1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Debugging module statistics.
4 *
5 * Copyright (C) 2023 Luis Chamberlain <mcgrof@kernel.org>
6 */
7
8#include <linux/module.h>
9#include <uapi/linux/module.h>
10#include <linux/string.h>
11#include <linux/printk.h>
12#include <linux/slab.h>
13#include <linux/list.h>
14#include <linux/debugfs.h>
15#include <linux/rculist.h>
16#include <linux/math.h>
17
18#include "internal.h"
19
20/**
21 * DOC: module debugging statistics overview
22 *
23 * Enabling CONFIG_MODULE_STATS enables module debugging statistics which
24 * are useful to monitor and root cause memory pressure issues with module
25 * loading. These statistics are useful to allow us to improve production
26 * workloads.
27 *
28 * The current module debugging statistics supported help keep track of module
29 * loading failures to enable improvements either for kernel module auto-loading
30 * usage (request_module()) or interactions with userspace. Statistics are
31 * provided to track all possible failures in the finit_module() path and memory
32 * wasted in this process space.  Each of the failure counters are associated
33 * to a type of module loading failure which is known to incur a certain amount
34 * of memory allocation loss. In the worst case loading a module will fail after
35 * a 3 step memory allocation process:
36 *
37 *   a) memory allocated with kernel_read_file_from_fd()
38 *   b) module decompression processes the file read from
39 *      kernel_read_file_from_fd(), and vmap() is used to map
40 *      the decompressed module to a new local buffer which represents
41 *      a copy of the decompressed module passed from userspace. The buffer
42 *      from kernel_read_file_from_fd() is freed right away.
43 *   c) layout_and_allocate() allocates space for the final resting
44 *      place where we would keep the module if it were to be processed
45 *      successfully.
46 *
47 * If a failure occurs after these three different allocations only one
48 * counter will be incremented with the summation of the allocated bytes freed
49 * incurred during this failure. Likewise, if module loading failed only after
50 * step b) a separate counter is used and incremented for the bytes freed and
51 * not used during both of those allocations.
52 *
53 * Virtual memory space can be limited, for example on x86 virtual memory size
54 * defaults to 128 MiB. We should strive to limit and avoid wasting virtual
55 * memory allocations when possible. These module debugging statistics help
56 * to evaluate how much memory is being wasted on bootup due to module loading
57 * failures.
58 *
59 * All counters are designed to be incremental. Atomic counters are used so to
60 * remain simple and avoid delays and deadlocks.
61 */
62
63/**
64 * DOC: dup_failed_modules - tracks duplicate failed modules
65 *
66 * Linked list of modules which failed to be loaded because an already existing
67 * module with the same name was already being processed or already loaded.
68 * The finit_module() system call incurs heavy virtual memory allocations. In
69 * the worst case an finit_module() system call can end up allocating virtual
70 * memory 3 times:
71 *
72 *   1) kernel_read_file_from_fd() call uses vmalloc()
73 *   2) optional module decompression uses vmap()
74 *   3) layout_and allocate() can use vzalloc() or an arch specific variation of
75 *      vmalloc to deal with ELF sections requiring special permissions
76 *
77 * In practice on a typical boot today most finit_module() calls fail due to
78 * the module with the same name already being loaded or about to be processed.
79 * All virtual memory allocated to these failed modules will be freed with
80 * no functional use.
81 *
82 * To help with this the dup_failed_modules allows us to track modules which
83 * failed to load due to the fact that a module was already loaded or being
84 * processed.  There are only two points at which we can fail such calls,
85 * we list them below along with the number of virtual memory allocation
86 * calls:
87 *
88 *   a) FAIL_DUP_MOD_BECOMING: at the end of early_mod_check() before
89 *	layout_and_allocate().
90 *	- with module decompression: 2 virtual memory allocation calls
91 *	- without module decompression: 1 virtual memory allocation calls
92 *   b) FAIL_DUP_MOD_LOAD: after layout_and_allocate() on add_unformed_module()
93 *   	- with module decompression 3 virtual memory allocation calls
94 *   	- without module decompression 2 virtual memory allocation calls
95 *
96 * We should strive to get this list to be as small as possible. If this list
97 * is not empty it is a reflection of possible work or optimizations possible
98 * either in-kernel or in userspace.
