1// SPDX-License-Identifier: GPL-2.0
2/*
3 * KCSAN reporting.
4 *
5 * Copyright (C) 2019, Google LLC.
6 */
7
8#include <linux/debug_locks.h>
9#include <linux/delay.h>
10#include <linux/jiffies.h>
11#include <linux/kallsyms.h>
12#include <linux/kernel.h>
13#include <linux/lockdep.h>
14#include <linux/preempt.h>
15#include <linux/printk.h>
16#include <linux/sched.h>
17#include <linux/spinlock.h>
18#include <linux/stacktrace.h>
19
20#include "kcsan.h"
21#include "encoding.h"
22
23/*
24 * Max. number of stack entries to show in the report.
25 */
26#define NUM_STACK_ENTRIES 64
27
28/* Common access info. */
29struct access_info {
30	const volatile void	*ptr;
31	size_t			size;
32	int			access_type;
33	int			task_pid;
34	int			cpu_id;
35	unsigned long		ip;
36};
37
38/*
39 * Other thread info: communicated from other racing thread to thread that set
40 * up the watchpoint, which then prints the complete report atomically.
41 */
42struct other_info {
43	struct access_info	ai;
44	unsigned long		stack_entries[NUM_STACK_ENTRIES];
45	int			num_stack_entries;
46
47	/*
48	 * Optionally pass @current. Typically we do not need to pass @current
49	 * via @other_info since just @task_pid is sufficient. Passing @current
50	 * has additional overhead.
51	 *
52	 * To safely pass @current, we must either use get_task_struct/
53	 * put_task_struct, or stall the thread that populated @other_info.
54	 *
55	 * We cannot rely on get_task_struct/put_task_struct in case
56	 * release_report() races with a task being released, and would have to
57	 * free it in release_report(). This may result in deadlock if we want
58	 * to use KCSAN on the allocators.
59	 *
60	 * Since we also want to reliably print held locks for
61	 * CONFIG_KCSAN_VERBOSE, the current implementation stalls the thread
62	 * that populated @other_info until it has been consumed.
63	 */
64	struct task_struct	*task;
65};
66
67/*
68 * To never block any producers of struct other_info, we need as many elements
69 * as we have watchpoints (upper bound on concurrent races to report).
70 */
71static struct other_info other_infos[CONFIG_KCSAN_NUM_WATCHPOINTS + NUM_SLOTS-1];
72
73/*
74 * Information about reported races; used to rate limit reporting.
75 */
76struct report_time {
77	/*
78	 * The last time the race was reported.
79	 */
80	unsigned long time;
81
82	/*
83	 * The frames of the 2 threads; if only 1 thread is known, one frame
84	 * will be 0.
85	 */
86	unsigned long frame1;
87	unsigned long frame2;
88};
89
90/*
91 * Since we also want to be able to debug allocators with KCSAN, to avoid
92 * deadlock, report_times cannot be dynamically resized with krealloc in
93 * rate_limit_report.
94 *
95 * Therefore, we use a fixed-size array, which at most will occupy a page. This
96 * still adequately rate limits reports, assuming that a) number of unique data
97 * races is not excessive, and b) occurrence of unique races within the
98 * same time window is limited.
99 */
100#define REPORT_TIMES_MAX (PAGE_SIZE / sizeof(struct report_time))
101#define REPORT_TIMES_SIZE                                                      \
102	(CONFIG_KCSAN_REPORT_ONCE_IN_MS > REPORT_TIMES_MAX ?                   \
103		 REPORT_TIMES_MAX :                                            \
104		 CONFIG_KCSAN_REPORT_ONCE_IN_MS)
105static struct report_time report_times[REPORT_TIMES_SIZE];
106
107/*
108 * Spinlock serializing report generation, and access to @other_infos. Although
109 * it could make sense to have a finer-grained locking story for @other_infos,
110 * report generation needs to be serialized either way, so not much is gained.
