1// SPDX-License-Identifier: GPL-2.0
2/*
3 * KCSAN core runtime.
4 *
5 * Copyright (C) 2019, Google LLC.
6 */
7
8#define pr_fmt(fmt) "kcsan: " fmt
9
10#include <linux/atomic.h>
11#include <linux/bug.h>
12#include <linux/delay.h>
13#include <linux/export.h>
14#include <linux/init.h>
15#include <linux/kernel.h>
16#include <linux/list.h>
17#include <linux/minmax.h>
18#include <linux/moduleparam.h>
19#include <linux/percpu.h>
20#include <linux/preempt.h>
21#include <linux/sched.h>
22#include <linux/string.h>
23#include <linux/uaccess.h>
24
25#include "encoding.h"
26#include "kcsan.h"
27#include "permissive.h"
28
29static bool kcsan_early_enable = IS_ENABLED(CONFIG_KCSAN_EARLY_ENABLE);
30unsigned int kcsan_udelay_task = CONFIG_KCSAN_UDELAY_TASK;
31unsigned int kcsan_udelay_interrupt = CONFIG_KCSAN_UDELAY_INTERRUPT;
32static long kcsan_skip_watch = CONFIG_KCSAN_SKIP_WATCH;
33static bool kcsan_interrupt_watcher = IS_ENABLED(CONFIG_KCSAN_INTERRUPT_WATCHER);
34
35#ifdef MODULE_PARAM_PREFIX
36#undef MODULE_PARAM_PREFIX
37#endif
38#define MODULE_PARAM_PREFIX "kcsan."
39module_param_named(early_enable, kcsan_early_enable, bool, 0);
40module_param_named(udelay_task, kcsan_udelay_task, uint, 0644);
41module_param_named(udelay_interrupt, kcsan_udelay_interrupt, uint, 0644);
42module_param_named(skip_watch, kcsan_skip_watch, long, 0644);
43module_param_named(interrupt_watcher, kcsan_interrupt_watcher, bool, 0444);
44
45#ifdef CONFIG_KCSAN_WEAK_MEMORY
46static bool kcsan_weak_memory = true;
47module_param_named(weak_memory, kcsan_weak_memory, bool, 0644);
48#else
49#define kcsan_weak_memory false
50#endif
51
52bool kcsan_enabled;
53
54/* Per-CPU kcsan_ctx for interrupts */
55static DEFINE_PER_CPU(struct kcsan_ctx, kcsan_cpu_ctx) = {
56	.scoped_accesses	= {LIST_POISON1, NULL},
57};
58
59/*
60 * Helper macros to index into adjacent slots, starting from address slot
61 * itself, followed by the right and left slots.
62 *
63 * The purpose is 2-fold:
64 *
65 *	1. if during insertion the address slot is already occupied, check if
66 *	   any adjacent slots are free;
67 *	2. accesses that straddle a slot boundary due to size that exceeds a
68 *	   slot's range may check adjacent slots if any watchpoint matches.
69 *
70 * Note that accesses with very large size may still miss a watchpoint; however,
71 * given this should be rare, this is a reasonable trade-off to make, since this
72 * will avoid:
73 *
74 *	1. excessive contention between watchpoint checks and setup;
75 *	2. larger number of simultaneous watchpoints without sacrificing
76 *	   performance.
77 *
78 * Example: SLOT_IDX values for KCSAN_CHECK_ADJACENT=1, where i is [0, 1, 2]:
79 *
80 *   slot=0:  [ 1,  2,  0]
81 *   slot=9:  [10, 11,  9]
82 *   slot=63: [64, 65, 63]
83 */
84#define SLOT_IDX(slot, i) (slot + ((i + KCSAN_CHECK_ADJACENT) % NUM_SLOTS))
85
86/*
87 * SLOT_IDX_FAST is used in the fast-path. Not first checking the address's primary
88 * slot (middle) is fine if we assume that races occur rarely. The set of
89 * indices {SLOT_IDX(slot, i) | i in [0, NUM_SLOTS)} is equivalent to
90 * {SLOT_IDX_FAST(slot, i) | i in [0, NUM_SLOTS)}.
91 */
92#define SLOT_IDX_FAST(slot, i) (slot + i)
93
94/*
95 * Watchpoints, with each entry encoded as defined in encoding.h: in order to be
96 * able to safely update and access a watchpoint without introducing locking
97 * overhead, we encode each watchpoint as a single atomic long. The initial
98 * zero-initialized state matches INVALID_WATCHPOINT.
99 *
100 * Add NUM_SLOTS-1 entries to account for overflow; this helps avoid having to
101 * use more complicated SLOT_IDX_FAST calculation with modulo in the fast-path.
