_free_pages();
448	handle->first_sector = handle->cur_swap;
449	return 0;
450err_rel:
451	release_swap_writer(handle);
452err_close:
453	swsusp_close();
454	return ret;
455}
456
457static int swap_write_page(struct swap_map_handle *handle, void *buf,
458		struct hib_bio_batch *hb)
459{
460	int error;
461	sector_t offset;
462
463	if (!handle->cur)
464		return -EINVAL;
465	offset = alloc_swapdev_block(root_swap);
466	error = write_page(buf, offset, hb);
467	if (error)
468		return error;
469	handle->cur->entries[handle->k++] = offset;
470	if (handle->k >= MAP_PAGE_ENTRIES) {
471		offset = alloc_swapdev_block(root_swap);
472		if (!offset)
473			return -ENOSPC;
474		handle->cur->next_swap = offset;
475		error = write_page(handle->cur, handle->cur_swap, hb);
476		if (error)
477			goto out;
478		clear_page(handle->cur);
479		handle->cur_swap = offset;
480		handle->k = 0;
481
482		if (hb && low_free_pages() <= handle->reqd_free_pages) {
483			error = hib_wait_io(hb);
484			if (error)
485				goto out;
486			/*
487			 * Recalculate the number of required free pages, to
488			 * make sure we never take more than half.
489			 */
490			handle->reqd_free_pages = reqd_free_pages();
491		}
492	}
493 out:
494	return error;
495}
496
497static int flush_swap_writer(struct swap_map_handle *handle)
498{
499	if (handle->cur && handle->cur_swap)
500		return write_page(handle->cur, handle->cur_swap, NULL);
501	else
502		return -EINVAL;
503}
504
505static int swap_writer_finish(struct swap_map_handle *handle,
506		unsigned int flags, int error)
507{
508	if (!error) {
509		pr_info("S");
510		error = mark_swapfiles(handle, flags);
511		pr_cont("|\n");
512		flush_swap_writer(handle);
513	}
514
515	if (error)
516		free_all_swap_pages(root_swap);
517	release_swap_writer(handle);
518	swsusp_close();
519
520	return error;
521}
522
523/*
524 * Bytes we need for compressed data in worst case. We assume(limitation)
525 * this is the worst of all the compression algorithms.
526 */
527#define bytes_worst_compress(x) ((x) + ((x) / 16) + 64 + 3 + 2)
528
529/* We need to remember how much compressed data we need to read. */
530#define CMP_HEADER	sizeof(size_t)
531
532/* Number of pages/bytes we'll compress at one time. */
533#define UNC_PAGES	32
534#define UNC_SIZE	(UNC_PAGES * PAGE_SIZE)
535
536/* Number of pages we need for compressed data (worst case). */
537#define CMP_PAGES	DIV_ROUND_UP(bytes_worst_compress(UNC_SIZE) + \
538				CMP_HEADER, PAGE_SIZE)
539#define CMP_SIZE	(CMP_PAGES * PAGE_SIZE)
540
541/* Maximum number of threads for compression/decompression. */
542#define CMP_THREADS	3
543
544/* Minimum/maximum number of pages for read buffering. */
545#define CMP_MIN_RD_PAGES	1024
546#define CMP_MAX_RD_PAGES	8192
547
548/**
549 *	save_image - save the suspend image data
550 */
551
552static int save_image(struct swap_map_handle *handle,
553                      struct snapshot_handle *snapshot,
554                      unsigned int nr_to_write)
555{
556	unsigned int m;
557	int ret;
558	int nr_pages;
559	int err2;
560	struct hib_bio_batch hb;
561	ktime_t start;
562	ktime_t stop;
563
564	hib_init_batch(&hb);
565
566	pr_info("Saving image data pages (%u pages)...\n",
567		nr_to_write);
568	m = nr_to_write / 10;
569	if (!m)
570		m = 1;
571	nr_pages = 0;
572	start = ktime_get();
573	while (1) {
574		ret = snapshot_read_next(snapshot);
575		if (ret <= 0)
576			break;
577		ret = swap_write_page(handle, data_of(*snapshot), &hb);
578		if (ret)
579			break;
580		if (!(nr_pages % m))
581			pr_info("Image saving progress: %3d%%\n",
582				nr_pages / m * 10);
583		nr_pages++;
584	}
585	err2 = hib_wait_io(&hb);
586	hib_finish_batch(&hb);
587	stop = ktime_get();
588	if (!ret)
589		ret = err2;
590	if (!ret)
591		pr_info("Image saving done\n");
592	swsusp_show_speed(start, stop, nr_to_write, "Wrote");
593	return ret;
594}
595
596/*
597 * Structure used for CRC32.
598 */
599struct crc_data {
600	struct task_struct *thr;                  /* thread */
601	atomic_t ready;                           /* ready to start flag */
602	atomic_t stop;                            /* ready to stop flag */
603	unsigned run_threads;                     /* nr current threads */
604	wait_queue_head_t go;                     /* start crc update */
605	wait_queue_head_t done;                   /* crc update done */
606	u32 *crc32;                               /* points to handle's crc32 */
607	size_t *unc_len[CMP_THREADS];             /* uncompressed lengths */
608	unsigned char *unc[CMP_THREADS];          /* uncompressed data */
609};
610
611/*
612 * CRC32 update function that runs in its own thread.
