1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * kernel/lockdep.c
4 *
5 * Runtime locking correctness validator
6 *
7 * Started by Ingo Molnar:
8 *
9 *  Copyright (C) 2006,2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
10 *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
11 *
12 * this code maps all the lock dependencies as they occur in a live kernel
13 * and will warn about the following classes of locking bugs:
14 *
15 * - lock inversion scenarios
16 * - circular lock dependencies
17 * - hardirq/softirq safe/unsafe locking bugs
18 *
19 * Bugs are reported even if the current locking scenario does not cause
20 * any deadlock at this point.
21 *
22 * I.e. if anytime in the past two locks were taken in a different order,
23 * even if it happened for another task, even if those were different
24 * locks (but of the same class as this lock), this code will detect it.
25 *
26 * Thanks to Arjan van de Ven for coming up with the initial idea of
27 * mapping lock dependencies runtime.
28 */
29#define DISABLE_BRANCH_PROFILING
30#include <linux/mutex.h>
31#include <linux/sched.h>
32#include <linux/sched/clock.h>
33#include <linux/sched/task.h>
34#include <linux/sched/mm.h>
35#include <linux/delay.h>
36#include <linux/module.h>
37#include <linux/proc_fs.h>
38#include <linux/seq_file.h>
39#include <linux/spinlock.h>
40#include <linux/kallsyms.h>
41#include <linux/interrupt.h>
42#include <linux/stacktrace.h>
43#include <linux/debug_locks.h>
44#include <linux/irqflags.h>
45#include <linux/utsname.h>
46#include <linux/hash.h>
47#include <linux/ftrace.h>
48#include <linux/stringify.h>
49#include <linux/bitmap.h>
50#include <linux/bitops.h>
51#include <linux/gfp.h>
52#include <linux/random.h>
53#include <linux/jhash.h>
54#include <linux/nmi.h>
55#include <linux/rcupdate.h>
56#include <linux/kprobes.h>
57#include <linux/lockdep.h>
58#include <linux/context_tracking.h>
59
60#include <asm/sections.h>
61
62#include "lockdep_internals.h"
63
64#include <trace/events/lock.h>
65
66#ifdef CONFIG_PROVE_LOCKING
67static int prove_locking = 1;
68module_param(prove_locking, int, 0644);
69#else
70#define prove_locking 0
71#endif
72
73#ifdef CONFIG_LOCK_STAT
74static int lock_stat = 1;
75module_param(lock_stat, int, 0644);
76#else
77#define lock_stat 0
78#endif
79
80#ifdef CONFIG_SYSCTL
81static struct ctl_table kern_lockdep_table[] = {
82#ifdef CONFIG_PROVE_LOCKING
83	{
84		.procname       = "prove_locking",
85		.data           = &prove_locking,
86		.maxlen         = sizeof(int),
87		.mode           = 0644,
88		.proc_handler   = proc_dointvec,
89	},
90#endif /* CONFIG_PROVE_LOCKING */
91#ifdef CONFIG_LOCK_STAT
92	{
93		.procname       = "lock_stat",
94		.data           = &lock_stat,
95		.maxlen         = sizeof(int),
96		.mode           = 0644,
97		.proc_handler   = proc_dointvec,
98	},
99#endif /* CONFIG_LOCK_STAT */
100	{ }
101};
102
103static __init int kernel_lockdep_sysctls_init(void)
104{
105	register_sysctl_init("kernel", kern_lockdep_table);
106	return 0;
107}
108late_initcall(kernel_lockdep_sysctls_init);
109#endif /* CONFIG_SYSCTL */
110
111DEFINE_PER_CPU(unsigned int, lockdep_recursion);
112EXPORT_PER_CPU_SYMBOL_GPL(lockdep_recursion);
113
114static __always_inline bool lockdep_enabled(void)
115{
116	if (!debug_locks)
117		return false;
118
119	if (this_cpu_read(lockdep_recursion))
120		return false;
121
122	if (current->lockdep_recursion)
123		return false;
124
125	return true;
126}
127
128/*
129 * lockdep_lock: protects the lockdep graph, the hashes and the
130 *               class/list/hash allocators.
131 *
132 * This is one of the rare exceptions where it's justified
133 * to use a raw spinlock - we really dont want the spinlock
134 * code to recurse back into the lockdep code...
135 */
136static arch_spinlock_t __lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
137static struct task_struct *__owner;
138
139static inline void lockdep_lock(void)
140{
141	DEBUG_LOCKS_WARN_ON(!irqs_disabled());
142
143	__this_cpu_inc(lockdep_recursion);
144	arch_spin_lock(&__lock);
145	__owner = current;
146}
147
148static inline void lockdep_unlock(void)
149{
150	DEBUG_LOCKS_WARN_ON(!irqs_disabled());
151
152	if (debug_locks && DEBUG_LOCKS_WARN_ON(__owner != current))
153		return;
154
155	__owner = NULL;
156	arch_spin_unlock(&__lock);
157	__this_cpu_dec(lockdep_recursion);
158}
159
160static inline bool lockdep_assert_locked(void)
161{
162	return DEBUG_LOCKS_WARN_ON(__owner != current);
163}
164
165static struct task_struct *lockdep_selftest_task_struct;
166
167
168static int graph_lock(void)
169{
170	lockdep_lock();
171	/*
172	 * Make sure that if another CPU detected a bug while
173	 * walking the graph we dont change it (while the other
174	 * CPU is busy printing out stuff with the graph lock
175	 * dropped already)
176	 */
177	if (!debug_locks) {
178		lockdep_unlock();
179		return 0;
180	}
181	return 1;
182}
183
184static inline void graph_unlock(void)
185{
186	lockdep_unlock();
187}
188
189/*
190 * Turn lock debugging off and return with 0 if it was off already,
191 * and also release the graph lock:
192 */
193static inline int debug_locks_off_graph_unlock(void)
194{
195	int ret = debug_locks_off();
196
197	lockdep_unlock();
198
199	return ret;
200}
201
202unsigned long nr_list_entries;
203static struct lock_list list_entries[MAX_LOCKDEP_ENTRIES];
204static DECLARE_BITMAP(list_entries_in_use, MAX_LOCKDEP_ENTRIES);
205
206/*
207 * All data structures here are protected by the global debug_lock.
208 *
209 * nr_lock_classes is the number of elements of lock_classes[] that is
210 * in use.
211 */
212#define KEYHASH_BITS		(MAX_LOCKDEP_KEYS_BITS - 1)
213#define KEYHASH_SIZE		(1UL << KEYHASH_BITS)
214static struct hlist_head lock_keys_hash[KEYHASH_SIZE];
215unsigned long nr_lock_classes;
216unsigned long nr_zapped_classes;
217unsigned long max_lock_class_idx;
218struct lock_class lock_classes[MAX_LOCKDEP_KEYS];
219DECLARE_BITMAP(lock_classes_in_use, MAX_LOCKDEP_KEYS);
220
221static inline struct lock_class *hlock_class(struct held_lock *hlock)
222{
223	unsigned int class_idx = hlock->class_idx;
224
225	/* Don't re-read hlock->class_idx, can't use READ_ONCE() on bitfield */
226	barrier();
227
228	if (!test_bit(class_idx, lock_classes_in_use)) {
229		/*
230		 * Someone passed in garbage, we give up.
231		 */
232		DEBUG_LOCKS_WARN_ON(1);
233		return NULL;
234	}
235
236	/*
237	 * At this point, if the passed hlock->class_idx is still garbage,
238	 * we just have to live with it
239	 */
240	return lock_classes + class_idx;
241}
242
243#ifdef CONFIG_LOCK_STAT
244static DEFINE_PER_CPU(struct lock_class_stats[MAX_LOCKDEP_KEYS], cpu_lock_stats);
245
246static inline u64 lockstat_clock(void)
247{
248	return local_clock();
249}
250
251static int lock_point(unsigned long points[], unsigned long ip)
252{
253	int i;
254
255	for (i = 0; i < LOCKSTAT_POINTS; i++) {
256		if (points[i] == 0) {
257			points[i] = ip;
258			break;
259		}
260		if (points[i] == ip)
261			break;
262	}
263
264	return i;
265}
266
267static void lock_time_inc(struct lock_time *lt, u64 time)
268{
269	if (time > lt->max)
270		lt->max = time;
271
272	if (time < lt->min || !lt->nr)
273		lt->min = time;
274
275	lt->total += time;
276	lt->nr++;
277}
278
279static inline void lock_time_add(struct lock_time *src, struct lock_time *dst)
280{
281	if (!src->nr)
282		return;
283
284	if (src->max > dst->max)
285		dst->max = src->max;
286
287	if (src->min < dst->min || !dst->nr)
288		dst->min = src->min;
289
290	dst->total += src->total;
291	dst->nr += src->nr;
292}
293
294struct lock_class_stats lock_stats(struct lock_class *class)
295{
296	struct lock_class_stats stats;
297	int cpu, i;
298
299	memset(&stats, 0, sizeof(struct lock_class_stats));
300	for_each_possible_cpu(cpu) {
301		struct lock_class_stats *pcs =
302			&per_cpu(cpu_lock_stats, cpu)[class - lock_classes];
303
304		for (i = 0; i < ARRAY_SIZE(stats.contention_point); i++)
305			stats.contention_point[i] += pcs->contention_point[i];
306
307		for (i = 0; i < ARRAY_SIZE(stats.contending_point); i++)
308			stats.contending_point[i] += pcs->contending_point[i];
309
310		lock_time_add(&pcs->read_waittime, &stats.read_waittime);
311		lock_time_add(&pcs->write_waittime, &stats.write_waittime);
312
313		lock_time_add(&pcs->read_holdtime, &stats.read_holdtime);
314		lock_time_add(&pcs->write_holdtime, &stats.write_holdtime);
315
316		for (i = 0; i < ARRAY_SIZE(stats.bounces); i++)
317			stats.bounces[i] += pcs->bounces[i];
318	}
319
320	return stats;
321}
322
323void clear_lock_stats(struct lock_class *class)
324{
325	int cpu;
326
327	for_each_possible_cpu(cpu) {
328		struct lock_class_stats *cpu_stats =
329			&per_cpu(cpu_lock_stats, cpu)[class - lock_classes];
330
331		memset(cpu_stats, 0, sizeof(struct lock_class_stats));
332	}
333	memset(class->contention_point, 0, sizeof(class->contention_point));
334	memset(class->contending_point, 0, sizeof(class->contending_point));
335}
336
337static struct lock_class_stats *get_lock_stats(struct lock_class *class)
338{
339	return &this_cpu_ptr(cpu_lock_stats)[class - lock_classes];
340}
341
342static void lock_release_holdtime(struct held_lock *hlock)
343{
344	struct lock_class_stats *stats;
345	u64 holdtime;
346
347	if (!lock_stat)
348		return;
349
350	holdtime = lockstat_clock() - hlock->holdtime_stamp;
351
352	stats = get_lock_stats(hlock_class(hlock));
353	if (hlock->read)
354		lock_time_inc(&stats->read_holdtime, holdtime);
355	else
356		lock_time_inc(&stats->write_holdtime, holdtime);
357}
358#else
359static inline void lock_release_holdtime(struct held_lock *hlock)
360{
361}
362#endif
363
364/*
365 * We keep a global list of all lock classes. The list is only accessed with
366 * the lockdep spinlock lock held. free_lock_classes is a list with free
367 * elements. These elements are linked together by the lock_entry member in
368 * struct lock_class.
369 */
370static LIST_HEAD(all_lock_classes);
371static LIST_HEAD(free_lock_classes);
372
373/**
374 * struct pending_free - information about data structures about to be freed
375 * @zapped: Head of a list with struct lock_class elements.
376 * @lock_chains_being_freed: Bitmap that indicates which lock_chains[] elements
377 *	are about to be freed.
378 */
379struct pending_free {
380	struct list_head zapped;
381	DECLARE_BITMAP(lock_chains_being_freed, MAX_LOCKDEP_CHAINS);
382};
383
384/**
385 * struct delayed_free - data structures used for delayed freeing
386 *
387 * A data structure for delayed freeing of data structures that may be
388 * accessed by RCU readers at the time these were freed.
389 *
390 * @rcu_head:  Used to schedule an RCU callback for freeing data structures.
391 * @index:     Index of @pf to which freed data structures are added.
392 * @scheduled: Whether or not an RCU callback has been scheduled.
393 * @pf:        Array with information about data structures about to be freed.
394 */
395static struct delayed_free {
396	struct rcu_head		rcu_head;
397	int			index;
398	int			scheduled;
399	struct pending_free	pf[2];
400} delayed_free;
401
402/*
403 * The lockdep classes are in a hash-table as well, for fast lookup:
404 */
405#define CLASSHASH_BITS		(MAX_LOCKDEP_KEYS_BITS - 1)
406#define CLASSHASH_SIZE		(1UL << CLASSHASH_BITS)
407#define __classhashfn(key)	hash_long((unsigned long)key, CLASSHASH_BITS)
408#define classhashentry(key)	(classhash_table + __classhashfn((key)))
409
410static struct hlist_head classhash_table[CLASSHASH_SIZE];
411
412/*
413 * We put the lock dependency chains into a hash-table as well, to cache
414 * their existence:
415 */
416#define CHAINHASH_BITS		(MAX_LOCKDEP_CHAINS_BITS-1)
417#define CHAINHASH_SIZE		(1UL << CHAINHASH_BITS)
418#define __chainhashfn(chain)	hash_long(chain, CHAINHASH_BITS)
419#define chainhashentry(chain)	(chainhash_table + __chainhashfn((chain)))
420
421static struct hlist_head chainhash_table[CHAINHASH_SIZE];
422
423/*
424 * the id of held_lock
425 */
426static inline u16 hlock_id(struct held_lock *hlock)
427{
428	BUILD_BUG_ON(MAX_LOCKDEP_KEYS_BITS + 2 > 16);
429
430	return (hlock->class_idx | (hlock->read << MAX_LOCKDEP_KEYS_BITS));
431}
432
433static inline unsigned int chain_hlock_class_idx(u16 hlock_id)
434{
435	return hlock_id & (MAX_LOCKDEP_KEYS - 1);
436}
437
438/*
439 * The hash key of the lock dependency chains is a hash itself too:
440 * it's a hash of all locks taken up to that lock, including that lock.
441 * It's a 64-bit hash, because it's important for the keys to be
442 * unique.
443 */
444static inline u64 iterate_chain_key(u64 key, u32 idx)
445{
446	u32 k0 = key, k1 = key >> 32;
447
448	__jhash_mix(idx, k0, k1); /* Macro that modifies arguments! */
449
450	return k0 | (u64)k1 << 32;
451}
452
453void lockdep_init_task(struct task_struct *task)
454{
455	task->lockdep_depth = 0; /* no locks held yet */
456	task->curr_chain_key = INITIAL_CHAIN_KEY;
457	task->lockdep_recursion = 0;
458}
459
460static __always_inline void lockdep_recursion_inc(void)
461{
462	__this_cpu_inc(lockdep_recursion);
463}
464
465static __always_inline void lockdep_recursion_finish(void)
466{
467	if (WARN_ON_ONCE(__this_cpu_dec_return(lockdep_recursion)))
468		__this_cpu_write(lockdep_recursion, 0);
469}
470
471void lockdep_set_selftest_task(struct task_struct *task)
472{
473	lockdep_selftest_task_struct = task;
474}
475
476/*
477 * Debugging switches:
478 */
479
480#define VERBOSE			0
481#define VERY_VERBOSE		0
482
483#if VERBOSE
484# define HARDIRQ_VERBOSE	1
485# define SOFTIRQ_VERBOSE	1
486#else
487# define HARDIRQ_VERBOSE	0
488# define SOFTIRQ_VERBOSE	0
489#endif
490
491#if VERBOSE || HARDIRQ_VERBOSE || SOFTIRQ_VERBOSE
492/*
493 * Quick filtering for interesting events:
494 */
495static int class_filter(struct lock_class *class)
496{
497#if 0
498	/* Example */
499	if (class->name_version == 1 &&
500			!strcmp(class->name, "lockname"))
501		return 1;
502	if (class->name_version == 1 &&
503			!strcmp(class->name, "&struct->lockfield"))
504		return 1;
505#endif
506	/* Filter everything else. 1 would be to allow everything else */
507	return 0;
508}
509#endif
510
511static int verbose(struct lock_class *class)
512{
513#if VERBOSE
514	return class_filter(class);
515#endif
516	return 0;
517}
518
519static void print_lockdep_off(const char *bug_msg)
520{
521	printk(KERN_DEBUG "%s\n", bug_msg);
522	printk(KERN_DEBUG "turning off the locking correctness validator.\n");
523#ifdef CONFIG_LOCK_STAT
524	printk(KERN_DEBUG "Please attach the output of /proc/lock_stat to the bug report\n");
525#endif
526}
527
528unsigned long nr_stack_trace_entries;
529
530#ifdef CONFIG_PROVE_LOCKING
531/**
532 * struct lock_trace - single stack backtrace
533 * @hash_entry:	Entry in a stack_trace_hash[] list.
534 * @hash:	jhash() of @entries.
535 * @nr_entries:	Number of entries in @entries.
536 * @entries:	Actual stack backtrace.
537 */
538struct lock_trace {
539	struct hlist_node	hash_entry;
540	u32			hash;
541	u32			nr_entries;
542	unsigned long		entries[] __aligned(sizeof(unsigned long));
543};
544#define LOCK_TRACE_SIZE_IN_LONGS				\
545	(sizeof(struct lock_trace) / sizeof(unsigned long))
546/*
547 * Stack-trace: sequence of lock_trace structures. Protected by the graph_lock.
548 */
549static unsigned long stack_trace[MAX_STACK_TRACE_ENTRIES];
550static struct hlist_head stack_trace_hash[STACK_TRACE_HASH_SIZE];
551
552static bool traces_identical(struct lock_trace *t1, struct lock_trace *t2)
553{
554	return t1->hash == t2->hash && t1->nr_entries == t2->nr_entries &&
555		memcmp(t1->entries, t2->entries,
556		       t1->nr_entries * sizeof(t1->entries[0])) == 0;
557}
558
559static struct lock_trace *save_trace(void)
560{
561	struct lock_trace *trace, *t2;
562	struct hlist_head *hash_head;
563	u32 hash;
564	int max_entries;
565
566	BUILD_BUG_ON_NOT_POWER_OF_2(STACK_TRACE_HASH_SIZE);
567	BUILD_BUG_ON(LOCK_TRACE_SIZE_IN_LONGS >= MAX_STACK_TRACE_ENTRIES);
568
569	trace = (struct lock_trace *)(stack_trace + nr_stack_trace_entries);
570	max_entries = MAX_STACK_TRACE_ENTRIES - nr_stack_trace_entries -
571		LOCK_TRACE_SIZE_IN_LONGS;
572
573	if (max_entries <= 0) {
574		if (!debug_locks_off_graph_unlock())
575			return NULL;
576
577		print_lockdep_off("BUG: MAX_STACK_TRACE_ENTRIES too low!");
578		dump_stack();
579
580		return NULL;
581	}
582	trace->nr_entries = stack_trace_save(trace->entries, max_entries, 3);
583
584	hash = jhash(trace->entries, trace->nr_entries *
585		     sizeof(trace->entries[0]), 0);
586	trace->hash = hash;
587	hash_head = stack_trace_hash + (hash & (STACK_TRACE_HASH_SIZE - 1));
588	hlist_for_each_entry(t2, hash_head, hash_entry) {
589		if (traces_identical(trace, t2))
590			return t2;
591	}
592	nr_stack_trace_entries += LOCK_TRACE_SIZE_IN_LONGS + trace->nr_entries;
593	hlist_add_head(&trace->hash_entry, hash_head);
594
595	return trace;
596}
597
598/* Return the number of stack traces in the stack_trace[] array. */
599u64 lockdep_stack_trace_count(void)
600{
601	struct lock_trace *trace;
602	u64 c = 0;
603	int i;
604
605	for (i = 0; i < ARRAY_SIZE(stack_trace_hash); i++) {
606		hlist_for_each_entry(trace, &stack_trace_hash[i], hash_entry) {
607			c++;
608		}
609	}
610
611	return c;
612}
613
614/* Return the number of stack hash chains that have at least one stack trace. */
615u64 lockdep_stack_hash_count(void)
616{
617	u64 c = 0;
618	int i;
619
620	for (i = 0; i < ARRAY_SIZE(stack_trace_hash); i++)
621		if (!hlist_empty(&stack_trace_hash[i]))
622			c++;
623
624	return c;
625}
626#endif
627
628unsigned int nr_hardirq_chains;
629unsigned int nr_softirq_chains;
630unsigned int nr_process_chains;
631unsigned int max_lockdep_depth;
632
633#ifdef CONFIG_DEBUG_LOCKDEP
634/*
635 * Various lockdep statistics:
636 */
637DEFINE_PER_CPU(struct lockdep_stats, lockdep_stats);
638#endif
639
640#ifdef CONFIG_PROVE_LOCKING
641/*
642 * Locking printouts:
643 */
644
645#define __USAGE(__STATE)						\
646	[LOCK_USED_IN_##__STATE] = "IN-"__stringify(__STATE)"-W",	\
647	[LOCK_ENABLED_##__STATE] = __stringify(__STATE)"-ON-W",		\
648	[LOCK_USED_IN_##__STATE##_READ] = "IN-"__stringify(__STATE)"-R",\
649	[LOCK_ENABLED_##__STATE##_READ] = __stringify(__STATE)"-ON-R",
650
651static const char *usage_str[] =
652{
653#define LOCKDEP_STATE(__STATE) __USAGE(__STATE)
654#include "lockdep_states.h"
655#undef LOCKDEP_STATE
656	[LOCK_USED] = "INITIAL USE",
657	[LOCK_USED_READ] = "INITIAL READ USE",
658	/* abused as string storage for verify_lock_unused() */
659	[LOCK_USAGE_STATES] = "IN-NMI",
660};
661#endif
662
663const char *__get_key_name(const struct lockdep_subclass_key *key, char *str)
664{
665	return kallsyms_lookup((unsigned long)key, NULL, NULL, NULL, str);
666}
667
668static inline unsigned long lock_flag(enum lock_usage_bit bit)
669{
670	return 1UL << bit;
671}
672
673static char get_usage_char(struct lock_class *class, enum lock_usage_bit bit)
674{
675	/*
676	 * The usage character defaults to '.' (i.e., irqs disabled and not in
677	 * irq context), which is the safest usage category.
678	 */
679	char c = '.';
680
681	/*
682	 * The order of the following usage checks matters, which will
683	 * result in the outcome character as follows:
684	 *
685	 * - '+': irq is enabled and not in irq context
686	 * - '-': in irq context and irq is disabled
687	 * - '?': in irq context and irq is enabled
688	 */
689	if (class->usage_mask & lock_flag(bit + LOCK_USAGE_DIR_MASK)) {
690		c = '+';
691		if (class->usage_mask & lock_flag(bit))
692			c = '?';
693	} else if (class->usage_mask & lock_flag(bit))
694		c = '-';
695
696	return c;
697}
698
699void get_usage_chars(struct lock_class *class, char usage[LOCK_USAGE_CHARS])
700{
701	int i = 0;
702
703#define LOCKDEP_STATE(__STATE) 						\
704	usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE);	\
705	usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE##_READ);
706#include "lockdep_states.h"
707#undef LOCKDEP_STATE
708
709	usage[i] = '\0';
710}
711
712static void __print_lock_name(struct held_lock *hlock, struct lock_class *class)
713{
714	char str[KSYM_NAME_LEN];
715	const char *name;
716
717	name = class->name;
718	if (!name) {
719		name = __get_key_name(class->key, str);
720		printk(KERN_CONT "%s", name);
721	} else {
722		printk(KERN_CONT "%s", name);
723		if (class->name_version > 1)
724			printk(KERN_CONT "#%d", class->name_version);
725		if (class->subclass)
726			printk(KERN_CONT "/%d", class->subclass);
727		if (hlock && class->print_fn)
728			class->print_fn(hlock->instance);
729	}
730}
731
732static void print_lock_name(struct held_lock *hlock, struct lock_class *class)
733{
734	char usage[LOCK_USAGE_CHARS];
735
736	get_usage_chars(class, usage);
737
738	printk(KERN_CONT " (");
739	__print_lock_name(hlock, class);
740	printk(KERN_CONT "){%s}-{%d:%d}", usage,
741			class->wait_type_outer ?: class->wait_type_inner,
742			class->wait_type_inner);
743}
744
745static void print_lockdep_cache(struct lockdep_map *lock)
746{
747	const char *name;
748	char str[KSYM_NAME_LEN];
749
750	name = lock->name;
751	if (!name)
752		name = __get_key_name(lock->key->subkeys, str);
753
754	printk(KERN_CONT "%s", name);
755}
756
757static void print_lock(struct held_lock *hlock)
758{
759	/*
760	 * We can be called locklessly through debug_show_all_locks() so be
761	 * extra careful, the hlock might have been released and cleared.
762	 *
763	 * If this indeed happens, lets pretend it does not hurt to continue
764	 * to print the lock unless the hlock class_idx does not point to a
765	 * registered class. The rationale here is: since we don't attempt
766	 * to distinguish whether we are in this situation, if it just
767	 * happened we can't count on class_idx to tell either.
768	 */
769	struct lock_class *lock = hlock_class(hlock);
770
771	if (!lock) {
772		printk(KERN_CONT "<RELEASED>\n");
773		return;
774	}
775
776	printk(KERN_CONT "%px", hlock->instance);
777	print_lock_name(hlock, lock);
778	printk(KERN_CONT ", at: %pS\n", (void *)hlock->acquire_ip);
779}
780
781static void lockdep_print_held_locks(struct task_struct *p)
782{
783	int i, depth = READ_ONCE(p->lockdep_depth);
784
785	if (!depth)
786		printk("no locks held by %s/%d.\n", p->comm, task_pid_nr(p));
787	else
788		printk("%d lock%s held by %s/%d:\n", depth,
789		       depth > 1 ? "s" : "", p->comm, task_pid_nr(p));
790	/*
791	 * It's not reliable to print a task's held locks if it's not sleeping
792	 * and it's not the current task.
793	 */
794	if (p != current && task_is_running(p))
795		return;
796	for (i = 0; i < depth; i++) {
797		printk(" #%d: ", i);
798		print_lock(p->held_locks + i);
799	}
800}
801
802static void print_kernel_ident(void)
803{
804	printk("%s %.*s %s\n", init_utsname()->release,
805		(int)strcspn(init_utsname()->version, " "),
806		init_utsname()->version,
807		print_tainted());
808}
809
810static int very_verbose(struct lock_class *class)
811{
812#if VERY_VERBOSE
813	return class_filter(class);
814#endif
815	return 0;
816}
817
818/*
819 * Is this the address of a static object:
820 */
821#ifdef __KERNEL__
822static int static_obj(const void *obj)
823{
824	unsigned long addr = (unsigned long) obj;
825
826	if (is_kernel_core_data(addr))
827		return 1;
828
829	/*
830	 * keys are allowed in the __ro_after_init section.
831	 */
832	if (is_kernel_rodata(addr))
833		return 1;
834
835	/*
836	 * in initdata section and used during bootup only?
837	 * NOTE: On some platforms the initdata section is
838	 * outside of the _stext ... _end range.
839	 */
840	if (system_state < SYSTEM_FREEING_INITMEM &&
841		init_section_contains((void *)addr, 1))
842		return 1;
843
844	/*
845	 * in-kernel percpu var?
846	 */
847	if (is_kernel_percpu_address(addr))
848		return 1;
849
850	/*
851	 * module static or percpu var?
852	 */
853	return is_module_address(addr) || is_module_percpu_address(addr);
854}
855#endif
856
857/*
858 * To make lock name printouts unique, we calculate a unique
859 * class->name_version generation counter. The caller must hold the graph
860 * lock.
861 */
862static int count_matching_names(struct lock_class *new_class)
863{
864	struct lock_class *class;
865	int count = 0;
866
867	if (!new_class->name)
868		return 0;
869
870	list_for_each_entry(class, &all_lock_classes, lock_entry) {
871		if (new_class->key - new_class->subclass == class->key)
872			return class->name_version;
873		if (class->name && !strcmp(class->name, new_class->name))
874			count = max(count, class->name_version);
875	}
876
877	return count + 1;
878}
879
880/* used from NMI context -- must be lockless */
881static noinstr struct lock_class *
882look_up_lock_class(const struct lockdep_map *lock, unsigned int subclass)
883{
884	struct lockdep_subclass_key *key;
885	struct hlist_head *hash_head;
886	struct lock_class *class;
887
888	if (unlikely(subclass >= MAX_LOCKDEP_SUBCLASSES)) {
889		instrumentation_begin();
890		debug_locks_off();
891		printk(KERN_ERR
892			"BUG: looking up invalid subclass: %u\n", subclass);
893		printk(KERN_ERR
894			"turning off the locking correctness validator.\n");
895		dump_stack();
896		instrumentation_end();
897		return NULL;
898	}
899
900	/*
901	 * If it is not initialised then it has never been locked,
902	 * so it won't be present in the hash table.