111 */
112static DEFINE_RAW_SPINLOCK(report_lock);
113
114/*
115 * Checks if the race identified by thread frames frame1 and frame2 has
116 * been reported since (now - KCSAN_REPORT_ONCE_IN_MS).
117 */
118static bool rate_limit_report(unsigned long frame1, unsigned long frame2)
119{
120	struct report_time *use_entry = &report_times[0];
121	unsigned long invalid_before;
122	int i;
123
124	BUILD_BUG_ON(CONFIG_KCSAN_REPORT_ONCE_IN_MS != 0 && REPORT_TIMES_SIZE == 0);
125
126	if (CONFIG_KCSAN_REPORT_ONCE_IN_MS == 0)
127		return false;
128
129	invalid_before = jiffies - msecs_to_jiffies(CONFIG_KCSAN_REPORT_ONCE_IN_MS);
130
131	/* Check if a matching race report exists. */
132	for (i = 0; i < REPORT_TIMES_SIZE; ++i) {
133		struct report_time *rt = &report_times[i];
134
135		/*
136		 * Must always select an entry for use to store info as we
137		 * cannot resize report_times; at the end of the scan, use_entry
138		 * will be the oldest entry, which ideally also happened before
139		 * KCSAN_REPORT_ONCE_IN_MS ago.
140		 */
141		if (time_before(rt->time, use_entry->time))
142			use_entry = rt;
143
144		/*
145		 * Initially, no need to check any further as this entry as well
146		 * as following entries have never been used.
147		 */
148		if (rt->time == 0)
149			break;
150
151		/* Check if entry expired. */
152		if (time_before(rt->time, invalid_before))
153			continue; /* before KCSAN_REPORT_ONCE_IN_MS ago */
154
155		/* Reported recently, check if race matches. */
156		if ((rt->frame1 == frame1 && rt->frame2 == frame2) ||
157		    (rt->frame1 == frame2 && rt->frame2 == frame1))
158			return true;
159	}
160
161	use_entry->time = jiffies;
162	use_entry->frame1 = frame1;
163	use_entry->frame2 = frame2;
164	return false;
165}
166
167/*
168 * Special rules to skip reporting.
169 */
170static bool
171skip_report(enum kcsan_value_change value_change, unsigned long top_frame)
172{
173	/* Should never get here if value_change==FALSE. */
174	WARN_ON_ONCE(value_change == KCSAN_VALUE_CHANGE_FALSE);
175
176	/*
177	 * The first call to skip_report always has value_change==TRUE, since we
178	 * cannot know the value written of an instrumented access. For the 2nd
179	 * call there are 6 cases with CONFIG_KCSAN_REPORT_VALUE_CHANGE_ONLY:
180	 *
181	 * 1. read watchpoint, conflicting write (value_change==TRUE): report;
182	 * 2. read watchpoint, conflicting write (value_change==MAYBE): skip;
183	 * 3. write watchpoint, conflicting write (value_change==TRUE): report;
184	 * 4. write watchpoint, conflicting write (value_change==MAYBE): skip;
185	 * 5. write watchpoint, conflicting read (value_change==MAYBE): skip;
186	 * 6. write watchpoint, conflicting read (value_change==TRUE): report;
187	 *
188	 * Cases 1-4 are intuitive and expected; case 5 ensures we do not report
189	 * data races where the write may have rewritten the same value; case 6
190	 * is possible either if the size is larger than what we check value
191	 * changes for or the access type is KCSAN_ACCESS_ASSERT.
192	 */
193	if (IS_ENABLED(CONFIG_KCSAN_REPORT_VALUE_CHANGE_ONLY) &&
194	    value_change == KCSAN_VALUE_CHANGE_MAYBE) {
195		/*
196		 * The access is a write, but the data value did not change.
197		 *
198		 * We opt-out of this filter for certain functions at request of
199		 * maintainers.