99 */
100static LIST_HEAD(dup_failed_modules);
101
102/**
103 * DOC: module statistics debugfs counters
104 *
105 * The total amount of wasted virtual memory allocation space during module
106 * loading can be computed by adding the total from the summation:
107 *
108 *   * @invalid_kread_bytes +
109 *     @invalid_decompress_bytes +
110 *     @invalid_becoming_bytes +
111 *     @invalid_mod_bytes
112 *
113 * The following debugfs counters are available to inspect module loading
114 * failures:
115 *
116 *   * total_mod_size: total bytes ever used by all modules we've dealt with on
117 *     this system
118 *   * total_text_size: total bytes of the .text and .init.text ELF section
119 *     sizes we've dealt with on this system
120 *   * invalid_kread_bytes: bytes allocated and then freed on failures which
121 *     happen due to the initial kernel_read_file_from_fd(). kernel_read_file_from_fd()
122 *     uses vmalloc(). These should typically not happen unless your system is
123 *     under memory pressure.
124 *   * invalid_decompress_bytes: number of bytes allocated and freed due to
125 *     memory allocations in the module decompression path that use vmap().
126 *     These typically should not happen unless your system is under memory
127 *     pressure.
128 *   * invalid_becoming_bytes: total number of bytes allocated and freed used
129 *     to read the kernel module userspace wants us to read before we
130 *     promote it to be processed to be added to our @modules linked list. These
131 *     failures can happen if we had a check in between a successful kernel_read_file_from_fd()
132 *     call and right before we allocate the our private memory for the module
133 *     which would be kept if the module is successfully loaded. The most common
134 *     reason for this failure is when userspace is racing to load a module
135 *     which it does not yet see loaded. The first module to succeed in
136 *     add_unformed_module() will add a module to our &modules list and
137 *     subsequent loads of modules with the same name will error out at the
138 *     end of early_mod_check(). The check for module_patient_check_exists()
139 *     at the end of early_mod_check() prevents duplicate allocations
140 *     on layout_and_allocate() for modules already being processed. These
141 *     duplicate failed modules are non-fatal, however they typically are
142 *     indicative of userspace not seeing a module in userspace loaded yet and
143 *     unnecessarily trying to load a module before the kernel even has a chance
144 *     to begin to process prior requests. Although duplicate failures can be
145 *     non-fatal, we should try to reduce vmalloc() pressure proactively, so
146 *     ideally after boot this will be close to as 0 as possible.  If module
147 *     decompression was used we also add to this counter the cost of the
148 *     initial kernel_read_file_from_fd() of the compressed module. If module
149 *     decompression was not used the value represents the total allocated and
150 *     freed bytes in kernel_read_file_from_fd() calls for these type of
151 *     failures. These failures can occur because:
152 *
153 *    * module_sig_check() - module signature checks
154 *    * elf_validity_cache_copy() - some ELF validation issue
155 *    * early_mod_check():
156 *
157 *      * blacklisting
158 *      * failed to rewrite section headers
159 *      * version magic
160 *      * live patch requirements didn't check out
161 *      * the module was detected as being already present
162 *
163 *   * invalid_mod_bytes: these are the total number of bytes allocated and
164 *     freed due to failures after we did all the sanity checks of the module
165 *     which userspace passed to us and after our first check that the module
166 *     is unique.  A module can still fail to load if we detect the module is
167 *     loaded after we allocate space for it with layout_and_allocate(), we do
168 *     this check right before processing the module as live and run its
169 *     initialization routines. Note that you have a failure of this type it
170 *     also means the respective kernel_read_file_from_fd() memory space was
171 *     also freed and not used, and so we increment this counter with twice
172 *     the size of the module. Additionally if you used module decompression
173 *     the size of the compressed module is also added to this counter.
174 *
175 *  * modcount: how many modules we've loaded in our kernel life time
176 *  * failed_kreads: how many modules failed due to failed kernel_read_file_from_fd()
177 *  * failed_decompress: how many failed module decompression attempts we've had.