903	 */
904	if (unlikely(!lock->key))
905		return NULL;
906
907	/*
908	 * NOTE: the class-key must be unique. For dynamic locks, a static
909	 * lock_class_key variable is passed in through the mutex_init()
910	 * (or spin_lock_init()) call - which acts as the key. For static
911	 * locks we use the lock object itself as the key.
912	 */
913	BUILD_BUG_ON(sizeof(struct lock_class_key) >
914			sizeof(struct lockdep_map));
915
916	key = lock->key->subkeys + subclass;
917
918	hash_head = classhashentry(key);
919
920	/*
921	 * We do an RCU walk of the hash, see lockdep_free_key_range().
922	 */
923	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
924		return NULL;
925
926	hlist_for_each_entry_rcu_notrace(class, hash_head, hash_entry) {
927		if (class->key == key) {
928			/*
929			 * Huh! same key, different name? Did someone trample
930			 * on some memory? We're most confused.
931			 */
932			WARN_ONCE(class->name != lock->name &&
933				  lock->key != &__lockdep_no_validate__,
934				  "Looking for class \"%s\" with key %ps, but found a different class \"%s\" with the same key\n",
935				  lock->name, lock->key, class->name);
936			return class;
937		}
938	}
939
940	return NULL;
941}
942
943/*
944 * Static locks do not have their class-keys yet - for them the key is
945 * the lock object itself. If the lock is in the per cpu area, the
946 * canonical address of the lock (per cpu offset removed) is used.
947 */
948static bool assign_lock_key(struct lockdep_map *lock)
949{
950	unsigned long can_addr, addr = (unsigned long)lock;
951
952#ifdef __KERNEL__
953	/*
954	 * lockdep_free_key_range() assumes that struct lock_class_key
955	 * objects do not overlap. Since we use the address of lock
956	 * objects as class key for static objects, check whether the
957	 * size of lock_class_key objects does not exceed the size of
958	 * the smallest lock object.
959	 */
960	BUILD_BUG_ON(sizeof(struct lock_class_key) > sizeof(raw_spinlock_t));
961#endif
962
963	if (__is_kernel_percpu_address(addr, &can_addr))
964		lock->key = (void *)can_addr;
965	else if (__is_module_percpu_address(addr, &can_addr))
966		lock->key = (void *)can_addr;
967	else if (static_obj(lock))
968		lock->key = (void *)lock;
969	else {
970		/* Debug-check: all keys must be persistent! */
971		debug_locks_off();
972		pr_err("INFO: trying to register non-static key.\n");
973		pr_err("The code is fine but needs lockdep annotation, or maybe\n");
974		pr_err("you didn't initialize this object before use?\n");
975		pr_err("turning off the locking correctness validator.\n");
976		dump_stack();
977		return false;
978	}
979
980	return true;
981}
982
983#ifdef CONFIG_DEBUG_LOCKDEP
984
985/* Check whether element @e occurs in list @h */
986static bool in_list(struct list_head *e, struct list_head *h)
987{
988	struct list_head *f;
989
990	list_for_each(f, h) {
991		if (e == f)
992			return true;
993	}
994
995	return false;
996}
997
998/*
999 * Check whether entry @e occurs in any of the locks_after or locks_before
1000 * lists.
1001 */
1002static bool in_any_class_list(struct list_head *e)
1003{
1004	struct lock_class *class;
1005	int i;
1006
1007	for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1008		class = &lock_classes[i];
1009		if (in_list(e, &class->locks_after) ||
1010		    in_list(e, &class->locks_before))
1011			return true;
1012	}
1013	return false;
1014}
1015
1016static bool class_lock_list_valid(struct lock_class *c, struct list_head *h)
1017{
1018	struct lock_list *e;
1019
1020	list_for_each_entry(e, h, entry) {
1021		if (e->links_to != c) {
1022			printk(KERN_INFO "class %s: mismatch for lock entry %ld; class %s <> %s",
1023			       c->name ? : "(?)",
1024			       (unsigned long)(e - list_entries),
1025			       e->links_to && e->links_to->name ?
1026			       e->links_to->name : "(?)",
1027			       e->class && e->class->name ? e->class->name :
1028			       "(?)");
1029			return false;
1030		}
1031	}
1032	return true;
1033}
1034
1035#ifdef CONFIG_PROVE_LOCKING
1036static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS];
1037#endif
1038
1039static bool check_lock_chain_key(struct lock_chain *chain)
1040{
1041#ifdef CONFIG_PROVE_LOCKING
1042	u64 chain_key = INITIAL_CHAIN_KEY;
1043	int i;
1044
1045	for (i = chain->base; i < chain->base + chain->depth; i++)
1046		chain_key = iterate_chain_key(chain_key, chain_hlocks[i]);
1047	/*
1048	 * The 'unsigned long long' casts avoid that a compiler warning
1049	 * is reported when building tools/lib/lockdep.
1050	 */
1051	if (chain->chain_key != chain_key) {
1052		printk(KERN_INFO "chain %lld: key %#llx <> %#llx\n",
1053		       (unsigned long long)(chain - lock_chains),
1054		       (unsigned long long)chain->chain_key,
1055		       (unsigned long long)chain_key);
1056		return false;
1057	}
1058#endif
1059	return true;
1060}
1061
1062static bool in_any_zapped_class_list(struct lock_class *class)
1063{
1064	struct pending_free *pf;
1065	int i;
1066
1067	for (i = 0, pf = delayed_free.pf; i < ARRAY_SIZE(delayed_free.pf); i++, pf++) {
1068		if (in_list(&class->lock_entry, &pf->zapped))
1069			return true;
1070	}
1071
1072	return false;
1073}
1074
1075static bool __check_data_structures(void)
1076{
1077	struct lock_class *class;
1078	struct lock_chain *chain;
1079	struct hlist_head *head;
1080	struct lock_list *e;
1081	int i;
1082
1083	/* Check whether all classes occur in a lock list. */
1084	for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1085		class = &lock_classes[i];
1086		if (!in_list(&class->lock_entry, &all_lock_classes) &&
1087		    !in_list(&class->lock_entry, &free_lock_classes) &&
1088		    !in_any_zapped_class_list(class)) {
1089			printk(KERN_INFO "class %px/%s is not in any class list\n",
1090			       class, class->name ? : "(?)");
1091			return false;
1092		}
1093	}
1094
1095	/* Check whether all classes have valid lock lists. */
1096	for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1097		class = &lock_classes[i];
1098		if (!class_lock_list_valid(class, &class->locks_before))
1099			return false;
1100		if (!class_lock_list_valid(class, &class->locks_after))
1101			return false;
1102	}
1103
1104	/* Check the chain_key of all lock chains. */
1105	for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) {
1106		head = chainhash_table + i;
1107		hlist_for_each_entry_rcu(chain, head, entry) {
1108			if (!check_lock_chain_key(chain))
1109				return false;
1110		}
1111	}
1112
1113	/*
1114	 * Check whether all list entries that are in use occur in a class
1115	 * lock list.
1116	 */
1117	for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
1118		e = list_entries + i;
1119		if (!in_any_class_list(&e->entry)) {
1120			printk(KERN_INFO "list entry %d is not in any class list; class %s <> %s\n",
1121			       (unsigned int)(e - list_entries),
1122			       e->class->name ? : "(?)",
1123			       e->links_to->name ? : "(?)");
1124			return false;
1125		}
1126	}
1127
1128	/*
1129	 * Check whether all list entries that are not in use do not occur in
1130	 * a class lock list.
1131	 */
1132	for_each_clear_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
1133		e = list_entries + i;
1134		if (in_any_class_list(&e->entry)) {
1135			printk(KERN_INFO "list entry %d occurs in a class list; class %s <> %s\n",
1136			       (unsigned int)(e - list_entries),
1137			       e->class && e->class->name ? e->class->name :
1138			       "(?)",
1139			       e->links_to && e->links_to->name ?
1140			       e->links_to->name : "(?)");
1141			return false;
1142		}
1143	}
1144
1145	return true;
1146}
1147
1148int check_consistency = 0;
1149module_param(check_consistency, int, 0644);
1150
1151static void check_data_structures(void)
1152{
1153	static bool once = false;
1154
1155	if (check_consistency && !once) {
1156		if (!__check_data_structures()) {
1157			once = true;
1158			WARN_ON(once);
1159		}
1160	}
1161}
1162
1163#else /* CONFIG_DEBUG_LOCKDEP */
1164
1165static inline void check_data_structures(void) { }
1166
1167#endif /* CONFIG_DEBUG_LOCKDEP */
1168
1169static void init_chain_block_buckets(void);
1170
1171/*
1172 * Initialize the lock_classes[] array elements, the free_lock_classes list
1173 * and also the delayed_free structure.
1174 */
1175static void init_data_structures_once(void)
1176{
1177	static bool __read_mostly ds_initialized, rcu_head_initialized;
1178	int i;
1179
1180	if (likely(rcu_head_initialized))
1181		return;
1182
1183	if (system_state >= SYSTEM_SCHEDULING) {
1184		init_rcu_head(&delayed_free.rcu_head);
1185		rcu_head_initialized = true;
1186	}
1187
1188	if (ds_initialized)
1189		return;
1190
1191	ds_initialized = true;
1192
1193	INIT_LIST_HEAD(&delayed_free.pf[0].zapped);
1194	INIT_LIST_HEAD(&delayed_free.pf[1].zapped);
1195
1196	for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1197		list_add_tail(&lock_classes[i].lock_entry, &free_lock_classes);
1198		INIT_LIST_HEAD(&lock_classes[i].locks_after);
1199		INIT_LIST_HEAD(&lock_classes[i].locks_before);
1200	}
1201	init_chain_block_buckets();
1202}
1203
1204static inline struct hlist_head *keyhashentry(const struct lock_class_key *key)
1205{
1206	unsigned long hash = hash_long((uintptr_t)key, KEYHASH_BITS);
1207
1208	return lock_keys_hash + hash;
1209}
1210
1211/* Register a dynamically allocated key. */
1212void lockdep_register_key(struct lock_class_key *key)
1213{
1214	struct hlist_head *hash_head;
1215	struct lock_class_key *k;
1216	unsigned long flags;
1217
1218	if (WARN_ON_ONCE(static_obj(key)))
1219		return;
1220	hash_head = keyhashentry(key);
1221
1222	raw_local_irq_save(flags);
1223	if (!graph_lock())
1224		goto restore_irqs;
1225	hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
1226		if (WARN_ON_ONCE(k == key))
1227			goto out_unlock;
1228	}
1229	hlist_add_head_rcu(&key->hash_entry, hash_head);
1230out_unlock:
1231	graph_unlock();
1232restore_irqs:
1233	raw_local_irq_restore(flags);
1234}
1235EXPORT_SYMBOL_GPL(lockdep_register_key);
1236
1237/* Check whether a key has been registered as a dynamic key. */
1238static bool is_dynamic_key(const struct lock_class_key *key)
1239{
1240	struct hlist_head *hash_head;
1241	struct lock_class_key *k;
1242	bool found = false;
1243
1244	if (WARN_ON_ONCE(static_obj(key)))
1245		return false;
1246
1247	/*
1248	 * If lock debugging is disabled lock_keys_hash[] may contain
1249	 * pointers to memory that has already been freed. Avoid triggering
1250	 * a use-after-free in that case by returning early.
1251	 */
1252	if (!debug_locks)
1253		return true;
1254
1255	hash_head = keyhashentry(key);
1256
1257	rcu_read_lock();
1258	hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
1259		if (k == key) {
1260			found = true;
1261			break;
1262		}
1263	}
1264	rcu_read_unlock();
1265
1266	return found;
1267}
1268
1269/*
1270 * Register a lock's class in the hash-table, if the class is not present
1271 * yet. Otherwise we look it up. We cache the result in the lock object
1272 * itself, so actual lookup of the hash should be once per lock object.
1273 */
1274static struct lock_class *
1275register_lock_class(struct lockdep_map *lock, unsigned int subclass, int force)
1276{
1277	struct lockdep_subclass_key *key;
1278	struct hlist_head *hash_head;
1279	struct lock_class *class;
1280	int idx;
1281
1282	DEBUG_LOCKS_WARN_ON(!irqs_disabled());
1283
1284	class = look_up_lock_class(lock, subclass);
1285	if (likely(class))
1286		goto out_set_class_cache;
1287
1288	if (!lock->key) {
1289		if (!assign_lock_key(lock))
1290			return NULL;
1291	} else if (!static_obj(lock->key) && !is_dynamic_key(lock->key)) {
1292		return NULL;
1293	}
1294
1295	key = lock->key->subkeys + subclass;
1296	hash_head = classhashentry(key);
1297
1298	if (!graph_lock()) {
1299		return NULL;
1300	}
1301	/*
1302	 * We have to do the hash-walk again, to avoid races
1303	 * with another CPU:
1304	 */
1305	hlist_for_each_entry_rcu(class, hash_head, hash_entry) {
1306		if (class->key == key)
1307			goto out_unlock_set;
1308	}
1309
1310	init_data_structures_once();
1311
1312	/* Allocate a new lock class and add it to the hash. */
1313	class = list_first_entry_or_null(&free_lock_classes, typeof(*class),
1314					 lock_entry);
1315	if (!class) {
1316		if (!debug_locks_off_graph_unlock()) {
1317			return NULL;
1318		}
1319
1320		print_lockdep_off("BUG: MAX_LOCKDEP_KEYS too low!");
1321		dump_stack();
1322		return NULL;
1323	}
1324	nr_lock_classes++;
1325	__set_bit(class - lock_classes, lock_classes_in_use);
1326	debug_atomic_inc(nr_unused_locks);
1327	class->key = key;
1328	class->name = lock->name;
1329	class->subclass = subclass;
1330	WARN_ON_ONCE(!list_empty(&class->locks_before));
1331	WARN_ON_ONCE(!list_empty(&class->locks_after));
1332	class->name_version = count_matching_names(class);
1333	class->wait_type_inner = lock->wait_type_inner;
1334	class->wait_type_outer = lock->wait_type_outer;
1335	class->lock_type = lock->lock_type;
1336	/*
1337	 * We use RCU's safe list-add method to make
1338	 * parallel walking of the hash-list safe:
1339	 */
1340	hlist_add_head_rcu(&class->hash_entry, hash_head);
1341	/*
1342	 * Remove the class from the free list and add it to the global list
1343	 * of classes.
1344	 */
1345	list_move_tail(&class->lock_entry, &all_lock_classes);
1346	idx = class - lock_classes;
1347	if (idx > max_lock_class_idx)
1348		max_lock_class_idx = idx;
1349
1350	if (verbose(class)) {
1351		graph_unlock();
1352
1353		printk("\nnew class %px: %s", class->key, class->name);
1354		if (class->name_version > 1)
1355			printk(KERN_CONT "#%d", class->name_version);
1356		printk(KERN_CONT "\n");
1357		dump_stack();
1358
1359		if (!graph_lock()) {
1360			return NULL;
1361		}
1362	}
1363out_unlock_set:
1364	graph_unlock();
1365
1366out_set_class_cache:
1367	if (!subclass || force)
1368		lock->class_cache[0] = class;
1369	else if (subclass < NR_LOCKDEP_CACHING_CLASSES)
1370		lock->class_cache[subclass] = class;
1371
1372	/*
1373	 * Hash collision, did we smoke some? We found a class with a matching
1374	 * hash but the subclass -- which is hashed in -- didn't match.
1375	 */
1376	if (DEBUG_LOCKS_WARN_ON(class->subclass != subclass))
1377		return NULL;
1378
1379	return class;
1380}
1381
1382#ifdef CONFIG_PROVE_LOCKING
1383/*
1384 * Allocate a lockdep entry. (assumes the graph_lock held, returns
1385 * with NULL on failure)
1386 */
1387static struct lock_list *alloc_list_entry(void)
1388{
1389	int idx = find_first_zero_bit(list_entries_in_use,
1390				      ARRAY_SIZE(list_entries));
1391
1392	if (idx >= ARRAY_SIZE(list_entries)) {
1393		if (!debug_locks_off_graph_unlock())
1394			return NULL;
1395
1396		print_lockdep_off("BUG: MAX_LOCKDEP_ENTRIES too low!");
1397		dump_stack();
1398		return NULL;
1399	}
1400	nr_list_entries++;
1401	__set_bit(idx, list_entries_in_use);
1402	return list_entries + idx;
1403}
1404
1405/*
1406 * Add a new dependency to the head of the list:
1407 */
1408static int add_lock_to_list(struct lock_class *this,
1409			    struct lock_class *links_to, struct list_head *head,
1410			    u16 distance, u8 dep,
1411			    const struct lock_trace *trace)
1412{
1413	struct lock_list *entry;
1414	/*
1415	 * Lock not present yet - get a new dependency struct and
1416	 * add it to the list:
1417	 */
1418	entry = alloc_list_entry();
1419	if (!entry)
1420		return 0;
1421
1422	entry->class = this;
1423	entry->links_to = links_to;
1424	entry->dep = dep;
1425	entry->distance = distance;
1426	entry->trace = trace;
1427	/*
1428	 * Both allocation and removal are done under the graph lock; but
1429	 * iteration is under RCU-sched; see look_up_lock_class() and
1430	 * lockdep_free_key_range().
1431	 */
1432	list_add_tail_rcu(&entry->entry, head);
1433
1434	return 1;
1435}
1436
1437/*
1438 * For good efficiency of modular, we use power of 2
1439 */
1440#define MAX_CIRCULAR_QUEUE_SIZE		(1UL << CONFIG_LOCKDEP_CIRCULAR_QUEUE_BITS)
1441#define CQ_MASK				(MAX_CIRCULAR_QUEUE_SIZE-1)
1442
1443/*
1444 * The circular_queue and helpers are used to implement graph
1445 * breadth-first search (BFS) algorithm, by which we can determine
1446 * whether there is a path from a lock to another. In deadlock checks,
1447 * a path from the next lock to be acquired to a previous held lock
1448 * indicates that adding the <prev> -> <next> lock dependency will
1449 * produce a circle in the graph. Breadth-first search instead of
1450 * depth-first search is used in order to find the shortest (circular)
1451 * path.
1452 */
1453struct circular_queue {
1454	struct lock_list *element[MAX_CIRCULAR_QUEUE_SIZE];
1455	unsigned int  front, rear;
1456};
1457
1458static struct circular_queue lock_cq;
1459
1460unsigned int max_bfs_queue_depth;
1461
1462static unsigned int lockdep_dependency_gen_id;
1463
1464static inline void __cq_init(struct circular_queue *cq)
1465{
1466	cq->front = cq->rear = 0;
1467	lockdep_dependency_gen_id++;
1468}
1469
1470static inline int __cq_empty(struct circular_queue *cq)
1471{
1472	return (cq->front == cq->rear);
1473}
1474
1475static inline int __cq_full(struct circular_queue *cq)
1476{
1477	return ((cq->rear + 1) & CQ_MASK) == cq->front;
1478}
1479
1480static inline int __cq_enqueue(struct circular_queue *cq, struct lock_list *elem)
1481{
1482	if (__cq_full(cq))
1483		return -1;
1484
1485	cq->element[cq->rear] = elem;
1486	cq->rear = (cq->rear + 1) & CQ_MASK;
1487	return 0;
1488}
1489
1490/*
1491 * Dequeue an element from the circular_queue, return a lock_list if
1492 * the queue is not empty, or NULL if otherwise.
1493 */
1494static inline struct lock_list * __cq_dequeue(struct circular_queue *cq)
1495{
1496	struct lock_list * lock;
1497
1498	if (__cq_empty(cq))
1499		return NULL;
1500
1501	lock = cq->element[cq->front];
1502	cq->front = (cq->front + 1) & CQ_MASK;
1503
1504	return lock;
1505}
1506
1507static inline unsigned int  __cq_get_elem_count(struct circular_queue *cq)
1508{
1509	return (cq->rear - cq->front) & CQ_MASK;
1510}
1511
1512static inline void mark_lock_accessed(struct lock_list *lock)
1513{
1514	lock->class->dep_gen_id = lockdep_dependency_gen_id;
1515}
1516
1517static inline void visit_lock_entry(struct lock_list *lock,
1518				    struct lock_list *parent)
1519{
1520	lock->parent = parent;
1521}
1522
1523static inline unsigned long lock_accessed(struct lock_list *lock)
1524{
1525	return lock->class->dep_gen_id == lockdep_dependency_gen_id;
1526}
1527
1528static inline struct lock_list *get_lock_parent(struct lock_list *child)
1529{
1530	return child->parent;
1531}
1532
1533static inline int get_lock_depth(struct lock_list *child)
1534{
1535	int depth = 0;
1536	struct lock_list *parent;
1537
1538	while ((parent = get_lock_parent(child))) {
1539		child = parent;
1540		depth++;
1541	}
1542	return depth;
1543}
1544
1545/*
1546 * Return the forward or backward dependency list.
1547 *
1548 * @lock:   the lock_list to get its class's dependency list
1549 * @offset: the offset to struct lock_class to determine whether it is
1550 *          locks_after or locks_before
1551 */
1552static inline struct list_head *get_dep_list(struct lock_list *lock, int offset)
1553{
1554	void *lock_class = lock->class;
1555
1556	return lock_class + offset;
1557}
1558/*
1559 * Return values of a bfs search:
1560 *
1561 * BFS_E* indicates an error
1562 * BFS_R* indicates a result (match or not)
1563 *
1564 * BFS_EINVALIDNODE: Find a invalid node in the graph.
1565 *
1566 * BFS_EQUEUEFULL: The queue is full while doing the bfs.
1567 *
1568 * BFS_RMATCH: Find the matched node in the graph, and put that node into
1569 *             *@target_entry.
1570 *
1571 * BFS_RNOMATCH: Haven't found the matched node and keep *@target_entry
1572 *               _unchanged_.
1573 */
1574enum bfs_result {
1575	BFS_EINVALIDNODE = -2,
1576	BFS_EQUEUEFULL = -1,
1577	BFS_RMATCH = 0,
1578	BFS_RNOMATCH = 1,
1579};
1580
1581/*
1582 * bfs_result < 0 means error
1583 */
1584static inline bool bfs_error(enum bfs_result res)
1585{
1586	return res < 0;
1587}
1588
1589/*
1590 * DEP_*_BIT in lock_list::dep
1591 *
1592 * For dependency @prev -> @next:
1593 *
1594 *   SR: @prev is shared reader (->read != 0) and @next is recursive reader
1595 *       (->read == 2)
1596 *   ER: @prev is exclusive locker (->read == 0) and @next is recursive reader
1597 *   SN: @prev is shared reader and @next is non-recursive locker (->read != 2)
1598 *   EN: @prev is exclusive locker and @next is non-recursive locker
1599 *
1600 * Note that we define the value of DEP_*_BITs so that:
1601 *   bit0 is prev->read == 0
1602 *   bit1 is next->read != 2
1603 */
1604#define DEP_SR_BIT (0 + (0 << 1)) /* 0 */
1605#define DEP_ER_BIT (1 + (0 << 1)) /* 1 */
1606#define DEP_SN_BIT (0 + (1 << 1)) /* 2 */
1607#define DEP_EN_BIT (1 + (1 << 1)) /* 3 */
1608
1609#define DEP_SR_MASK (1U << (DEP_SR_BIT))
1610#define DEP_ER_MASK (1U << (DEP_ER_BIT))
1611#define DEP_SN_MASK (1U << (DEP_SN_BIT))
1612#define DEP_EN_MASK (1U << (DEP_EN_BIT))
1613
1614static inline unsigned int
1615__calc_dep_bit(struct held_lock *prev, struct held_lock *next)
1616{
1617	return (prev->read == 0) + ((next->read != 2) << 1);
1618}
1619
1620static inline u8 calc_dep(struct held_lock *prev, struct held_lock *next)
1621{
1622	return 1U << __calc_dep_bit(prev, next);
1623}
1624
1625/*
1626 * calculate the dep_bit for backwards edges. We care about whether @prev is
1627 * shared and whether @next is recursive.
1628 */
1629static inline unsigned int
1630__calc_dep_bitb(struct held_lock *prev, struct held_lock *next)
1631{
1632	return (next->read != 2) + ((prev->read == 0) << 1);
1633}
1634
1635static inline u8 calc_depb(struct held_lock *prev, struct held_lock *next)
1636{
1637	return 1U << __calc_dep_bitb(prev, next);
1638}
1639
1640/*
1641 * Initialize a lock_list entry @lock belonging to @class as the root for a BFS
1642 * search.
1643 */
1644static inline void __bfs_init_root(struct lock_list *lock,
1645				   struct lock_class *class)
1646{
1647	lock->class = class;
1648	lock->parent = NULL;
1649	lock->only_xr = 0;
1650}
1651
1652/*
1653 * Initialize a lock_list entry @lock based on a lock acquisition @hlock as the
1654 * root for a BFS search.
1655 *
1656 * ->only_xr of the initial lock node is set to @hlock->read == 2, to make sure
1657 * that <prev> -> @hlock and @hlock -> <whatever __bfs() found> is not -(*R)->
1658 * and -(S*)->.
1659 */
1660static inline void bfs_init_root(struct lock_list *lock,
1661				 struct held_lock *hlock)
1662{
1663	__bfs_init_root(lock, hlock_class(hlock));
1664	lock->only_xr = (hlock->read == 2);
1665}
1666
1667/*
1668 * Similar to bfs_init_root() but initialize the root for backwards BFS.
1669 *
1670 * ->only_xr of the initial lock node is set to @hlock->read != 0, to make sure
1671 * that <next> -> @hlock and @hlock -> <whatever backwards BFS found> is not
1672 * -(*S)-> and -(R*)-> (reverse order of -(*R)-> and -(S*)->).
1673 */
1674static inline void bfs_init_rootb(struct lock_list *lock,
1675				  struct held_lock *hlock)
1676{
1677	__bfs_init_root(lock, hlock_class(hlock));
1678	lock->only_xr = (hlock->read != 0);
1679}
1680
1681static inline struct lock_list *__bfs_next(struct lock_list *lock, int offset)
1682{
1683	if (!lock || !lock->parent)
1684		return NULL;
1685
1686	return list_next_or_null_rcu(get_dep_list(lock->parent, offset),
1687				     &lock->entry, struct lock_list, entry);
1688}
1689
1690/*
1691 * Breadth-First Search to find a strong path in the dependency graph.
1692 *
1693 * @source_entry: the source of the path we are searching for.
1694 * @data: data used for the second parameter of @match function
1695 * @match: match function for the search
1696 * @target_entry: pointer to the target of a matched path
1697 * @offset: the offset to struct lock_class to determine whether it is
1698 *          locks_after or locks_before
1699 *
1700 * We may have multiple edges (considering different kinds of dependencies,
1701 * e.g. ER and SN) between two nodes in the dependency graph. But
1702 * only the strong dependency path in the graph is relevant to deadlocks. A
1703 * strong dependency path is a dependency path that doesn't have two adjacent
1704 * dependencies as -(*R)-> -(S*)->, please see:
1705 *
1706 *         Documentation/locking/lockdep-design.rst
1707 *
1708 * for more explanation of the definition of strong dependency paths
1709 *
1710 * In __bfs(), we only traverse in the strong dependency path:
1711 *
1712 *     In lock_list::only_xr, we record whether the previous dependency only
1713 *     has -(*R)-> in the search, and if it does (prev only has -(*R)->), we
1714 *     filter out any -(S*)-> in the current dependency and after that, the
1715 *     ->only_xr is set according to whether we only have -(*R)-> left.
1716 */
1717static enum bfs_result __bfs(struct lock_list *source_entry,
1718			     void *data,
1719			     bool (*match)(struct lock_list *entry, void *data),
1720			     bool (*skip)(struct lock_list *entry, void *data),
1721			     struct lock_list **target_entry,
1722			     int offset)
1723{
1724	struct circular_queue *cq = &lock_cq;
1725	struct lock_list *lock = NULL;
1726	struct lock_list *entry;
1727	struct list_head *head;
1728	unsigned int cq_depth;
1729	bool first;
1730
1731	lockdep_assert_locked();
1732
1733	__cq_init(cq);
1734	__cq_enqueue(cq, source_entry);
1735
1736	while ((lock = __bfs_next(lock, offset)) || (lock = __cq_dequeue(cq))) {
1737		if (!lock->class)
1738			return BFS_EINVALIDNODE;
1739
1740		/*
1741		 * Step 1: check whether we already finish on this one.
1742		 *
1743		 * If we have visited all the dependencies from this @lock to
1744		 * others (iow, if we have visited all lock_list entries in
1745		 * @lock->class->locks_{after,before}) we skip, otherwise go
1746		 * and visit all the dependencies in the list and mark this
1747		 * list accessed.
1748		 */
1749		if (lock_accessed(lock))
1750			continue;
1751		else
1752			mark_lock_accessed(lock);
1753
1754		/*
1755		 * Step 2: check whether prev dependency and this form a strong
1756		 *         dependency path.
1757		 */
1758		if (lock->parent) { /* Parent exists, check prev dependency */
1759			u8 dep = lock->dep;
1760			bool prev_only_xr = lock->parent->only_xr;
1761
1762			/*
1763			 * Mask out all -(S*)-> if we only have *R in previous
1764			 * step, because -(*R)-> -(S*)-> don't make up a strong
1765			 * dependency.