200		 */
201		char buf[64];
202		int len = scnprintf(buf, sizeof(buf), "%ps", (void *)top_frame);
203
204		if (!strnstr(buf, "rcu_", len) &&
205		    !strnstr(buf, "_rcu", len) &&
206		    !strnstr(buf, "_srcu", len))
207			return true;
208	}
209
210	return kcsan_skip_report_debugfs(top_frame);
211}
212
213static const char *get_access_type(int type)
214{
215	if (type & KCSAN_ACCESS_ASSERT) {
216		if (type & KCSAN_ACCESS_SCOPED) {
217			if (type & KCSAN_ACCESS_WRITE)
218				return "assert no accesses (reordered)";
219			else
220				return "assert no writes (reordered)";
221		} else {
222			if (type & KCSAN_ACCESS_WRITE)
223				return "assert no accesses";
224			else
225				return "assert no writes";
226		}
227	}
228
229	switch (type) {
230	case 0:
231		return "read";
232	case KCSAN_ACCESS_ATOMIC:
233		return "read (marked)";
234	case KCSAN_ACCESS_WRITE:
235		return "write";
236	case KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ATOMIC:
237		return "write (marked)";
238	case KCSAN_ACCESS_COMPOUND | KCSAN_ACCESS_WRITE:
239		return "read-write";
240	case KCSAN_ACCESS_COMPOUND | KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ATOMIC:
241		return "read-write (marked)";
242	case KCSAN_ACCESS_SCOPED:
243		return "read (reordered)";
244	case KCSAN_ACCESS_SCOPED | KCSAN_ACCESS_ATOMIC:
245		return "read (marked, reordered)";
246	case KCSAN_ACCESS_SCOPED | KCSAN_ACCESS_WRITE:
247		return "write (reordered)";
248	case KCSAN_ACCESS_SCOPED | KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ATOMIC:
249		return "write (marked, reordered)";
250	case KCSAN_ACCESS_SCOPED | KCSAN_ACCESS_COMPOUND | KCSAN_ACCESS_WRITE:
251		return "read-write (reordered)";
252	case KCSAN_ACCESS_SCOPED | KCSAN_ACCESS_COMPOUND | KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ATOMIC:
253		return "read-write (marked, reordered)";
254	default:
255		BUG();
256	}
257}
258
259static const char *get_bug_type(int type)
260{
261	return (type & KCSAN_ACCESS_ASSERT) != 0 ? "assert: race" : "data-race";
262}
263
264/* Return thread description: in task or interrupt. */
265static const char *get_thread_desc(int task_id)
266{
267	if (task_id != -1) {
268		static char buf[32]; /* safe: protected by report_lock */
269
270		snprintf(buf, sizeof(buf), "task %i", task_id);
271		return buf;
272	}
273	return "interrupt";
274}
275
276/* Helper to skip KCSAN-related functions in stack-trace. */
277static int get_stack_skipnr(const unsigned long stack_entries[], int num_entries)
278{
279	char buf[64];
280	char *cur;
281	int len, skip;
282
283	for (skip = 0; skip < num_entries; ++skip) {
284		len = scnprintf(buf, sizeof(buf), "%ps", (void *)stack_entries[skip]);
285
286		/* Never show tsan_* or {read,write}_once_size. */
287		if (strnstr(buf, "tsan_", len) ||
288		    strnstr(buf, "_once_size", len))
289			continue;
290
291		cur = strnstr(buf, "kcsan_", len);
292		if (cur) {
293			cur += strlen("kcsan_");
294			if (!str_has_prefix(cur, "test"))
295				continue; /* KCSAN runtime function. */
296			/* KCSAN related test. */
297		}
298
299		/*
300		 * No match for runtime functions -- @skip entries to skip to
301		 * get to first frame of interest.
302		 */
303		break;
304	}
305
306	return skip;
307}
308
309/*
310 * Skips to the first entry that matches the function of @ip, and then replaces
311 * that entry with @ip, returning the entries to skip with @replaced containing
312 * the replaced entry.