178 *    These really should not happen unless your compression / decompression
179 *    might be broken.
180 *  * failed_becoming: how many modules failed after we kernel_read_file_from_fd()
181 *    it and before we allocate memory for it with layout_and_allocate(). This
182 *    counter is never incremented if you manage to validate the module and
183 *    call layout_and_allocate() for it.
184 *  * failed_load_modules: how many modules failed once we've allocated our
185 *    private space for our module using layout_and_allocate(). These failures
186 *    should hopefully mostly be dealt with already. Races in theory could
187 *    still exist here, but it would just mean the kernel had started processing
188 *    two threads concurrently up to early_mod_check() and one thread won.
189 *    These failures are good signs the kernel or userspace is doing something
190 *    seriously stupid or that could be improved. We should strive to fix these,
191 *    but it is perhaps not easy to fix them. A recent example are the modules
192 *    requests incurred for frequency modules, a separate module request was
193 *    being issued for each CPU on a system.
194 */
195
196atomic_long_t total_mod_size;
197atomic_long_t total_text_size;
198atomic_long_t invalid_kread_bytes;
199atomic_long_t invalid_decompress_bytes;
200static atomic_long_t invalid_becoming_bytes;
201static atomic_long_t invalid_mod_bytes;
202atomic_t modcount;
203atomic_t failed_kreads;
204atomic_t failed_decompress;
205static atomic_t failed_becoming;
206static atomic_t failed_load_modules;
207
208static const char *mod_fail_to_str(struct mod_fail_load *mod_fail)
209{
210	if (test_bit(FAIL_DUP_MOD_BECOMING, &mod_fail->dup_fail_mask) &&
211	    test_bit(FAIL_DUP_MOD_LOAD, &mod_fail->dup_fail_mask))
212		return "Becoming & Load";
213	if (test_bit(FAIL_DUP_MOD_BECOMING, &mod_fail->dup_fail_mask))
214		return "Becoming";
215	if (test_bit(FAIL_DUP_MOD_LOAD, &mod_fail->dup_fail_mask))
216		return "Load";
217	return "Bug-on-stats";
218}
219
220void mod_stat_bump_invalid(struct load_info *info, int flags)
221{
222	atomic_long_add(info->len * 2, &invalid_mod_bytes);
223	atomic_inc(&failed_load_modules);
224#if defined(CONFIG_MODULE_DECOMPRESS)
225	if (flags & MODULE_INIT_COMPRESSED_FILE)
226		atomic_long_add(info->compressed_len, &invalid_mod_bytes);
227#endif
228}
229
230void mod_stat_bump_becoming(struct load_info *info, int flags)
231{
232	atomic_inc(&failed_becoming);
233	atomic_long_add(info->len, &invalid_becoming_bytes);
234#if defined(CONFIG_MODULE_DECOMPRESS)
235	if (flags & MODULE_INIT_COMPRESSED_FILE)
236		atomic_long_add(info->compressed_len, &invalid_becoming_bytes);
237#endif
238}
239
240int try_add_failed_module(const char *name, enum fail_dup_mod_reason reason)
241{
242	struct mod_fail_load *mod_fail;
243
244	list_for_each_entry_rcu(mod_fail, &dup_failed_modules, list,
245				lockdep_is_held(&module_mutex)) {
246		if (!strcmp(mod_fail->name, name)) {
247			atomic_long_inc(&mod_fail->count);
248			__set_bit(reason, &mod_fail->dup_fail_mask);
249			goto out;
250		}
251	}
252
253	mod_fail = kzalloc(sizeof(*mod_fail), GFP_KERNEL);
254	if (!mod_fail)
255		return -ENOMEM;
256	memcpy(mod_fail->name, name, strlen(name));
257	__set_bit(reason, &mod_fail->dup_fail_mask);
258	atomic_long_inc(&mod_fail->count);
259	list_add_rcu(&mod_fail->list, &dup_failed_modules);
260out:
261	return 0;
262}
263
264/*
265 * At 64 bytes per module and assuming a 1024 bytes preamble we can fit the
266 * 112 module prints within 8k.