613 */
614static int crc32_threadfn(void *data)
615{
616	struct crc_data *d = data;
617	unsigned i;
618
619	while (1) {
620		wait_event(d->go, atomic_read_acquire(&d->ready) ||
621		                  kthread_should_stop());
622		if (kthread_should_stop()) {
623			d->thr = NULL;
624			atomic_set_release(&d->stop, 1);
625			wake_up(&d->done);
626			break;
627		}
628		atomic_set(&d->ready, 0);
629
630		for (i = 0; i < d->run_threads; i++)
631			*d->crc32 = crc32_le(*d->crc32,
632			                     d->unc[i], *d->unc_len[i]);
633		atomic_set_release(&d->stop, 1);
634		wake_up(&d->done);
635	}
636	return 0;
637}
638/*
639 * Structure used for data compression.
640 */
641struct cmp_data {
642	struct task_struct *thr;                  /* thread */
643	struct crypto_comp *cc;                   /* crypto compressor stream */
644	atomic_t ready;                           /* ready to start flag */
645	atomic_t stop;                            /* ready to stop flag */
646	int ret;                                  /* return code */
647	wait_queue_head_t go;                     /* start compression */
648	wait_queue_head_t done;                   /* compression done */
649	size_t unc_len;                           /* uncompressed length */
650	size_t cmp_len;                           /* compressed length */
651	unsigned char unc[UNC_SIZE];              /* uncompressed buffer */
652	unsigned char cmp[CMP_SIZE];              /* compressed buffer */
653};
654
655/* Indicates the image size after compression */
656static atomic_t compressed_size = ATOMIC_INIT(0);
657
658/*
659 * Compression function that runs in its own thread.
660 */
661static int compress_threadfn(void *data)
662{
663	struct cmp_data *d = data;
664	unsigned int cmp_len = 0;
665
666	while (1) {
667		wait_event(d->go, atomic_read_acquire(&d->ready) ||
668		                  kthread_should_stop());
669		if (kthread_should_stop()) {
670			d->thr = NULL;
671			d->ret = -1;
672			atomic_set_release(&d->stop, 1);
673			wake_up(&d->done);
674			break;
675		}
676		atomic_set(&d->ready, 0);
677
678		cmp_len = CMP_SIZE - CMP_HEADER;
679		d->ret = crypto_comp_compress(d->cc, d->unc, d->unc_len,
680					      d->cmp + CMP_HEADER,
681					      &cmp_len);
682		d->cmp_len = cmp_len;
683
684		atomic_set(&compressed_size, atomic_read(&compressed_size) + d->cmp_len);
685		atomic_set_release(&d->stop, 1);
686		wake_up(&d->done);
687	}
688	return 0;
689}
690
691/**
692 * save_compressed_image - Save the suspend image data after compression.
693 * @handle: Swap map handle to use for saving the image.
694 * @snapshot: Image to read data from.
695 * @nr_to_write: Number of pages to save.
696 */
697static int save_compressed_image(struct swap_map_handle *handle,
698				 struct snapshot_handle *snapshot,
699				 unsigned int nr_to_write)
700{
701	unsigned int m;
702	int ret = 0;
703	int nr_pages;
704	int err2;
705	struct hib_bio_batch hb;
706	ktime_t start;
707	ktime_t stop;
708	size_t off;
709	unsigned thr, run_threads, nr_threads;
710	unsigned char *page = NULL;
711	struct cmp_data *data = NULL;
712	struct crc_data *crc = NULL;
713
714	hib_init_batch(&hb);
715
716	atomic_set(&compressed_size, 0);
717
718	/*
719	 * We'll limit the number of threads for compression to limit memory
720	 * footprint.
721	 */
722	nr_threads = num_online_cpus() - 1;
723	nr_threads = clamp_val(nr_threads, 1, CMP_THREADS);
724
725	page = (void *)__get_free_page(GFP_NOIO | __GFP_HIGH);
726	if (!page) {
727		pr_err("Failed to allocate %s page\n", hib_comp_algo);
728		ret = -ENOMEM;
729		goto out_clean;
730	}
731
732	data = vzalloc(array_size(nr_threads, sizeof(*data)));
733	if (!data) {
734		pr_err("Failed to allocate %s data\n", hib_comp_algo);
735		ret = -ENOMEM;
736		goto out_clean;
737	}
738
739	crc = kzalloc(sizeof(*crc), GFP_KERNEL);
740	if (!crc) {
741		pr_err("Failed to allocate crc\n");
742		ret = -ENOMEM;
743		goto out_clean;
744	}
745
746	/*
747	 * Start the compression threads.
748	 */
749	for (thr = 0; thr < nr_threads; thr++) {
750		init_waitqueue_head(&data[thr].go);
751		init_waitqueue_head(&data[thr].done);
752
753		data[thr].cc = crypto_alloc_comp(hib_comp_algo, 0, 0);
754		if (IS_ERR_OR_NULL(data[thr].cc)) {
755			pr_err("Could not allocate comp stream %ld\n", PTR_ERR(data[thr].cc));
756			ret = -EFAULT;
757			goto out_clean;
758		}
759
760		data[thr].thr = kthread_run(compress_threadfn,
761		                            &data[thr],
762		                            "image_compress/%u", thr);
763		if (IS_ERR(data[thr].thr)) {
764			data[thr].thr = NULL;
765			pr_err("Cannot start compression threads\n");
766			ret = -ENOMEM;
767			goto out_clean;
768		}
769	}
770
771	/*
772	 * Start the CRC32 thread.