313 */
314static int
315replace_stack_entry(unsigned long stack_entries[], int num_entries, unsigned long ip,
316		    unsigned long *replaced)
317{
318	unsigned long symbolsize, offset;
319	unsigned long target_func;
320	int skip;
321
322	if (kallsyms_lookup_size_offset(ip, &symbolsize, &offset))
323		target_func = ip - offset;
324	else
325		goto fallback;
326
327	for (skip = 0; skip < num_entries; ++skip) {
328		unsigned long func = stack_entries[skip];
329
330		if (!kallsyms_lookup_size_offset(func, &symbolsize, &offset))
331			goto fallback;
332		func -= offset;
333
334		if (func == target_func) {
335			*replaced = stack_entries[skip];
336			stack_entries[skip] = ip;
337			return skip;
338		}
339	}
340
341fallback:
342	/* Should not happen; the resulting stack trace is likely misleading. */
343	WARN_ONCE(1, "Cannot find frame for %pS in stack trace", (void *)ip);
344	return get_stack_skipnr(stack_entries, num_entries);
345}
346
347static int
348sanitize_stack_entries(unsigned long stack_entries[], int num_entries, unsigned long ip,
349		       unsigned long *replaced)
350{
351	return ip ? replace_stack_entry(stack_entries, num_entries, ip, replaced) :
352			  get_stack_skipnr(stack_entries, num_entries);
353}
354
355/* Compares symbolized strings of addr1 and addr2. */
356static int sym_strcmp(void *addr1, void *addr2)
357{
358	char buf1[64];
359	char buf2[64];
360
361	snprintf(buf1, sizeof(buf1), "%pS", addr1);
362	snprintf(buf2, sizeof(buf2), "%pS", addr2);
363
364	return strncmp(buf1, buf2, sizeof(buf1));
365}
366
367static void
368print_stack_trace(unsigned long stack_entries[], int num_entries, unsigned long reordered_to)
369{
370	stack_trace_print(stack_entries, num_entries, 0);
371	if (reordered_to)
372		pr_err("  |\n  +-> reordered to: %pS\n", (void *)reordered_to);
373}
374
375static void print_verbose_info(struct task_struct *task)
376{
377	if (!task)
378		return;
379
380	/* Restore IRQ state trace for printing. */
381	kcsan_restore_irqtrace(task);
382
383	pr_err("\n");
384	debug_show_held_locks(task);
385	print_irqtrace_events(task);
386}
387
388static void print_report(enum kcsan_value_change value_change,
389			 const struct access_info *ai,
390			 struct other_info *other_info,
391			 u64 old, u64 new, u64 mask)
392{
393	unsigned long reordered_to = 0;
394	unsigned long stack_entries[NUM_STACK_ENTRIES] = { 0 };
395	int num_stack_entries = stack_trace_save(stack_entries, NUM_STACK_ENTRIES, 1);
396	int skipnr = sanitize_stack_entries(stack_entries, num_stack_entries, ai->ip, &reordered_to);
397	unsigned long this_frame = stack_entries[skipnr];
398	unsigned long other_reordered_to = 0;
399	unsigned long other_frame = 0;
400	int other_skipnr = 0; /* silence uninit warnings */
401
402	/*
403	 * Must check report filter rules before starting to print.
404	 */
405	if (skip_report(KCSAN_VALUE_CHANGE_TRUE, stack_entries[skipnr]))
406		return;
407
408	if (other_info) {
409		other_skipnr = sanitize_stack_entries(other_info->stack_entries,
410						      other_info->num_stack_entries,
411						      other_info->ai.ip, &other_reordered_to);
412		other_frame = other_info->stack_entries[other_skipnr];
413
414		/* @value_change is only known for the other thread */
415		if (skip_report(value_change, other_frame))
416			return;
417	}
418
419	if (rate_limit_report(this_frame, other_frame))
420		return;
421
422	/* Print report header. */
423	pr_err("==================================================================\n");
424	if (other_info) {
425		int cmp;
426
427		/*
428		 * Order functions lexographically for consistent bug titles.