102 */
103static atomic_long_t watchpoints[CONFIG_KCSAN_NUM_WATCHPOINTS + NUM_SLOTS-1];
104
105/*
106 * Instructions to skip watching counter, used in should_watch(). We use a
107 * per-CPU counter to avoid excessive contention.
108 */
109static DEFINE_PER_CPU(long, kcsan_skip);
110
111/* For kcsan_prandom_u32_max(). */
112static DEFINE_PER_CPU(u32, kcsan_rand_state);
113
114static __always_inline atomic_long_t *find_watchpoint(unsigned long addr,
115						      size_t size,
116						      bool expect_write,
117						      long *encoded_watchpoint)
118{
119	const int slot = watchpoint_slot(addr);
120	const unsigned long addr_masked = addr & WATCHPOINT_ADDR_MASK;
121	atomic_long_t *watchpoint;
122	unsigned long wp_addr_masked;
123	size_t wp_size;
124	bool is_write;
125	int i;
126
127	BUILD_BUG_ON(CONFIG_KCSAN_NUM_WATCHPOINTS < NUM_SLOTS);
128
129	for (i = 0; i < NUM_SLOTS; ++i) {
130		watchpoint = &watchpoints[SLOT_IDX_FAST(slot, i)];
131		*encoded_watchpoint = atomic_long_read(watchpoint);
132		if (!decode_watchpoint(*encoded_watchpoint, &wp_addr_masked,
133				       &wp_size, &is_write))
134			continue;
135
136		if (expect_write && !is_write)
137			continue;
138
139		/* Check if the watchpoint matches the access. */
140		if (matching_access(wp_addr_masked, wp_size, addr_masked, size))
141			return watchpoint;
142	}
143
144	return NULL;
145}
146
147static inline atomic_long_t *
148insert_watchpoint(unsigned long addr, size_t size, bool is_write)
149{
150	const int slot = watchpoint_slot(addr);
151	const long encoded_watchpoint = encode_watchpoint(addr, size, is_write);
152	atomic_long_t *watchpoint;
153	int i;
154
155	/* Check slot index logic, ensuring we stay within array bounds. */
156	BUILD_BUG_ON(SLOT_IDX(0, 0) != KCSAN_CHECK_ADJACENT);
157	BUILD_BUG_ON(SLOT_IDX(0, KCSAN_CHECK_ADJACENT+1) != 0);
158	BUILD_BUG_ON(SLOT_IDX(CONFIG_KCSAN_NUM_WATCHPOINTS-1, KCSAN_CHECK_ADJACENT) != ARRAY_SIZE(watchpoints)-1);
159	BUILD_BUG_ON(SLOT_IDX(CONFIG_KCSAN_NUM_WATCHPOINTS-1, KCSAN_CHECK_ADJACENT+1) != ARRAY_SIZE(watchpoints) - NUM_SLOTS);
160
161	for (i = 0; i < NUM_SLOTS; ++i) {
162		long expect_val = INVALID_WATCHPOINT;
163
164		/* Try to acquire this slot. */
165		watchpoint = &watchpoints[SLOT_IDX(slot, i)];
166		if (atomic_long_try_cmpxchg_relaxed(watchpoint, &expect_val, encoded_watchpoint))
167			return watchpoint;
168	}
169
170	return NULL;
171}
172
173/*
174 * Return true if watchpoint was successfully consumed, false otherwise.
175 *
176 * This may return false if:
177 *
178 *	1. another thread already consumed the watchpoint;
179 *	2. the thread that set up the watchpoint already removed it;
180 *	3. the watchpoint was removed and then re-used.
181 */
182static __always_inline bool
183try_consume_watchpoint(atomic_long_t *watchpoint, long encoded_watchpoint)
184{
185	return atomic_long_try_cmpxchg_relaxed(watchpoint, &encoded_watchpoint, CONSUMED_WATCHPOINT);
186}
187
188/* Return true if watchpoint was not touched, false if already consumed. */
189static inline bool consume_watchpoint(atomic_long_t *watchpoint)
190{
191	return atomic_long_xchg_relaxed(watchpoint, CONSUMED_WATCHPOINT) != CONSUMED_WATCHPOINT;
192}
193
194/* Remove the watchpoint -- its slot may be reused after. */
195static inline void remove_watchpoint(atomic_long_t *watchpoint)
196{
197	atomic_long_set(watchpoint, INVALID_WATCHPOINT);
198}
199
200static __always_inline struct kcsan_ctx *get_ctx(void)
201{
202	/*
203	 * In interrupts, use raw_cpu_ptr to avoid unnecessary checks, that would
204	 * also result in calls that generate warnings in uaccess regions.