1766			 */
1767			if (prev_only_xr)
1768				dep &= ~(DEP_SR_MASK | DEP_SN_MASK);
1769
1770			/* If nothing left, we skip */
1771			if (!dep)
1772				continue;
1773
1774			/* If there are only -(*R)-> left, set that for the next step */
1775			lock->only_xr = !(dep & (DEP_SN_MASK | DEP_EN_MASK));
1776		}
1777
1778		/*
1779		 * Step 3: we haven't visited this and there is a strong
1780		 *         dependency path to this, so check with @match.
1781		 *         If @skip is provide and returns true, we skip this
1782		 *         lock (and any path this lock is in).
1783		 */
1784		if (skip && skip(lock, data))
1785			continue;
1786
1787		if (match(lock, data)) {
1788			*target_entry = lock;
1789			return BFS_RMATCH;
1790		}
1791
1792		/*
1793		 * Step 4: if not match, expand the path by adding the
1794		 *         forward or backwards dependencies in the search
1795		 *
1796		 */
1797		first = true;
1798		head = get_dep_list(lock, offset);
1799		list_for_each_entry_rcu(entry, head, entry) {
1800			visit_lock_entry(entry, lock);
1801
1802			/*
1803			 * Note we only enqueue the first of the list into the
1804			 * queue, because we can always find a sibling
1805			 * dependency from one (see __bfs_next()), as a result
1806			 * the space of queue is saved.
1807			 */
1808			if (!first)
1809				continue;
1810
1811			first = false;
1812
1813			if (__cq_enqueue(cq, entry))
1814				return BFS_EQUEUEFULL;
1815
1816			cq_depth = __cq_get_elem_count(cq);
1817			if (max_bfs_queue_depth < cq_depth)
1818				max_bfs_queue_depth = cq_depth;
1819		}
1820	}
1821
1822	return BFS_RNOMATCH;
1823}
1824
1825static inline enum bfs_result
1826__bfs_forwards(struct lock_list *src_entry,
1827	       void *data,
1828	       bool (*match)(struct lock_list *entry, void *data),
1829	       bool (*skip)(struct lock_list *entry, void *data),
1830	       struct lock_list **target_entry)
1831{
1832	return __bfs(src_entry, data, match, skip, target_entry,
1833		     offsetof(struct lock_class, locks_after));
1834
1835}
1836
1837static inline enum bfs_result
1838__bfs_backwards(struct lock_list *src_entry,
1839		void *data,
1840		bool (*match)(struct lock_list *entry, void *data),
1841	       bool (*skip)(struct lock_list *entry, void *data),
1842		struct lock_list **target_entry)
1843{
1844	return __bfs(src_entry, data, match, skip, target_entry,
1845		     offsetof(struct lock_class, locks_before));
1846
1847}
1848
1849static void print_lock_trace(const struct lock_trace *trace,
1850			     unsigned int spaces)
1851{
1852	stack_trace_print(trace->entries, trace->nr_entries, spaces);
1853}
1854
1855/*
1856 * Print a dependency chain entry (this is only done when a deadlock
1857 * has been detected):
1858 */
1859static noinline void
1860print_circular_bug_entry(struct lock_list *target, int depth)
1861{
1862	if (debug_locks_silent)
1863		return;
1864	printk("\n-> #%u", depth);
1865	print_lock_name(NULL, target->class);
1866	printk(KERN_CONT ":\n");
1867	print_lock_trace(target->trace, 6);
1868}
1869
1870static void
1871print_circular_lock_scenario(struct held_lock *src,
1872			     struct held_lock *tgt,
1873			     struct lock_list *prt)
1874{
1875	struct lock_class *source = hlock_class(src);
1876	struct lock_class *target = hlock_class(tgt);
1877	struct lock_class *parent = prt->class;
1878	int src_read = src->read;
1879	int tgt_read = tgt->read;
1880
1881	/*
1882	 * A direct locking problem where unsafe_class lock is taken
1883	 * directly by safe_class lock, then all we need to show
1884	 * is the deadlock scenario, as it is obvious that the
1885	 * unsafe lock is taken under the safe lock.
1886	 *
1887	 * But if there is a chain instead, where the safe lock takes
1888	 * an intermediate lock (middle_class) where this lock is
1889	 * not the same as the safe lock, then the lock chain is
1890	 * used to describe the problem. Otherwise we would need
1891	 * to show a different CPU case for each link in the chain
1892	 * from the safe_class lock to the unsafe_class lock.
1893	 */
1894	if (parent != source) {
1895		printk("Chain exists of:\n  ");
1896		__print_lock_name(src, source);
1897		printk(KERN_CONT " --> ");
1898		__print_lock_name(NULL, parent);
1899		printk(KERN_CONT " --> ");
1900		__print_lock_name(tgt, target);
1901		printk(KERN_CONT "\n\n");
1902	}
1903
1904	printk(" Possible unsafe locking scenario:\n\n");
1905	printk("       CPU0                    CPU1\n");
1906	printk("       ----                    ----\n");
1907	if (tgt_read != 0)
1908		printk("  rlock(");
1909	else
1910		printk("  lock(");
1911	__print_lock_name(tgt, target);
1912	printk(KERN_CONT ");\n");
1913	printk("                               lock(");
1914	__print_lock_name(NULL, parent);
1915	printk(KERN_CONT ");\n");
1916	printk("                               lock(");
1917	__print_lock_name(tgt, target);
1918	printk(KERN_CONT ");\n");
1919	if (src_read != 0)
1920		printk("  rlock(");
1921	else if (src->sync)
1922		printk("  sync(");
1923	else
1924		printk("  lock(");
1925	__print_lock_name(src, source);
1926	printk(KERN_CONT ");\n");
1927	printk("\n *** DEADLOCK ***\n\n");
1928}
1929
1930/*
1931 * When a circular dependency is detected, print the
1932 * header first:
1933 */
1934static noinline void
1935print_circular_bug_header(struct lock_list *entry, unsigned int depth,
1936			struct held_lock *check_src,
1937			struct held_lock *check_tgt)
1938{
1939	struct task_struct *curr = current;
1940
1941	if (debug_locks_silent)
1942		return;
1943
1944	pr_warn("\n");
1945	pr_warn("======================================================\n");
1946	pr_warn("WARNING: possible circular locking dependency detected\n");
1947	print_kernel_ident();
1948	pr_warn("------------------------------------------------------\n");
1949	pr_warn("%s/%d is trying to acquire lock:\n",
1950		curr->comm, task_pid_nr(curr));
1951	print_lock(check_src);
1952
1953	pr_warn("\nbut task is already holding lock:\n");
1954
1955	print_lock(check_tgt);
1956	pr_warn("\nwhich lock already depends on the new lock.\n\n");
1957	pr_warn("\nthe existing dependency chain (in reverse order) is:\n");
1958
1959	print_circular_bug_entry(entry, depth);
1960}
1961
1962/*
1963 * We are about to add A -> B into the dependency graph, and in __bfs() a
1964 * strong dependency path A -> .. -> B is found: hlock_class equals
1965 * entry->class.
1966 *
1967 * If A -> .. -> B can replace A -> B in any __bfs() search (means the former
1968 * is _stronger_ than or equal to the latter), we consider A -> B as redundant.
1969 * For example if A -> .. -> B is -(EN)-> (i.e. A -(E*)-> .. -(*N)-> B), and A
1970 * -> B is -(ER)-> or -(EN)->, then we don't need to add A -> B into the
1971 * dependency graph, as any strong path ..-> A -> B ->.. we can get with
1972 * having dependency A -> B, we could already get a equivalent path ..-> A ->
1973 * .. -> B -> .. with A -> .. -> B. Therefore A -> B is redundant.
1974 *
1975 * We need to make sure both the start and the end of A -> .. -> B is not
1976 * weaker than A -> B. For the start part, please see the comment in
1977 * check_redundant(). For the end part, we need:
1978 *
1979 * Either
1980 *
1981 *     a) A -> B is -(*R)-> (everything is not weaker than that)
1982 *
1983 * or
1984 *
1985 *     b) A -> .. -> B is -(*N)-> (nothing is stronger than this)
1986 *
1987 */
1988static inline bool hlock_equal(struct lock_list *entry, void *data)
1989{
1990	struct held_lock *hlock = (struct held_lock *)data;
1991
1992	return hlock_class(hlock) == entry->class && /* Found A -> .. -> B */
1993	       (hlock->read == 2 ||  /* A -> B is -(*R)-> */
1994		!entry->only_xr); /* A -> .. -> B is -(*N)-> */
1995}
1996
1997/*
1998 * We are about to add B -> A into the dependency graph, and in __bfs() a
1999 * strong dependency path A -> .. -> B is found: hlock_class equals
2000 * entry->class.
2001 *
2002 * We will have a deadlock case (conflict) if A -> .. -> B -> A is a strong
2003 * dependency cycle, that means:
2004 *
2005 * Either
2006 *
2007 *     a) B -> A is -(E*)->
2008 *
2009 * or
2010 *
2011 *     b) A -> .. -> B is -(*N)-> (i.e. A -> .. -(*N)-> B)
2012 *
2013 * as then we don't have -(*R)-> -(S*)-> in the cycle.
2014 */
2015static inline bool hlock_conflict(struct lock_list *entry, void *data)
2016{
2017	struct held_lock *hlock = (struct held_lock *)data;
2018
2019	return hlock_class(hlock) == entry->class && /* Found A -> .. -> B */
2020	       (hlock->read == 0 || /* B -> A is -(E*)-> */
2021		!entry->only_xr); /* A -> .. -> B is -(*N)-> */
2022}
2023
2024static noinline void print_circular_bug(struct lock_list *this,
2025				struct lock_list *target,
2026				struct held_lock *check_src,
2027				struct held_lock *check_tgt)
2028{
2029	struct task_struct *curr = current;
2030	struct lock_list *parent;
2031	struct lock_list *first_parent;
2032	int depth;
2033
2034	if (!debug_locks_off_graph_unlock() || debug_locks_silent)
2035		return;
2036
2037	this->trace = save_trace();
2038	if (!this->trace)
2039		return;
2040
2041	depth = get_lock_depth(target);
2042
2043	print_circular_bug_header(target, depth, check_src, check_tgt);
2044
2045	parent = get_lock_parent(target);
2046	first_parent = parent;
2047
2048	while (parent) {
2049		print_circular_bug_entry(parent, --depth);
2050		parent = get_lock_parent(parent);
2051	}
2052
2053	printk("\nother info that might help us debug this:\n\n");
2054	print_circular_lock_scenario(check_src, check_tgt,
2055				     first_parent);
2056
2057	lockdep_print_held_locks(curr);
2058
2059	printk("\nstack backtrace:\n");
2060	dump_stack();
2061}
2062
2063static noinline void print_bfs_bug(int ret)
2064{
2065	if (!debug_locks_off_graph_unlock())
2066		return;
2067
2068	/*
2069	 * Breadth-first-search failed, graph got corrupted?
2070	 */
2071	WARN(1, "lockdep bfs error:%d\n", ret);
2072}
2073
2074static bool noop_count(struct lock_list *entry, void *data)
2075{
2076	(*(unsigned long *)data)++;
2077	return false;
2078}
2079
2080static unsigned long __lockdep_count_forward_deps(struct lock_list *this)
2081{
2082	unsigned long  count = 0;
2083	struct lock_list *target_entry;
2084
2085	__bfs_forwards(this, (void *)&count, noop_count, NULL, &target_entry);
2086
2087	return count;
2088}
2089unsigned long lockdep_count_forward_deps(struct lock_class *class)
2090{
2091	unsigned long ret, flags;
2092	struct lock_list this;
2093
2094	__bfs_init_root(&this, class);
2095
2096	raw_local_irq_save(flags);
2097	lockdep_lock();
2098	ret = __lockdep_count_forward_deps(&this);
2099	lockdep_unlock();
2100	raw_local_irq_restore(flags);
2101
2102	return ret;
2103}
2104
2105static unsigned long __lockdep_count_backward_deps(struct lock_list *this)
2106{
2107	unsigned long  count = 0;
2108	struct lock_list *target_entry;
2109
2110	__bfs_backwards(this, (void *)&count, noop_count, NULL, &target_entry);
2111
2112	return count;
2113}
2114
2115unsigned long lockdep_count_backward_deps(struct lock_class *class)
2116{
2117	unsigned long ret, flags;
2118	struct lock_list this;
2119
2120	__bfs_init_root(&this, class);
2121
2122	raw_local_irq_save(flags);
2123	lockdep_lock();
2124	ret = __lockdep_count_backward_deps(&this);
2125	lockdep_unlock();
2126	raw_local_irq_restore(flags);
2127
2128	return ret;
2129}
2130
2131/*
2132 * Check that the dependency graph starting at <src> can lead to
2133 * <target> or not.
2134 */
2135static noinline enum bfs_result
2136check_path(struct held_lock *target, struct lock_list *src_entry,
2137	   bool (*match)(struct lock_list *entry, void *data),
2138	   bool (*skip)(struct lock_list *entry, void *data),
2139	   struct lock_list **target_entry)
2140{
2141	enum bfs_result ret;
2142
2143	ret = __bfs_forwards(src_entry, target, match, skip, target_entry);
2144
2145	if (unlikely(bfs_error(ret)))
2146		print_bfs_bug(ret);
2147
2148	return ret;
2149}
2150
2151static void print_deadlock_bug(struct task_struct *, struct held_lock *, struct held_lock *);
2152
2153/*
2154 * Prove that the dependency graph starting at <src> can not
2155 * lead to <target>. If it can, there is a circle when adding
2156 * <target> -> <src> dependency.
2157 *
2158 * Print an error and return BFS_RMATCH if it does.
2159 */
2160static noinline enum bfs_result
2161check_noncircular(struct held_lock *src, struct held_lock *target,
2162		  struct lock_trace **const trace)
2163{
2164	enum bfs_result ret;
2165	struct lock_list *target_entry;
2166	struct lock_list src_entry;
2167
2168	bfs_init_root(&src_entry, src);
2169
2170	debug_atomic_inc(nr_cyclic_checks);
2171
2172	ret = check_path(target, &src_entry, hlock_conflict, NULL, &target_entry);
2173
2174	if (unlikely(ret == BFS_RMATCH)) {
2175		if (!*trace) {
2176			/*
2177			 * If save_trace fails here, the printing might
2178			 * trigger a WARN but because of the !nr_entries it
2179			 * should not do bad things.
2180			 */
2181			*trace = save_trace();
2182		}
2183
2184		if (src->class_idx == target->class_idx)
2185			print_deadlock_bug(current, src, target);
2186		else
2187			print_circular_bug(&src_entry, target_entry, src, target);
2188	}
2189
2190	return ret;
2191}
2192
2193#ifdef CONFIG_TRACE_IRQFLAGS
2194
2195/*
2196 * Forwards and backwards subgraph searching, for the purposes of
2197 * proving that two subgraphs can be connected by a new dependency
2198 * without creating any illegal irq-safe -> irq-unsafe lock dependency.
2199 *
2200 * A irq safe->unsafe deadlock happens with the following conditions:
2201 *
2202 * 1) We have a strong dependency path A -> ... -> B
2203 *
2204 * 2) and we have ENABLED_IRQ usage of B and USED_IN_IRQ usage of A, therefore
2205 *    irq can create a new dependency B -> A (consider the case that a holder
2206 *    of B gets interrupted by an irq whose handler will try to acquire A).
2207 *
2208 * 3) the dependency circle A -> ... -> B -> A we get from 1) and 2) is a
2209 *    strong circle:
2210 *
2211 *      For the usage bits of B:
2212 *        a) if A -> B is -(*N)->, then B -> A could be any type, so any
2213 *           ENABLED_IRQ usage suffices.
2214 *        b) if A -> B is -(*R)->, then B -> A must be -(E*)->, so only
2215 *           ENABLED_IRQ_*_READ usage suffices.
2216 *
2217 *      For the usage bits of A:
2218 *        c) if A -> B is -(E*)->, then B -> A could be any type, so any
2219 *           USED_IN_IRQ usage suffices.
2220 *        d) if A -> B is -(S*)->, then B -> A must be -(*N)->, so only
2221 *           USED_IN_IRQ_*_READ usage suffices.
2222 */
2223
2224/*
2225 * There is a strong dependency path in the dependency graph: A -> B, and now
2226 * we need to decide which usage bit of A should be accumulated to detect
2227 * safe->unsafe bugs.
2228 *
2229 * Note that usage_accumulate() is used in backwards search, so ->only_xr
2230 * stands for whether A -> B only has -(S*)-> (in this case ->only_xr is true).
2231 *
2232 * As above, if only_xr is false, which means A -> B has -(E*)-> dependency
2233 * path, any usage of A should be considered. Otherwise, we should only
2234 * consider _READ usage.
2235 */
2236static inline bool usage_accumulate(struct lock_list *entry, void *mask)
2237{
2238	if (!entry->only_xr)
2239		*(unsigned long *)mask |= entry->class->usage_mask;
2240	else /* Mask out _READ usage bits */
2241		*(unsigned long *)mask |= (entry->class->usage_mask & LOCKF_IRQ);
2242
2243	return false;
2244}
2245
2246/*
2247 * There is a strong dependency path in the dependency graph: A -> B, and now
2248 * we need to decide which usage bit of B conflicts with the usage bits of A,
2249 * i.e. which usage bit of B may introduce safe->unsafe deadlocks.
2250 *
2251 * As above, if only_xr is false, which means A -> B has -(*N)-> dependency
2252 * path, any usage of B should be considered. Otherwise, we should only
2253 * consider _READ usage.
2254 */
2255static inline bool usage_match(struct lock_list *entry, void *mask)
2256{
2257	if (!entry->only_xr)
2258		return !!(entry->class->usage_mask & *(unsigned long *)mask);
2259	else /* Mask out _READ usage bits */
2260		return !!((entry->class->usage_mask & LOCKF_IRQ) & *(unsigned long *)mask);
2261}
2262
2263static inline bool usage_skip(struct lock_list *entry, void *mask)
2264{
2265	if (entry->class->lock_type == LD_LOCK_NORMAL)
2266		return false;
2267
2268	/*
2269	 * Skip local_lock() for irq inversion detection.
2270	 *
2271	 * For !RT, local_lock() is not a real lock, so it won't carry any
2272	 * dependency.
2273	 *
2274	 * For RT, an irq inversion happens when we have lock A and B, and on
2275	 * some CPU we can have:
2276	 *
2277	 *	lock(A);
2278	 *	<interrupted>
2279	 *	  lock(B);
2280	 *
2281	 * where lock(B) cannot sleep, and we have a dependency B -> ... -> A.
2282	 *
2283	 * Now we prove local_lock() cannot exist in that dependency. First we
2284	 * have the observation for any lock chain L1 -> ... -> Ln, for any
2285	 * 1 <= i <= n, Li.inner_wait_type <= L1.inner_wait_type, otherwise
2286	 * wait context check will complain. And since B is not a sleep lock,
2287	 * therefore B.inner_wait_type >= 2, and since the inner_wait_type of
2288	 * local_lock() is 3, which is greater than 2, therefore there is no
2289	 * way the local_lock() exists in the dependency B -> ... -> A.
2290	 *
2291	 * As a result, we will skip local_lock(), when we search for irq
2292	 * inversion bugs.
2293	 */
2294	if (entry->class->lock_type == LD_LOCK_PERCPU &&
2295	    DEBUG_LOCKS_WARN_ON(entry->class->wait_type_inner < LD_WAIT_CONFIG))
2296		return false;
2297
2298	/*
2299	 * Skip WAIT_OVERRIDE for irq inversion detection -- it's not actually
2300	 * a lock and only used to override the wait_type.
2301	 */
2302
2303	return true;
2304}
2305
2306/*
2307 * Find a node in the forwards-direction dependency sub-graph starting
2308 * at @root->class that matches @bit.
2309 *
2310 * Return BFS_MATCH if such a node exists in the subgraph, and put that node
2311 * into *@target_entry.
2312 */
2313static enum bfs_result
2314find_usage_forwards(struct lock_list *root, unsigned long usage_mask,
2315			struct lock_list **target_entry)
2316{
2317	enum bfs_result result;
2318
2319	debug_atomic_inc(nr_find_usage_forwards_checks);
2320
2321	result = __bfs_forwards(root, &usage_mask, usage_match, usage_skip, target_entry);
2322
2323	return result;
2324}
2325
2326/*
2327 * Find a node in the backwards-direction dependency sub-graph starting
2328 * at @root->class that matches @bit.
2329 */
2330static enum bfs_result
2331find_usage_backwards(struct lock_list *root, unsigned long usage_mask,
2332			struct lock_list **target_entry)
2333{
2334	enum bfs_result result;
2335
2336	debug_atomic_inc(nr_find_usage_backwards_checks);
2337
2338	result = __bfs_backwards(root, &usage_mask, usage_match, usage_skip, target_entry);
2339
2340	return result;
2341}
2342
2343static void print_lock_class_header(struct lock_class *class, int depth)
2344{
2345	int bit;
2346
2347	printk("%*s->", depth, "");
2348	print_lock_name(NULL, class);
2349#ifdef CONFIG_DEBUG_LOCKDEP
2350	printk(KERN_CONT " ops: %lu", debug_class_ops_read(class));
2351#endif
2352	printk(KERN_CONT " {\n");
2353
2354	for (bit = 0; bit < LOCK_TRACE_STATES; bit++) {
2355		if (class->usage_mask & (1 << bit)) {
2356			int len = depth;
2357
2358			len += printk("%*s   %s", depth, "", usage_str[bit]);
2359			len += printk(KERN_CONT " at:\n");
2360			print_lock_trace(class->usage_traces[bit], len);
2361		}
2362	}
2363	printk("%*s }\n", depth, "");
2364
2365	printk("%*s ... key      at: [<%px>] %pS\n",
2366		depth, "", class->key, class->key);
2367}
2368
2369/*
2370 * Dependency path printing:
2371 *
2372 * After BFS we get a lock dependency path (linked via ->parent of lock_list),
2373 * printing out each lock in the dependency path will help on understanding how
2374 * the deadlock could happen. Here are some details about dependency path
2375 * printing:
2376 *
2377 * 1)	A lock_list can be either forwards or backwards for a lock dependency,
2378 * 	for a lock dependency A -> B, there are two lock_lists:
2379 *
2380 * 	a)	lock_list in the ->locks_after list of A, whose ->class is B and
2381 * 		->links_to is A. In this case, we can say the lock_list is
2382 * 		"A -> B" (forwards case).
2383 *
2384 * 	b)	lock_list in the ->locks_before list of B, whose ->class is A
2385 * 		and ->links_to is B. In this case, we can say the lock_list is
2386 * 		"B <- A" (bacwards case).
2387 *
2388 * 	The ->trace of both a) and b) point to the call trace where B was
2389 * 	acquired with A held.
2390 *
2391 * 2)	A "helper" lock_list is introduced during BFS, this lock_list doesn't
2392 * 	represent a certain lock dependency, it only provides an initial entry
2393 * 	for BFS. For example, BFS may introduce a "helper" lock_list whose
2394 * 	->class is A, as a result BFS will search all dependencies starting with
2395 * 	A, e.g. A -> B or A -> C.
2396 *
2397 * 	The notation of a forwards helper lock_list is like "-> A", which means
2398 * 	we should search the forwards dependencies starting with "A", e.g A -> B
2399 * 	or A -> C.
2400 *
2401 * 	The notation of a bacwards helper lock_list is like "<- B", which means
2402 * 	we should search the backwards dependencies ending with "B", e.g.
2403 * 	B <- A or B <- C.
2404 */
2405
2406/*
2407 * printk the shortest lock dependencies from @root to @leaf in reverse order.
2408 *
2409 * We have a lock dependency path as follow:
2410 *
2411 *    @root                                                                 @leaf
2412 *      |                                                                     |
2413 *      V                                                                     V
2414 *	          ->parent                                   ->parent
2415 * | lock_list | <--------- | lock_list | ... | lock_list  | <--------- | lock_list |
2416 * |    -> L1  |            | L1 -> L2  | ... |Ln-2 -> Ln-1|            | Ln-1 -> Ln|
2417 *
2418 * , so it's natural that we start from @leaf and print every ->class and
2419 * ->trace until we reach the @root.
2420 */
2421static void __used
2422print_shortest_lock_dependencies(struct lock_list *leaf,
2423				 struct lock_list *root)
2424{
2425	struct lock_list *entry = leaf;
2426	int depth;
2427
2428	/*compute depth from generated tree by BFS*/
2429	depth = get_lock_depth(leaf);
2430
2431	do {
2432		print_lock_class_header(entry->class, depth);
2433		printk("%*s ... acquired at:\n", depth, "");
2434		print_lock_trace(entry->trace, 2);
2435		printk("\n");
2436
2437		if (depth == 0 && (entry != root)) {
2438			printk("lockdep:%s bad path found in chain graph\n", __func__);
2439			break;
2440		}
2441
2442		entry = get_lock_parent(entry);
2443		depth--;
2444	} while (entry && (depth >= 0));
2445}
2446
2447/*
2448 * printk the shortest lock dependencies from @leaf to @root.
2449 *
2450 * We have a lock dependency path (from a backwards search) as follow:
2451 *
2452 *    @leaf                                                                 @root
2453 *      |                                                                     |
2454 *      V                                                                     V
2455 *	          ->parent                                   ->parent
2456 * | lock_list | ---------> | lock_list | ... | lock_list  | ---------> | lock_list |
2457 * | L2 <- L1  |            | L3 <- L2  | ... | Ln <- Ln-1 |            |    <- Ln  |
2458 *
2459 * , so when we iterate from @leaf to @root, we actually print the lock
2460 * dependency path L1 -> L2 -> .. -> Ln in the non-reverse order.
2461 *
2462 * Another thing to notice here is that ->class of L2 <- L1 is L1, while the
2463 * ->trace of L2 <- L1 is the call trace of L2, in fact we don't have the call
2464 * trace of L1 in the dependency path, which is alright, because most of the
2465 * time we can figure out where L1 is held from the call trace of L2.
2466 */
2467static void __used
2468print_shortest_lock_dependencies_backwards(struct lock_list *leaf,
2469					   struct lock_list *root)
2470{
2471	struct lock_list *entry = leaf;
2472	const struct lock_trace *trace = NULL;
2473	int depth;
2474
2475	/*compute depth from generated tree by BFS*/
2476	depth = get_lock_depth(leaf);
2477
2478	do {
2479		print_lock_class_header(entry->class, depth);
2480		if (trace) {
2481			printk("%*s ... acquired at:\n", depth, "");
2482			print_lock_trace(trace, 2);
2483			printk("\n");
2484		}
2485
2486		/*
2487		 * Record the pointer to the trace for the next lock_list
2488		 * entry, see the comments for the function.
2489		 */
2490		trace = entry->trace;
2491
2492		if (depth == 0 && (entry != root)) {
2493			printk("lockdep:%s bad path found in chain graph\n", __func__);
2494			break;
2495		}
2496
2497		entry = get_lock_parent(entry);
2498		depth--;
2499	} while (entry && (depth >= 0));
2500}
2501
2502static void
2503print_irq_lock_scenario(struct lock_list *safe_entry,
2504			struct lock_list *unsafe_entry,
2505			struct lock_class *prev_class,
2506			struct lock_class *next_class)
2507{
2508	struct lock_class *safe_class = safe_entry->class;
2509	struct lock_class *unsafe_class = unsafe_entry->class;
2510	struct lock_class *middle_class = prev_class;
2511
2512	if (middle_class == safe_class)
2513		middle_class = next_class;
2514
2515	/*
2516	 * A direct locking problem where unsafe_class lock is taken
2517	 * directly by safe_class lock, then all we need to show
2518	 * is the deadlock scenario, as it is obvious that the
2519	 * unsafe lock is taken under the safe lock.
2520	 *
2521	 * But if there is a chain instead, where the safe lock takes
2522	 * an intermediate lock (middle_class) where this lock is
2523	 * not the same as the safe lock, then the lock chain is
2524	 * used to describe the problem. Otherwise we would need
2525	 * to show a different CPU case for each link in the chain
2526	 * from the safe_class lock to the unsafe_class lock.