429		 * Do not print offset of functions to keep title short.
430		 */
431		cmp = sym_strcmp((void *)other_frame, (void *)this_frame);
432		pr_err("BUG: KCSAN: %s in %ps / %ps\n",
433		       get_bug_type(ai->access_type | other_info->ai.access_type),
434		       (void *)(cmp < 0 ? other_frame : this_frame),
435		       (void *)(cmp < 0 ? this_frame : other_frame));
436	} else {
437		pr_err("BUG: KCSAN: %s in %pS\n", get_bug_type(ai->access_type),
438		       (void *)this_frame);
439	}
440
441	pr_err("\n");
442
443	/* Print information about the racing accesses. */
444	if (other_info) {
445		pr_err("%s to 0x%px of %zu bytes by %s on cpu %i:\n",
446		       get_access_type(other_info->ai.access_type), other_info->ai.ptr,
447		       other_info->ai.size, get_thread_desc(other_info->ai.task_pid),
448		       other_info->ai.cpu_id);
449
450		/* Print the other thread's stack trace. */
451		print_stack_trace(other_info->stack_entries + other_skipnr,
452				  other_info->num_stack_entries - other_skipnr,
453				  other_reordered_to);
454		if (IS_ENABLED(CONFIG_KCSAN_VERBOSE))
455			print_verbose_info(other_info->task);
456
457		pr_err("\n");
458		pr_err("%s to 0x%px of %zu bytes by %s on cpu %i:\n",
459		       get_access_type(ai->access_type), ai->ptr, ai->size,
460		       get_thread_desc(ai->task_pid), ai->cpu_id);
461	} else {
462		pr_err("race at unknown origin, with %s to 0x%px of %zu bytes by %s on cpu %i:\n",
463		       get_access_type(ai->access_type), ai->ptr, ai->size,
464		       get_thread_desc(ai->task_pid), ai->cpu_id);
465	}
466	/* Print stack trace of this thread. */
467	print_stack_trace(stack_entries + skipnr, num_stack_entries - skipnr, reordered_to);
468	if (IS_ENABLED(CONFIG_KCSAN_VERBOSE))
469		print_verbose_info(current);
470
471	/* Print observed value change. */
472	if (ai->size <= 8) {
473		int hex_len = ai->size * 2;
474		u64 diff = old ^ new;
475
476		if (mask)
477			diff &= mask;
478		if (diff) {
479			pr_err("\n");
480			pr_err("value changed: 0x%0*llx -> 0x%0*llx\n",
481			       hex_len, old, hex_len, new);
482			if (mask) {
483				pr_err(" bits changed: 0x%0*llx with mask 0x%0*llx\n",
484				       hex_len, diff, hex_len, mask);
485			}
486		}
487	}
488
489	/* Print report footer. */
490	pr_err("\n");
491	pr_err("Reported by Kernel Concurrency Sanitizer on:\n");
492	dump_stack_print_info(KERN_DEFAULT);
493	pr_err("==================================================================\n");
494
495	check_panic_on_warn("KCSAN");
496}
497
498static void release_report(unsigned long *flags, struct other_info *other_info)
499{
500	/*
501	 * Use size to denote valid/invalid, since KCSAN entirely ignores
502	 * 0-sized accesses.
503	 */
504	other_info->ai.size = 0;
505	raw_spin_unlock_irqrestore(&report_lock, *flags);
506}
507
508/*
509 * Sets @other_info->task and awaits consumption of @other_info.
510 *
511 * Precondition: report_lock is held.
512 * Postcondition: report_lock is held.
513 */
514static void set_other_info_task_blocking(unsigned long *flags,
515					 const struct access_info *ai,
516					 struct other_info *other_info)
517{
518	/*
519	 * We may be instrumenting a code-path where current->state is already
520	 * something other than TASK_RUNNING.