773	 */
774	init_waitqueue_head(&crc->go);
775	init_waitqueue_head(&crc->done);
776
777	handle->crc32 = 0;
778	crc->crc32 = &handle->crc32;
779	for (thr = 0; thr < nr_threads; thr++) {
780		crc->unc[thr] = data[thr].unc;
781		crc->unc_len[thr] = &data[thr].unc_len;
782	}
783
784	crc->thr = kthread_run(crc32_threadfn, crc, "image_crc32");
785	if (IS_ERR(crc->thr)) {
786		crc->thr = NULL;
787		pr_err("Cannot start CRC32 thread\n");
788		ret = -ENOMEM;
789		goto out_clean;
790	}
791
792	/*
793	 * Adjust the number of required free pages after all allocations have
794	 * been done. We don't want to run out of pages when writing.
795	 */
796	handle->reqd_free_pages = reqd_free_pages();
797
798	pr_info("Using %u thread(s) for %s compression\n", nr_threads, hib_comp_algo);
799	pr_info("Compressing and saving image data (%u pages)...\n",
800		nr_to_write);
801	m = nr_to_write / 10;
802	if (!m)
803		m = 1;
804	nr_pages = 0;
805	start = ktime_get();
806	for (;;) {
807		for (thr = 0; thr < nr_threads; thr++) {
808			for (off = 0; off < UNC_SIZE; off += PAGE_SIZE) {
809				ret = snapshot_read_next(snapshot);
810				if (ret < 0)
811					goto out_finish;
812
813				if (!ret)
814					break;
815
816				memcpy(data[thr].unc + off,
817				       data_of(*snapshot), PAGE_SIZE);
818
819				if (!(nr_pages % m))
820					pr_info("Image saving progress: %3d%%\n",
821						nr_pages / m * 10);
822				nr_pages++;
823			}
824			if (!off)
825				break;
826
827			data[thr].unc_len = off;
828
829			atomic_set_release(&data[thr].ready, 1);
830			wake_up(&data[thr].go);
831		}
832
833		if (!thr)
834			break;
835
836		crc->run_threads = thr;
837		atomic_set_release(&crc->ready, 1);
838		wake_up(&crc->go);
839
840		for (run_threads = thr, thr = 0; thr < run_threads; thr++) {
841			wait_event(data[thr].done,
842				atomic_read_acquire(&data[thr].stop));
843			atomic_set(&data[thr].stop, 0);
844
845			ret = data[thr].ret;
846
847			if (ret < 0) {
848				pr_err("%s compression failed\n", hib_comp_algo);
849				goto out_finish;
850			}
851
852			if (unlikely(!data[thr].cmp_len ||
853			             data[thr].cmp_len >
854				     bytes_worst_compress(data[thr].unc_len))) {
855				pr_err("Invalid %s compressed length\n", hib_comp_algo);
856				ret = -1;
857				goto out_finish;
858			}
859
860			*(size_t *)data[thr].cmp = data[thr].cmp_len;
861
862			/*
863			 * Given we are writing one page at a time to disk, we
864			 * copy that much from the buffer, although the last
865			 * bit will likely be smaller than full page. This is
866			 * OK - we saved the length of the compressed data, so
867			 * any garbage at the end will be discarded when we
868			 * read it.
869			 */
870			for (off = 0;
871			     off < CMP_HEADER + data[thr].cmp_len;
872			     off += PAGE_SIZE) {
873				memcpy(page, data[thr].cmp + off, PAGE_SIZE);
874
875				ret = swap_write_page(handle, page, &hb);
876				if (ret)
877					goto out_finish;
878			}
879		}
880
881		wait_event(crc->done, atomic_read_acquire(&crc->stop));
882		atomic_set(&crc->stop, 0);
883	}
884
885out_finish:
886	err2 = hib_wait_io(&hb);
887	stop = ktime_get();
888	if (!ret)
889		ret = err2;
890	if (!ret)
891		pr_info("Image saving done\n");
892	swsusp_show_speed(start, stop, nr_to_write, "Wrote");
893	pr_info("Image size after compression: %d kbytes\n",
894		(atomic_read(&compressed_size) / 1024));
895
896out_clean:
897	hib_finish_batch(&hb);
898	if (crc) {
899		if (crc->thr)
900			kthread_stop(crc->thr);
901		kfree(crc);
902	}
903	if (data) {
904		for (thr = 0; thr < nr_threads; thr++) {
905			if (data[thr].thr)
906				kthread_stop(data[thr].thr);
907			if (data[thr].cc)
908				crypto_free_comp(data[thr].cc);
909		}
910		vfree(data);
911	}
912	if (page) free_page((unsigned long)page);
913
914	return ret;
915}
916
917/**
918 *	enough_swap - Make sure we have enough swap to save the image.
919 *
920 *	Returns TRUE or FALSE after checking the total amount of swap
921 *	space available from the resume partition.