2527	 */
2528	if (middle_class != unsafe_class) {
2529		printk("Chain exists of:\n  ");
2530		__print_lock_name(NULL, safe_class);
2531		printk(KERN_CONT " --> ");
2532		__print_lock_name(NULL, middle_class);
2533		printk(KERN_CONT " --> ");
2534		__print_lock_name(NULL, unsafe_class);
2535		printk(KERN_CONT "\n\n");
2536	}
2537
2538	printk(" Possible interrupt unsafe locking scenario:\n\n");
2539	printk("       CPU0                    CPU1\n");
2540	printk("       ----                    ----\n");
2541	printk("  lock(");
2542	__print_lock_name(NULL, unsafe_class);
2543	printk(KERN_CONT ");\n");
2544	printk("                               local_irq_disable();\n");
2545	printk("                               lock(");
2546	__print_lock_name(NULL, safe_class);
2547	printk(KERN_CONT ");\n");
2548	printk("                               lock(");
2549	__print_lock_name(NULL, middle_class);
2550	printk(KERN_CONT ");\n");
2551	printk("  <Interrupt>\n");
2552	printk("    lock(");
2553	__print_lock_name(NULL, safe_class);
2554	printk(KERN_CONT ");\n");
2555	printk("\n *** DEADLOCK ***\n\n");
2556}
2557
2558static void
2559print_bad_irq_dependency(struct task_struct *curr,
2560			 struct lock_list *prev_root,
2561			 struct lock_list *next_root,
2562			 struct lock_list *backwards_entry,
2563			 struct lock_list *forwards_entry,
2564			 struct held_lock *prev,
2565			 struct held_lock *next,
2566			 enum lock_usage_bit bit1,
2567			 enum lock_usage_bit bit2,
2568			 const char *irqclass)
2569{
2570	if (!debug_locks_off_graph_unlock() || debug_locks_silent)
2571		return;
2572
2573	pr_warn("\n");
2574	pr_warn("=====================================================\n");
2575	pr_warn("WARNING: %s-safe -> %s-unsafe lock order detected\n",
2576		irqclass, irqclass);
2577	print_kernel_ident();
2578	pr_warn("-----------------------------------------------------\n");
2579	pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] is trying to acquire:\n",
2580		curr->comm, task_pid_nr(curr),
2581		lockdep_hardirq_context(), hardirq_count() >> HARDIRQ_SHIFT,
2582		curr->softirq_context, softirq_count() >> SOFTIRQ_SHIFT,
2583		lockdep_hardirqs_enabled(),
2584		curr->softirqs_enabled);
2585	print_lock(next);
2586
2587	pr_warn("\nand this task is already holding:\n");
2588	print_lock(prev);
2589	pr_warn("which would create a new lock dependency:\n");
2590	print_lock_name(prev, hlock_class(prev));
2591	pr_cont(" ->");
2592	print_lock_name(next, hlock_class(next));
2593	pr_cont("\n");
2594
2595	pr_warn("\nbut this new dependency connects a %s-irq-safe lock:\n",
2596		irqclass);
2597	print_lock_name(NULL, backwards_entry->class);
2598	pr_warn("\n... which became %s-irq-safe at:\n", irqclass);
2599
2600	print_lock_trace(backwards_entry->class->usage_traces[bit1], 1);
2601
2602	pr_warn("\nto a %s-irq-unsafe lock:\n", irqclass);
2603	print_lock_name(NULL, forwards_entry->class);
2604	pr_warn("\n... which became %s-irq-unsafe at:\n", irqclass);
2605	pr_warn("...");
2606
2607	print_lock_trace(forwards_entry->class->usage_traces[bit2], 1);
2608
2609	pr_warn("\nother info that might help us debug this:\n\n");
2610	print_irq_lock_scenario(backwards_entry, forwards_entry,
2611				hlock_class(prev), hlock_class(next));
2612
2613	lockdep_print_held_locks(curr);
2614
2615	pr_warn("\nthe dependencies between %s-irq-safe lock and the holding lock:\n", irqclass);
2616	print_shortest_lock_dependencies_backwards(backwards_entry, prev_root);
2617
2618	pr_warn("\nthe dependencies between the lock to be acquired");
2619	pr_warn(" and %s-irq-unsafe lock:\n", irqclass);
2620	next_root->trace = save_trace();
2621	if (!next_root->trace)
2622		return;
2623	print_shortest_lock_dependencies(forwards_entry, next_root);
2624
2625	pr_warn("\nstack backtrace:\n");
2626	dump_stack();
2627}
2628
2629static const char *state_names[] = {
2630#define LOCKDEP_STATE(__STATE) \
2631	__stringify(__STATE),
2632#include "lockdep_states.h"
2633#undef LOCKDEP_STATE
2634};
2635
2636static const char *state_rnames[] = {
2637#define LOCKDEP_STATE(__STATE) \
2638	__stringify(__STATE)"-READ",
2639#include "lockdep_states.h"
2640#undef LOCKDEP_STATE
2641};
2642
2643static inline const char *state_name(enum lock_usage_bit bit)
2644{
2645	if (bit & LOCK_USAGE_READ_MASK)
2646		return state_rnames[bit >> LOCK_USAGE_DIR_MASK];
2647	else
2648		return state_names[bit >> LOCK_USAGE_DIR_MASK];
2649}
2650
2651/*
2652 * The bit number is encoded like:
2653 *
2654 *  bit0: 0 exclusive, 1 read lock
2655 *  bit1: 0 used in irq, 1 irq enabled
2656 *  bit2-n: state
2657 */
2658static int exclusive_bit(int new_bit)
2659{
2660	int state = new_bit & LOCK_USAGE_STATE_MASK;
2661	int dir = new_bit & LOCK_USAGE_DIR_MASK;
2662
2663	/*
2664	 * keep state, bit flip the direction and strip read.
2665	 */
2666	return state | (dir ^ LOCK_USAGE_DIR_MASK);
2667}
2668
2669/*
2670 * Observe that when given a bitmask where each bitnr is encoded as above, a
2671 * right shift of the mask transforms the individual bitnrs as -1 and
2672 * conversely, a left shift transforms into +1 for the individual bitnrs.
2673 *
2674 * So for all bits whose number have LOCK_ENABLED_* set (bitnr1 == 1), we can
2675 * create the mask with those bit numbers using LOCK_USED_IN_* (bitnr1 == 0)
2676 * instead by subtracting the bit number by 2, or shifting the mask right by 2.
2677 *
2678 * Similarly, bitnr1 == 0 becomes bitnr1 == 1 by adding 2, or shifting left 2.
2679 *
2680 * So split the mask (note that LOCKF_ENABLED_IRQ_ALL|LOCKF_USED_IN_IRQ_ALL is
2681 * all bits set) and recompose with bitnr1 flipped.
2682 */
2683static unsigned long invert_dir_mask(unsigned long mask)
2684{
2685	unsigned long excl = 0;
2686
2687	/* Invert dir */
2688	excl |= (mask & LOCKF_ENABLED_IRQ_ALL) >> LOCK_USAGE_DIR_MASK;
2689	excl |= (mask & LOCKF_USED_IN_IRQ_ALL) << LOCK_USAGE_DIR_MASK;
2690
2691	return excl;
2692}
2693
2694/*
2695 * Note that a LOCK_ENABLED_IRQ_*_READ usage and a LOCK_USED_IN_IRQ_*_READ
2696 * usage may cause deadlock too, for example:
2697 *
2698 * P1				P2
2699 * <irq disabled>
2700 * write_lock(l1);		<irq enabled>
2701 *				read_lock(l2);
2702 * write_lock(l2);
2703 * 				<in irq>
2704 * 				read_lock(l1);
2705 *
2706 * , in above case, l1 will be marked as LOCK_USED_IN_IRQ_HARDIRQ_READ and l2
2707 * will marked as LOCK_ENABLE_IRQ_HARDIRQ_READ, and this is a possible
2708 * deadlock.
2709 *
2710 * In fact, all of the following cases may cause deadlocks:
2711 *
2712 * 	 LOCK_USED_IN_IRQ_* -> LOCK_ENABLED_IRQ_*
2713 * 	 LOCK_USED_IN_IRQ_*_READ -> LOCK_ENABLED_IRQ_*
2714 * 	 LOCK_USED_IN_IRQ_* -> LOCK_ENABLED_IRQ_*_READ
2715 * 	 LOCK_USED_IN_IRQ_*_READ -> LOCK_ENABLED_IRQ_*_READ
2716 *
2717 * As a result, to calculate the "exclusive mask", first we invert the
2718 * direction (USED_IN/ENABLED) of the original mask, and 1) for all bits with
2719 * bitnr0 set (LOCK_*_READ), add those with bitnr0 cleared (LOCK_*). 2) for all
2720 * bits with bitnr0 cleared (LOCK_*_READ), add those with bitnr0 set (LOCK_*).
2721 */
2722static unsigned long exclusive_mask(unsigned long mask)
2723{
2724	unsigned long excl = invert_dir_mask(mask);
2725
2726	excl |= (excl & LOCKF_IRQ_READ) >> LOCK_USAGE_READ_MASK;
2727	excl |= (excl & LOCKF_IRQ) << LOCK_USAGE_READ_MASK;
2728
2729	return excl;
2730}
2731
2732/*
2733 * Retrieve the _possible_ original mask to which @mask is
2734 * exclusive. Ie: this is the opposite of exclusive_mask().
2735 * Note that 2 possible original bits can match an exclusive
2736 * bit: one has LOCK_USAGE_READ_MASK set, the other has it
2737 * cleared. So both are returned for each exclusive bit.
2738 */
2739static unsigned long original_mask(unsigned long mask)
2740{
2741	unsigned long excl = invert_dir_mask(mask);
2742
2743	/* Include read in existing usages */
2744	excl |= (excl & LOCKF_IRQ_READ) >> LOCK_USAGE_READ_MASK;
2745	excl |= (excl & LOCKF_IRQ) << LOCK_USAGE_READ_MASK;
2746
2747	return excl;
2748}
2749
2750/*
2751 * Find the first pair of bit match between an original
2752 * usage mask and an exclusive usage mask.
2753 */
2754static int find_exclusive_match(unsigned long mask,
2755				unsigned long excl_mask,
2756				enum lock_usage_bit *bitp,
2757				enum lock_usage_bit *excl_bitp)
2758{
2759	int bit, excl, excl_read;
2760
2761	for_each_set_bit(bit, &mask, LOCK_USED) {
2762		/*
2763		 * exclusive_bit() strips the read bit, however,
2764		 * LOCK_ENABLED_IRQ_*_READ may cause deadlocks too, so we need
2765		 * to search excl | LOCK_USAGE_READ_MASK as well.
2766		 */
2767		excl = exclusive_bit(bit);
2768		excl_read = excl | LOCK_USAGE_READ_MASK;
2769		if (excl_mask & lock_flag(excl)) {
2770			*bitp = bit;
2771			*excl_bitp = excl;
2772			return 0;
2773		} else if (excl_mask & lock_flag(excl_read)) {
2774			*bitp = bit;
2775			*excl_bitp = excl_read;
2776			return 0;
2777		}
2778	}
2779	return -1;
2780}
2781
2782/*
2783 * Prove that the new dependency does not connect a hardirq-safe(-read)
2784 * lock with a hardirq-unsafe lock - to achieve this we search
2785 * the backwards-subgraph starting at <prev>, and the
2786 * forwards-subgraph starting at <next>:
2787 */
2788static int check_irq_usage(struct task_struct *curr, struct held_lock *prev,
2789			   struct held_lock *next)
2790{
2791	unsigned long usage_mask = 0, forward_mask, backward_mask;
2792	enum lock_usage_bit forward_bit = 0, backward_bit = 0;
2793	struct lock_list *target_entry1;
2794	struct lock_list *target_entry;
2795	struct lock_list this, that;
2796	enum bfs_result ret;
2797
2798	/*
2799	 * Step 1: gather all hard/soft IRQs usages backward in an
2800	 * accumulated usage mask.
2801	 */
2802	bfs_init_rootb(&this, prev);
2803
2804	ret = __bfs_backwards(&this, &usage_mask, usage_accumulate, usage_skip, NULL);
2805	if (bfs_error(ret)) {
2806		print_bfs_bug(ret);
2807		return 0;
2808	}
2809
2810	usage_mask &= LOCKF_USED_IN_IRQ_ALL;
2811	if (!usage_mask)
2812		return 1;
2813
2814	/*
2815	 * Step 2: find exclusive uses forward that match the previous
2816	 * backward accumulated mask.
2817	 */
2818	forward_mask = exclusive_mask(usage_mask);
2819
2820	bfs_init_root(&that, next);
2821
2822	ret = find_usage_forwards(&that, forward_mask, &target_entry1);
2823	if (bfs_error(ret)) {
2824		print_bfs_bug(ret);
2825		return 0;
2826	}
2827	if (ret == BFS_RNOMATCH)
2828		return 1;
2829
2830	/*
2831	 * Step 3: we found a bad match! Now retrieve a lock from the backward
2832	 * list whose usage mask matches the exclusive usage mask from the
2833	 * lock found on the forward list.
2834	 *
2835	 * Note, we should only keep the LOCKF_ENABLED_IRQ_ALL bits, considering
2836	 * the follow case:
2837	 *
2838	 * When trying to add A -> B to the graph, we find that there is a
2839	 * hardirq-safe L, that L -> ... -> A, and another hardirq-unsafe M,
2840	 * that B -> ... -> M. However M is **softirq-safe**, if we use exact
2841	 * invert bits of M's usage_mask, we will find another lock N that is
2842	 * **softirq-unsafe** and N -> ... -> A, however N -> .. -> M will not
2843	 * cause a inversion deadlock.
2844	 */
2845	backward_mask = original_mask(target_entry1->class->usage_mask & LOCKF_ENABLED_IRQ_ALL);
2846
2847	ret = find_usage_backwards(&this, backward_mask, &target_entry);
2848	if (bfs_error(ret)) {
2849		print_bfs_bug(ret);
2850		return 0;
2851	}
2852	if (DEBUG_LOCKS_WARN_ON(ret == BFS_RNOMATCH))
2853		return 1;
2854
2855	/*
2856	 * Step 4: narrow down to a pair of incompatible usage bits
2857	 * and report it.
2858	 */
2859	ret = find_exclusive_match(target_entry->class->usage_mask,
2860				   target_entry1->class->usage_mask,
2861				   &backward_bit, &forward_bit);
2862	if (DEBUG_LOCKS_WARN_ON(ret == -1))
2863		return 1;
2864
2865	print_bad_irq_dependency(curr, &this, &that,
2866				 target_entry, target_entry1,
2867				 prev, next,
2868				 backward_bit, forward_bit,
2869				 state_name(backward_bit));
2870
2871	return 0;
2872}
2873
2874#else
2875
2876static inline int check_irq_usage(struct task_struct *curr,
2877				  struct held_lock *prev, struct held_lock *next)
2878{
2879	return 1;
2880}
2881
2882static inline bool usage_skip(struct lock_list *entry, void *mask)
2883{
2884	return false;
2885}
2886
2887#endif /* CONFIG_TRACE_IRQFLAGS */
2888
2889#ifdef CONFIG_LOCKDEP_SMALL
2890/*
2891 * Check that the dependency graph starting at <src> can lead to
2892 * <target> or not. If it can, <src> -> <target> dependency is already
2893 * in the graph.
2894 *
2895 * Return BFS_RMATCH if it does, or BFS_RNOMATCH if it does not, return BFS_E* if
2896 * any error appears in the bfs search.
2897 */
2898static noinline enum bfs_result
2899check_redundant(struct held_lock *src, struct held_lock *target)
2900{
2901	enum bfs_result ret;
2902	struct lock_list *target_entry;
2903	struct lock_list src_entry;
2904
2905	bfs_init_root(&src_entry, src);
2906	/*
2907	 * Special setup for check_redundant().
2908	 *
2909	 * To report redundant, we need to find a strong dependency path that
2910	 * is equal to or stronger than <src> -> <target>. So if <src> is E,
2911	 * we need to let __bfs() only search for a path starting at a -(E*)->,
2912	 * we achieve this by setting the initial node's ->only_xr to true in
2913	 * that case. And if <prev> is S, we set initial ->only_xr to false
2914	 * because both -(S*)-> (equal) and -(E*)-> (stronger) are redundant.
2915	 */
2916	src_entry.only_xr = src->read == 0;
2917
2918	debug_atomic_inc(nr_redundant_checks);
2919
2920	/*
2921	 * Note: we skip local_lock() for redundant check, because as the
2922	 * comment in usage_skip(), A -> local_lock() -> B and A -> B are not
2923	 * the same.
2924	 */
2925	ret = check_path(target, &src_entry, hlock_equal, usage_skip, &target_entry);
2926
2927	if (ret == BFS_RMATCH)
2928		debug_atomic_inc(nr_redundant);
2929
2930	return ret;
2931}
2932
2933#else
2934
2935static inline enum bfs_result
2936check_redundant(struct held_lock *src, struct held_lock *target)
2937{
2938	return BFS_RNOMATCH;
2939}
2940
2941#endif
2942
2943static void inc_chains(int irq_context)
2944{
2945	if (irq_context & LOCK_CHAIN_HARDIRQ_CONTEXT)
2946		nr_hardirq_chains++;
2947	else if (irq_context & LOCK_CHAIN_SOFTIRQ_CONTEXT)
2948		nr_softirq_chains++;
2949	else
2950		nr_process_chains++;
2951}
2952
2953static void dec_chains(int irq_context)
2954{
2955	if (irq_context & LOCK_CHAIN_HARDIRQ_CONTEXT)
2956		nr_hardirq_chains--;
2957	else if (irq_context & LOCK_CHAIN_SOFTIRQ_CONTEXT)
2958		nr_softirq_chains--;
2959	else
2960		nr_process_chains--;
2961}
2962
2963static void
2964print_deadlock_scenario(struct held_lock *nxt, struct held_lock *prv)
2965{
2966	struct lock_class *next = hlock_class(nxt);
2967	struct lock_class *prev = hlock_class(prv);
2968
2969	printk(" Possible unsafe locking scenario:\n\n");
2970	printk("       CPU0\n");
2971	printk("       ----\n");
2972	printk("  lock(");
2973	__print_lock_name(prv, prev);
2974	printk(KERN_CONT ");\n");
2975	printk("  lock(");
2976	__print_lock_name(nxt, next);
2977	printk(KERN_CONT ");\n");
2978	printk("\n *** DEADLOCK ***\n\n");
2979	printk(" May be due to missing lock nesting notation\n\n");
2980}
2981
2982static void
2983print_deadlock_bug(struct task_struct *curr, struct held_lock *prev,
2984		   struct held_lock *next)
2985{
2986	struct lock_class *class = hlock_class(prev);
2987
2988	if (!debug_locks_off_graph_unlock() || debug_locks_silent)
2989		return;
2990
2991	pr_warn("\n");
2992	pr_warn("============================================\n");
2993	pr_warn("WARNING: possible recursive locking detected\n");
2994	print_kernel_ident();
2995	pr_warn("--------------------------------------------\n");
2996	pr_warn("%s/%d is trying to acquire lock:\n",
2997		curr->comm, task_pid_nr(curr));
2998	print_lock(next);
2999	pr_warn("\nbut task is already holding lock:\n");
3000	print_lock(prev);
3001
3002	if (class->cmp_fn) {
3003		pr_warn("and the lock comparison function returns %i:\n",
3004			class->cmp_fn(prev->instance, next->instance));
3005	}
3006
3007	pr_warn("\nother info that might help us debug this:\n");
3008	print_deadlock_scenario(next, prev);
3009	lockdep_print_held_locks(curr);
3010
3011	pr_warn("\nstack backtrace:\n");
3012	dump_stack();
3013}
3014
3015/*
3016 * Check whether we are holding such a class already.
3017 *
3018 * (Note that this has to be done separately, because the graph cannot
3019 * detect such classes of deadlocks.)
3020 *
3021 * Returns: 0 on deadlock detected, 1 on OK, 2 if another lock with the same
3022 * lock class is held but nest_lock is also held, i.e. we rely on the
3023 * nest_lock to avoid the deadlock.
3024 */
3025static int
3026check_deadlock(struct task_struct *curr, struct held_lock *next)
3027{
3028	struct lock_class *class;
3029	struct held_lock *prev;
3030	struct held_lock *nest = NULL;
3031	int i;
3032
3033	for (i = 0; i < curr->lockdep_depth; i++) {
3034		prev = curr->held_locks + i;
3035
3036		if (prev->instance == next->nest_lock)
3037			nest = prev;
3038
3039		if (hlock_class(prev) != hlock_class(next))
3040			continue;
3041
3042		/*
3043		 * Allow read-after-read recursion of the same
3044		 * lock class (i.e. read_lock(lock)+read_lock(lock)):
3045		 */
3046		if ((next->read == 2) && prev->read)
3047			continue;
3048
3049		class = hlock_class(prev);
3050
3051		if (class->cmp_fn &&
3052		    class->cmp_fn(prev->instance, next->instance) < 0)
3053			continue;
3054
3055		/*
3056		 * We're holding the nest_lock, which serializes this lock's
3057		 * nesting behaviour.
3058		 */
3059		if (nest)
3060			return 2;
3061
3062		print_deadlock_bug(curr, prev, next);
3063		return 0;
3064	}
3065	return 1;
3066}
3067
3068/*
3069 * There was a chain-cache miss, and we are about to add a new dependency
3070 * to a previous lock. We validate the following rules:
3071 *
3072 *  - would the adding of the <prev> -> <next> dependency create a
3073 *    circular dependency in the graph? [== circular deadlock]
3074 *
3075 *  - does the new prev->next dependency connect any hardirq-safe lock
3076 *    (in the full backwards-subgraph starting at <prev>) with any
3077 *    hardirq-unsafe lock (in the full forwards-subgraph starting at
3078 *    <next>)? [== illegal lock inversion with hardirq contexts]
3079 *
3080 *  - does the new prev->next dependency connect any softirq-safe lock
3081 *    (in the full backwards-subgraph starting at <prev>) with any
3082 *    softirq-unsafe lock (in the full forwards-subgraph starting at
3083 *    <next>)? [== illegal lock inversion with softirq contexts]
3084 *
3085 * any of these scenarios could lead to a deadlock.
3086 *
3087 * Then if all the validations pass, we add the forwards and backwards
3088 * dependency.
3089 */
3090static int
3091check_prev_add(struct task_struct *curr, struct held_lock *prev,
3092	       struct held_lock *next, u16 distance,
3093	       struct lock_trace **const trace)
3094{
3095	struct lock_list *entry;
3096	enum bfs_result ret;
3097
3098	if (!hlock_class(prev)->key || !hlock_class(next)->key) {
3099		/*
3100		 * The warning statements below may trigger a use-after-free
3101		 * of the class name. It is better to trigger a use-after free
3102		 * and to have the class name most of the time instead of not
3103		 * having the class name available.
3104		 */
3105		WARN_ONCE(!debug_locks_silent && !hlock_class(prev)->key,
3106			  "Detected use-after-free of lock class %px/%s\n",
3107			  hlock_class(prev),
3108			  hlock_class(prev)->name);
3109		WARN_ONCE(!debug_locks_silent && !hlock_class(next)->key,
3110			  "Detected use-after-free of lock class %px/%s\n",
3111			  hlock_class(next),
3112			  hlock_class(next)->name);
3113		return 2;
3114	}
3115
3116	if (prev->class_idx == next->class_idx) {
3117		struct lock_class *class = hlock_class(prev);
3118
3119		if (class->cmp_fn &&
3120		    class->cmp_fn(prev->instance, next->instance) < 0)
3121			return 2;
3122	}
3123
3124	/*
3125	 * Prove that the new <prev> -> <next> dependency would not
3126	 * create a circular dependency in the graph. (We do this by
3127	 * a breadth-first search into the graph starting at <next>,
3128	 * and check whether we can reach <prev>.)
3129	 *
3130	 * The search is limited by the size of the circular queue (i.e.,
3131	 * MAX_CIRCULAR_QUEUE_SIZE) which keeps track of a breadth of nodes
3132	 * in the graph whose neighbours are to be checked.
3133	 */
3134	ret = check_noncircular(next, prev, trace);
3135	if (unlikely(bfs_error(ret) || ret == BFS_RMATCH))
3136		return 0;
3137
3138	if (!check_irq_usage(curr, prev, next))
3139		return 0;
3140
3141	/*
3142	 * Is the <prev> -> <next> dependency already present?
3143	 *
3144	 * (this may occur even though this is a new chain: consider
3145	 *  e.g. the L1 -> L2 -> L3 -> L4 and the L5 -> L1 -> L2 -> L3
3146	 *  chains - the second one will be new, but L1 already has
3147	 *  L2 added to its dependency list, due to the first chain.)
3148	 */
3149	list_for_each_entry(entry, &hlock_class(prev)->locks_after, entry) {
3150		if (entry->class == hlock_class(next)) {
3151			if (distance == 1)
3152				entry->distance = 1;
3153			entry->dep |= calc_dep(prev, next);
3154
3155			/*
3156			 * Also, update the reverse dependency in @next's
3157			 * ->locks_before list.
3158			 *
3159			 *  Here we reuse @entry as the cursor, which is fine
3160			 *  because we won't go to the next iteration of the
3161			 *  outer loop:
3162			 *
3163			 *  For normal cases, we return in the inner loop.
3164			 *
3165			 *  If we fail to return, we have inconsistency, i.e.
3166			 *  <prev>::locks_after contains <next> while
3167			 *  <next>::locks_before doesn't contain <prev>. In
3168			 *  that case, we return after the inner and indicate
3169			 *  something is wrong.
3170			 */
3171			list_for_each_entry(entry, &hlock_class(next)->locks_before, entry) {
3172				if (entry->class == hlock_class(prev)) {
3173					if (distance == 1)
3174						entry->distance = 1;
3175					entry->dep |= calc_depb(prev, next);
3176					return 1;
3177				}
3178			}
3179
3180			/* <prev> is not found in <next>::locks_before */
3181			return 0;
3182		}
3183	}
3184
3185	/*
3186	 * Is the <prev> -> <next> link redundant?
3187	 */
3188	ret = check_redundant(prev, next);
3189	if (bfs_error(ret))
3190		return 0;
3191	else if (ret == BFS_RMATCH)
3192		return 2;
3193
3194	if (!*trace) {
3195		*trace = save_trace();
3196		if (!*trace)
3197			return 0;
3198	}
3199
3200	/*
3201	 * Ok, all validations passed, add the new lock
3202	 * to the previous lock's dependency list:
3203	 */
3204	ret = add_lock_to_list(hlock_class(next), hlock_class(prev),
3205			       &hlock_class(prev)->locks_after, distance,
3206			       calc_dep(prev, next), *trace);
3207
3208	if (!ret)
3209		return 0;
3210
3211	ret = add_lock_to_list(hlock_class(prev), hlock_class(next),
3212			       &hlock_class(next)->locks_before, distance,
3213			       calc_depb(prev, next), *trace);
3214	if (!ret)
3215		return 0;
3216
3217	return 2;
3218}
3219
3220/*
3221 * Add the dependency to all directly-previous locks that are 'relevant'.
3222 * The ones that are relevant are (in increasing distance from curr):
3223 * all consecutive trylock entries and the final non-trylock entry - or
3224 * the end of this context's lock-chain - whichever comes first.
3225 */
3226static int
3227check_prevs_add(struct task_struct *curr, struct held_lock *next)
3228{
3229	struct lock_trace *trace = NULL;
3230	int depth = curr->lockdep_depth;
3231	struct held_lock *hlock;
3232
3233	/*
3234	 * Debugging checks.
3235	 *
3236	 * Depth must not be zero for a non-head lock:
3237	 */
3238	if (!depth)
3239		goto out_bug;
3240	/*
3241	 * At least two relevant locks must exist for this
3242	 * to be a head:
3243	 */
3244	if (curr->held_locks[depth].irq_context !=
3245			curr->held_locks[depth-1].irq_context)
3246		goto out_bug;
3247
3248	for (;;) {
3249		u16 distance = curr->lockdep_depth - depth + 1;
3250		hlock = curr->held_locks + depth - 1;
3251
3252		if (hlock->check) {
3253			int ret = check_prev_add(curr, hlock, next, distance, &trace);
3254			if (!ret)
3255				return 0;
3256
3257			/*
3258			 * Stop after the first non-trylock entry,
3259			 * as non-trylock entries have added their
3260			 * own direct dependencies already, so this
3261			 * lock is connected to them indirectly:
3262			 */
3263			if (!hlock->trylock)
3264				break;
3265		}
3266
3267		depth--;
3268		/*
3269		 * End of lock-stack?
3270		 */
3271		if (!depth)
3272			break;
3273		/*
3274		 * Stop the search if we cross into another context:
3275		 */
3276		if (curr->held_locks[depth].irq_context !=
3277				curr->held_locks[depth-1].irq_context)
3278			break;
3279	}
3280	return 1;
3281out_bug:
3282	if (!debug_locks_off_graph_unlock())
3283		return 0;
3284
3285	/*
3286	 * Clearly we all shouldn't be here, but since we made it we
3287	 * can reliable say we messed up our state. See the above two
3288	 * gotos for reasons why we could possibly end up here.
3289	 */
3290	WARN_ON(1);
3291
3292	return 0;
3293}
3294
3295struct lock_chain lock_chains[MAX_LOCKDEP_CHAINS];
3296static DECLARE_BITMAP(lock_chains_in_use, MAX_LOCKDEP_CHAINS);
3297static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS];
3298unsigned long nr_zapped_lock_chains;
3299unsigned int nr_free_chain_hlocks;	/* Free chain_hlocks in buckets */
3300unsigned int nr_lost_chain_hlocks;	/* Lost chain_hlocks */
3301unsigned int nr_large_chain_blocks;	/* size > MAX_CHAIN_BUCKETS */
3302
3303/*
3304 * The first 2 chain_hlocks entries in the chain block in the bucket
3305 * list contains the following meta data:
3306 *
3307 *   entry[0]:
3308 *     Bit    15 - always set to 1 (it is not a class index)
3309 *     Bits 0-14 - upper 15 bits of the next block index
3310 *   entry[1]    - lower 16 bits of next block index
3311 *
3312 * A next block index of all 1 bits means it is the end of the list.