521	 */
522	const bool is_running = task_is_running(current);
523	/*
524	 * To avoid deadlock in case we are in an interrupt here and this is a
525	 * race with a task on the same CPU (KCSAN_INTERRUPT_WATCHER), provide a
526	 * timeout to ensure this works in all contexts.
527	 *
528	 * Await approximately the worst case delay of the reporting thread (if
529	 * we are not interrupted).
530	 */
531	int timeout = max(kcsan_udelay_task, kcsan_udelay_interrupt);
532
533	other_info->task = current;
534	do {
535		if (is_running) {
536			/*
537			 * Let lockdep know the real task is sleeping, to print
538			 * the held locks (recall we turned lockdep off, so
539			 * locking/unlocking @report_lock won't be recorded).
540			 */
541			set_current_state(TASK_UNINTERRUPTIBLE);
542		}
543		raw_spin_unlock_irqrestore(&report_lock, *flags);
544		/*
545		 * We cannot call schedule() since we also cannot reliably
546		 * determine if sleeping here is permitted -- see in_atomic().
547		 */
548
549		udelay(1);
550		raw_spin_lock_irqsave(&report_lock, *flags);
551		if (timeout-- < 0) {
552			/*
553			 * Abort. Reset @other_info->task to NULL, since it
554			 * appears the other thread is still going to consume
555			 * it. It will result in no verbose info printed for
556			 * this task.
557			 */
558			other_info->task = NULL;
559			break;
560		}
561		/*
562		 * If invalid, or @ptr nor @current matches, then @other_info
563		 * has been consumed and we may continue. If not, retry.
564		 */
565	} while (other_info->ai.size && other_info->ai.ptr == ai->ptr &&
566		 other_info->task == current);
567	if (is_running)
568		set_current_state(TASK_RUNNING);
569}
570
571/* Populate @other_info; requires that the provided @other_info not in use. */
572static void prepare_report_producer(unsigned long *flags,
573				    const struct access_info *ai,
574				    struct other_info *other_info)
575{
576	raw_spin_lock_irqsave(&report_lock, *flags);
577
578	/*
579	 * The same @other_infos entry cannot be used concurrently, because
580	 * there is a one-to-one mapping to watchpoint slots (@watchpoints in
581	 * core.c), and a watchpoint is only released for reuse after reporting
582	 * is done by the consumer of @other_info. Therefore, it is impossible
583	 * for another concurrent prepare_report_producer() to set the same
584	 * @other_info, and are guaranteed exclusivity for the @other_infos
585	 * entry pointed to by @other_info.
586	 *
587	 * To check this property holds, size should never be non-zero here,
588	 * because every consumer of struct other_info resets size to 0 in
589	 * release_report().
590	 */
591	WARN_ON(other_info->ai.size);
592
593	other_info->ai = *ai;
594	other_info->num_stack_entries = stack_trace_save(other_info->stack_entries, NUM_STACK_ENTRIES, 2);
595
596	if (IS_ENABLED(CONFIG_KCSAN_VERBOSE))
597		set_other_info_task_blocking(flags, ai, other_info);
598
599	raw_spin_unlock_irqrestore(&report_lock, *flags);
600}
601
602/* Awaits producer to fill @other_info and then returns. */
603static bool prepare_report_consumer(unsigned long *flags,
604				    const struct access_info *ai,
605				    struct other_info *other_info)
606{
607
608	raw_spin_lock_irqsave(&report_lock, *flags);
609	while (!other_info->ai.size) { /* Await valid @other_info. */
610		raw_spin_unlock_irqrestore(&report_lock, *flags);
611		cpu_relax();
612		raw_spin_lock_irqsave(&report_lock, *flags);
613	}
614
615	/* Should always have a matching access based on watchpoint encoding. */
616	if (WARN_ON(!matching_access((unsigned long)other_info->ai.ptr & WATCHPOINT_ADDR_MASK, other_info->ai.size,
617				     (unsigned long)ai->ptr & WATCHPOINT_ADDR_MASK, ai->size)))
618		goto discard;
619
620	if (!matching_access((unsigned long)other_info->ai.ptr, other_info->ai.size,
621			     (unsigned long)ai->ptr, ai->size)) {
622		/*
623		 * If the actual accesses to not match, this was a false
624		 * positive due to watchpoint encoding.