922 */
923
924static int enough_swap(unsigned int nr_pages)
925{
926	unsigned int free_swap = count_swap_pages(root_swap, 1);
927	unsigned int required;
928
929	pr_debug("Free swap pages: %u\n", free_swap);
930
931	required = PAGES_FOR_IO + nr_pages;
932	return free_swap > required;
933}
934
935/**
936 *	swsusp_write - Write entire image and metadata.
937 *	@flags: flags to pass to the "boot" kernel in the image header
938 *
939 *	It is important _NOT_ to umount filesystems at this point. We want
940 *	them synced (in case something goes wrong) but we DO not want to mark
941 *	filesystem clean: it is not. (And it does not matter, if we resume
942 *	correctly, we'll mark system clean, anyway.)
943 */
944
945int swsusp_write(unsigned int flags)
946{
947	struct swap_map_handle handle;
948	struct snapshot_handle snapshot;
949	struct swsusp_info *header;
950	unsigned long pages;
951	int error;
952
953	pages = snapshot_get_image_size();
954	error = get_swap_writer(&handle);
955	if (error) {
956		pr_err("Cannot get swap writer\n");
957		return error;
958	}
959	if (flags & SF_NOCOMPRESS_MODE) {
960		if (!enough_swap(pages)) {
961			pr_err("Not enough free swap\n");
962			error = -ENOSPC;
963			goto out_finish;
964		}
965	}
966	memset(&snapshot, 0, sizeof(struct snapshot_handle));
967	error = snapshot_read_next(&snapshot);
968	if (error < (int)PAGE_SIZE) {
969		if (error >= 0)
970			error = -EFAULT;
971
972		goto out_finish;
973	}
974	header = (struct swsusp_info *)data_of(snapshot);
975	error = swap_write_page(&handle, header, NULL);
976	if (!error) {
977		error = (flags & SF_NOCOMPRESS_MODE) ?
978			save_image(&handle, &snapshot, pages - 1) :
979			save_compressed_image(&handle, &snapshot, pages - 1);
980	}
981out_finish:
982	error = swap_writer_finish(&handle, flags, error);
983	return error;
984}
985
986/*
987 *	The following functions allow us to read data using a swap map
988 *	in a file-like way.
989 */
990
991static void release_swap_reader(struct swap_map_handle *handle)
992{
993	struct swap_map_page_list *tmp;
994
995	while (handle->maps) {
996		if (handle->maps->map)
997			free_page((unsigned long)handle->maps->map);
998		tmp = handle->maps;
999		handle->maps = handle->maps->next;
1000		kfree(tmp);
1001	}
1002	handle->cur = NULL;
1003}
1004
1005static int get_swap_reader(struct swap_map_handle *handle,
1006		unsigned int *flags_p)
1007{
1008	int error;
1009	struct swap_map_page_list *tmp, *last;
1010	sector_t offset;
1011
1012	*flags_p = swsusp_header->flags;
1013
1014	if (!swsusp_header->image) /* how can this happen? */
1015		return -EINVAL;
1016
1017	handle->cur = NULL;
1018	last = handle->maps = NULL;
1019	offset = swsusp_header->image;
1020	while (offset) {
1021		tmp = kzalloc(sizeof(*handle->maps), GFP_KERNEL);
1022		if (!tmp) {
1023			release_swap_reader(handle);
1024			return -ENOMEM;
1025		}
1026		if (!handle->maps)
1027			handle->maps = tmp;
1028		if (last)
1029			last->next = tmp;
1030		last = tmp;
1031
1032		tmp->map = (struct swap_map_page *)
1033			   __get_free_page(GFP_NOIO | __GFP_HIGH);
1034		if (!tmp->map) {
1035			release_swap_reader(handle);
1036			return -ENOMEM;
1037		}
1038
1039		error = hib_submit_io(REQ_OP_READ, offset, tmp->map, NULL);
1040		if (error) {
1041			release_swap_reader(handle);
1042			return error;
1043		}
1044		offset = tmp->map->next_swap;
1045	}
1046	handle->k = 0;
1047	handle->cur = handle->maps->map;
1048	return 0;
1049}
1050
1051static int swap_read_page(struct swap_map_handle *handle, void *buf,
1052		struct hib_bio_batch *hb)
1053{
1054	sector_t offset;
1055	int error;
1056	struct swap_map_page_list *tmp;
1057
1058	if (!handle->cur)
1059		return -EINVAL;
1060	offset = handle->cur->entries[handle->k];
1061	if (!offset)
1062		return -EFAULT;
1063	error = hib_submit_io(REQ_OP_READ, offset, buf, hb);
1064	if (error)
1065		return error;
1066	if (++handle->k >= MAP_PAGE_ENTRIES) {
1067		handle->k = 0;
1068		free_page((unsigned long)handle->maps->map);
1069		tmp = handle->maps;
1070		handle->maps = handle->maps->next;
1071		kfree(tmp);
1072		if (!handle->maps)
1073			release_swap_reader(handle);
1074		else
1075			handle->cur = handle->maps->map;
1076	}
1077	return error;
1078}
1079
1080static int swap_reader_finish(struct swap_map_handle *handle)
1081{
1082	release_swap_reader(handle);
1083
1084	return 0;