3313 *
3314 * On the unsized bucket (bucket-0), the 3rd and 4th entries contain
3315 * the chain block size:
3316 *
3317 *   entry[2] - upper 16 bits of the chain block size
3318 *   entry[3] - lower 16 bits of the chain block size
3319 */
3320#define MAX_CHAIN_BUCKETS	16
3321#define CHAIN_BLK_FLAG		(1U << 15)
3322#define CHAIN_BLK_LIST_END	0xFFFFU
3323
3324static int chain_block_buckets[MAX_CHAIN_BUCKETS];
3325
3326static inline int size_to_bucket(int size)
3327{
3328	if (size > MAX_CHAIN_BUCKETS)
3329		return 0;
3330
3331	return size - 1;
3332}
3333
3334/*
3335 * Iterate all the chain blocks in a bucket.
3336 */
3337#define for_each_chain_block(bucket, prev, curr)		\
3338	for ((prev) = -1, (curr) = chain_block_buckets[bucket];	\
3339	     (curr) >= 0;					\
3340	     (prev) = (curr), (curr) = chain_block_next(curr))
3341
3342/*
3343 * next block or -1
3344 */
3345static inline int chain_block_next(int offset)
3346{
3347	int next = chain_hlocks[offset];
3348
3349	WARN_ON_ONCE(!(next & CHAIN_BLK_FLAG));
3350
3351	if (next == CHAIN_BLK_LIST_END)
3352		return -1;
3353
3354	next &= ~CHAIN_BLK_FLAG;
3355	next <<= 16;
3356	next |= chain_hlocks[offset + 1];
3357
3358	return next;
3359}
3360
3361/*
3362 * bucket-0 only
3363 */
3364static inline int chain_block_size(int offset)
3365{
3366	return (chain_hlocks[offset + 2] << 16) | chain_hlocks[offset + 3];
3367}
3368
3369static inline void init_chain_block(int offset, int next, int bucket, int size)
3370{
3371	chain_hlocks[offset] = (next >> 16) | CHAIN_BLK_FLAG;
3372	chain_hlocks[offset + 1] = (u16)next;
3373
3374	if (size && !bucket) {
3375		chain_hlocks[offset + 2] = size >> 16;
3376		chain_hlocks[offset + 3] = (u16)size;
3377	}
3378}
3379
3380static inline void add_chain_block(int offset, int size)
3381{
3382	int bucket = size_to_bucket(size);
3383	int next = chain_block_buckets[bucket];
3384	int prev, curr;
3385
3386	if (unlikely(size < 2)) {
3387		/*
3388		 * We can't store single entries on the freelist. Leak them.
3389		 *
3390		 * One possible way out would be to uniquely mark them, other
3391		 * than with CHAIN_BLK_FLAG, such that we can recover them when
3392		 * the block before it is re-added.
3393		 */
3394		if (size)
3395			nr_lost_chain_hlocks++;
3396		return;
3397	}
3398
3399	nr_free_chain_hlocks += size;
3400	if (!bucket) {
3401		nr_large_chain_blocks++;
3402
3403		/*
3404		 * Variable sized, sort large to small.
3405		 */
3406		for_each_chain_block(0, prev, curr) {
3407			if (size >= chain_block_size(curr))
3408				break;
3409		}
3410		init_chain_block(offset, curr, 0, size);
3411		if (prev < 0)
3412			chain_block_buckets[0] = offset;
3413		else
3414			init_chain_block(prev, offset, 0, 0);
3415		return;
3416	}
3417	/*
3418	 * Fixed size, add to head.
3419	 */
3420	init_chain_block(offset, next, bucket, size);
3421	chain_block_buckets[bucket] = offset;
3422}
3423
3424/*
3425 * Only the first block in the list can be deleted.
3426 *
3427 * For the variable size bucket[0], the first block (the largest one) is
3428 * returned, broken up and put back into the pool. So if a chain block of
3429 * length > MAX_CHAIN_BUCKETS is ever used and zapped, it will just be
3430 * queued up after the primordial chain block and never be used until the
3431 * hlock entries in the primordial chain block is almost used up. That
3432 * causes fragmentation and reduce allocation efficiency. That can be
3433 * monitored by looking at the "large chain blocks" number in lockdep_stats.
3434 */
3435static inline void del_chain_block(int bucket, int size, int next)
3436{
3437	nr_free_chain_hlocks -= size;
3438	chain_block_buckets[bucket] = next;
3439
3440	if (!bucket)
3441		nr_large_chain_blocks--;
3442}
3443
3444static void init_chain_block_buckets(void)
3445{
3446	int i;
3447
3448	for (i = 0; i < MAX_CHAIN_BUCKETS; i++)
3449		chain_block_buckets[i] = -1;
3450
3451	add_chain_block(0, ARRAY_SIZE(chain_hlocks));
3452}
3453
3454/*
3455 * Return offset of a chain block of the right size or -1 if not found.
3456 *
3457 * Fairly simple worst-fit allocator with the addition of a number of size
3458 * specific free lists.
3459 */
3460static int alloc_chain_hlocks(int req)
3461{
3462	int bucket, curr, size;
3463
3464	/*
3465	 * We rely on the MSB to act as an escape bit to denote freelist
3466	 * pointers. Make sure this bit isn't set in 'normal' class_idx usage.
3467	 */
3468	BUILD_BUG_ON((MAX_LOCKDEP_KEYS-1) & CHAIN_BLK_FLAG);
3469
3470	init_data_structures_once();
3471
3472	if (nr_free_chain_hlocks < req)
3473		return -1;
3474
3475	/*
3476	 * We require a minimum of 2 (u16) entries to encode a freelist
3477	 * 'pointer'.
3478	 */
3479	req = max(req, 2);
3480	bucket = size_to_bucket(req);
3481	curr = chain_block_buckets[bucket];
3482
3483	if (bucket) {
3484		if (curr >= 0) {
3485			del_chain_block(bucket, req, chain_block_next(curr));
3486			return curr;
3487		}
3488		/* Try bucket 0 */
3489		curr = chain_block_buckets[0];
3490	}
3491
3492	/*
3493	 * The variable sized freelist is sorted by size; the first entry is
3494	 * the largest. Use it if it fits.
3495	 */
3496	if (curr >= 0) {
3497		size = chain_block_size(curr);
3498		if (likely(size >= req)) {
3499			del_chain_block(0, size, chain_block_next(curr));
3500			if (size > req)
3501				add_chain_block(curr + req, size - req);
3502			return curr;
3503		}
3504	}
3505
3506	/*
3507	 * Last resort, split a block in a larger sized bucket.
3508	 */
3509	for (size = MAX_CHAIN_BUCKETS; size > req; size--) {
3510		bucket = size_to_bucket(size);
3511		curr = chain_block_buckets[bucket];
3512		if (curr < 0)
3513			continue;
3514
3515		del_chain_block(bucket, size, chain_block_next(curr));
3516		add_chain_block(curr + req, size - req);
3517		return curr;
3518	}
3519
3520	return -1;
3521}
3522
3523static inline void free_chain_hlocks(int base, int size)
3524{
3525	add_chain_block(base, max(size, 2));
3526}
3527
3528struct lock_class *lock_chain_get_class(struct lock_chain *chain, int i)
3529{
3530	u16 chain_hlock = chain_hlocks[chain->base + i];
3531	unsigned int class_idx = chain_hlock_class_idx(chain_hlock);
3532
3533	return lock_classes + class_idx;
3534}
3535
3536/*
3537 * Returns the index of the first held_lock of the current chain
3538 */
3539static inline int get_first_held_lock(struct task_struct *curr,
3540					struct held_lock *hlock)
3541{
3542	int i;
3543	struct held_lock *hlock_curr;
3544
3545	for (i = curr->lockdep_depth - 1; i >= 0; i--) {
3546		hlock_curr = curr->held_locks + i;
3547		if (hlock_curr->irq_context != hlock->irq_context)
3548			break;
3549
3550	}
3551
3552	return ++i;
3553}
3554
3555#ifdef CONFIG_DEBUG_LOCKDEP
3556/*
3557 * Returns the next chain_key iteration
3558 */
3559static u64 print_chain_key_iteration(u16 hlock_id, u64 chain_key)
3560{
3561	u64 new_chain_key = iterate_chain_key(chain_key, hlock_id);
3562
3563	printk(" hlock_id:%d -> chain_key:%016Lx",
3564		(unsigned int)hlock_id,
3565		(unsigned long long)new_chain_key);
3566	return new_chain_key;
3567}
3568
3569static void
3570print_chain_keys_held_locks(struct task_struct *curr, struct held_lock *hlock_next)
3571{
3572	struct held_lock *hlock;
3573	u64 chain_key = INITIAL_CHAIN_KEY;
3574	int depth = curr->lockdep_depth;
3575	int i = get_first_held_lock(curr, hlock_next);
3576
3577	printk("depth: %u (irq_context %u)\n", depth - i + 1,
3578		hlock_next->irq_context);
3579	for (; i < depth; i++) {
3580		hlock = curr->held_locks + i;
3581		chain_key = print_chain_key_iteration(hlock_id(hlock), chain_key);
3582
3583		print_lock(hlock);
3584	}
3585
3586	print_chain_key_iteration(hlock_id(hlock_next), chain_key);
3587	print_lock(hlock_next);
3588}
3589
3590static void print_chain_keys_chain(struct lock_chain *chain)
3591{
3592	int i;
3593	u64 chain_key = INITIAL_CHAIN_KEY;
3594	u16 hlock_id;
3595
3596	printk("depth: %u\n", chain->depth);
3597	for (i = 0; i < chain->depth; i++) {
3598		hlock_id = chain_hlocks[chain->base + i];
3599		chain_key = print_chain_key_iteration(hlock_id, chain_key);
3600
3601		print_lock_name(NULL, lock_classes + chain_hlock_class_idx(hlock_id));
3602		printk("\n");
3603	}
3604}
3605
3606static void print_collision(struct task_struct *curr,
3607			struct held_lock *hlock_next,
3608			struct lock_chain *chain)
3609{
3610	pr_warn("\n");
3611	pr_warn("============================\n");
3612	pr_warn("WARNING: chain_key collision\n");
3613	print_kernel_ident();
3614	pr_warn("----------------------------\n");
3615	pr_warn("%s/%d: ", current->comm, task_pid_nr(current));
3616	pr_warn("Hash chain already cached but the contents don't match!\n");
3617
3618	pr_warn("Held locks:");
3619	print_chain_keys_held_locks(curr, hlock_next);
3620
3621	pr_warn("Locks in cached chain:");
3622	print_chain_keys_chain(chain);
3623
3624	pr_warn("\nstack backtrace:\n");
3625	dump_stack();
3626}
3627#endif
3628
3629/*
3630 * Checks whether the chain and the current held locks are consistent
3631 * in depth and also in content. If they are not it most likely means
3632 * that there was a collision during the calculation of the chain_key.
3633 * Returns: 0 not passed, 1 passed
3634 */
3635static int check_no_collision(struct task_struct *curr,
3636			struct held_lock *hlock,
3637			struct lock_chain *chain)
3638{
3639#ifdef CONFIG_DEBUG_LOCKDEP
3640	int i, j, id;
3641
3642	i = get_first_held_lock(curr, hlock);
3643
3644	if (DEBUG_LOCKS_WARN_ON(chain->depth != curr->lockdep_depth - (i - 1))) {
3645		print_collision(curr, hlock, chain);
3646		return 0;
3647	}
3648
3649	for (j = 0; j < chain->depth - 1; j++, i++) {
3650		id = hlock_id(&curr->held_locks[i]);
3651
3652		if (DEBUG_LOCKS_WARN_ON(chain_hlocks[chain->base + j] != id)) {
3653			print_collision(curr, hlock, chain);
3654			return 0;
3655		}
3656	}
3657#endif
3658	return 1;
3659}
3660
3661/*
3662 * Given an index that is >= -1, return the index of the next lock chain.
3663 * Return -2 if there is no next lock chain.
3664 */
3665long lockdep_next_lockchain(long i)
3666{
3667	i = find_next_bit(lock_chains_in_use, ARRAY_SIZE(lock_chains), i + 1);
3668	return i < ARRAY_SIZE(lock_chains) ? i : -2;
3669}
3670
3671unsigned long lock_chain_count(void)
3672{
3673	return bitmap_weight(lock_chains_in_use, ARRAY_SIZE(lock_chains));
3674}
3675
3676/* Must be called with the graph lock held. */
3677static struct lock_chain *alloc_lock_chain(void)
3678{
3679	int idx = find_first_zero_bit(lock_chains_in_use,
3680				      ARRAY_SIZE(lock_chains));
3681
3682	if (unlikely(idx >= ARRAY_SIZE(lock_chains)))
3683		return NULL;
3684	__set_bit(idx, lock_chains_in_use);
3685	return lock_chains + idx;
3686}
3687
3688/*
3689 * Adds a dependency chain into chain hashtable. And must be called with
3690 * graph_lock held.
3691 *
3692 * Return 0 if fail, and graph_lock is released.
3693 * Return 1 if succeed, with graph_lock held.
3694 */
3695static inline int add_chain_cache(struct task_struct *curr,
3696				  struct held_lock *hlock,
3697				  u64 chain_key)
3698{
3699	struct hlist_head *hash_head = chainhashentry(chain_key);
3700	struct lock_chain *chain;
3701	int i, j;
3702
3703	/*
3704	 * The caller must hold the graph lock, ensure we've got IRQs
3705	 * disabled to make this an IRQ-safe lock.. for recursion reasons
3706	 * lockdep won't complain about its own locking errors.
3707	 */
3708	if (lockdep_assert_locked())
3709		return 0;
3710
3711	chain = alloc_lock_chain();
3712	if (!chain) {
3713		if (!debug_locks_off_graph_unlock())
3714			return 0;
3715
3716		print_lockdep_off("BUG: MAX_LOCKDEP_CHAINS too low!");
3717		dump_stack();
3718		return 0;
3719	}
3720	chain->chain_key = chain_key;
3721	chain->irq_context = hlock->irq_context;
3722	i = get_first_held_lock(curr, hlock);
3723	chain->depth = curr->lockdep_depth + 1 - i;
3724
3725	BUILD_BUG_ON((1UL << 24) <= ARRAY_SIZE(chain_hlocks));
3726	BUILD_BUG_ON((1UL << 6)  <= ARRAY_SIZE(curr->held_locks));
3727	BUILD_BUG_ON((1UL << 8*sizeof(chain_hlocks[0])) <= ARRAY_SIZE(lock_classes));
3728
3729	j = alloc_chain_hlocks(chain->depth);
3730	if (j < 0) {
3731		if (!debug_locks_off_graph_unlock())
3732			return 0;
3733
3734		print_lockdep_off("BUG: MAX_LOCKDEP_CHAIN_HLOCKS too low!");
3735		dump_stack();
3736		return 0;
3737	}
3738
3739	chain->base = j;
3740	for (j = 0; j < chain->depth - 1; j++, i++) {
3741		int lock_id = hlock_id(curr->held_locks + i);
3742
3743		chain_hlocks[chain->base + j] = lock_id;
3744	}
3745	chain_hlocks[chain->base + j] = hlock_id(hlock);
3746	hlist_add_head_rcu(&chain->entry, hash_head);
3747	debug_atomic_inc(chain_lookup_misses);
3748	inc_chains(chain->irq_context);
3749
3750	return 1;
3751}
3752
3753/*
3754 * Look up a dependency chain. Must be called with either the graph lock or
3755 * the RCU read lock held.
3756 */
3757static inline struct lock_chain *lookup_chain_cache(u64 chain_key)
3758{
3759	struct hlist_head *hash_head = chainhashentry(chain_key);
3760	struct lock_chain *chain;
3761
3762	hlist_for_each_entry_rcu(chain, hash_head, entry) {
3763		if (READ_ONCE(chain->chain_key) == chain_key) {
3764			debug_atomic_inc(chain_lookup_hits);
3765			return chain;
3766		}
3767	}
3768	return NULL;
3769}
3770
3771/*
3772 * If the key is not present yet in dependency chain cache then
3773 * add it and return 1 - in this case the new dependency chain is
3774 * validated. If the key is already hashed, return 0.
3775 * (On return with 1 graph_lock is held.)
3776 */
3777static inline int lookup_chain_cache_add(struct task_struct *curr,
3778					 struct held_lock *hlock,
3779					 u64 chain_key)
3780{
3781	struct lock_class *class = hlock_class(hlock);
3782	struct lock_chain *chain = lookup_chain_cache(chain_key);
3783
3784	if (chain) {
3785cache_hit:
3786		if (!check_no_collision(curr, hlock, chain))
3787			return 0;
3788
3789		if (very_verbose(class)) {
3790			printk("\nhash chain already cached, key: "
3791					"%016Lx tail class: [%px] %s\n",
3792					(unsigned long long)chain_key,
3793					class->key, class->name);
3794		}
3795
3796		return 0;
3797	}
3798
3799	if (very_verbose(class)) {
3800		printk("\nnew hash chain, key: %016Lx tail class: [%px] %s\n",
3801			(unsigned long long)chain_key, class->key, class->name);
3802	}
3803
3804	if (!graph_lock())
3805		return 0;
3806
3807	/*
3808	 * We have to walk the chain again locked - to avoid duplicates:
3809	 */
3810	chain = lookup_chain_cache(chain_key);
3811	if (chain) {
3812		graph_unlock();
3813		goto cache_hit;
3814	}
3815
3816	if (!add_chain_cache(curr, hlock, chain_key))
3817		return 0;
3818
3819	return 1;
3820}
3821
3822static int validate_chain(struct task_struct *curr,
3823			  struct held_lock *hlock,
3824			  int chain_head, u64 chain_key)
3825{
3826	/*
3827	 * Trylock needs to maintain the stack of held locks, but it
3828	 * does not add new dependencies, because trylock can be done
3829	 * in any order.
3830	 *
3831	 * We look up the chain_key and do the O(N^2) check and update of
3832	 * the dependencies only if this is a new dependency chain.
3833	 * (If lookup_chain_cache_add() return with 1 it acquires
3834	 * graph_lock for us)
3835	 */
3836	if (!hlock->trylock && hlock->check &&
3837	    lookup_chain_cache_add(curr, hlock, chain_key)) {
3838		/*
3839		 * Check whether last held lock:
3840		 *
3841		 * - is irq-safe, if this lock is irq-unsafe
3842		 * - is softirq-safe, if this lock is hardirq-unsafe
3843		 *
3844		 * And check whether the new lock's dependency graph
3845		 * could lead back to the previous lock:
3846		 *
3847		 * - within the current held-lock stack
3848		 * - across our accumulated lock dependency records
3849		 *
3850		 * any of these scenarios could lead to a deadlock.
3851		 */
3852		/*
3853		 * The simple case: does the current hold the same lock
3854		 * already?
3855		 */
3856		int ret = check_deadlock(curr, hlock);
3857
3858		if (!ret)
3859			return 0;
3860		/*
3861		 * Add dependency only if this lock is not the head
3862		 * of the chain, and if the new lock introduces no more
3863		 * lock dependency (because we already hold a lock with the
3864		 * same lock class) nor deadlock (because the nest_lock
3865		 * serializes nesting locks), see the comments for
3866		 * check_deadlock().
3867		 */
3868		if (!chain_head && ret != 2) {
3869			if (!check_prevs_add(curr, hlock))
3870				return 0;
3871		}
3872
3873		graph_unlock();
3874	} else {
3875		/* after lookup_chain_cache_add(): */
3876		if (unlikely(!debug_locks))
3877			return 0;
3878	}
3879
3880	return 1;
3881}
3882#else
3883static inline int validate_chain(struct task_struct *curr,
3884				 struct held_lock *hlock,
3885				 int chain_head, u64 chain_key)
3886{
3887	return 1;
3888}
3889
3890static void init_chain_block_buckets(void)	{ }
3891#endif /* CONFIG_PROVE_LOCKING */
3892
3893/*
3894 * We are building curr_chain_key incrementally, so double-check
3895 * it from scratch, to make sure that it's done correctly:
3896 */
3897static void check_chain_key(struct task_struct *curr)
3898{
3899#ifdef CONFIG_DEBUG_LOCKDEP
3900	struct held_lock *hlock, *prev_hlock = NULL;
3901	unsigned int i;
3902	u64 chain_key = INITIAL_CHAIN_KEY;
3903
3904	for (i = 0; i < curr->lockdep_depth; i++) {
3905		hlock = curr->held_locks + i;
3906		if (chain_key != hlock->prev_chain_key) {
3907			debug_locks_off();
3908			/*
3909			 * We got mighty confused, our chain keys don't match
3910			 * with what we expect, someone trample on our task state?
3911			 */
3912			WARN(1, "hm#1, depth: %u [%u], %016Lx != %016Lx\n",
3913				curr->lockdep_depth, i,
3914				(unsigned long long)chain_key,
3915				(unsigned long long)hlock->prev_chain_key);
3916			return;
3917		}
3918
3919		/*
3920		 * hlock->class_idx can't go beyond MAX_LOCKDEP_KEYS, but is
3921		 * it registered lock class index?
3922		 */
3923		if (DEBUG_LOCKS_WARN_ON(!test_bit(hlock->class_idx, lock_classes_in_use)))
3924			return;
3925
3926		if (prev_hlock && (prev_hlock->irq_context !=
3927							hlock->irq_context))
3928			chain_key = INITIAL_CHAIN_KEY;
3929		chain_key = iterate_chain_key(chain_key, hlock_id(hlock));
3930		prev_hlock = hlock;
3931	}
3932	if (chain_key != curr->curr_chain_key) {
3933		debug_locks_off();
3934		/*
3935		 * More smoking hash instead of calculating it, damn see these
3936		 * numbers float.. I bet that a pink elephant stepped on my memory.
3937		 */
3938		WARN(1, "hm#2, depth: %u [%u], %016Lx != %016Lx\n",
3939			curr->lockdep_depth, i,
3940			(unsigned long long)chain_key,
3941			(unsigned long long)curr->curr_chain_key);
3942	}
3943#endif
3944}
3945
3946#ifdef CONFIG_PROVE_LOCKING
3947static int mark_lock(struct task_struct *curr, struct held_lock *this,
3948		     enum lock_usage_bit new_bit);
3949
3950static void print_usage_bug_scenario(struct held_lock *lock)
3951{
3952	struct lock_class *class = hlock_class(lock);
3953
3954	printk(" Possible unsafe locking scenario:\n\n");
3955	printk("       CPU0\n");
3956	printk("       ----\n");
3957	printk("  lock(");
3958	__print_lock_name(lock, class);
3959	printk(KERN_CONT ");\n");
3960	printk("  <Interrupt>\n");
3961	printk("    lock(");
3962	__print_lock_name(lock, class);
3963	printk(KERN_CONT ");\n");
3964	printk("\n *** DEADLOCK ***\n\n");
3965}
3966
3967static void
3968print_usage_bug(struct task_struct *curr, struct held_lock *this,
3969		enum lock_usage_bit prev_bit, enum lock_usage_bit new_bit)
3970{
3971	if (!debug_locks_off() || debug_locks_silent)
3972		return;
3973
3974	pr_warn("\n");
3975	pr_warn("================================\n");
3976	pr_warn("WARNING: inconsistent lock state\n");
3977	print_kernel_ident();
3978	pr_warn("--------------------------------\n");
3979
3980	pr_warn("inconsistent {%s} -> {%s} usage.\n",
3981		usage_str[prev_bit], usage_str[new_bit]);
3982
3983	pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] takes:\n",
3984		curr->comm, task_pid_nr(curr),
3985		lockdep_hardirq_context(), hardirq_count() >> HARDIRQ_SHIFT,
3986		lockdep_softirq_context(curr), softirq_count() >> SOFTIRQ_SHIFT,
3987		lockdep_hardirqs_enabled(),
3988		lockdep_softirqs_enabled(curr));
3989	print_lock(this);
3990
3991	pr_warn("{%s} state was registered at:\n", usage_str[prev_bit]);
3992	print_lock_trace(hlock_class(this)->usage_traces[prev_bit], 1);
3993
3994	print_irqtrace_events(curr);
3995	pr_warn("\nother info that might help us debug this:\n");
3996	print_usage_bug_scenario(this);
3997
3998	lockdep_print_held_locks(curr);
3999
4000	pr_warn("\nstack backtrace:\n");
4001	dump_stack();
4002}
4003
4004/*
4005 * Print out an error if an invalid bit is set:
4006 */
4007static inline int
4008valid_state(struct task_struct *curr, struct held_lock *this,
4009	    enum lock_usage_bit new_bit, enum lock_usage_bit bad_bit)
4010{
4011	if (unlikely(hlock_class(this)->usage_mask & (1 << bad_bit))) {
4012		graph_unlock();
4013		print_usage_bug(curr, this, bad_bit, new_bit);
4014		return 0;
4015	}
4016	return 1;
4017}
4018
4019
4020/*
4021 * print irq inversion bug:
4022 */
4023static void
4024print_irq_inversion_bug(struct task_struct *curr,
4025			struct lock_list *root, struct lock_list *other,
4026			struct held_lock *this, int forwards,
4027			const char *irqclass)
4028{
4029	struct lock_list *entry = other;
4030	struct lock_list *middle = NULL;
4031	int depth;
4032
4033	if (!debug_locks_off_graph_unlock() || debug_locks_silent)
4034		return;
4035
4036	pr_warn("\n");
4037	pr_warn("========================================================\n");
4038	pr_warn("WARNING: possible irq lock inversion dependency detected\n");
4039	print_kernel_ident();
4040	pr_warn("--------------------------------------------------------\n");
4041	pr_warn("%s/%d just changed the state of lock:\n",
4042		curr->comm, task_pid_nr(curr));
4043	print_lock(this);
4044	if (forwards)
4045		pr_warn("but this lock took another, %s-unsafe lock in the past:\n", irqclass);
4046	else
4047		pr_warn("but this lock was taken by another, %s-safe lock in the past:\n", irqclass);
4048	print_lock_name(NULL, other->class);
4049	pr_warn("\n\nand interrupts could create inverse lock ordering between them.\n\n");
4050
4051	pr_warn("\nother info that might help us debug this:\n");
4052
4053	/* Find a middle lock (if one exists) */
4054	depth = get_lock_depth(other);
4055	do {
4056		if (depth == 0 && (entry != root)) {
4057			pr_warn("lockdep:%s bad path found in chain graph\n", __func__);
4058			break;
4059		}
4060		middle = entry;
4061		entry = get_lock_parent(entry);
4062		depth--;
4063	} while (entry && entry != root && (depth >= 0));
4064	if (forwards)
4065		print_irq_lock_scenario(root, other,
4066			middle ? middle->class : root->class, other->class);
4067	else
4068		print_irq_lock_scenario(other, root,
4069			middle ? middle->class : other->class, root->class);
4070
4071	lockdep_print_held_locks(curr);
4072
4073	pr_warn("\nthe shortest dependencies between 2nd lock and 1st lock:\n");
4074	root->trace = save_trace();
4075	if (!root->trace)
4076		return;
4077	print_shortest_lock_dependencies(other, root);
4078
4079	pr_warn("\nstack backtrace:\n");
4080	dump_stack();
4081}
4082
4083/*
4084 * Prove that in the forwards-direction subgraph starting at <this>
4085 * there is no lock matching <mask>:
4086 */
4087static int
4088check_usage_forwards(struct task_struct *curr, struct held_lock *this,
4089		     enum lock_usage_bit bit)
4090{
4091	enum bfs_result ret;
4092	struct lock_list root;
4093	struct lock_list *target_entry;
4094	enum lock_usage_bit read_bit = bit + LOCK_USAGE_READ_MASK;
4095	unsigned usage_mask = lock_flag(bit) | lock_flag(read_bit);
4096
4097	bfs_init_root(&root, this);
4098	ret = find_usage_forwards(&root, usage_mask, &target_entry);
4099	if (bfs_error(ret)) {
4100		print_bfs_bug(ret);
4101		return 0;
4102	}
4103	if (ret == BFS_RNOMATCH)
4104		return 1;
4105
4106	/* Check whether write or read usage is the match */
4107	if (target_entry->class->usage_mask & lock_flag(bit)) {
4108		print_irq_inversion_bug(curr, &root, target_entry,
4109					this, 1, state_name(bit));
4110	} else {
4111		print_irq_inversion_bug(curr, &root, target_entry,
4112					this, 1, state_name(read_bit));
4113	}
4114
4115	return 0;
4116}
4117
4118/*
4119 * Prove that in the backwards-direction subgraph starting at <this>
4120 * there is no lock matching <mask>:
4121 */
4122static int
4123check_usage_backwards(struct task_struct *curr, struct held_lock *this,
4124		      enum lock_usage_bit bit)
4125{
4126	enum bfs_result ret;
4127	struct lock_list root;
4128	struct lock_list *target_entry;
4129	enum lock_usage_bit read_bit = bit + LOCK_USAGE_READ_MASK;
4130	unsigned usage_mask = lock_flag(bit) | lock_flag(read_bit);
4131
4132	bfs_init_rootb(&root, this);
4133	ret = find_usage_backwards(&root, usage_mask, &target_entry);
4134	if (bfs_error(ret)) {
4135		print_bfs_bug(ret);
4136		return 0;
4137	}
4138	if (ret == BFS_RNOMATCH)
4139		return 1;
4140
4141	/* Check whether write or read usage is the match */
4142	if (target_entry->class->usage_mask & lock_flag(bit)) {
4143		print_irq_inversion_bug(curr, &root, target_entry,
4144					this, 0, state_name(bit));
4145	} else {
4146		print_irq_inversion_bug(curr, &root, target_entry,
4147					this, 0, state_name(read_bit));
4148	}
4149
4150	return 0;
4151}
4152
4153void print_irqtrace_events(struct task_struct *curr)
4154{
4155	const struct irqtrace_events *trace = &curr->irqtrace;
4156
4157	printk("irq event stamp: %u\n", trace->irq_events);
4158	printk("hardirqs last  enabled at (%u): [<%px>] %pS\n",
4159		trace->hardirq_enable_event, (void *)trace->hardirq_enable_ip,
4160		(void *)trace->hardirq_enable_ip);
4161	printk("hardirqs last disabled at (%u): [<%px>] %pS\n",
4162		trace->hardirq_disable_event, (void *)trace->hardirq_disable_ip,
4163		(void *)trace->hardirq_disable_ip);
4164	printk("softirqs last  enabled at (%u): [<%px>] %pS\n",
4165		trace->softirq_enable_event, (void *)trace->softirq_enable_ip,
4166		(void *)trace->softirq_enable_ip);
4167	printk("softirqs last disabled at (%u): [<%px>] %pS\n",
4168		trace->softirq_disable_event, (void *)trace->softirq_disable_ip,
4169		(void *)trace->softirq_disable_ip);
4170}
4171
4172static int HARDIRQ_verbose(struct lock_class *class)
4173{
4174#if HARDIRQ_VERBOSE
4175	return class_filter(class);
4176#endif
4177	return 0;
4178}
4179
4180static int SOFTIRQ_verbose(struct lock_class *class)
4181{
4182#if SOFTIRQ_VERBOSE
4183	return class_filter(class);
4184#endif
4185	return 0;
4186}
4187
4188static int (*state_verbose_f[])(struct lock_class *class) = {
4189#define LOCKDEP_STATE(__STATE) \
4190	__STATE##_verbose,
4191#include "lockdep_states.h"
4192#undef LOCKDEP_STATE
4193};
4194
4195static inline int state_verbose(enum lock_usage_bit bit,
4196				struct lock_class *class)
4197{
4198	return state_verbose_f[bit >> LOCK_USAGE_DIR_MASK](class);
4199}
4200
4201typedef int (*check_usage_f)(struct task_struct *, struct held_lock *,
4202			     enum lock_usage_bit bit, const char *name);
4203
4204static int
4205mark_lock_irq(struct task_struct *curr, struct held_lock *this,
4206		enum lock_usage_bit new_bit)
4207{
4208	int excl_bit = exclusive_bit(new_bit);
4209	int read = new_bit & LOCK_USAGE_READ_MASK;
4210	int dir = new_bit & LOCK_USAGE_DIR_MASK;
4211
4212	/*
4213	 * Validate that this particular lock does not have conflicting
4214	 * usage states.