625		 */
626		atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_ENCODING_FALSE_POSITIVES]);
627		goto discard;
628	}
629
630	return true;
631
632discard:
633	release_report(flags, other_info);
634	return false;
635}
636
637static struct access_info prepare_access_info(const volatile void *ptr, size_t size,
638					      int access_type, unsigned long ip)
639{
640	return (struct access_info) {
641		.ptr		= ptr,
642		.size		= size,
643		.access_type	= access_type,
644		.task_pid	= in_task() ? task_pid_nr(current) : -1,
645		.cpu_id		= raw_smp_processor_id(),
646		/* Only replace stack entry with @ip if scoped access. */
647		.ip		= (access_type & KCSAN_ACCESS_SCOPED) ? ip : 0,
648	};
649}
650
651void kcsan_report_set_info(const volatile void *ptr, size_t size, int access_type,
652			   unsigned long ip, int watchpoint_idx)
653{
654	const struct access_info ai = prepare_access_info(ptr, size, access_type, ip);
655	unsigned long flags;
656
657	kcsan_disable_current();
658	lockdep_off(); /* See kcsan_report_known_origin(). */
659
660	prepare_report_producer(&flags, &ai, &other_infos[watchpoint_idx]);
661
662	lockdep_on();
663	kcsan_enable_current();
664}
665
666void kcsan_report_known_origin(const volatile void *ptr, size_t size, int access_type,
667			       unsigned long ip, enum kcsan_value_change value_change,
668			       int watchpoint_idx, u64 old, u64 new, u64 mask)
669{
670	const struct access_info ai = prepare_access_info(ptr, size, access_type, ip);
671	struct other_info *other_info = &other_infos[watchpoint_idx];
672	unsigned long flags = 0;
673
674	kcsan_disable_current();
675	/*
676	 * Because we may generate reports when we're in scheduler code, the use
677	 * of printk() could deadlock. Until such time that all printing code
678	 * called in print_report() is scheduler-safe, accept the risk, and just
679	 * get our message out. As such, also disable lockdep to hide the
680	 * warning, and avoid disabling lockdep for the rest of the kernel.
681	 */
682	lockdep_off();
683
684	if (!prepare_report_consumer(&flags, &ai, other_info))
685		goto out;
686	/*
687	 * Never report if value_change is FALSE, only when it is
688	 * either TRUE or MAYBE. In case of MAYBE, further filtering may
689	 * be done once we know the full stack trace in print_report().
690	 */
691	if (value_change != KCSAN_VALUE_CHANGE_FALSE)
692		print_report(value_change, &ai, other_info, old, new, mask);
693
694	release_report(&flags, other_info);
695out:
696	lockdep_on();
697	kcsan_enable_current();
698}
699
700void kcsan_report_unknown_origin(const volatile void *ptr, size_t size, int access_type,
701				 unsigned long ip, u64 old, u64 new, u64 mask)
702{
703	const struct access_info ai = prepare_access_info(ptr, size, access_type, ip);
704	unsigned long flags;
705
706	kcsan_disable_current();
707	lockdep_off(); /* See kcsan_report_known_origin(). */
708
709	raw_spin_lock_irqsave(&report_lock, flags);
710	print_report(KCSAN_VALUE_CHANGE_TRUE, &ai, NULL, old, new, mask);
711	raw_spin_unlock_irqrestore(&report_lock, flags);
712
713	lockdep_on();
714	kcsan_enable_current();
715}
716