267 *
268 * 1024 + (64*112) = 8k
269 */
270#define MAX_PREAMBLE 1024
271#define MAX_FAILED_MOD_PRINT 112
272#define MAX_BYTES_PER_MOD 64
273static ssize_t read_file_mod_stats(struct file *file, char __user *user_buf,
274				   size_t count, loff_t *ppos)
275{
276	struct mod_fail_load *mod_fail;
277	unsigned int len, size, count_failed = 0;
278	char *buf;
279	int ret;
280	u32 live_mod_count, fkreads, fdecompress, fbecoming, floads;
281	unsigned long total_size, text_size, ikread_bytes, ibecoming_bytes,
282		idecompress_bytes, imod_bytes, total_virtual_lost;
283
284	live_mod_count = atomic_read(&modcount);
285	fkreads = atomic_read(&failed_kreads);
286	fdecompress = atomic_read(&failed_decompress);
287	fbecoming = atomic_read(&failed_becoming);
288	floads = atomic_read(&failed_load_modules);
289
290	total_size = atomic_long_read(&total_mod_size);
291	text_size = atomic_long_read(&total_text_size);
292	ikread_bytes = atomic_long_read(&invalid_kread_bytes);
293	idecompress_bytes = atomic_long_read(&invalid_decompress_bytes);
294	ibecoming_bytes = atomic_long_read(&invalid_becoming_bytes);
295	imod_bytes = atomic_long_read(&invalid_mod_bytes);
296
297	total_virtual_lost = ikread_bytes + idecompress_bytes + ibecoming_bytes + imod_bytes;
298
299	size = MAX_PREAMBLE + min((unsigned int)(floads + fbecoming),
300				  (unsigned int)MAX_FAILED_MOD_PRINT) * MAX_BYTES_PER_MOD;
301	buf = kzalloc(size, GFP_KERNEL);
302	if (buf == NULL)
303		return -ENOMEM;
304
305	/* The beginning of our debug preamble */
306	len = scnprintf(buf, size, "%25s\t%u\n", "Mods ever loaded", live_mod_count);
307
308	len += scnprintf(buf + len, size - len, "%25s\t%u\n", "Mods failed on kread", fkreads);
309
310	len += scnprintf(buf + len, size - len, "%25s\t%u\n", "Mods failed on decompress",
311			 fdecompress);
312	len += scnprintf(buf + len, size - len, "%25s\t%u\n", "Mods failed on becoming", fbecoming);
313
314	len += scnprintf(buf + len, size - len, "%25s\t%u\n", "Mods failed on load", floads);
315
316	len += scnprintf(buf + len, size - len, "%25s\t%lu\n", "Total module size", total_size);
317	len += scnprintf(buf + len, size - len, "%25s\t%lu\n", "Total mod text size", text_size);
318
319	len += scnprintf(buf + len, size - len, "%25s\t%lu\n", "Failed kread bytes", ikread_bytes);
320
321	len += scnprintf(buf + len, size - len, "%25s\t%lu\n", "Failed decompress bytes",
322			 idecompress_bytes);
323
324	len += scnprintf(buf + len, size - len, "%25s\t%lu\n", "Failed becoming bytes", ibecoming_bytes);
325
326	len += scnprintf(buf + len, size - len, "%25s\t%lu\n", "Failed kmod bytes", imod_bytes);
327
328	len += scnprintf(buf + len, size - len, "%25s\t%lu\n", "Virtual mem wasted bytes", total_virtual_lost);
329
330	if (live_mod_count && total_size) {
331		len += scnprintf(buf + len, size - len, "%25s\t%lu\n", "Average mod size",
332				 DIV_ROUND_UP(total_size, live_mod_count));
333	}
334
335	if (live_mod_count && text_size) {
336		len += scnprintf(buf + len, size - len, "%25s\t%lu\n", "Average mod text size",
337				 DIV_ROUND_UP(text_size, live_mod_count));
338	}
339
340	/*
341	 * We use WARN_ON_ONCE() for the counters to ensure we always have parity
342	 * for keeping tabs on a type of failure with one type of byte counter.
343	 * The counters for imod_bytes does not increase for fkreads failures
344	 * for example, and so on.