4215	 */
4216	if (!valid_state(curr, this, new_bit, excl_bit))
4217		return 0;
4218
4219	/*
4220	 * Check for read in write conflicts
4221	 */
4222	if (!read && !valid_state(curr, this, new_bit,
4223				  excl_bit + LOCK_USAGE_READ_MASK))
4224		return 0;
4225
4226
4227	/*
4228	 * Validate that the lock dependencies don't have conflicting usage
4229	 * states.
4230	 */
4231	if (dir) {
4232		/*
4233		 * mark ENABLED has to look backwards -- to ensure no dependee
4234		 * has USED_IN state, which, again, would allow  recursion deadlocks.
4235		 */
4236		if (!check_usage_backwards(curr, this, excl_bit))
4237			return 0;
4238	} else {
4239		/*
4240		 * mark USED_IN has to look forwards -- to ensure no dependency
4241		 * has ENABLED state, which would allow recursion deadlocks.
4242		 */
4243		if (!check_usage_forwards(curr, this, excl_bit))
4244			return 0;
4245	}
4246
4247	if (state_verbose(new_bit, hlock_class(this)))
4248		return 2;
4249
4250	return 1;
4251}
4252
4253/*
4254 * Mark all held locks with a usage bit:
4255 */
4256static int
4257mark_held_locks(struct task_struct *curr, enum lock_usage_bit base_bit)
4258{
4259	struct held_lock *hlock;
4260	int i;
4261
4262	for (i = 0; i < curr->lockdep_depth; i++) {
4263		enum lock_usage_bit hlock_bit = base_bit;
4264		hlock = curr->held_locks + i;
4265
4266		if (hlock->read)
4267			hlock_bit += LOCK_USAGE_READ_MASK;
4268
4269		BUG_ON(hlock_bit >= LOCK_USAGE_STATES);
4270
4271		if (!hlock->check)
4272			continue;
4273
4274		if (!mark_lock(curr, hlock, hlock_bit))
4275			return 0;
4276	}
4277
4278	return 1;
4279}
4280
4281/*
4282 * Hardirqs will be enabled:
4283 */
4284static void __trace_hardirqs_on_caller(void)
4285{
4286	struct task_struct *curr = current;
4287
4288	/*
4289	 * We are going to turn hardirqs on, so set the
4290	 * usage bit for all held locks:
4291	 */
4292	if (!mark_held_locks(curr, LOCK_ENABLED_HARDIRQ))
4293		return;
4294	/*
4295	 * If we have softirqs enabled, then set the usage
4296	 * bit for all held locks. (disabled hardirqs prevented
4297	 * this bit from being set before)
4298	 */
4299	if (curr->softirqs_enabled)
4300		mark_held_locks(curr, LOCK_ENABLED_SOFTIRQ);
4301}
4302
4303/**
4304 * lockdep_hardirqs_on_prepare - Prepare for enabling interrupts
4305 *
4306 * Invoked before a possible transition to RCU idle from exit to user or
4307 * guest mode. This ensures that all RCU operations are done before RCU
4308 * stops watching. After the RCU transition lockdep_hardirqs_on() has to be
4309 * invoked to set the final state.
4310 */
4311void lockdep_hardirqs_on_prepare(void)
4312{
4313	if (unlikely(!debug_locks))
4314		return;
4315
4316	/*
4317	 * NMIs do not (and cannot) track lock dependencies, nothing to do.
4318	 */
4319	if (unlikely(in_nmi()))
4320		return;
4321
4322	if (unlikely(this_cpu_read(lockdep_recursion)))
4323		return;
4324
4325	if (unlikely(lockdep_hardirqs_enabled())) {
4326		/*
4327		 * Neither irq nor preemption are disabled here
4328		 * so this is racy by nature but losing one hit
4329		 * in a stat is not a big deal.
4330		 */
4331		__debug_atomic_inc(redundant_hardirqs_on);
4332		return;
4333	}
4334
4335	/*
4336	 * We're enabling irqs and according to our state above irqs weren't
4337	 * already enabled, yet we find the hardware thinks they are in fact
4338	 * enabled.. someone messed up their IRQ state tracing.
4339	 */
4340	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4341		return;
4342
4343	/*
4344	 * See the fine text that goes along with this variable definition.
4345	 */
4346	if (DEBUG_LOCKS_WARN_ON(early_boot_irqs_disabled))
4347		return;
4348
4349	/*
4350	 * Can't allow enabling interrupts while in an interrupt handler,
4351	 * that's general bad form and such. Recursion, limited stack etc..
4352	 */
4353	if (DEBUG_LOCKS_WARN_ON(lockdep_hardirq_context()))
4354		return;
4355
4356	current->hardirq_chain_key = current->curr_chain_key;
4357
4358	lockdep_recursion_inc();
4359	__trace_hardirqs_on_caller();
4360	lockdep_recursion_finish();
4361}
4362EXPORT_SYMBOL_GPL(lockdep_hardirqs_on_prepare);
4363
4364void noinstr lockdep_hardirqs_on(unsigned long ip)
4365{
4366	struct irqtrace_events *trace = &current->irqtrace;
4367
4368	if (unlikely(!debug_locks))
4369		return;
4370
4371	/*
4372	 * NMIs can happen in the middle of local_irq_{en,dis}able() where the
4373	 * tracking state and hardware state are out of sync.
4374	 *
4375	 * NMIs must save lockdep_hardirqs_enabled() to restore IRQ state from,
4376	 * and not rely on hardware state like normal interrupts.
4377	 */
4378	if (unlikely(in_nmi())) {
4379		if (!IS_ENABLED(CONFIG_TRACE_IRQFLAGS_NMI))
4380			return;
4381
4382		/*
4383		 * Skip:
4384		 *  - recursion check, because NMI can hit lockdep;
4385		 *  - hardware state check, because above;
4386		 *  - chain_key check, see lockdep_hardirqs_on_prepare().
4387		 */
4388		goto skip_checks;
4389	}
4390
4391	if (unlikely(this_cpu_read(lockdep_recursion)))
4392		return;
4393
4394	if (lockdep_hardirqs_enabled()) {
4395		/*
4396		 * Neither irq nor preemption are disabled here
4397		 * so this is racy by nature but losing one hit
4398		 * in a stat is not a big deal.
4399		 */
4400		__debug_atomic_inc(redundant_hardirqs_on);
4401		return;
4402	}
4403
4404	/*
4405	 * We're enabling irqs and according to our state above irqs weren't
4406	 * already enabled, yet we find the hardware thinks they are in fact
4407	 * enabled.. someone messed up their IRQ state tracing.
4408	 */
4409	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4410		return;
4411
4412	/*
4413	 * Ensure the lock stack remained unchanged between
4414	 * lockdep_hardirqs_on_prepare() and lockdep_hardirqs_on().
4415	 */
4416	DEBUG_LOCKS_WARN_ON(current->hardirq_chain_key !=
4417			    current->curr_chain_key);
4418
4419skip_checks:
4420	/* we'll do an OFF -> ON transition: */
4421	__this_cpu_write(hardirqs_enabled, 1);
4422	trace->hardirq_enable_ip = ip;
4423	trace->hardirq_enable_event = ++trace->irq_events;
4424	debug_atomic_inc(hardirqs_on_events);
4425}
4426EXPORT_SYMBOL_GPL(lockdep_hardirqs_on);
4427
4428/*
4429 * Hardirqs were disabled:
4430 */
4431void noinstr lockdep_hardirqs_off(unsigned long ip)
4432{
4433	if (unlikely(!debug_locks))
4434		return;
4435
4436	/*
4437	 * Matching lockdep_hardirqs_on(), allow NMIs in the middle of lockdep;
4438	 * they will restore the software state. This ensures the software
4439	 * state is consistent inside NMIs as well.
4440	 */
4441	if (in_nmi()) {
4442		if (!IS_ENABLED(CONFIG_TRACE_IRQFLAGS_NMI))
4443			return;
4444	} else if (__this_cpu_read(lockdep_recursion))
4445		return;
4446
4447	/*
4448	 * So we're supposed to get called after you mask local IRQs, but for
4449	 * some reason the hardware doesn't quite think you did a proper job.
4450	 */
4451	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4452		return;
4453
4454	if (lockdep_hardirqs_enabled()) {
4455		struct irqtrace_events *trace = &current->irqtrace;
4456
4457		/*
4458		 * We have done an ON -> OFF transition:
4459		 */
4460		__this_cpu_write(hardirqs_enabled, 0);
4461		trace->hardirq_disable_ip = ip;
4462		trace->hardirq_disable_event = ++trace->irq_events;
4463		debug_atomic_inc(hardirqs_off_events);
4464	} else {
4465		debug_atomic_inc(redundant_hardirqs_off);
4466	}
4467}
4468EXPORT_SYMBOL_GPL(lockdep_hardirqs_off);
4469
4470/*
4471 * Softirqs will be enabled:
4472 */
4473void lockdep_softirqs_on(unsigned long ip)
4474{
4475	struct irqtrace_events *trace = &current->irqtrace;
4476
4477	if (unlikely(!lockdep_enabled()))
4478		return;
4479
4480	/*
4481	 * We fancy IRQs being disabled here, see softirq.c, avoids
4482	 * funny state and nesting things.
4483	 */
4484	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4485		return;
4486
4487	if (current->softirqs_enabled) {
4488		debug_atomic_inc(redundant_softirqs_on);
4489		return;
4490	}
4491
4492	lockdep_recursion_inc();
4493	/*
4494	 * We'll do an OFF -> ON transition:
4495	 */
4496	current->softirqs_enabled = 1;
4497	trace->softirq_enable_ip = ip;
4498	trace->softirq_enable_event = ++trace->irq_events;
4499	debug_atomic_inc(softirqs_on_events);
4500	/*
4501	 * We are going to turn softirqs on, so set the
4502	 * usage bit for all held locks, if hardirqs are
4503	 * enabled too:
4504	 */
4505	if (lockdep_hardirqs_enabled())
4506		mark_held_locks(current, LOCK_ENABLED_SOFTIRQ);
4507	lockdep_recursion_finish();
4508}
4509
4510/*
4511 * Softirqs were disabled:
4512 */
4513void lockdep_softirqs_off(unsigned long ip)
4514{
4515	if (unlikely(!lockdep_enabled()))
4516		return;
4517
4518	/*
4519	 * We fancy IRQs being disabled here, see softirq.c
4520	 */
4521	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4522		return;
4523
4524	if (current->softirqs_enabled) {
4525		struct irqtrace_events *trace = &current->irqtrace;
4526
4527		/*
4528		 * We have done an ON -> OFF transition:
4529		 */
4530		current->softirqs_enabled = 0;
4531		trace->softirq_disable_ip = ip;
4532		trace->softirq_disable_event = ++trace->irq_events;
4533		debug_atomic_inc(softirqs_off_events);
4534		/*
4535		 * Whoops, we wanted softirqs off, so why aren't they?
4536		 */
4537		DEBUG_LOCKS_WARN_ON(!softirq_count());
4538	} else
4539		debug_atomic_inc(redundant_softirqs_off);
4540}
4541
4542static int
4543mark_usage(struct task_struct *curr, struct held_lock *hlock, int check)
4544{
4545	if (!check)
4546		goto lock_used;
4547
4548	/*
4549	 * If non-trylock use in a hardirq or softirq context, then
4550	 * mark the lock as used in these contexts:
4551	 */
4552	if (!hlock->trylock) {
4553		if (hlock->read) {
4554			if (lockdep_hardirq_context())
4555				if (!mark_lock(curr, hlock,
4556						LOCK_USED_IN_HARDIRQ_READ))
4557					return 0;
4558			if (curr->softirq_context)
4559				if (!mark_lock(curr, hlock,
4560						LOCK_USED_IN_SOFTIRQ_READ))
4561					return 0;
4562		} else {
4563			if (lockdep_hardirq_context())
4564				if (!mark_lock(curr, hlock, LOCK_USED_IN_HARDIRQ))
4565					return 0;
4566			if (curr->softirq_context)
4567				if (!mark_lock(curr, hlock, LOCK_USED_IN_SOFTIRQ))
4568					return 0;
4569		}
4570	}
4571
4572	/*
4573	 * For lock_sync(), don't mark the ENABLED usage, since lock_sync()
4574	 * creates no critical section and no extra dependency can be introduced
4575	 * by interrupts
4576	 */
4577	if (!hlock->hardirqs_off && !hlock->sync) {
4578		if (hlock->read) {
4579			if (!mark_lock(curr, hlock,
4580					LOCK_ENABLED_HARDIRQ_READ))
4581				return 0;
4582			if (curr->softirqs_enabled)
4583				if (!mark_lock(curr, hlock,
4584						LOCK_ENABLED_SOFTIRQ_READ))
4585					return 0;
4586		} else {
4587			if (!mark_lock(curr, hlock,
4588					LOCK_ENABLED_HARDIRQ))
4589				return 0;
4590			if (curr->softirqs_enabled)
4591				if (!mark_lock(curr, hlock,
4592						LOCK_ENABLED_SOFTIRQ))
4593					return 0;
4594		}
4595	}
4596
4597lock_used:
4598	/* mark it as used: */
4599	if (!mark_lock(curr, hlock, LOCK_USED))
4600		return 0;
4601
4602	return 1;
4603}
4604
4605static inline unsigned int task_irq_context(struct task_struct *task)
4606{
4607	return LOCK_CHAIN_HARDIRQ_CONTEXT * !!lockdep_hardirq_context() +
4608	       LOCK_CHAIN_SOFTIRQ_CONTEXT * !!task->softirq_context;
4609}
4610
4611static int separate_irq_context(struct task_struct *curr,
4612		struct held_lock *hlock)
4613{
4614	unsigned int depth = curr->lockdep_depth;
4615
4616	/*
4617	 * Keep track of points where we cross into an interrupt context:
4618	 */
4619	if (depth) {
4620		struct held_lock *prev_hlock;
4621
4622		prev_hlock = curr->held_locks + depth-1;
4623		/*
4624		 * If we cross into another context, reset the
4625		 * hash key (this also prevents the checking and the
4626		 * adding of the dependency to 'prev'):
4627		 */
4628		if (prev_hlock->irq_context != hlock->irq_context)
4629			return 1;
4630	}
4631	return 0;
4632}
4633
4634/*
4635 * Mark a lock with a usage bit, and validate the state transition:
4636 */
4637static int mark_lock(struct task_struct *curr, struct held_lock *this,
4638			     enum lock_usage_bit new_bit)
4639{
4640	unsigned int new_mask, ret = 1;
4641
4642	if (new_bit >= LOCK_USAGE_STATES) {
4643		DEBUG_LOCKS_WARN_ON(1);
4644		return 0;
4645	}
4646
4647	if (new_bit == LOCK_USED && this->read)
4648		new_bit = LOCK_USED_READ;
4649
4650	new_mask = 1 << new_bit;
4651
4652	/*
4653	 * If already set then do not dirty the cacheline,
4654	 * nor do any checks:
4655	 */
4656	if (likely(hlock_class(this)->usage_mask & new_mask))
4657		return 1;
4658
4659	if (!graph_lock())
4660		return 0;
4661	/*
4662	 * Make sure we didn't race:
4663	 */
4664	if (unlikely(hlock_class(this)->usage_mask & new_mask))
4665		goto unlock;
4666
4667	if (!hlock_class(this)->usage_mask)
4668		debug_atomic_dec(nr_unused_locks);
4669
4670	hlock_class(this)->usage_mask |= new_mask;
4671
4672	if (new_bit < LOCK_TRACE_STATES) {
4673		if (!(hlock_class(this)->usage_traces[new_bit] = save_trace()))
4674			return 0;
4675	}
4676
4677	if (new_bit < LOCK_USED) {
4678		ret = mark_lock_irq(curr, this, new_bit);
4679		if (!ret)
4680			return 0;
4681	}
4682
4683unlock:
4684	graph_unlock();
4685
4686	/*
4687	 * We must printk outside of the graph_lock:
4688	 */
4689	if (ret == 2) {
4690		printk("\nmarked lock as {%s}:\n", usage_str[new_bit]);
4691		print_lock(this);
4692		print_irqtrace_events(curr);
4693		dump_stack();
4694	}
4695
4696	return ret;
4697}
4698
4699static inline short task_wait_context(struct task_struct *curr)
4700{
4701	/*
4702	 * Set appropriate wait type for the context; for IRQs we have to take
4703	 * into account force_irqthread as that is implied by PREEMPT_RT.
4704	 */
4705	if (lockdep_hardirq_context()) {
4706		/*
4707		 * Check if force_irqthreads will run us threaded.
4708		 */
4709		if (curr->hardirq_threaded || curr->irq_config)
4710			return LD_WAIT_CONFIG;
4711
4712		return LD_WAIT_SPIN;
4713	} else if (curr->softirq_context) {
4714		/*
4715		 * Softirqs are always threaded.
4716		 */
4717		return LD_WAIT_CONFIG;
4718	}
4719
4720	return LD_WAIT_MAX;
4721}
4722
4723static int
4724print_lock_invalid_wait_context(struct task_struct *curr,
4725				struct held_lock *hlock)
4726{
4727	short curr_inner;
4728
4729	if (!debug_locks_off())
4730		return 0;
4731	if (debug_locks_silent)
4732		return 0;
4733
4734	pr_warn("\n");
4735	pr_warn("=============================\n");
4736	pr_warn("[ BUG: Invalid wait context ]\n");
4737	print_kernel_ident();
4738	pr_warn("-----------------------------\n");
4739
4740	pr_warn("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr));
4741	print_lock(hlock);
4742
4743	pr_warn("other info that might help us debug this:\n");
4744
4745	curr_inner = task_wait_context(curr);
4746	pr_warn("context-{%d:%d}\n", curr_inner, curr_inner);
4747
4748	lockdep_print_held_locks(curr);
4749
4750	pr_warn("stack backtrace:\n");
4751	dump_stack();
4752
4753	return 0;
4754}
4755
4756/*
4757 * Verify the wait_type context.
4758 *
4759 * This check validates we take locks in the right wait-type order; that is it
4760 * ensures that we do not take mutexes inside spinlocks and do not attempt to
4761 * acquire spinlocks inside raw_spinlocks and the sort.
4762 *
4763 * The entire thing is slightly more complex because of RCU, RCU is a lock that
4764 * can be taken from (pretty much) any context but also has constraints.
4765 * However when taken in a stricter environment the RCU lock does not loosen
4766 * the constraints.
4767 *
4768 * Therefore we must look for the strictest environment in the lock stack and
4769 * compare that to the lock we're trying to acquire.
4770 */
4771static int check_wait_context(struct task_struct *curr, struct held_lock *next)
4772{
4773	u8 next_inner = hlock_class(next)->wait_type_inner;
4774	u8 next_outer = hlock_class(next)->wait_type_outer;
4775	u8 curr_inner;
4776	int depth;
4777
4778	if (!next_inner || next->trylock)
4779		return 0;
4780
4781	if (!next_outer)
4782		next_outer = next_inner;
4783
4784	/*
4785	 * Find start of current irq_context..
4786	 */
4787	for (depth = curr->lockdep_depth - 1; depth >= 0; depth--) {
4788		struct held_lock *prev = curr->held_locks + depth;
4789		if (prev->irq_context != next->irq_context)
4790			break;
4791	}
4792	depth++;
4793
4794	curr_inner = task_wait_context(curr);
4795
4796	for (; depth < curr->lockdep_depth; depth++) {
4797		struct held_lock *prev = curr->held_locks + depth;
4798		struct lock_class *class = hlock_class(prev);
4799		u8 prev_inner = class->wait_type_inner;
4800
4801		if (prev_inner) {
4802			/*
4803			 * We can have a bigger inner than a previous one
4804			 * when outer is smaller than inner, as with RCU.
4805			 *
4806			 * Also due to trylocks.
4807			 */
4808			curr_inner = min(curr_inner, prev_inner);
4809
4810			/*
4811			 * Allow override for annotations -- this is typically
4812			 * only valid/needed for code that only exists when
4813			 * CONFIG_PREEMPT_RT=n.
4814			 */
4815			if (unlikely(class->lock_type == LD_LOCK_WAIT_OVERRIDE))
4816				curr_inner = prev_inner;
4817		}
4818	}
4819
4820	if (next_outer > curr_inner)
4821		return print_lock_invalid_wait_context(curr, next);
4822
4823	return 0;
4824}
4825
4826#else /* CONFIG_PROVE_LOCKING */
4827
4828static inline int
4829mark_usage(struct task_struct *curr, struct held_lock *hlock, int check)
4830{
4831	return 1;
4832}
4833
4834static inline unsigned int task_irq_context(struct task_struct *task)
4835{
4836	return 0;
4837}
4838
4839static inline int separate_irq_context(struct task_struct *curr,
4840		struct held_lock *hlock)
4841{
4842	return 0;
4843}
4844
4845static inline int check_wait_context(struct task_struct *curr,
4846				     struct held_lock *next)
4847{
4848	return 0;
4849}
4850
4851#endif /* CONFIG_PROVE_LOCKING */
4852
4853/*
4854 * Initialize a lock instance's lock-class mapping info:
4855 */
4856void lockdep_init_map_type(struct lockdep_map *lock, const char *name,
4857			    struct lock_class_key *key, int subclass,
4858			    u8 inner, u8 outer, u8 lock_type)
4859{
4860	int i;
4861
4862	for (i = 0; i < NR_LOCKDEP_CACHING_CLASSES; i++)
4863		lock->class_cache[i] = NULL;
4864
4865#ifdef CONFIG_LOCK_STAT
4866	lock->cpu = raw_smp_processor_id();
4867#endif
4868
4869	/*
4870	 * Can't be having no nameless bastards around this place!
4871	 */
4872	if (DEBUG_LOCKS_WARN_ON(!name)) {
4873		lock->name = "NULL";
4874		return;
4875	}
4876
4877	lock->name = name;
4878
4879	lock->wait_type_outer = outer;
4880	lock->wait_type_inner = inner;
4881	lock->lock_type = lock_type;
4882
4883	/*
4884	 * No key, no joy, we need to hash something.
4885	 */
4886	if (DEBUG_LOCKS_WARN_ON(!key))
4887		return;
4888	/*
4889	 * Sanity check, the lock-class key must either have been allocated
4890	 * statically or must have been registered as a dynamic key.
4891	 */
4892	if (!static_obj(key) && !is_dynamic_key(key)) {
4893		if (debug_locks)
4894			printk(KERN_ERR "BUG: key %px has not been registered!\n", key);
4895		DEBUG_LOCKS_WARN_ON(1);
4896		return;
4897	}
4898	lock->key = key;
4899
4900	if (unlikely(!debug_locks))
4901		return;
4902
4903	if (subclass) {
4904		unsigned long flags;
4905
4906		if (DEBUG_LOCKS_WARN_ON(!lockdep_enabled()))
4907			return;
4908
4909		raw_local_irq_save(flags);
4910		lockdep_recursion_inc();
4911		register_lock_class(lock, subclass, 1);
4912		lockdep_recursion_finish();
4913		raw_local_irq_restore(flags);
4914	}
4915}
4916EXPORT_SYMBOL_GPL(lockdep_init_map_type);
4917
4918struct lock_class_key __lockdep_no_validate__;
4919EXPORT_SYMBOL_GPL(__lockdep_no_validate__);
4920
4921#ifdef CONFIG_PROVE_LOCKING
4922void lockdep_set_lock_cmp_fn(struct lockdep_map *lock, lock_cmp_fn cmp_fn,
4923			     lock_print_fn print_fn)
4924{
4925	struct lock_class *class = lock->class_cache[0];
4926	unsigned long flags;
4927
4928	raw_local_irq_save(flags);
4929	lockdep_recursion_inc();
4930
4931	if (!class)
4932		class = register_lock_class(lock, 0, 0);
4933
4934	if (class) {
4935		WARN_ON(class->cmp_fn	&& class->cmp_fn != cmp_fn);
4936		WARN_ON(class->print_fn && class->print_fn != print_fn);
4937
4938		class->cmp_fn	= cmp_fn;
4939		class->print_fn = print_fn;
4940	}
4941
4942	lockdep_recursion_finish();
4943	raw_local_irq_restore(flags);
4944}
4945EXPORT_SYMBOL_GPL(lockdep_set_lock_cmp_fn);
4946#endif
4947
4948static void
4949print_lock_nested_lock_not_held(struct task_struct *curr,
4950				struct held_lock *hlock)
4951{
4952	if (!debug_locks_off())
4953		return;
4954	if (debug_locks_silent)
4955		return;
4956
4957	pr_warn("\n");
4958	pr_warn("==================================\n");
4959	pr_warn("WARNING: Nested lock was not taken\n");
4960	print_kernel_ident();
4961	pr_warn("----------------------------------\n");
4962
4963	pr_warn("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr));
4964	print_lock(hlock);
4965
4966	pr_warn("\nbut this task is not holding:\n");
4967	pr_warn("%s\n", hlock->nest_lock->name);
4968
4969	pr_warn("\nstack backtrace:\n");
4970	dump_stack();
4971
4972	pr_warn("\nother info that might help us debug this:\n");
4973	lockdep_print_held_locks(curr);
4974
4975	pr_warn("\nstack backtrace:\n");
4976	dump_stack();
4977}
4978
4979static int __lock_is_held(const struct lockdep_map *lock, int read);
4980
4981/*
4982 * This gets called for every mutex_lock*()/spin_lock*() operation.
4983 * We maintain the dependency maps and validate the locking attempt:
4984 *
4985 * The callers must make sure that IRQs are disabled before calling it,
4986 * otherwise we could get an interrupt which would want to take locks,
4987 * which would end up in lockdep again.
4988 */
4989static int __lock_acquire(struct lockdep_map *lock, unsigned int subclass,
4990			  int trylock, int read, int check, int hardirqs_off,
4991			  struct lockdep_map *nest_lock, unsigned long ip,
4992			  int references, int pin_count, int sync)
4993{
4994	struct task_struct *curr = current;
4995	struct lock_class *class = NULL;
4996	struct held_lock *hlock;
4997	unsigned int depth;
4998	int chain_head = 0;
4999	int class_idx;
5000	u64 chain_key;
5001
5002	if (unlikely(!debug_locks))
5003		return 0;
5004
5005	if (!prove_locking || lock->key == &__lockdep_no_validate__)
5006		check = 0;
5007
5008	if (subclass < NR_LOCKDEP_CACHING_CLASSES)
5009		class = lock->class_cache[subclass];
5010	/*
5011	 * Not cached?