205	 */
206	return in_task() ? &current->kcsan_ctx : raw_cpu_ptr(&kcsan_cpu_ctx);
207}
208
209static __always_inline void
210check_access(const volatile void *ptr, size_t size, int type, unsigned long ip);
211
212/* Check scoped accesses; never inline because this is a slow-path! */
213static noinline void kcsan_check_scoped_accesses(void)
214{
215	struct kcsan_ctx *ctx = get_ctx();
216	struct kcsan_scoped_access *scoped_access;
217
218	if (ctx->disable_scoped)
219		return;
220
221	ctx->disable_scoped++;
222	list_for_each_entry(scoped_access, &ctx->scoped_accesses, list) {
223		check_access(scoped_access->ptr, scoped_access->size,
224			     scoped_access->type, scoped_access->ip);
225	}
226	ctx->disable_scoped--;
227}
228
229/* Rules for generic atomic accesses. Called from fast-path. */
230static __always_inline bool
231is_atomic(struct kcsan_ctx *ctx, const volatile void *ptr, size_t size, int type)
232{
233	if (type & KCSAN_ACCESS_ATOMIC)
234		return true;
235
236	/*
237	 * Unless explicitly declared atomic, never consider an assertion access
238	 * as atomic. This allows using them also in atomic regions, such as
239	 * seqlocks, without implicitly changing their semantics.
240	 */
241	if (type & KCSAN_ACCESS_ASSERT)
242		return false;
243
244	if (IS_ENABLED(CONFIG_KCSAN_ASSUME_PLAIN_WRITES_ATOMIC) &&
245	    (type & KCSAN_ACCESS_WRITE) && size <= sizeof(long) &&
246	    !(type & KCSAN_ACCESS_COMPOUND) && IS_ALIGNED((unsigned long)ptr, size))
247		return true; /* Assume aligned writes up to word size are atomic. */
248
249	if (ctx->atomic_next > 0) {
250		/*
251		 * Because we do not have separate contexts for nested
252		 * interrupts, in case atomic_next is set, we simply assume that
253		 * the outer interrupt set atomic_next. In the worst case, we
254		 * will conservatively consider operations as atomic. This is a
255		 * reasonable trade-off to make, since this case should be
256		 * extremely rare; however, even if extremely rare, it could
257		 * lead to false positives otherwise.
258		 */
259		if ((hardirq_count() >> HARDIRQ_SHIFT) < 2)
260			--ctx->atomic_next; /* in task, or outer interrupt */
261		return true;
262	}
263
264	return ctx->atomic_nest_count > 0 || ctx->in_flat_atomic;
265}
266
267static __always_inline bool
268should_watch(struct kcsan_ctx *ctx, const volatile void *ptr, size_t size, int type)
269{
270	/*
271	 * Never set up watchpoints when memory operations are atomic.
272	 *
273	 * Need to check this first, before kcsan_skip check below: (1) atomics
274	 * should not count towards skipped instructions, and (2) to actually
275	 * decrement kcsan_atomic_next for consecutive instruction stream.
276	 */
277	if (is_atomic(ctx, ptr, size, type))
278		return false;
279
280	if (this_cpu_dec_return(kcsan_skip) >= 0)
281		return false;
282
283	/*
284	 * NOTE: If we get here, kcsan_skip must always be reset in slow path
285	 * via reset_kcsan_skip() to avoid underflow.
286	 */
287
288	/* this operation should be watched */
289	return true;
290}
291
292/*
293 * Returns a pseudo-random number in interval [0, ep_ro). Simple linear
294 * congruential generator, using constants from "Numerical Recipes".
295 */
296static u32 kcsan_prandom_u32_max(u32 ep_ro)
297{
298	u32 state = this_cpu_read(kcsan_rand_state);
299
300	state = 1664525 * state + 1013904223;
301	this_cpu_write(kcsan_rand_state, state);
302
303	return state % ep_ro;
304}
305
306static inline void reset_kcsan_skip(void)
307{
308	long skip_count = kcsan_skip_watch -
309			  (IS_ENABLED(CONFIG_KCSAN_SKIP_WATCH_RANDOMIZE) ?
310				   kcsan_prandom_u32_max(kcsan_skip_watch) :
311				   0);
312	this_cpu_write(kcsan_skip, skip_count);
313}
314
315static __always_inline bool kcsan_is_enabled(struct kcsan_ctx *ctx)
316{
317	return READ_ONCE(kcsan_enabled) && !ctx->disable_count;
318}
319
320/* Introduce delay depending on context and configuration. */
321static void delay_access(int type)
322{
323	unsigned int delay = in_task() ? kcsan_udelay_task : kcsan_udelay_interrupt;
324	/* For certain access types, skew the random delay to be longer. */
325	unsigned int skew_delay_order =
326		(type & (KCSAN_ACCESS_COMPOUND | KCSAN_ACCESS_ASSERT)) ? 1 : 0;
327
328	delay -= IS_ENABLED(CONFIG_KCSAN_DELAY_RANDOMIZE) ?