1085}
1086
1087/**
1088 *	load_image - load the image using the swap map handle
1089 *	@handle and the snapshot handle @snapshot
1090 *	(assume there are @nr_pages pages to load)
1091 */
1092
1093static int load_image(struct swap_map_handle *handle,
1094                      struct snapshot_handle *snapshot,
1095                      unsigned int nr_to_read)
1096{
1097	unsigned int m;
1098	int ret = 0;
1099	ktime_t start;
1100	ktime_t stop;
1101	struct hib_bio_batch hb;
1102	int err2;
1103	unsigned nr_pages;
1104
1105	hib_init_batch(&hb);
1106
1107	clean_pages_on_read = true;
1108	pr_info("Loading image data pages (%u pages)...\n", nr_to_read);
1109	m = nr_to_read / 10;
1110	if (!m)
1111		m = 1;
1112	nr_pages = 0;
1113	start = ktime_get();
1114	for ( ; ; ) {
1115		ret = snapshot_write_next(snapshot);
1116		if (ret <= 0)
1117			break;
1118		ret = swap_read_page(handle, data_of(*snapshot), &hb);
1119		if (ret)
1120			break;
1121		if (snapshot->sync_read)
1122			ret = hib_wait_io(&hb);
1123		if (ret)
1124			break;
1125		if (!(nr_pages % m))
1126			pr_info("Image loading progress: %3d%%\n",
1127				nr_pages / m * 10);
1128		nr_pages++;
1129	}
1130	err2 = hib_wait_io(&hb);
1131	hib_finish_batch(&hb);
1132	stop = ktime_get();
1133	if (!ret)
1134		ret = err2;
1135	if (!ret) {
1136		pr_info("Image loading done\n");
1137		ret = snapshot_write_finalize(snapshot);
1138		if (!ret && !snapshot_image_loaded(snapshot))
1139			ret = -ENODATA;
1140	}
1141	swsusp_show_speed(start, stop, nr_to_read, "Read");
1142	return ret;
1143}
1144
1145/*
1146 * Structure used for data decompression.
1147 */
1148struct dec_data {
1149	struct task_struct *thr;                  /* thread */
1150	struct crypto_comp *cc;                   /* crypto compressor stream */
1151	atomic_t ready;                           /* ready to start flag */
1152	atomic_t stop;                            /* ready to stop flag */
1153	int ret;                                  /* return code */
1154	wait_queue_head_t go;                     /* start decompression */
1155	wait_queue_head_t done;                   /* decompression done */
1156	size_t unc_len;                           /* uncompressed length */
1157	size_t cmp_len;                           /* compressed length */
1158	unsigned char unc[UNC_SIZE];              /* uncompressed buffer */
1159	unsigned char cmp[CMP_SIZE];              /* compressed buffer */
1160};
1161
1162/*
1163 * Decompression function that runs in its own thread.
1164 */
1165static int decompress_threadfn(void *data)
1166{
1167	struct dec_data *d = data;
1168	unsigned int unc_len = 0;
1169
1170	while (1) {
1171		wait_event(d->go, atomic_read_acquire(&d->ready) ||
1172		                  kthread_should_stop());
1173		if (kthread_should_stop()) {
1174			d->thr = NULL;
1175			d->ret = -1;
1176			atomic_set_release(&d->stop, 1);
1177			wake_up(&d->done);
1178			break;
1179		}
1180		atomic_set(&d->ready, 0);
1181
1182		unc_len = UNC_SIZE;
1183		d->ret = crypto_comp_decompress(d->cc, d->cmp + CMP_HEADER, d->cmp_len,
1184						d->unc, &unc_len);
1185		d->unc_len = unc_len;
1186
1187		if (clean_pages_on_decompress)
1188			flush_icache_range((unsigned long)d->unc,
1189					   (unsigned long)d->unc + d->unc_len);
1190
1191		atomic_set_release(&d->stop, 1);
1192		wake_up(&d->done);
1193	}
1194	return 0;
1195}
1196
1197/**
1198 * load_compressed_image - Load compressed image data and decompress it.
1199 * @handle: Swap map handle to use for loading data.
1200 * @snapshot: Image to copy uncompressed data into.
1201 * @nr_to_read: Number of pages to load.
1202 */
1203static int load_compressed_image(struct swap_map_handle *handle,
1204				 struct snapshot_handle *snapshot,
1205				 unsigned int nr_to_read)
1206{
1207	unsigned int m;
1208	int ret = 0;
1209	int eof = 0;
1210	struct hib_bio_batch hb;
1211	ktime_t start;
1212	ktime_t stop;
1213	unsigned nr_pages;
1214	size_t off;
1215	unsigned i, thr, run_threads, nr_threads;
1216	unsigned ring = 0, pg = 0, ring_size = 0,
1217	         have = 0, want, need, asked = 0;
1218	unsigned long read_pages = 0;
1219	unsigned char **page = NULL;
1220	struct dec_data *data = NULL;
1221	struct crc_data *crc = NULL;
1222
1223	hib_init_batch(&hb);
1224
1225	/*
1226	 * We'll limit the number of threads for decompression to limit memory
1227	 * footprint.