5012	 */
5013	if (unlikely(!class)) {
5014		class = register_lock_class(lock, subclass, 0);
5015		if (!class)
5016			return 0;
5017	}
5018
5019	debug_class_ops_inc(class);
5020
5021	if (very_verbose(class)) {
5022		printk("\nacquire class [%px] %s", class->key, class->name);
5023		if (class->name_version > 1)
5024			printk(KERN_CONT "#%d", class->name_version);
5025		printk(KERN_CONT "\n");
5026		dump_stack();
5027	}
5028
5029	/*
5030	 * Add the lock to the list of currently held locks.
5031	 * (we dont increase the depth just yet, up until the
5032	 * dependency checks are done)
5033	 */
5034	depth = curr->lockdep_depth;
5035	/*
5036	 * Ran out of static storage for our per-task lock stack again have we?
5037	 */
5038	if (DEBUG_LOCKS_WARN_ON(depth >= MAX_LOCK_DEPTH))
5039		return 0;
5040
5041	class_idx = class - lock_classes;
5042
5043	if (depth && !sync) {
5044		/* we're holding locks and the new held lock is not a sync */
5045		hlock = curr->held_locks + depth - 1;
5046		if (hlock->class_idx == class_idx && nest_lock) {
5047			if (!references)
5048				references++;
5049
5050			if (!hlock->references)
5051				hlock->references++;
5052
5053			hlock->references += references;
5054
5055			/* Overflow */
5056			if (DEBUG_LOCKS_WARN_ON(hlock->references < references))
5057				return 0;
5058
5059			return 2;
5060		}
5061	}
5062
5063	hlock = curr->held_locks + depth;
5064	/*
5065	 * Plain impossible, we just registered it and checked it weren't no
5066	 * NULL like.. I bet this mushroom I ate was good!
5067	 */
5068	if (DEBUG_LOCKS_WARN_ON(!class))
5069		return 0;
5070	hlock->class_idx = class_idx;
5071	hlock->acquire_ip = ip;
5072	hlock->instance = lock;
5073	hlock->nest_lock = nest_lock;
5074	hlock->irq_context = task_irq_context(curr);
5075	hlock->trylock = trylock;
5076	hlock->read = read;
5077	hlock->check = check;
5078	hlock->sync = !!sync;
5079	hlock->hardirqs_off = !!hardirqs_off;
5080	hlock->references = references;
5081#ifdef CONFIG_LOCK_STAT
5082	hlock->waittime_stamp = 0;
5083	hlock->holdtime_stamp = lockstat_clock();
5084#endif
5085	hlock->pin_count = pin_count;
5086
5087	if (check_wait_context(curr, hlock))
5088		return 0;
5089
5090	/* Initialize the lock usage bit */
5091	if (!mark_usage(curr, hlock, check))
5092		return 0;
5093
5094	/*
5095	 * Calculate the chain hash: it's the combined hash of all the
5096	 * lock keys along the dependency chain. We save the hash value
5097	 * at every step so that we can get the current hash easily
5098	 * after unlock. The chain hash is then used to cache dependency
5099	 * results.
5100	 *
5101	 * The 'key ID' is what is the most compact key value to drive
5102	 * the hash, not class->key.
5103	 */
5104	/*
5105	 * Whoops, we did it again.. class_idx is invalid.
5106	 */
5107	if (DEBUG_LOCKS_WARN_ON(!test_bit(class_idx, lock_classes_in_use)))
5108		return 0;
5109
5110	chain_key = curr->curr_chain_key;
5111	if (!depth) {
5112		/*
5113		 * How can we have a chain hash when we ain't got no keys?!
5114		 */
5115		if (DEBUG_LOCKS_WARN_ON(chain_key != INITIAL_CHAIN_KEY))
5116			return 0;
5117		chain_head = 1;
5118	}
5119
5120	hlock->prev_chain_key = chain_key;
5121	if (separate_irq_context(curr, hlock)) {
5122		chain_key = INITIAL_CHAIN_KEY;
5123		chain_head = 1;
5124	}
5125	chain_key = iterate_chain_key(chain_key, hlock_id(hlock));
5126
5127	if (nest_lock && !__lock_is_held(nest_lock, -1)) {
5128		print_lock_nested_lock_not_held(curr, hlock);
5129		return 0;
5130	}
5131
5132	if (!debug_locks_silent) {
5133		WARN_ON_ONCE(depth && !hlock_class(hlock - 1)->key);
5134		WARN_ON_ONCE(!hlock_class(hlock)->key);
5135	}
5136
5137	if (!validate_chain(curr, hlock, chain_head, chain_key))
5138		return 0;
5139
5140	/* For lock_sync(), we are done here since no actual critical section */
5141	if (hlock->sync)
5142		return 1;
5143
5144	curr->curr_chain_key = chain_key;
5145	curr->lockdep_depth++;
5146	check_chain_key(curr);
5147#ifdef CONFIG_DEBUG_LOCKDEP
5148	if (unlikely(!debug_locks))
5149		return 0;
5150#endif
5151	if (unlikely(curr->lockdep_depth >= MAX_LOCK_DEPTH)) {
5152		debug_locks_off();
5153		print_lockdep_off("BUG: MAX_LOCK_DEPTH too low!");
5154		printk(KERN_DEBUG "depth: %i  max: %lu!\n",
5155		       curr->lockdep_depth, MAX_LOCK_DEPTH);
5156
5157		lockdep_print_held_locks(current);
5158		debug_show_all_locks();
5159		dump_stack();
5160
5161		return 0;
5162	}
5163
5164	if (unlikely(curr->lockdep_depth > max_lockdep_depth))
5165		max_lockdep_depth = curr->lockdep_depth;
5166
5167	return 1;
5168}
5169
5170static void print_unlock_imbalance_bug(struct task_struct *curr,
5171				       struct lockdep_map *lock,
5172				       unsigned long ip)
5173{
5174	if (!debug_locks_off())
5175		return;
5176	if (debug_locks_silent)
5177		return;
5178
5179	pr_warn("\n");
5180	pr_warn("=====================================\n");
5181	pr_warn("WARNING: bad unlock balance detected!\n");
5182	print_kernel_ident();
5183	pr_warn("-------------------------------------\n");
5184	pr_warn("%s/%d is trying to release lock (",
5185		curr->comm, task_pid_nr(curr));
5186	print_lockdep_cache(lock);
5187	pr_cont(") at:\n");
5188	print_ip_sym(KERN_WARNING, ip);
5189	pr_warn("but there are no more locks to release!\n");
5190	pr_warn("\nother info that might help us debug this:\n");
5191	lockdep_print_held_locks(curr);
5192
5193	pr_warn("\nstack backtrace:\n");
5194	dump_stack();
5195}
5196
5197static noinstr int match_held_lock(const struct held_lock *hlock,
5198				   const struct lockdep_map *lock)
5199{
5200	if (hlock->instance == lock)
5201		return 1;
5202
5203	if (hlock->references) {
5204		const struct lock_class *class = lock->class_cache[0];
5205
5206		if (!class)
5207			class = look_up_lock_class(lock, 0);
5208
5209		/*
5210		 * If look_up_lock_class() failed to find a class, we're trying
5211		 * to test if we hold a lock that has never yet been acquired.
5212		 * Clearly if the lock hasn't been acquired _ever_, we're not
5213		 * holding it either, so report failure.
5214		 */
5215		if (!class)
5216			return 0;
5217
5218		/*
5219		 * References, but not a lock we're actually ref-counting?
5220		 * State got messed up, follow the sites that change ->references
5221		 * and try to make sense of it.
5222		 */
5223		if (DEBUG_LOCKS_WARN_ON(!hlock->nest_lock))
5224			return 0;
5225
5226		if (hlock->class_idx == class - lock_classes)
5227			return 1;
5228	}
5229
5230	return 0;
5231}
5232
5233/* @depth must not be zero */
5234static struct held_lock *find_held_lock(struct task_struct *curr,
5235					struct lockdep_map *lock,
5236					unsigned int depth, int *idx)
5237{
5238	struct held_lock *ret, *hlock, *prev_hlock;
5239	int i;
5240
5241	i = depth - 1;
5242	hlock = curr->held_locks + i;
5243	ret = hlock;
5244	if (match_held_lock(hlock, lock))
5245		goto out;
5246
5247	ret = NULL;
5248	for (i--, prev_hlock = hlock--;
5249	     i >= 0;
5250	     i--, prev_hlock = hlock--) {
5251		/*
5252		 * We must not cross into another context:
5253		 */
5254		if (prev_hlock->irq_context != hlock->irq_context) {
5255			ret = NULL;
5256			break;
5257		}
5258		if (match_held_lock(hlock, lock)) {
5259			ret = hlock;
5260			break;
5261		}
5262	}
5263
5264out:
5265	*idx = i;
5266	return ret;
5267}
5268
5269static int reacquire_held_locks(struct task_struct *curr, unsigned int depth,
5270				int idx, unsigned int *merged)
5271{
5272	struct held_lock *hlock;
5273	int first_idx = idx;
5274
5275	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
5276		return 0;
5277
5278	for (hlock = curr->held_locks + idx; idx < depth; idx++, hlock++) {
5279		switch (__lock_acquire(hlock->instance,
5280				    hlock_class(hlock)->subclass,
5281				    hlock->trylock,
5282				    hlock->read, hlock->check,
5283				    hlock->hardirqs_off,
5284				    hlock->nest_lock, hlock->acquire_ip,
5285				    hlock->references, hlock->pin_count, 0)) {
5286		case 0:
5287			return 1;
5288		case 1:
5289			break;
5290		case 2:
5291			*merged += (idx == first_idx);
5292			break;
5293		default:
5294			WARN_ON(1);
5295			return 0;
5296		}
5297	}
5298	return 0;
5299}
5300
5301static int
5302__lock_set_class(struct lockdep_map *lock, const char *name,
5303		 struct lock_class_key *key, unsigned int subclass,
5304		 unsigned long ip)
5305{
5306	struct task_struct *curr = current;
5307	unsigned int depth, merged = 0;
5308	struct held_lock *hlock;
5309	struct lock_class *class;
5310	int i;
5311
5312	if (unlikely(!debug_locks))
5313		return 0;
5314
5315	depth = curr->lockdep_depth;
5316	/*
5317	 * This function is about (re)setting the class of a held lock,
5318	 * yet we're not actually holding any locks. Naughty user!
5319	 */
5320	if (DEBUG_LOCKS_WARN_ON(!depth))
5321		return 0;
5322
5323	hlock = find_held_lock(curr, lock, depth, &i);
5324	if (!hlock) {
5325		print_unlock_imbalance_bug(curr, lock, ip);
5326		return 0;
5327	}
5328
5329	lockdep_init_map_type(lock, name, key, 0,
5330			      lock->wait_type_inner,
5331			      lock->wait_type_outer,
5332			      lock->lock_type);
5333	class = register_lock_class(lock, subclass, 0);
5334	hlock->class_idx = class - lock_classes;
5335
5336	curr->lockdep_depth = i;
5337	curr->curr_chain_key = hlock->prev_chain_key;
5338
5339	if (reacquire_held_locks(curr, depth, i, &merged))
5340		return 0;
5341
5342	/*
5343	 * I took it apart and put it back together again, except now I have
5344	 * these 'spare' parts.. where shall I put them.
5345	 */
5346	if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged))
5347		return 0;
5348	return 1;
5349}
5350
5351static int __lock_downgrade(struct lockdep_map *lock, unsigned long ip)
5352{
5353	struct task_struct *curr = current;
5354	unsigned int depth, merged = 0;
5355	struct held_lock *hlock;
5356	int i;
5357
5358	if (unlikely(!debug_locks))
5359		return 0;
5360
5361	depth = curr->lockdep_depth;
5362	/*
5363	 * This function is about (re)setting the class of a held lock,
5364	 * yet we're not actually holding any locks. Naughty user!
5365	 */
5366	if (DEBUG_LOCKS_WARN_ON(!depth))
5367		return 0;
5368
5369	hlock = find_held_lock(curr, lock, depth, &i);
5370	if (!hlock) {
5371		print_unlock_imbalance_bug(curr, lock, ip);
5372		return 0;
5373	}
5374
5375	curr->lockdep_depth = i;
5376	curr->curr_chain_key = hlock->prev_chain_key;
5377
5378	WARN(hlock->read, "downgrading a read lock");
5379	hlock->read = 1;
5380	hlock->acquire_ip = ip;
5381
5382	if (reacquire_held_locks(curr, depth, i, &merged))
5383		return 0;
5384
5385	/* Merging can't happen with unchanged classes.. */
5386	if (DEBUG_LOCKS_WARN_ON(merged))
5387		return 0;
5388
5389	/*
5390	 * I took it apart and put it back together again, except now I have
5391	 * these 'spare' parts.. where shall I put them.
5392	 */
5393	if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth))
5394		return 0;
5395
5396	return 1;
5397}
5398
5399/*
5400 * Remove the lock from the list of currently held locks - this gets
5401 * called on mutex_unlock()/spin_unlock*() (or on a failed
5402 * mutex_lock_interruptible()).
5403 */
5404static int
5405__lock_release(struct lockdep_map *lock, unsigned long ip)
5406{
5407	struct task_struct *curr = current;
5408	unsigned int depth, merged = 1;
5409	struct held_lock *hlock;
5410	int i;
5411
5412	if (unlikely(!debug_locks))
5413		return 0;
5414
5415	depth = curr->lockdep_depth;
5416	/*
5417	 * So we're all set to release this lock.. wait what lock? We don't
5418	 * own any locks, you've been drinking again?
5419	 */
5420	if (depth <= 0) {
5421		print_unlock_imbalance_bug(curr, lock, ip);
5422		return 0;
5423	}
5424
5425	/*
5426	 * Check whether the lock exists in the current stack
5427	 * of held locks:
5428	 */
5429	hlock = find_held_lock(curr, lock, depth, &i);
5430	if (!hlock) {
5431		print_unlock_imbalance_bug(curr, lock, ip);
5432		return 0;
5433	}
5434
5435	if (hlock->instance == lock)
5436		lock_release_holdtime(hlock);
5437
5438	WARN(hlock->pin_count, "releasing a pinned lock\n");
5439
5440	if (hlock->references) {
5441		hlock->references--;
5442		if (hlock->references) {
5443			/*
5444			 * We had, and after removing one, still have
5445			 * references, the current lock stack is still
5446			 * valid. We're done!
5447			 */
5448			return 1;
5449		}
5450	}
5451
5452	/*
5453	 * We have the right lock to unlock, 'hlock' points to it.
5454	 * Now we remove it from the stack, and add back the other
5455	 * entries (if any), recalculating the hash along the way:
5456	 */
5457
5458	curr->lockdep_depth = i;
5459	curr->curr_chain_key = hlock->prev_chain_key;
5460
5461	/*
5462	 * The most likely case is when the unlock is on the innermost
5463	 * lock. In this case, we are done!
5464	 */
5465	if (i == depth-1)
5466		return 1;
5467
5468	if (reacquire_held_locks(curr, depth, i + 1, &merged))
5469		return 0;
5470
5471	/*
5472	 * We had N bottles of beer on the wall, we drank one, but now
5473	 * there's not N-1 bottles of beer left on the wall...
5474	 * Pouring two of the bottles together is acceptable.
5475	 */
5476	DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged);
5477
5478	/*
5479	 * Since reacquire_held_locks() would have called check_chain_key()
5480	 * indirectly via __lock_acquire(), we don't need to do it again
5481	 * on return.
5482	 */
5483	return 0;
5484}
5485
5486static __always_inline
5487int __lock_is_held(const struct lockdep_map *lock, int read)
5488{
5489	struct task_struct *curr = current;
5490	int i;
5491
5492	for (i = 0; i < curr->lockdep_depth; i++) {
5493		struct held_lock *hlock = curr->held_locks + i;
5494
5495		if (match_held_lock(hlock, lock)) {
5496			if (read == -1 || !!hlock->read == read)
5497				return LOCK_STATE_HELD;
5498
5499			return LOCK_STATE_NOT_HELD;
5500		}
5501	}
5502
5503	return LOCK_STATE_NOT_HELD;
5504}
5505
5506static struct pin_cookie __lock_pin_lock(struct lockdep_map *lock)
5507{
5508	struct pin_cookie cookie = NIL_COOKIE;
5509	struct task_struct *curr = current;
5510	int i;
5511
5512	if (unlikely(!debug_locks))
5513		return cookie;
5514
5515	for (i = 0; i < curr->lockdep_depth; i++) {
5516		struct held_lock *hlock = curr->held_locks + i;
5517
5518		if (match_held_lock(hlock, lock)) {
5519			/*
5520			 * Grab 16bits of randomness; this is sufficient to not
5521			 * be guessable and still allows some pin nesting in
5522			 * our u32 pin_count.
5523			 */
5524			cookie.val = 1 + (sched_clock() & 0xffff);
5525			hlock->pin_count += cookie.val;
5526			return cookie;
5527		}
5528	}
5529
5530	WARN(1, "pinning an unheld lock\n");
5531	return cookie;
5532}
5533
5534static void __lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5535{
5536	struct task_struct *curr = current;
5537	int i;
5538
5539	if (unlikely(!debug_locks))
5540		return;
5541
5542	for (i = 0; i < curr->lockdep_depth; i++) {
5543		struct held_lock *hlock = curr->held_locks + i;
5544
5545		if (match_held_lock(hlock, lock)) {
5546			hlock->pin_count += cookie.val;
5547			return;
5548		}
5549	}
5550
5551	WARN(1, "pinning an unheld lock\n");
5552}
5553
5554static void __lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5555{
5556	struct task_struct *curr = current;
5557	int i;
5558
5559	if (unlikely(!debug_locks))
5560		return;
5561
5562	for (i = 0; i < curr->lockdep_depth; i++) {
5563		struct held_lock *hlock = curr->held_locks + i;
5564
5565		if (match_held_lock(hlock, lock)) {
5566			if (WARN(!hlock->pin_count, "unpinning an unpinned lock\n"))
5567				return;
5568
5569			hlock->pin_count -= cookie.val;
5570
5571			if (WARN((int)hlock->pin_count < 0, "pin count corrupted\n"))
5572				hlock->pin_count = 0;
5573
5574			return;
5575		}
5576	}
5577
5578	WARN(1, "unpinning an unheld lock\n");
5579}
5580
5581/*
5582 * Check whether we follow the irq-flags state precisely:
5583 */
5584static noinstr void check_flags(unsigned long flags)
5585{
5586#if defined(CONFIG_PROVE_LOCKING) && defined(CONFIG_DEBUG_LOCKDEP)
5587	if (!debug_locks)
5588		return;
5589
5590	/* Get the warning out..  */
5591	instrumentation_begin();
5592
5593	if (irqs_disabled_flags(flags)) {
5594		if (DEBUG_LOCKS_WARN_ON(lockdep_hardirqs_enabled())) {
5595			printk("possible reason: unannotated irqs-off.\n");
5596		}
5597	} else {
5598		if (DEBUG_LOCKS_WARN_ON(!lockdep_hardirqs_enabled())) {
5599			printk("possible reason: unannotated irqs-on.\n");
5600		}
5601	}
5602
5603#ifndef CONFIG_PREEMPT_RT
5604	/*
5605	 * We dont accurately track softirq state in e.g.
5606	 * hardirq contexts (such as on 4KSTACKS), so only
5607	 * check if not in hardirq contexts:
5608	 */
5609	if (!hardirq_count()) {
5610		if (softirq_count()) {
5611			/* like the above, but with softirqs */
5612			DEBUG_LOCKS_WARN_ON(current->softirqs_enabled);
5613		} else {
5614			/* lick the above, does it taste good? */
5615			DEBUG_LOCKS_WARN_ON(!current->softirqs_enabled);
5616		}
5617	}
5618#endif
5619
5620	if (!debug_locks)
5621		print_irqtrace_events(current);
5622
5623	instrumentation_end();
5624#endif
5625}
5626
5627void lock_set_class(struct lockdep_map *lock, const char *name,
5628		    struct lock_class_key *key, unsigned int subclass,
5629		    unsigned long ip)
5630{
5631	unsigned long flags;
5632
5633	if (unlikely(!lockdep_enabled()))
5634		return;
5635
5636	raw_local_irq_save(flags);
5637	lockdep_recursion_inc();
5638	check_flags(flags);
5639	if (__lock_set_class(lock, name, key, subclass, ip))
5640		check_chain_key(current);
5641	lockdep_recursion_finish();
5642	raw_local_irq_restore(flags);
5643}
5644EXPORT_SYMBOL_GPL(lock_set_class);
5645
5646void lock_downgrade(struct lockdep_map *lock, unsigned long ip)
5647{
5648	unsigned long flags;
5649
5650	if (unlikely(!lockdep_enabled()))
5651		return;
5652
5653	raw_local_irq_save(flags);
5654	lockdep_recursion_inc();
5655	check_flags(flags);
5656	if (__lock_downgrade(lock, ip))
5657		check_chain_key(current);
5658	lockdep_recursion_finish();
5659	raw_local_irq_restore(flags);
5660}
5661EXPORT_SYMBOL_GPL(lock_downgrade);
5662
5663/* NMI context !!! */
5664static void verify_lock_unused(struct lockdep_map *lock, struct held_lock *hlock, int subclass)
5665{
5666#ifdef CONFIG_PROVE_LOCKING
5667	struct lock_class *class = look_up_lock_class(lock, subclass);
5668	unsigned long mask = LOCKF_USED;
5669
5670	/* if it doesn't have a class (yet), it certainly hasn't been used yet */
5671	if (!class)
5672		return;
5673
5674	/*
5675	 * READ locks only conflict with USED, such that if we only ever use
5676	 * READ locks, there is no deadlock possible -- RCU.
5677	 */
5678	if (!hlock->read)
5679		mask |= LOCKF_USED_READ;
5680
5681	if (!(class->usage_mask & mask))
5682		return;
5683
5684	hlock->class_idx = class - lock_classes;
5685
5686	print_usage_bug(current, hlock, LOCK_USED, LOCK_USAGE_STATES);
5687#endif
5688}
5689
5690static bool lockdep_nmi(void)
5691{
5692	if (raw_cpu_read(lockdep_recursion))
5693		return false;
5694
5695	if (!in_nmi())
5696		return false;
5697
5698	return true;
5699}
5700
5701/*
5702 * read_lock() is recursive if:
5703 * 1. We force lockdep think this way in selftests or
5704 * 2. The implementation is not queued read/write lock or
5705 * 3. The locker is at an in_interrupt() context.
5706 */
5707bool read_lock_is_recursive(void)
5708{
5709	return force_read_lock_recursive ||
5710	       !IS_ENABLED(CONFIG_QUEUED_RWLOCKS) ||
5711	       in_interrupt();
5712}
5713EXPORT_SYMBOL_GPL(read_lock_is_recursive);
5714
5715/*
5716 * We are not always called with irqs disabled - do that here,
5717 * and also avoid lockdep recursion:
5718 */
5719void lock_acquire(struct lockdep_map *lock, unsigned int subclass,
5720			  int trylock, int read, int check,
5721			  struct lockdep_map *nest_lock, unsigned long ip)
5722{
5723	unsigned long flags;
5724
5725	trace_lock_acquire(lock, subclass, trylock, read, check, nest_lock, ip);
5726
5727	if (!debug_locks)
5728		return;
5729
5730	if (unlikely(!lockdep_enabled())) {
5731		/* XXX allow trylock from NMI ?!? */
5732		if (lockdep_nmi() && !trylock) {
5733			struct held_lock hlock;
5734
5735			hlock.acquire_ip = ip;
5736			hlock.instance = lock;
5737			hlock.nest_lock = nest_lock;
5738			hlock.irq_context = 2; // XXX
5739			hlock.trylock = trylock;
5740			hlock.read = read;
5741			hlock.check = check;
5742			hlock.hardirqs_off = true;
5743			hlock.references = 0;
5744
5745			verify_lock_unused(lock, &hlock, subclass);
5746		}
5747		return;
5748	}
5749
5750	raw_local_irq_save(flags);
5751	check_flags(flags);
5752
5753	lockdep_recursion_inc();
5754	__lock_acquire(lock, subclass, trylock, read, check,
5755		       irqs_disabled_flags(flags), nest_lock, ip, 0, 0, 0);
5756	lockdep_recursion_finish();
5757	raw_local_irq_restore(flags);
5758}
5759EXPORT_SYMBOL_GPL(lock_acquire);
5760
5761void lock_release(struct lockdep_map *lock, unsigned long ip)
5762{
5763	unsigned long flags;
5764
5765	trace_lock_release(lock, ip);
5766
5767	if (unlikely(!lockdep_enabled()))
5768		return;
5769
5770	raw_local_irq_save(flags);
5771	check_flags(flags);
5772
5773	lockdep_recursion_inc();
5774	if (__lock_release(lock, ip))
5775		check_chain_key(current);
5776	lockdep_recursion_finish();
5777	raw_local_irq_restore(flags);
5778}
5779EXPORT_SYMBOL_GPL(lock_release);
5780
5781/*
5782 * lock_sync() - A special annotation for synchronize_{s,}rcu()-like API.
5783 *
5784 * No actual critical section is created by the APIs annotated with this: these
5785 * APIs are used to wait for one or multiple critical sections (on other CPUs
5786 * or threads), and it means that calling these APIs inside these critical
5787 * sections is potential deadlock.
5788 */
5789void lock_sync(struct lockdep_map *lock, unsigned subclass, int read,
5790	       int check, struct lockdep_map *nest_lock, unsigned long ip)
5791{
5792	unsigned long flags;
5793
5794	if (unlikely(!lockdep_enabled()))
5795		return;
5796
5797	raw_local_irq_save(flags);
5798	check_flags(flags);
5799
5800	lockdep_recursion_inc();
5801	__lock_acquire(lock, subclass, 0, read, check,
5802		       irqs_disabled_flags(flags), nest_lock, ip, 0, 0, 1);
5803	check_chain_key(current);
5804	lockdep_recursion_finish();
5805	raw_local_irq_restore(flags);
5806}
5807EXPORT_SYMBOL_GPL(lock_sync);
5808
5809noinstr int lock_is_held_type(const struct lockdep_map *lock, int read)
5810{
5811	unsigned long flags;
5812	int ret = LOCK_STATE_NOT_HELD;
5813
5814	/*
5815	 * Avoid false negative lockdep_assert_held() and
5816	 * lockdep_assert_not_held().
5817	 */
5818	if (unlikely(!lockdep_enabled()))
5819		return LOCK_STATE_UNKNOWN;
5820
5821	raw_local_irq_save(flags);
5822	check_flags(flags);
5823
5824	lockdep_recursion_inc();
5825	ret = __lock_is_held(lock, read);
5826	lockdep_recursion_finish();
5827	raw_local_irq_restore(flags);
5828
5829	return ret;
5830}
5831EXPORT_SYMBOL_GPL(lock_is_held_type);
5832NOKPROBE_SYMBOL(lock_is_held_type);
5833
5834struct pin_cookie lock_pin_lock(struct lockdep_map *lock)
5835{
5836	struct pin_cookie cookie = NIL_COOKIE;
5837	unsigned long flags;
5838
5839	if (unlikely(!lockdep_enabled()))
5840		return cookie;
5841
5842	raw_local_irq_save(flags);
5843	check_flags(flags);
5844
5845	lockdep_recursion_inc();
5846	cookie = __lock_pin_lock(lock);
5847	lockdep_recursion_finish();
5848	raw_local_irq_restore(flags);
5849
5850	return cookie;
5851}
5852EXPORT_SYMBOL_GPL(lock_pin_lock);
5853
5854void lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5855{
5856	unsigned long flags;
5857
5858	if (unlikely(!lockdep_enabled()))
5859		return;
5860
5861	raw_local_irq_save(flags);
5862	check_flags(flags);
5863
5864	lockdep_recursion_inc();
5865	__lock_repin_lock(lock, cookie);
5866	lockdep_recursion_finish();
5867	raw_local_irq_restore(flags);
5868}
5869EXPORT_SYMBOL_GPL(lock_repin_lock);
5870
5871void lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5872{
5873	unsigned long flags;
5874
5875	if (unlikely(!lockdep_enabled()))
5876		return;
5877
5878	raw_local_irq_save(flags);
5879	check_flags(flags);
5880
5881	lockdep_recursion_inc();
5882	__lock_unpin_lock(lock, cookie);
5883	lockdep_recursion_finish();
5884	raw_local_irq_restore(flags);
5885}
5886EXPORT_SYMBOL_GPL(lock_unpin_lock);
5887
5888#ifdef CONFIG_LOCK_STAT
5889static void print_lock_contention_bug(struct task_struct *curr,
5890				      struct lockdep_map *lock,
5891				      unsigned long ip)
5892{
5893	if (!debug_locks_off())
5894		return;
5895	if (debug_locks_silent)
5896		return;
5897
5898	pr_warn("\n");
5899	pr_warn("=================================\n");
5900	pr_warn("WARNING: bad contention detected!\n");
5901	print_kernel_ident();
5902	pr_warn("---------------------------------\n");
5903	pr_warn("%s/%d is trying to contend lock (",
5904		curr->comm, task_pid_nr(curr));
5905	print_lockdep_cache(lock);
5906	pr_cont(") at:\n");
5907	print_ip_sym(KERN_WARNING, ip);
5908	pr_warn("but there are no locks held!\n");
5909	pr_warn("\nother info that might help us debug this:\n");
5910	lockdep_print_held_locks(curr);
5911
5912	pr_warn("\nstack backtrace:\n");
5913	dump_stack();
5914}
5915
5916static void
5917__lock_contended(struct lockdep_map *lock, unsigned long ip)
5918{
5919	struct task_struct *curr = current;
5920	struct held_lock *hlock;
5921	struct lock_class_stats *stats;
5922	unsigned int depth;
5923	int i, contention_point, contending_point;
5924
5925	depth = curr->lockdep_depth;
5926	/*
5927	 * Whee, we contended on this lock, except it seems we're not
5928	 * actually trying to acquire anything much at all..