329			       kcsan_prandom_u32_max(delay >> skew_delay_order) :
330			       0;
331	udelay(delay);
332}
333
334/*
335 * Reads the instrumented memory for value change detection; value change
336 * detection is currently done for accesses up to a size of 8 bytes.
337 */
338static __always_inline u64 read_instrumented_memory(const volatile void *ptr, size_t size)
339{
340	/*
341	 * In the below we don't necessarily need the read of the location to
342	 * be atomic, and we don't use READ_ONCE(), since all we need for race
343	 * detection is to observe 2 different values.
344	 *
345	 * Furthermore, on certain architectures (such as arm64), READ_ONCE()
346	 * may turn into more complex instructions than a plain load that cannot
347	 * do unaligned accesses.
348	 */
349	switch (size) {
350	case 1:  return *(const volatile u8 *)ptr;
351	case 2:  return *(const volatile u16 *)ptr;
352	case 4:  return *(const volatile u32 *)ptr;
353	case 8:  return *(const volatile u64 *)ptr;
354	default: return 0; /* Ignore; we do not diff the values. */
355	}
356}
357
358void kcsan_save_irqtrace(struct task_struct *task)
359{
360#ifdef CONFIG_TRACE_IRQFLAGS
361	task->kcsan_save_irqtrace = task->irqtrace;
362#endif
363}
364
365void kcsan_restore_irqtrace(struct task_struct *task)
366{
367#ifdef CONFIG_TRACE_IRQFLAGS
368	task->irqtrace = task->kcsan_save_irqtrace;
369#endif
370}
371
372static __always_inline int get_kcsan_stack_depth(void)
373{
374#ifdef CONFIG_KCSAN_WEAK_MEMORY
375	return current->kcsan_stack_depth;
376#else
377	BUILD_BUG();
378	return 0;
379#endif
380}
381
382static __always_inline void add_kcsan_stack_depth(int val)
383{
384#ifdef CONFIG_KCSAN_WEAK_MEMORY
385	current->kcsan_stack_depth += val;
386#else
387	BUILD_BUG();
388#endif
389}
390
391static __always_inline struct kcsan_scoped_access *get_reorder_access(struct kcsan_ctx *ctx)
392{
393#ifdef CONFIG_KCSAN_WEAK_MEMORY
394	return ctx->disable_scoped ? NULL : &ctx->reorder_access;
395#else
396	return NULL;
397#endif
398}
399
400static __always_inline bool
401find_reorder_access(struct kcsan_ctx *ctx, const volatile void *ptr, size_t size,
402		    int type, unsigned long ip)
403{
404	struct kcsan_scoped_access *reorder_access = get_reorder_access(ctx);
405
406	if (!reorder_access)
407		return false;
408
409	/*
410	 * Note: If accesses are repeated while reorder_access is identical,
411	 * never matches the new access, because !(type & KCSAN_ACCESS_SCOPED).
412	 */
413	return reorder_access->ptr == ptr && reorder_access->size == size &&
414	       reorder_access->type == type && reorder_access->ip == ip;
415}
416
417static inline void
418set_reorder_access(struct kcsan_ctx *ctx, const volatile void *ptr, size_t size,
419		   int type, unsigned long ip)
420{
421	struct kcsan_scoped_access *reorder_access = get_reorder_access(ctx);
422
423	if (!reorder_access || !kcsan_weak_memory)
424		return;
425
426	/*
427	 * To avoid nested interrupts or scheduler (which share kcsan_ctx)
428	 * reading an inconsistent reorder_access, ensure that the below has
429	 * exclusive access to reorder_access by disallowing concurrent use.
430	 */
431	ctx->disable_scoped++;
432	barrier();
433	reorder_access->ptr		= ptr;
434	reorder_access->size		= size;
435	reorder_access->type		= type | KCSAN_ACCESS_SCOPED;
436	reorder_access->ip		= ip;
437	reorder_access->stack_depth	= get_kcsan_stack_depth();
438	barrier();
439	ctx->disable_scoped--;
440}
441
442/*
443 * Pull everything together: check_access() below contains the performance
444 * critical operations; the fast-path (including check_access) functions should
445 * all be inlinable by the instrumentation functions.
446 *
447 * The slow-path (kcsan_found_watchpoint, kcsan_setup_watchpoint) are
448 * non-inlinable -- note that, we prefix these with "kcsan_" to ensure they can
449 * be filtered from the stacktrace, as well as give them unique names for the
450 * UACCESS whitelist of objtool. Each function uses user_access_save/restore(),
451 * since they do not access any user memory, but instrumentation is still
452 * emitted in UACCESS regions.