1228	 */
1229	nr_threads = num_online_cpus() - 1;
1230	nr_threads = clamp_val(nr_threads, 1, CMP_THREADS);
1231
1232	page = vmalloc(array_size(CMP_MAX_RD_PAGES, sizeof(*page)));
1233	if (!page) {
1234		pr_err("Failed to allocate %s page\n", hib_comp_algo);
1235		ret = -ENOMEM;
1236		goto out_clean;
1237	}
1238
1239	data = vzalloc(array_size(nr_threads, sizeof(*data)));
1240	if (!data) {
1241		pr_err("Failed to allocate %s data\n", hib_comp_algo);
1242		ret = -ENOMEM;
1243		goto out_clean;
1244	}
1245
1246	crc = kzalloc(sizeof(*crc), GFP_KERNEL);
1247	if (!crc) {
1248		pr_err("Failed to allocate crc\n");
1249		ret = -ENOMEM;
1250		goto out_clean;
1251	}
1252
1253	clean_pages_on_decompress = true;
1254
1255	/*
1256	 * Start the decompression threads.
1257	 */
1258	for (thr = 0; thr < nr_threads; thr++) {
1259		init_waitqueue_head(&data[thr].go);
1260		init_waitqueue_head(&data[thr].done);
1261
1262		data[thr].cc = crypto_alloc_comp(hib_comp_algo, 0, 0);
1263		if (IS_ERR_OR_NULL(data[thr].cc)) {
1264			pr_err("Could not allocate comp stream %ld\n", PTR_ERR(data[thr].cc));
1265			ret = -EFAULT;
1266			goto out_clean;
1267		}
1268
1269		data[thr].thr = kthread_run(decompress_threadfn,
1270		                            &data[thr],
1271		                            "image_decompress/%u", thr);
1272		if (IS_ERR(data[thr].thr)) {
1273			data[thr].thr = NULL;
1274			pr_err("Cannot start decompression threads\n");
1275			ret = -ENOMEM;
1276			goto out_clean;
1277		}
1278	}
1279
1280	/*
1281	 * Start the CRC32 thread.
1282	 */
1283	init_waitqueue_head(&crc->go);
1284	init_waitqueue_head(&crc->done);
1285
1286	handle->crc32 = 0;
1287	crc->crc32 = &handle->crc32;
1288	for (thr = 0; thr < nr_threads; thr++) {
1289		crc->unc[thr] = data[thr].unc;
1290		crc->unc_len[thr] = &data[thr].unc_len;
1291	}
1292
1293	crc->thr = kthread_run(crc32_threadfn, crc, "image_crc32");
1294	if (IS_ERR(crc->thr)) {
1295		crc->thr = NULL;
1296		pr_err("Cannot start CRC32 thread\n");
1297		ret = -ENOMEM;
1298		goto out_clean;
1299	}
1300
1301	/*
1302	 * Set the number of pages for read buffering.
1303	 * This is complete guesswork, because we'll only know the real
1304	 * picture once prepare_image() is called, which is much later on
1305	 * during the image load phase. We'll assume the worst case and
1306	 * say that none of the image pages are from high memory.
1307	 */
1308	if (low_free_pages() > snapshot_get_image_size())
1309		read_pages = (low_free_pages() - snapshot_get_image_size()) / 2;
1310	read_pages = clamp_val(read_pages, CMP_MIN_RD_PAGES, CMP_MAX_RD_PAGES);
1311
1312	for (i = 0; i < read_pages; i++) {
1313		page[i] = (void *)__get_free_page(i < CMP_PAGES ?
1314						  GFP_NOIO | __GFP_HIGH :
1315						  GFP_NOIO | __GFP_NOWARN |
1316						  __GFP_NORETRY);
1317
1318		if (!page[i]) {
1319			if (i < CMP_PAGES) {
1320				ring_size = i;
1321				pr_err("Failed to allocate %s pages\n", hib_comp_algo);
1322				ret = -ENOMEM;
1323				goto out_clean;
1324			} else {
1325				break;
1326			}
1327		}
1328	}
1329	want = ring_size = i;
1330
1331	pr_info("Using %u thread(s) for %s decompression\n", nr_threads, hib_comp_algo);
1332	pr_info("Loading and decompressing image data (%u pages)...\n",
1333		nr_to_read);
1334	m = nr_to_read / 10;
1335	if (!m)
1336		m = 1;
1337	nr_pages = 0;
1338	start = ktime_get();
1339
1340	ret = snapshot_write_next(snapshot);
1341	if (ret <= 0)
1342		goto out_finish;
1343
1344	for(;;) {
1345		for (i = 0; !eof && i < want; i++) {
1346			ret = swap_read_page(handle, page[ring], &hb);
1347			if (ret) {
1348				/*
1349				 * On real read error, finish. On end of data,
1350				 * set EOF flag and just exit the read loop.
1351				 */
1352				if (handle->cur &&
1353				    handle->cur->entries[handle->k]) {
1354					goto out_finish;
1355				} else {
1356					eof = 1;
1357					break;
1358				}
1359			}
1360			if (++ring >= ring_size)
1361				ring = 0;
1362		}
1363		asked += i;
1364		want -= i;
1365
1366		/*
1367		 * We are out of data, wait for some more.