345	 */
346
347	WARN_ON_ONCE(ikread_bytes && !fkreads);
348	if (fkreads && ikread_bytes) {
349		len += scnprintf(buf + len, size - len, "%25s\t%lu\n", "Avg fail kread bytes",
350				 DIV_ROUND_UP(ikread_bytes, fkreads));
351	}
352
353	WARN_ON_ONCE(ibecoming_bytes && !fbecoming);
354	if (fbecoming && ibecoming_bytes) {
355		len += scnprintf(buf + len, size - len, "%25s\t%lu\n", "Avg fail becoming bytes",
356				 DIV_ROUND_UP(ibecoming_bytes, fbecoming));
357	}
358
359	WARN_ON_ONCE(idecompress_bytes && !fdecompress);
360	if (fdecompress && idecompress_bytes) {
361		len += scnprintf(buf + len, size - len, "%25s\t%lu\n", "Avg fail decomp bytes",
362				 DIV_ROUND_UP(idecompress_bytes, fdecompress));
363	}
364
365	WARN_ON_ONCE(imod_bytes && !floads);
366	if (floads && imod_bytes) {
367		len += scnprintf(buf + len, size - len, "%25s\t%lu\n", "Average fail load bytes",
368				 DIV_ROUND_UP(imod_bytes, floads));
369	}
370
371	/* End of our debug preamble header. */
372
373	/* Catch when we've gone beyond our expected preamble */
374	WARN_ON_ONCE(len >= MAX_PREAMBLE);
375
376	if (list_empty(&dup_failed_modules))
377		goto out;
378
379	len += scnprintf(buf + len, size - len, "Duplicate failed modules:\n");
380	len += scnprintf(buf + len, size - len, "%25s\t%15s\t%25s\n",
381			 "Module-name", "How-many-times", "Reason");
382	mutex_lock(&module_mutex);
383
384
385	list_for_each_entry_rcu(mod_fail, &dup_failed_modules, list) {
386		if (WARN_ON_ONCE(++count_failed >= MAX_FAILED_MOD_PRINT))
387			goto out_unlock;
388		len += scnprintf(buf + len, size - len, "%25s\t%15lu\t%25s\n", mod_fail->name,
389				 atomic_long_read(&mod_fail->count), mod_fail_to_str(mod_fail));
390	}
391out_unlock:
392	mutex_unlock(&module_mutex);
393out:
394	ret = simple_read_from_buffer(user_buf, count, ppos, buf, len);
395	kfree(buf);
396	return ret;
397}
398#undef MAX_PREAMBLE
399#undef MAX_FAILED_MOD_PRINT
400#undef MAX_BYTES_PER_MOD
401
402static const struct file_operations fops_mod_stats = {
403	.read = read_file_mod_stats,
404	.open = simple_open,
405	.owner = THIS_MODULE,
406	.llseek = default_llseek,
407};
408
409#define mod_debug_add_ulong(name) debugfs_create_ulong(#name, 0400, mod_debugfs_root, (unsigned long *) &name.counter)
410#define mod_debug_add_atomic(name) debugfs_create_atomic_t(#name, 0400, mod_debugfs_root, &name)
411static int __init module_stats_init(void)
412{
413	mod_debug_add_ulong(total_mod_size);
414	mod_debug_add_ulong(total_text_size);
415	mod_debug_add_ulong(invalid_kread_bytes);
416	mod_debug_add_ulong(invalid_decompress_bytes);
417	mod_debug_add_ulong(invalid_becoming_bytes);
418	mod_debug_add_ulong(invalid_mod_bytes);
419
420	mod_debug_add_atomic(modcount);
421	mod_debug_add_atomic(failed_kreads);
422	mod_debug_add_atomic(failed_decompress);
423	mod_debug_add_atomic(failed_becoming);
424	mod_debug_add_atomic(failed_load_modules);
425
426	debugfs_create_file("stats", 0400, mod_debugfs_root, mod_debugfs_root, &fops_mod_stats);
427
428	return 0;
429}
430#undef mod_debug_add_ulong
431#undef mod_debug_add_atomic
432module_init(module_stats_init);
433