453 */
454
455static noinline void kcsan_found_watchpoint(const volatile void *ptr,
456					    size_t size,
457					    int type,
458					    unsigned long ip,
459					    atomic_long_t *watchpoint,
460					    long encoded_watchpoint)
461{
462	const bool is_assert = (type & KCSAN_ACCESS_ASSERT) != 0;
463	struct kcsan_ctx *ctx = get_ctx();
464	unsigned long flags;
465	bool consumed;
466
467	/*
468	 * We know a watchpoint exists. Let's try to keep the race-window
469	 * between here and finally consuming the watchpoint below as small as
470	 * possible -- avoid unneccessarily complex code until consumed.
471	 */
472
473	if (!kcsan_is_enabled(ctx))
474		return;
475
476	/*
477	 * The access_mask check relies on value-change comparison. To avoid
478	 * reporting a race where e.g. the writer set up the watchpoint, but the
479	 * reader has access_mask!=0, we have to ignore the found watchpoint.
480	 *
481	 * reorder_access is never created from an access with access_mask set.
482	 */
483	if (ctx->access_mask && !find_reorder_access(ctx, ptr, size, type, ip))
484		return;
485
486	/*
487	 * If the other thread does not want to ignore the access, and there was
488	 * a value change as a result of this thread's operation, we will still
489	 * generate a report of unknown origin.
490	 *
491	 * Use CONFIG_KCSAN_REPORT_RACE_UNKNOWN_ORIGIN=n to filter.
492	 */
493	if (!is_assert && kcsan_ignore_address(ptr))
494		return;
495
496	/*
497	 * Consuming the watchpoint must be guarded by kcsan_is_enabled() to
498	 * avoid erroneously triggering reports if the context is disabled.
499	 */
500	consumed = try_consume_watchpoint(watchpoint, encoded_watchpoint);
501
502	/* keep this after try_consume_watchpoint */
503	flags = user_access_save();
504
505	if (consumed) {
506		kcsan_save_irqtrace(current);
507		kcsan_report_set_info(ptr, size, type, ip, watchpoint - watchpoints);
508		kcsan_restore_irqtrace(current);
509	} else {
510		/*
511		 * The other thread may not print any diagnostics, as it has
512		 * already removed the watchpoint, or another thread consumed
513		 * the watchpoint before this thread.
514		 */
515		atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_REPORT_RACES]);
516	}
517
518	if (is_assert)
519		atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_ASSERT_FAILURES]);
520	else
521		atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_DATA_RACES]);
522
523	user_access_restore(flags);
524}
525
526static noinline void
527kcsan_setup_watchpoint(const volatile void *ptr, size_t size, int type, unsigned long ip)
528{
529	const bool is_write = (type & KCSAN_ACCESS_WRITE) != 0;
530	const bool is_assert = (type & KCSAN_ACCESS_ASSERT) != 0;
531	atomic_long_t *watchpoint;
532	u64 old, new, diff;
533	enum kcsan_value_change value_change = KCSAN_VALUE_CHANGE_MAYBE;
534	bool interrupt_watcher = kcsan_interrupt_watcher;
535	unsigned long ua_flags = user_access_save();
536	struct kcsan_ctx *ctx = get_ctx();
537	unsigned long access_mask = ctx->access_mask;
538	unsigned long irq_flags = 0;
539	bool is_reorder_access;
540
541	/*
542	 * Always reset kcsan_skip counter in slow-path to avoid underflow; see
543	 * should_watch().
544	 */
545	reset_kcsan_skip();
546
547	if (!kcsan_is_enabled(ctx))
548		goto out;
549
550	/*
551	 * Check to-ignore addresses after kcsan_is_enabled(), as we may access
552	 * memory that is not yet initialized during early boot.
553	 */
554	if (!is_assert && kcsan_ignore_address(ptr))
555		goto out;
556
557	if (!check_encodable((unsigned long)ptr, size)) {
558		atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_UNENCODABLE_ACCESSES]);
559		goto out;
560	}
561
562	/*
563	 * The local CPU cannot observe reordering of its own accesses, and
564	 * therefore we need to take care of 2 cases to avoid false positives:
565	 *
566	 *	1. Races of the reordered access with interrupts. To avoid, if
567	 *	   the current access is reorder_access, disable interrupts.
568	 *	2. Avoid races of scoped accesses from nested interrupts (below).
569	 */
570	is_reorder_access = find_reorder_access(ctx, ptr, size, type, ip);
571	if (is_reorder_access)
572		interrupt_watcher = false;
573	/*
574	 * Avoid races of scoped accesses from nested interrupts (or scheduler).
575	 * Assume setting up a watchpoint for a non-scoped (normal) access that
576	 * also conflicts with a current scoped access. In a nested interrupt,
577	 * which shares the context, it would check a conflicting scoped access.
578	 * To avoid, disable scoped access checking.
579	 */
580	ctx->disable_scoped++;
581
582	/*
583	 * Save and restore the IRQ state trace touched by KCSAN, since KCSAN's
584	 * runtime is entered for every memory access, and potentially useful
585	 * information is lost if dirtied by KCSAN.