1368		 */
1369		if (!have) {
1370			if (!asked)
1371				break;
1372
1373			ret = hib_wait_io(&hb);
1374			if (ret)
1375				goto out_finish;
1376			have += asked;
1377			asked = 0;
1378			if (eof)
1379				eof = 2;
1380		}
1381
1382		if (crc->run_threads) {
1383			wait_event(crc->done, atomic_read_acquire(&crc->stop));
1384			atomic_set(&crc->stop, 0);
1385			crc->run_threads = 0;
1386		}
1387
1388		for (thr = 0; have && thr < nr_threads; thr++) {
1389			data[thr].cmp_len = *(size_t *)page[pg];
1390			if (unlikely(!data[thr].cmp_len ||
1391			             data[thr].cmp_len >
1392					bytes_worst_compress(UNC_SIZE))) {
1393				pr_err("Invalid %s compressed length\n", hib_comp_algo);
1394				ret = -1;
1395				goto out_finish;
1396			}
1397
1398			need = DIV_ROUND_UP(data[thr].cmp_len + CMP_HEADER,
1399			                    PAGE_SIZE);
1400			if (need > have) {
1401				if (eof > 1) {
1402					ret = -1;
1403					goto out_finish;
1404				}
1405				break;
1406			}
1407
1408			for (off = 0;
1409			     off < CMP_HEADER + data[thr].cmp_len;
1410			     off += PAGE_SIZE) {
1411				memcpy(data[thr].cmp + off,
1412				       page[pg], PAGE_SIZE);
1413				have--;
1414				want++;
1415				if (++pg >= ring_size)
1416					pg = 0;
1417			}
1418
1419			atomic_set_release(&data[thr].ready, 1);
1420			wake_up(&data[thr].go);
1421		}
1422
1423		/*
1424		 * Wait for more data while we are decompressing.
1425		 */
1426		if (have < CMP_PAGES && asked) {
1427			ret = hib_wait_io(&hb);
1428			if (ret)
1429				goto out_finish;
1430			have += asked;
1431			asked = 0;
1432			if (eof)
1433				eof = 2;
1434		}
1435
1436		for (run_threads = thr, thr = 0; thr < run_threads; thr++) {
1437			wait_event(data[thr].done,
1438				atomic_read_acquire(&data[thr].stop));
1439			atomic_set(&data[thr].stop, 0);
1440
1441			ret = data[thr].ret;
1442
1443			if (ret < 0) {
1444				pr_err("%s decompression failed\n", hib_comp_algo);
1445				goto out_finish;
1446			}
1447
1448			if (unlikely(!data[thr].unc_len ||
1449				data[thr].unc_len > UNC_SIZE ||
1450				data[thr].unc_len & (PAGE_SIZE - 1))) {
1451				pr_err("Invalid %s uncompressed length\n", hib_comp_algo);
1452				ret = -1;
1453				goto out_finish;
1454			}
1455
1456			for (off = 0;
1457			     off < data[thr].unc_len; off += PAGE_SIZE) {
1458				memcpy(data_of(*snapshot),
1459				       data[thr].unc + off, PAGE_SIZE);
1460
1461				if (!(nr_pages % m))
1462					pr_info("Image loading progress: %3d%%\n",
1463						nr_pages / m * 10);
1464				nr_pages++;
1465
1466				ret = snapshot_write_next(snapshot);
1467				if (ret <= 0) {
1468					crc->run_threads = thr + 1;
1469					atomic_set_release(&crc->ready, 1);
1470					wake_up(&crc->go);
1471					goto out_finish;
1472				}
1473			}
1474		}
1475
1476		crc->run_threads = thr;
1477		atomic_set_release(&crc->ready, 1);
1478		wake_up(&crc->go);
1479	}
1480
1481out_finish:
1482	if (crc->run_threads) {
1483		wait_event(crc->done, atomic_read_acquire(&crc->stop));
1484		atomic_set(&crc->stop, 0);
1485	}
1486	stop = ktime_get();
1487	if (!ret) {
1488		pr_info("Image loading done\n");
1489		ret = snapshot_write_finalize(snapshot);
1490		if (!ret && !snapshot_image_loaded(snapshot))
1491			ret = -ENODATA;
1492		if (!ret) {
1493			if (swsusp_header->flags & SF_CRC32_MODE) {
1494				if(handle->crc32 != swsusp_header->crc32) {
1495					pr_err("Invalid image CRC32!\n");
1496					ret = -ENODATA;
1497				}
1498			}
1499		}
1500	}
1501	swsusp_show_speed(start, stop, nr_to_read, "Read");
1502out_clean:
1503	hib_finish_batch(&hb);
1504	for (i = 0; i < ring_size; i++)
1505		free_page((unsigned long)page[i]);
1506	if (crc) {
1507		if (crc->thr)
1508			kthread_stop(crc->thr);
1509		kfree(crc);
1510	}
1511	if (data) {
1512		for (thr = 0; thr < nr_threads; thr++) {
1513			if (data[thr].thr)
1514				kthread_stop(data[thr].thr);
1515			if (data[thr].cc)
1516				crypto_free_comp(data[thr].cc);
1517		}
1518		vfree(data);
1519	}
1520	vfree(page);
1521
1522	return ret;
1523}
1524
1525/**
1526 *	swsusp_read - read the hibernation image.