5929	 */
5930	if (DEBUG_LOCKS_WARN_ON(!depth))
5931		return;
5932
5933	hlock = find_held_lock(curr, lock, depth, &i);
5934	if (!hlock) {
5935		print_lock_contention_bug(curr, lock, ip);
5936		return;
5937	}
5938
5939	if (hlock->instance != lock)
5940		return;
5941
5942	hlock->waittime_stamp = lockstat_clock();
5943
5944	contention_point = lock_point(hlock_class(hlock)->contention_point, ip);
5945	contending_point = lock_point(hlock_class(hlock)->contending_point,
5946				      lock->ip);
5947
5948	stats = get_lock_stats(hlock_class(hlock));
5949	if (contention_point < LOCKSTAT_POINTS)
5950		stats->contention_point[contention_point]++;
5951	if (contending_point < LOCKSTAT_POINTS)
5952		stats->contending_point[contending_point]++;
5953	if (lock->cpu != smp_processor_id())
5954		stats->bounces[bounce_contended + !!hlock->read]++;
5955}
5956
5957static void
5958__lock_acquired(struct lockdep_map *lock, unsigned long ip)
5959{
5960	struct task_struct *curr = current;
5961	struct held_lock *hlock;
5962	struct lock_class_stats *stats;
5963	unsigned int depth;
5964	u64 now, waittime = 0;
5965	int i, cpu;
5966
5967	depth = curr->lockdep_depth;
5968	/*
5969	 * Yay, we acquired ownership of this lock we didn't try to
5970	 * acquire, how the heck did that happen?
5971	 */
5972	if (DEBUG_LOCKS_WARN_ON(!depth))
5973		return;
5974
5975	hlock = find_held_lock(curr, lock, depth, &i);
5976	if (!hlock) {
5977		print_lock_contention_bug(curr, lock, _RET_IP_);
5978		return;
5979	}
5980
5981	if (hlock->instance != lock)
5982		return;
5983
5984	cpu = smp_processor_id();
5985	if (hlock->waittime_stamp) {
5986		now = lockstat_clock();
5987		waittime = now - hlock->waittime_stamp;
5988		hlock->holdtime_stamp = now;
5989	}
5990
5991	stats = get_lock_stats(hlock_class(hlock));
5992	if (waittime) {
5993		if (hlock->read)
5994			lock_time_inc(&stats->read_waittime, waittime);
5995		else
5996			lock_time_inc(&stats->write_waittime, waittime);
5997	}
5998	if (lock->cpu != cpu)
5999		stats->bounces[bounce_acquired + !!hlock->read]++;
6000
6001	lock->cpu = cpu;
6002	lock->ip = ip;
6003}
6004
6005void lock_contended(struct lockdep_map *lock, unsigned long ip)
6006{
6007	unsigned long flags;
6008
6009	trace_lock_contended(lock, ip);
6010
6011	if (unlikely(!lock_stat || !lockdep_enabled()))
6012		return;
6013
6014	raw_local_irq_save(flags);
6015	check_flags(flags);
6016	lockdep_recursion_inc();
6017	__lock_contended(lock, ip);
6018	lockdep_recursion_finish();
6019	raw_local_irq_restore(flags);
6020}
6021EXPORT_SYMBOL_GPL(lock_contended);
6022
6023void lock_acquired(struct lockdep_map *lock, unsigned long ip)
6024{
6025	unsigned long flags;
6026
6027	trace_lock_acquired(lock, ip);
6028
6029	if (unlikely(!lock_stat || !lockdep_enabled()))
6030		return;
6031
6032	raw_local_irq_save(flags);
6033	check_flags(flags);
6034	lockdep_recursion_inc();
6035	__lock_acquired(lock, ip);
6036	lockdep_recursion_finish();
6037	raw_local_irq_restore(flags);
6038}
6039EXPORT_SYMBOL_GPL(lock_acquired);
6040#endif
6041
6042/*
6043 * Used by the testsuite, sanitize the validator state
6044 * after a simulated failure:
6045 */
6046
6047void lockdep_reset(void)
6048{
6049	unsigned long flags;
6050	int i;
6051
6052	raw_local_irq_save(flags);
6053	lockdep_init_task(current);
6054	memset(current->held_locks, 0, MAX_LOCK_DEPTH*sizeof(struct held_lock));
6055	nr_hardirq_chains = 0;
6056	nr_softirq_chains = 0;
6057	nr_process_chains = 0;
6058	debug_locks = 1;
6059	for (i = 0; i < CHAINHASH_SIZE; i++)
6060		INIT_HLIST_HEAD(chainhash_table + i);
6061	raw_local_irq_restore(flags);
6062}
6063
6064/* Remove a class from a lock chain. Must be called with the graph lock held. */
6065static void remove_class_from_lock_chain(struct pending_free *pf,
6066					 struct lock_chain *chain,
6067					 struct lock_class *class)
6068{
6069#ifdef CONFIG_PROVE_LOCKING
6070	int i;
6071
6072	for (i = chain->base; i < chain->base + chain->depth; i++) {
6073		if (chain_hlock_class_idx(chain_hlocks[i]) != class - lock_classes)
6074			continue;
6075		/*
6076		 * Each lock class occurs at most once in a lock chain so once
6077		 * we found a match we can break out of this loop.
6078		 */
6079		goto free_lock_chain;
6080	}
6081	/* Since the chain has not been modified, return. */
6082	return;
6083
6084free_lock_chain:
6085	free_chain_hlocks(chain->base, chain->depth);
6086	/* Overwrite the chain key for concurrent RCU readers. */
6087	WRITE_ONCE(chain->chain_key, INITIAL_CHAIN_KEY);
6088	dec_chains(chain->irq_context);
6089
6090	/*
6091	 * Note: calling hlist_del_rcu() from inside a
6092	 * hlist_for_each_entry_rcu() loop is safe.
6093	 */
6094	hlist_del_rcu(&chain->entry);
6095	__set_bit(chain - lock_chains, pf->lock_chains_being_freed);
6096	nr_zapped_lock_chains++;
6097#endif
6098}
6099
6100/* Must be called with the graph lock held. */
6101static void remove_class_from_lock_chains(struct pending_free *pf,
6102					  struct lock_class *class)
6103{
6104	struct lock_chain *chain;
6105	struct hlist_head *head;
6106	int i;
6107
6108	for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) {
6109		head = chainhash_table + i;
6110		hlist_for_each_entry_rcu(chain, head, entry) {
6111			remove_class_from_lock_chain(pf, chain, class);
6112		}
6113	}
6114}
6115
6116/*
6117 * Remove all references to a lock class. The caller must hold the graph lock.
6118 */
6119static void zap_class(struct pending_free *pf, struct lock_class *class)
6120{
6121	struct lock_list *entry;
6122	int i;
6123
6124	WARN_ON_ONCE(!class->key);
6125
6126	/*
6127	 * Remove all dependencies this lock is
6128	 * involved in:
6129	 */
6130	for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
6131		entry = list_entries + i;
6132		if (entry->class != class && entry->links_to != class)
6133			continue;
6134		__clear_bit(i, list_entries_in_use);
6135		nr_list_entries--;
6136		list_del_rcu(&entry->entry);
6137	}
6138	if (list_empty(&class->locks_after) &&
6139	    list_empty(&class->locks_before)) {
6140		list_move_tail(&class->lock_entry, &pf->zapped);
6141		hlist_del_rcu(&class->hash_entry);
6142		WRITE_ONCE(class->key, NULL);
6143		WRITE_ONCE(class->name, NULL);
6144		nr_lock_classes--;
6145		__clear_bit(class - lock_classes, lock_classes_in_use);
6146		if (class - lock_classes == max_lock_class_idx)
6147			max_lock_class_idx--;
6148	} else {
6149		WARN_ONCE(true, "%s() failed for class %s\n", __func__,
6150			  class->name);
6151	}
6152
6153	remove_class_from_lock_chains(pf, class);
6154	nr_zapped_classes++;
6155}
6156
6157static void reinit_class(struct lock_class *class)
6158{
6159	WARN_ON_ONCE(!class->lock_entry.next);
6160	WARN_ON_ONCE(!list_empty(&class->locks_after));
6161	WARN_ON_ONCE(!list_empty(&class->locks_before));
6162	memset_startat(class, 0, key);
6163	WARN_ON_ONCE(!class->lock_entry.next);
6164	WARN_ON_ONCE(!list_empty(&class->locks_after));
6165	WARN_ON_ONCE(!list_empty(&class->locks_before));
6166}
6167
6168static inline int within(const void *addr, void *start, unsigned long size)
6169{
6170	return addr >= start && addr < start + size;
6171}
6172
6173static bool inside_selftest(void)
6174{
6175	return current == lockdep_selftest_task_struct;
6176}
6177
6178/* The caller must hold the graph lock. */
6179static struct pending_free *get_pending_free(void)
6180{
6181	return delayed_free.pf + delayed_free.index;
6182}
6183
6184static void free_zapped_rcu(struct rcu_head *cb);
6185
6186/*
6187 * Schedule an RCU callback if no RCU callback is pending. Must be called with
6188 * the graph lock held.
6189 */
6190static void call_rcu_zapped(struct pending_free *pf)
6191{
6192	WARN_ON_ONCE(inside_selftest());
6193
6194	if (list_empty(&pf->zapped))
6195		return;
6196
6197	if (delayed_free.scheduled)
6198		return;
6199
6200	delayed_free.scheduled = true;
6201
6202	WARN_ON_ONCE(delayed_free.pf + delayed_free.index != pf);
6203	delayed_free.index ^= 1;
6204
6205	call_rcu(&delayed_free.rcu_head, free_zapped_rcu);
6206}
6207
6208/* The caller must hold the graph lock. May be called from RCU context. */
6209static void __free_zapped_classes(struct pending_free *pf)
6210{
6211	struct lock_class *class;
6212
6213	check_data_structures();
6214
6215	list_for_each_entry(class, &pf->zapped, lock_entry)
6216		reinit_class(class);
6217
6218	list_splice_init(&pf->zapped, &free_lock_classes);
6219
6220#ifdef CONFIG_PROVE_LOCKING
6221	bitmap_andnot(lock_chains_in_use, lock_chains_in_use,
6222		      pf->lock_chains_being_freed, ARRAY_SIZE(lock_chains));
6223	bitmap_clear(pf->lock_chains_being_freed, 0, ARRAY_SIZE(lock_chains));
6224#endif
6225}
6226
6227static void free_zapped_rcu(struct rcu_head *ch)
6228{
6229	struct pending_free *pf;
6230	unsigned long flags;
6231
6232	if (WARN_ON_ONCE(ch != &delayed_free.rcu_head))
6233		return;
6234
6235	raw_local_irq_save(flags);
6236	lockdep_lock();
6237
6238	/* closed head */
6239	pf = delayed_free.pf + (delayed_free.index ^ 1);
6240	__free_zapped_classes(pf);
6241	delayed_free.scheduled = false;
6242
6243	/*
6244	 * If there's anything on the open list, close and start a new callback.
6245	 */
6246	call_rcu_zapped(delayed_free.pf + delayed_free.index);
6247
6248	lockdep_unlock();
6249	raw_local_irq_restore(flags);
6250}
6251
6252/*
6253 * Remove all lock classes from the class hash table and from the
6254 * all_lock_classes list whose key or name is in the address range [start,
6255 * start + size). Move these lock classes to the zapped_classes list. Must
6256 * be called with the graph lock held.
6257 */
6258static void __lockdep_free_key_range(struct pending_free *pf, void *start,
6259				     unsigned long size)
6260{
6261	struct lock_class *class;
6262	struct hlist_head *head;
6263	int i;
6264
6265	/* Unhash all classes that were created by a module. */
6266	for (i = 0; i < CLASSHASH_SIZE; i++) {
6267		head = classhash_table + i;
6268		hlist_for_each_entry_rcu(class, head, hash_entry) {
6269			if (!within(class->key, start, size) &&
6270			    !within(class->name, start, size))
6271				continue;
6272			zap_class(pf, class);
6273		}
6274	}
6275}
6276
6277/*
6278 * Used in module.c to remove lock classes from memory that is going to be
6279 * freed; and possibly re-used by other modules.
6280 *
6281 * We will have had one synchronize_rcu() before getting here, so we're
6282 * guaranteed nobody will look up these exact classes -- they're properly dead
6283 * but still allocated.
6284 */
6285static void lockdep_free_key_range_reg(void *start, unsigned long size)
6286{
6287	struct pending_free *pf;
6288	unsigned long flags;
6289
6290	init_data_structures_once();
6291
6292	raw_local_irq_save(flags);
6293	lockdep_lock();
6294	pf = get_pending_free();
6295	__lockdep_free_key_range(pf, start, size);
6296	call_rcu_zapped(pf);
6297	lockdep_unlock();
6298	raw_local_irq_restore(flags);
6299
6300	/*
6301	 * Wait for any possible iterators from look_up_lock_class() to pass
6302	 * before continuing to free the memory they refer to.
6303	 */
6304	synchronize_rcu();
6305}
6306
6307/*
6308 * Free all lockdep keys in the range [start, start+size). Does not sleep.
6309 * Ignores debug_locks. Must only be used by the lockdep selftests.
6310 */
6311static void lockdep_free_key_range_imm(void *start, unsigned long size)
6312{
6313	struct pending_free *pf = delayed_free.pf;
6314	unsigned long flags;
6315
6316	init_data_structures_once();
6317
6318	raw_local_irq_save(flags);
6319	lockdep_lock();
6320	__lockdep_free_key_range(pf, start, size);
6321	__free_zapped_classes(pf);
6322	lockdep_unlock();
6323	raw_local_irq_restore(flags);
6324}
6325
6326void lockdep_free_key_range(void *start, unsigned long size)
6327{
6328	init_data_structures_once();
6329
6330	if (inside_selftest())
6331		lockdep_free_key_range_imm(start, size);
6332	else
6333		lockdep_free_key_range_reg(start, size);
6334}
6335
6336/*
6337 * Check whether any element of the @lock->class_cache[] array refers to a
6338 * registered lock class. The caller must hold either the graph lock or the
6339 * RCU read lock.
6340 */
6341static bool lock_class_cache_is_registered(struct lockdep_map *lock)
6342{
6343	struct lock_class *class;
6344	struct hlist_head *head;
6345	int i, j;
6346
6347	for (i = 0; i < CLASSHASH_SIZE; i++) {
6348		head = classhash_table + i;
6349		hlist_for_each_entry_rcu(class, head, hash_entry) {
6350			for (j = 0; j < NR_LOCKDEP_CACHING_CLASSES; j++)
6351				if (lock->class_cache[j] == class)
6352					return true;
6353		}
6354	}
6355	return false;
6356}
6357
6358/* The caller must hold the graph lock. Does not sleep. */
6359static void __lockdep_reset_lock(struct pending_free *pf,
6360				 struct lockdep_map *lock)
6361{
6362	struct lock_class *class;
6363	int j;
6364
6365	/*
6366	 * Remove all classes this lock might have:
6367	 */
6368	for (j = 0; j < MAX_LOCKDEP_SUBCLASSES; j++) {
6369		/*
6370		 * If the class exists we look it up and zap it:
6371		 */
6372		class = look_up_lock_class(lock, j);
6373		if (class)
6374			zap_class(pf, class);
6375	}
6376	/*
6377	 * Debug check: in the end all mapped classes should
6378	 * be gone.
6379	 */
6380	if (WARN_ON_ONCE(lock_class_cache_is_registered(lock)))
6381		debug_locks_off();
6382}
6383
6384/*
6385 * Remove all information lockdep has about a lock if debug_locks == 1. Free
6386 * released data structures from RCU context.
6387 */
6388static void lockdep_reset_lock_reg(struct lockdep_map *lock)
6389{
6390	struct pending_free *pf;
6391	unsigned long flags;
6392	int locked;
6393
6394	raw_local_irq_save(flags);
6395	locked = graph_lock();
6396	if (!locked)
6397		goto out_irq;
6398
6399	pf = get_pending_free();
6400	__lockdep_reset_lock(pf, lock);
6401	call_rcu_zapped(pf);
6402
6403	graph_unlock();
6404out_irq:
6405	raw_local_irq_restore(flags);
6406}
6407
6408/*
6409 * Reset a lock. Does not sleep. Ignores debug_locks. Must only be used by the
6410 * lockdep selftests.
6411 */
6412static void lockdep_reset_lock_imm(struct lockdep_map *lock)
6413{
6414	struct pending_free *pf = delayed_free.pf;
6415	unsigned long flags;
6416
6417	raw_local_irq_save(flags);
6418	lockdep_lock();
6419	__lockdep_reset_lock(pf, lock);
6420	__free_zapped_classes(pf);
6421	lockdep_unlock();
6422	raw_local_irq_restore(flags);
6423}
6424
6425void lockdep_reset_lock(struct lockdep_map *lock)
6426{
6427	init_data_structures_once();
6428
6429	if (inside_selftest())
6430		lockdep_reset_lock_imm(lock);
6431	else
6432		lockdep_reset_lock_reg(lock);
6433}
6434
6435/*
6436 * Unregister a dynamically allocated key.
6437 *
6438 * Unlike lockdep_register_key(), a search is always done to find a matching
6439 * key irrespective of debug_locks to avoid potential invalid access to freed
6440 * memory in lock_class entry.
6441 */
6442void lockdep_unregister_key(struct lock_class_key *key)
6443{
6444	struct hlist_head *hash_head = keyhashentry(key);
6445	struct lock_class_key *k;
6446	struct pending_free *pf;
6447	unsigned long flags;
6448	bool found = false;
6449
6450	might_sleep();
6451
6452	if (WARN_ON_ONCE(static_obj(key)))
6453		return;
6454
6455	raw_local_irq_save(flags);
6456	lockdep_lock();
6457
6458	hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
6459		if (k == key) {
6460			hlist_del_rcu(&k->hash_entry);
6461			found = true;
6462			break;
6463		}
6464	}
6465	WARN_ON_ONCE(!found && debug_locks);
6466	if (found) {
6467		pf = get_pending_free();
6468		__lockdep_free_key_range(pf, key, 1);
6469		call_rcu_zapped(pf);
6470	}
6471	lockdep_unlock();
6472	raw_local_irq_restore(flags);
6473
6474	/* Wait until is_dynamic_key() has finished accessing k->hash_entry. */
6475	synchronize_rcu();
6476}
6477EXPORT_SYMBOL_GPL(lockdep_unregister_key);
6478
6479void __init lockdep_init(void)
6480{
6481	printk("Lock dependency validator: Copyright (c) 2006 Red Hat, Inc., Ingo Molnar\n");
6482
6483	printk("... MAX_LOCKDEP_SUBCLASSES:  %lu\n", MAX_LOCKDEP_SUBCLASSES);
6484	printk("... MAX_LOCK_DEPTH:          %lu\n", MAX_LOCK_DEPTH);
6485	printk("... MAX_LOCKDEP_KEYS:        %lu\n", MAX_LOCKDEP_KEYS);
6486	printk("... CLASSHASH_SIZE:          %lu\n", CLASSHASH_SIZE);
6487	printk("... MAX_LOCKDEP_ENTRIES:     %lu\n", MAX_LOCKDEP_ENTRIES);
6488	printk("... MAX_LOCKDEP_CHAINS:      %lu\n", MAX_LOCKDEP_CHAINS);
6489	printk("... CHAINHASH_SIZE:          %lu\n", CHAINHASH_SIZE);
6490
6491	printk(" memory used by lock dependency info: %zu kB\n",
6492	       (sizeof(lock_classes) +
6493		sizeof(lock_classes_in_use) +
6494		sizeof(classhash_table) +
6495		sizeof(list_entries) +
6496		sizeof(list_entries_in_use) +
6497		sizeof(chainhash_table) +
6498		sizeof(delayed_free)
6499#ifdef CONFIG_PROVE_LOCKING
6500		+ sizeof(lock_cq)
6501		+ sizeof(lock_chains)
6502		+ sizeof(lock_chains_in_use)
6503		+ sizeof(chain_hlocks)
6504#endif
6505		) / 1024
6506		);
6507
6508#if defined(CONFIG_TRACE_IRQFLAGS) && defined(CONFIG_PROVE_LOCKING)
6509	printk(" memory used for stack traces: %zu kB\n",
6510	       (sizeof(stack_trace) + sizeof(stack_trace_hash)) / 1024
6511	       );
6512#endif
6513
6514	printk(" per task-struct memory footprint: %zu bytes\n",
6515	       sizeof(((struct task_struct *)NULL)->held_locks));
6516}
6517
6518static void
6519print_freed_lock_bug(struct task_struct *curr, const void *mem_from,
6520		     const void *mem_to, struct held_lock *hlock)
6521{
6522	if (!debug_locks_off())
6523		return;
6524	if (debug_locks_silent)
6525		return;
6526
6527	pr_warn("\n");
6528	pr_warn("=========================\n");
6529	pr_warn("WARNING: held lock freed!\n");
6530	print_kernel_ident();
6531	pr_warn("-------------------------\n");
6532	pr_warn("%s/%d is freeing memory %px-%px, with a lock still held there!\n",
6533		curr->comm, task_pid_nr(curr), mem_from, mem_to-1);
6534	print_lock(hlock);
6535	lockdep_print_held_locks(curr);
6536
6537	pr_warn("\nstack backtrace:\n");
6538	dump_stack();
6539}
6540
6541static inline int not_in_range(const void* mem_from, unsigned long mem_len,
6542				const void* lock_from, unsigned long lock_len)
6543{
6544	return lock_from + lock_len <= mem_from ||
6545		mem_from + mem_len <= lock_from;
6546}
6547
6548/*
6549 * Called when kernel memory is freed (or unmapped), or if a lock
6550 * is destroyed or reinitialized - this code checks whether there is
6551 * any held lock in the memory range of <from> to <to>:
6552 */
6553void debug_check_no_locks_freed(const void *mem_from, unsigned long mem_len)
6554{
6555	struct task_struct *curr = current;
6556	struct held_lock *hlock;
6557	unsigned long flags;
6558	int i;
6559
6560	if (unlikely(!debug_locks))
6561		return;
6562
6563	raw_local_irq_save(flags);
6564	for (i = 0; i < curr->lockdep_depth; i++) {
6565		hlock = curr->held_locks + i;
6566
6567		if (not_in_range(mem_from, mem_len, hlock->instance,
6568					sizeof(*hlock->instance)))
6569			continue;
6570
6571		print_freed_lock_bug(curr, mem_from, mem_from + mem_len, hlock);
6572		break;
6573	}
6574	raw_local_irq_restore(flags);
6575}
6576EXPORT_SYMBOL_GPL(debug_check_no_locks_freed);
6577
6578static void print_held_locks_bug(void)
6579{
6580	if (!debug_locks_off())
6581		return;
6582	if (debug_locks_silent)
6583		return;
6584
6585	pr_warn("\n");
6586	pr_warn("====================================\n");
6587	pr_warn("WARNING: %s/%d still has locks held!\n",
6588	       current->comm, task_pid_nr(current));
6589	print_kernel_ident();
6590	pr_warn("------------------------------------\n");
6591	lockdep_print_held_locks(current);
6592	pr_warn("\nstack backtrace:\n");
6593	dump_stack();
6594}
6595
6596void debug_check_no_locks_held(void)
6597{
6598	if (unlikely(current->lockdep_depth > 0))
6599		print_held_locks_bug();
6600}
6601EXPORT_SYMBOL_GPL(debug_check_no_locks_held);
6602
6603#ifdef __KERNEL__
6604void debug_show_all_locks(void)
6605{
6606	struct task_struct *g, *p;
6607
6608	if (unlikely(!debug_locks)) {
6609		pr_warn("INFO: lockdep is turned off.\n");
6610		return;
6611	}
6612	pr_warn("\nShowing all locks held in the system:\n");
6613
6614	rcu_read_lock();
6615	for_each_process_thread(g, p) {
6616		if (!p->lockdep_depth)
6617			continue;
6618		lockdep_print_held_locks(p);
6619		touch_nmi_watchdog();
6620		touch_all_softlockup_watchdogs();
6621	}
6622	rcu_read_unlock();
6623
6624	pr_warn("\n");
6625	pr_warn("=============================================\n\n");
6626}
6627EXPORT_SYMBOL_GPL(debug_show_all_locks);
6628#endif
6629
6630/*
6631 * Careful: only use this function if you are sure that
6632 * the task cannot run in parallel!
6633 */
6634void debug_show_held_locks(struct task_struct *task)
6635{
6636	if (unlikely(!debug_locks)) {
6637		printk("INFO: lockdep is turned off.\n");
6638		return;
6639	}
6640	lockdep_print_held_locks(task);
6641}
6642EXPORT_SYMBOL_GPL(debug_show_held_locks);
6643
6644asmlinkage __visible void lockdep_sys_exit(void)
6645{
6646	struct task_struct *curr = current;
6647
6648	if (unlikely(curr->lockdep_depth)) {
6649		if (!debug_locks_off())
6650			return;
6651		pr_warn("\n");
6652		pr_warn("================================================\n");
6653		pr_warn("WARNING: lock held when returning to user space!\n");
6654		print_kernel_ident();
6655		pr_warn("------------------------------------------------\n");
6656		pr_warn("%s/%d is leaving the kernel with locks still held!\n",
6657				curr->comm, curr->pid);
6658		lockdep_print_held_locks(curr);
6659	}
6660
6661	/*
6662	 * The lock history for each syscall should be independent. So wipe the
6663	 * slate clean on return to userspace.
6664	 */
6665	lockdep_invariant_state(false);
6666}
6667
6668void lockdep_rcu_suspicious(const char *file, const int line, const char *s)
6669{
6670	struct task_struct *curr = current;
6671	int dl = READ_ONCE(debug_locks);
6672	bool rcu = warn_rcu_enter();
6673
6674	/* Note: the following can be executed concurrently, so be careful. */
6675	pr_warn("\n");
6676	pr_warn("=============================\n");
6677	pr_warn("WARNING: suspicious RCU usage\n");
6678	print_kernel_ident();
6679	pr_warn("-----------------------------\n");
6680	pr_warn("%s:%d %s!\n", file, line, s);
6681	pr_warn("\nother info that might help us debug this:\n\n");
6682	pr_warn("\n%srcu_scheduler_active = %d, debug_locks = %d\n%s",
6683	       !rcu_lockdep_current_cpu_online()
6684			? "RCU used illegally from offline CPU!\n"
6685			: "",
6686	       rcu_scheduler_active, dl,
6687	       dl ? "" : "Possible false positive due to lockdep disabling via debug_locks = 0\n");
6688
6689	/*
6690	 * If a CPU is in the RCU-free window in idle (ie: in the section
6691	 * between ct_idle_enter() and ct_idle_exit(), then RCU
6692	 * considers that CPU to be in an "extended quiescent state",
6693	 * which means that RCU will be completely ignoring that CPU.
6694	 * Therefore, rcu_read_lock() and friends have absolutely no
6695	 * effect on a CPU running in that state. In other words, even if
6696	 * such an RCU-idle CPU has called rcu_read_lock(), RCU might well
6697	 * delete data structures out from under it.  RCU really has no
6698	 * choice here: we need to keep an RCU-free window in idle where
6699	 * the CPU may possibly enter into low power mode. This way we can
6700	 * notice an extended quiescent state to other CPUs that started a grace
6701	 * period. Otherwise we would delay any grace period as long as we run
6702	 * in the idle task.
6703	 *
6704	 * So complain bitterly if someone does call rcu_read_lock(),
6705	 * rcu_read_lock_bh() and so on from extended quiescent states.
6706	 */
6707	if (!rcu_is_watching())
6708		pr_warn("RCU used illegally from extended quiescent state!\n");
6709
6710	lockdep_print_held_locks(curr);
6711	pr_warn("\nstack backtrace:\n");
6712	dump_stack();
6713	warn_rcu_exit(rcu);
6714}
6715EXPORT_SYMBOL_GPL(lockdep_rcu_suspicious);
6716