586	 */
587	kcsan_save_irqtrace(current);
588	if (!interrupt_watcher)
589		local_irq_save(irq_flags);
590
591	watchpoint = insert_watchpoint((unsigned long)ptr, size, is_write);
592	if (watchpoint == NULL) {
593		/*
594		 * Out of capacity: the size of 'watchpoints', and the frequency
595		 * with which should_watch() returns true should be tweaked so
596		 * that this case happens very rarely.
597		 */
598		atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_NO_CAPACITY]);
599		goto out_unlock;
600	}
601
602	atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_SETUP_WATCHPOINTS]);
603	atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_USED_WATCHPOINTS]);
604
605	/*
606	 * Read the current value, to later check and infer a race if the data
607	 * was modified via a non-instrumented access, e.g. from a device.
608	 */
609	old = is_reorder_access ? 0 : read_instrumented_memory(ptr, size);
610
611	/*
612	 * Delay this thread, to increase probability of observing a racy
613	 * conflicting access.
614	 */
615	delay_access(type);
616
617	/*
618	 * Re-read value, and check if it is as expected; if not, we infer a
619	 * racy access.
620	 */
621	if (!is_reorder_access) {
622		new = read_instrumented_memory(ptr, size);
623	} else {
624		/*
625		 * Reordered accesses cannot be used for value change detection,
626		 * because the memory location may no longer be accessible and
627		 * could result in a fault.
628		 */
629		new = 0;
630		access_mask = 0;
631	}
632
633	diff = old ^ new;
634	if (access_mask)
635		diff &= access_mask;
636
637	/*
638	 * Check if we observed a value change.
639	 *
640	 * Also check if the data race should be ignored (the rules depend on
641	 * non-zero diff); if it is to be ignored, the below rules for
642	 * KCSAN_VALUE_CHANGE_MAYBE apply.
643	 */
644	if (diff && !kcsan_ignore_data_race(size, type, old, new, diff))
645		value_change = KCSAN_VALUE_CHANGE_TRUE;
646
647	/* Check if this access raced with another. */
648	if (!consume_watchpoint(watchpoint)) {
649		/*
650		 * Depending on the access type, map a value_change of MAYBE to
651		 * TRUE (always report) or FALSE (never report).
652		 */
653		if (value_change == KCSAN_VALUE_CHANGE_MAYBE) {
654			if (access_mask != 0) {
655				/*
656				 * For access with access_mask, we require a
657				 * value-change, as it is likely that races on
658				 * ~access_mask bits are expected.
659				 */
660				value_change = KCSAN_VALUE_CHANGE_FALSE;
661			} else if (size > 8 || is_assert) {
662				/* Always assume a value-change. */
663				value_change = KCSAN_VALUE_CHANGE_TRUE;
664			}
665		}
666
667		/*
668		 * No need to increment 'data_races' counter, as the racing
669		 * thread already did.
670		 *
671		 * Count 'assert_failures' for each failed ASSERT access,
672		 * therefore both this thread and the racing thread may
673		 * increment this counter.
674		 */
675		if (is_assert && value_change == KCSAN_VALUE_CHANGE_TRUE)
676			atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_ASSERT_FAILURES]);
677
678		kcsan_report_known_origin(ptr, size, type, ip,
679					  value_change, watchpoint - watchpoints,
680					  old, new, access_mask);
681	} else if (value_change == KCSAN_VALUE_CHANGE_TRUE) {
682		/* Inferring a race, since the value should not have changed. */
683
684		atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_RACES_UNKNOWN_ORIGIN]);
685		if (is_assert)
686			atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_ASSERT_FAILURES]);
687
688		if (IS_ENABLED(CONFIG_KCSAN_REPORT_RACE_UNKNOWN_ORIGIN) || is_assert) {
689			kcsan_report_unknown_origin(ptr, size, type, ip,
690						    old, new, access_mask);
691		}
692	}
693
694	/*
695	 * Remove watchpoint; must be after reporting, since the slot may be
696	 * reused after this point.
697	 */
698	remove_watchpoint(watchpoint);
699	atomic_long_dec(&kcsan_counters[KCSAN_COUNTER_USED_WATCHPOINTS]);
700
701out_unlock:
702	if (!interrupt_watcher)
703		local_irq_restore(irq_flags);
704	kcsan_restore_irqtrace(current);
705	ctx->disable_scoped--;
706
707	/*
708	 * Reordered accesses cannot be used for value change detection,
709	 * therefore never consider for reordering if access_mask is set.
710	 * ASSERT_EXCLUSIVE are not real accesses, ignore them as well.