1527 *	@flags_p: flags passed by the "frozen" kernel in the image header should
1528 *		  be written into this memory location
1529 */
1530
1531int swsusp_read(unsigned int *flags_p)
1532{
1533	int error;
1534	struct swap_map_handle handle;
1535	struct snapshot_handle snapshot;
1536	struct swsusp_info *header;
1537
1538	memset(&snapshot, 0, sizeof(struct snapshot_handle));
1539	error = snapshot_write_next(&snapshot);
1540	if (error < (int)PAGE_SIZE)
1541		return error < 0 ? error : -EFAULT;
1542	header = (struct swsusp_info *)data_of(snapshot);
1543	error = get_swap_reader(&handle, flags_p);
1544	if (error)
1545		goto end;
1546	if (!error)
1547		error = swap_read_page(&handle, header, NULL);
1548	if (!error) {
1549		error = (*flags_p & SF_NOCOMPRESS_MODE) ?
1550			load_image(&handle, &snapshot, header->pages - 1) :
1551			load_compressed_image(&handle, &snapshot, header->pages - 1);
1552	}
1553	swap_reader_finish(&handle);
1554end:
1555	if (!error)
1556		pr_debug("Image successfully loaded\n");
1557	else
1558		pr_debug("Error %d resuming\n", error);
1559	return error;
1560}
1561
1562static void *swsusp_holder;
1563
1564/**
1565 * swsusp_check - Open the resume device and check for the swsusp signature.
1566 * @exclusive: Open the resume device exclusively.
1567 */
1568
1569int swsusp_check(bool exclusive)
1570{
1571	void *holder = exclusive ? &swsusp_holder : NULL;
1572	int error;
1573
1574	hib_resume_bdev_file = bdev_file_open_by_dev(swsusp_resume_device,
1575				BLK_OPEN_READ, holder, NULL);
1576	if (!IS_ERR(hib_resume_bdev_file)) {
1577		set_blocksize(file_bdev(hib_resume_bdev_file), PAGE_SIZE);
1578		clear_page(swsusp_header);
1579		error = hib_submit_io(REQ_OP_READ, swsusp_resume_block,
1580					swsusp_header, NULL);
1581		if (error)
1582			goto put;
1583
1584		if (!memcmp(HIBERNATE_SIG, swsusp_header->sig, 10)) {
1585			memcpy(swsusp_header->sig, swsusp_header->orig_sig, 10);
1586			swsusp_header_flags = swsusp_header->flags;
1587			/* Reset swap signature now */
1588			error = hib_submit_io(REQ_OP_WRITE | REQ_SYNC,
1589						swsusp_resume_block,
1590						swsusp_header, NULL);
1591		} else {
1592			error = -EINVAL;
1593		}
1594		if (!error && swsusp_header->flags & SF_HW_SIG &&
1595		    swsusp_header->hw_sig != swsusp_hardware_signature) {
1596			pr_info("Suspend image hardware signature mismatch (%08x now %08x); aborting resume.\n",
1597				swsusp_header->hw_sig, swsusp_hardware_signature);
1598			error = -EINVAL;
1599		}
1600
1601put:
1602		if (error)
1603			fput(hib_resume_bdev_file);
1604		else
1605			pr_debug("Image signature found, resuming\n");
1606	} else {
1607		error = PTR_ERR(hib_resume_bdev_file);
1608	}
1609
1610	if (error)
1611		pr_debug("Image not found (code %d)\n", error);
1612
1613	return error;
1614}
1615
1616/**
1617 * swsusp_close - close resume device.
1618 */
1619
1620void swsusp_close(void)
1621{
1622	if (IS_ERR(hib_resume_bdev_file)) {
1623		pr_debug("Image device not initialised\n");
1624		return;
1625	}
1626
1627	fput(hib_resume_bdev_file);
1628}
1629
1630/**
1631 *      swsusp_unmark - Unmark swsusp signature in the resume device
1632 */
1633
1634#ifdef CONFIG_SUSPEND
1635int swsusp_unmark(void)
1636{
1637	int error;
1638
1639	hib_submit_io(REQ_OP_READ, swsusp_resume_block,
1640			swsusp_header, NULL);
1641	if (!memcmp(HIBERNATE_SIG,swsusp_header->sig, 10)) {
1642		memcpy(swsusp_header->sig,swsusp_header->orig_sig, 10);
1643		error = hib_submit_io(REQ_OP_WRITE | REQ_SYNC,
1644					swsusp_resume_block,
1645					swsusp_header, NULL);
1646	} else {
1647		pr_err("Cannot find swsusp signature!\n");
1648		error = -ENODEV;
1649	}
1650
1651	/*
1652	 * We just returned from suspend, we don't need the image any more.
1653	 */
1654	free_all_swap_pages(root_swap);
1655
1656	return error;
1657}
1658#endif
1659
1660static int __init swsusp_header_init(void)
1661{
1662	swsusp_header = (struct swsusp_header*) __get_free_page(GFP_KERNEL);
1663	if (!swsusp_header)
1664		panic("Could not allocate memory for swsusp_header\n");
1665	return 0;
1666}
1667
1668core_initcall(swsusp_header_init);
1669