711	 */
712	if (!access_mask && !is_assert)
713		set_reorder_access(ctx, ptr, size, type, ip);
714out:
715	user_access_restore(ua_flags);
716}
717
718static __always_inline void
719check_access(const volatile void *ptr, size_t size, int type, unsigned long ip)
720{
721	atomic_long_t *watchpoint;
722	long encoded_watchpoint;
723
724	/*
725	 * Do nothing for 0 sized check; this comparison will be optimized out
726	 * for constant sized instrumentation (__tsan_{read,write}N).
727	 */
728	if (unlikely(size == 0))
729		return;
730
731again:
732	/*
733	 * Avoid user_access_save in fast-path: find_watchpoint is safe without
734	 * user_access_save, as the address that ptr points to is only used to
735	 * check if a watchpoint exists; ptr is never dereferenced.
736	 */
737	watchpoint = find_watchpoint((unsigned long)ptr, size,
738				     !(type & KCSAN_ACCESS_WRITE),
739				     &encoded_watchpoint);
740	/*
741	 * It is safe to check kcsan_is_enabled() after find_watchpoint in the
742	 * slow-path, as long as no state changes that cause a race to be
743	 * detected and reported have occurred until kcsan_is_enabled() is
744	 * checked.
745	 */
746
747	if (unlikely(watchpoint != NULL))
748		kcsan_found_watchpoint(ptr, size, type, ip, watchpoint, encoded_watchpoint);
749	else {
750		struct kcsan_ctx *ctx = get_ctx(); /* Call only once in fast-path. */
751
752		if (unlikely(should_watch(ctx, ptr, size, type))) {
753			kcsan_setup_watchpoint(ptr, size, type, ip);
754			return;
755		}
756
757		if (!(type & KCSAN_ACCESS_SCOPED)) {
758			struct kcsan_scoped_access *reorder_access = get_reorder_access(ctx);
759
760			if (reorder_access) {
761				/*
762				 * reorder_access check: simulates reordering of
763				 * the access after subsequent operations.
764				 */
765				ptr = reorder_access->ptr;
766				type = reorder_access->type;
767				ip = reorder_access->ip;
768				/*
769				 * Upon a nested interrupt, this context's
770				 * reorder_access can be modified (shared ctx).
771				 * We know that upon return, reorder_access is
772				 * always invalidated by setting size to 0 via
773				 * __tsan_func_exit(). Therefore we must read
774				 * and check size after the other fields.
775				 */
776				barrier();
777				size = READ_ONCE(reorder_access->size);
778				if (size)
779					goto again;
780			}
781		}
782
783		/*
784		 * Always checked last, right before returning from runtime;
785		 * if reorder_access is valid, checked after it was checked.
786		 */
787		if (unlikely(ctx->scoped_accesses.prev))
788			kcsan_check_scoped_accesses();
789	}
790}
791
792/* === Public interface ===================================================== */
793
794void __init kcsan_init(void)
795{
796	int cpu;
797
798	BUG_ON(!in_task());
799
800	for_each_possible_cpu(cpu)
801		per_cpu(kcsan_rand_state, cpu) = (u32)get_cycles();
802
803	/*
804	 * We are in the init task, and no other tasks should be running;
805	 * WRITE_ONCE without memory barrier is sufficient.
806	 */
807	if (kcsan_early_enable) {
808		pr_info("enabled early\n");
809		WRITE_ONCE(kcsan_enabled, true);
810	}
811
812	if (IS_ENABLED(CONFIG_KCSAN_REPORT_VALUE_CHANGE_ONLY) ||
813	    IS_ENABLED(CONFIG_KCSAN_ASSUME_PLAIN_WRITES_ATOMIC) ||
814	    IS_ENABLED(CONFIG_KCSAN_PERMISSIVE) ||
815	    IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS)) {
816		pr_warn("non-strict mode configured - use CONFIG_KCSAN_STRICT=y to see all data races\n");
817	} else {
818		pr_info("strict mode configured\n");
819	}
820}
821
822/* === Exported interface =================================================== */
823
824void kcsan_disable_current(void)
825{
826	++get_ctx()->disable_count;
827}
828EXPORT_SYMBOL(kcsan_disable_current);
829
830void kcsan_enable_current(void)
831{
832	if (get_ctx()->disable_count-- == 0) {
833		/*
834		 * Warn if kcsan_enable_current() calls are unbalanced with
835		 * kcsan_disable_current() calls, which causes disable_count to
836		 * become negative and should not happen.
837		 */
838		kcsan_disable_current(); /* restore to 0, KCSAN still enabled */
839		kcsan_disable_current(); /* disable to generate warning */
840		WARN(1, "Unbalanced %s()", __func__);
841		kcsan_enable_current();
842	}
843}
844EXPORT_SYMBOL(kcsan_enable_current);
845
846void kcsan_enable_current_nowarn(void)
847{
848	if (get_ctx()->disable_count-- == 0)
849		kcsan_disable_current();
850}
851EXPORT_SYMBOL(kcsan_enable_current_nowarn);
852
853void kcsan_nestable_atomic_begin(void)
854{
855	/*
856	 * Do *not* check and warn if we are in a flat atomic region: nestable
857	 * and flat atomic regions are independent from each other.
858	 * See include/linux/kcsan.h: struct kcsan_ctx comments for more
859	 * comments.
860	 */
861
862	++get_ctx()->atomic_nest_count;
863}
864EXPORT_SYMBOL(kcsan_nestable_atomic_begin);
865
866void kcsan_nestable_atomic_end(void)
867{
868	if (get_ctx()->atomic_nest_count-- == 0) {
869		/*
870		 * Warn if kcsan_nestable_atomic_end() calls are unbalanced with
871		 * kcsan_nestable_atomic_begin() calls, which causes
872		 * atomic_nest_count to become negative and should not happen.
873		 */
874		kcsan_nestable_atomic_begin(); /* restore to 0 */
875		kcsan_disable_current(); /* disable to generate warning */
876		WARN(1, "Unbalanced %s()", __func__);
877		kcsan_enable_current();
878	}
879}
880EXPORT_SYMBOL(kcsan_nestable_atomic_end);
881
882void kcsan_flat_atomic_begin(void)
883{
884	get_ctx()->in_flat_atomic = true;
885}
886EXPORT_SYMBOL(kcsan_flat_atomic_begin);
887
888void kcsan_flat_atomic_end(void)
889{
890	get_ctx()->in_flat_atomic = false;
891}
892EXPORT_SYMBOL(kcsan_flat_atomic_end);
893
894void kcsan_atomic_next(int n)
895{
896	get_ctx()->atomic_next = n;
897}
898EXPORT_SYMBOL(kcsan_atomic_next);
899
900void kcsan_set_access_mask(unsigned long mask)
901{
902	get_ctx()->access_mask = mask;
903}
904EXPORT_SYMBOL(kcsan_set_access_mask);
905
906struct kcsan_scoped_access *
907kcsan_begin_scoped_access(const volatile void *ptr, size_t size, int type,
908			  struct kcsan_scoped_access *sa)
909{
910	struct kcsan_ctx *ctx = get_ctx();
911
912	check_access(ptr, size, type, _RET_IP_);
913
914	ctx->disable_count++; /* Disable KCSAN, in case list debugging is on. */
915
916	INIT_LIST_HEAD(&sa->list);
917	sa->ptr = ptr;
918	sa->size = size;
919	sa->type = type;
920	sa->ip = _RET_IP_;
921
922	if (!ctx->scoped_accesses.prev) /* Lazy initialize list head. */
923		INIT_LIST_HEAD(&ctx->scoped_accesses);
924	list_add(&sa->list, &ctx->scoped_accesses);
925
926	ctx->disable_count--;
927	return sa;
928}
929EXPORT_SYMBOL(kcsan_begin_scoped_access);
930
931void kcsan_end_scoped_access(struct kcsan_scoped_access *sa)
932{
933	struct kcsan_ctx *ctx = get_ctx();
934
935	if (WARN(!ctx->scoped_accesses.prev, "Unbalanced %s()?", __func__))
936		return;
937
938	ctx->disable_count++; /* Disable KCSAN, in case list debugging is on. */
939
940	list_del(&sa->list);
941	if (list_empty(&ctx->scoped_accesses))
942		/*
943		 * Ensure we do not enter kcsan_check_scoped_accesses()
944		 * slow-path if unnecessary, and avoids requiring list_empty()
945		 * in the fast-path (to avoid a READ_ONCE() and potential
946		 * uaccess warning).
947		 */
948		ctx->scoped_accesses.prev = NULL;
949
950	ctx->disable_count--;
951
952	check_access(sa->ptr, sa->size, sa->type, sa->ip);
953}
954EXPORT_SYMBOL(kcsan_end_scoped_access);
955
956void __kcsan_check_access(const volatile void *ptr, size_t size, int type)
957{
958	check_access(ptr, size, type, _RET_IP_);
959}
960EXPORT_SYMBOL(__kcsan_check_access);
961
962#define DEFINE_MEMORY_BARRIER(name, order_before_cond)				\
963	void __kcsan_##name(void)						\
964	{									\
965		struct kcsan_scoped_access *sa = get_reorder_access(get_ctx());	\
966		if (!sa)							\
967			return;							\
968		if (order_before_cond)						\
969			sa->size = 0;						\
970	}									\
971	EXPORT_SYMBOL(__kcsan_##name)
972
973DEFINE_MEMORY_BARRIER(mb, true);
974DEFINE_MEMORY_BARRIER(wmb, sa->type & (KCSAN_ACCESS_WRITE | KCSAN_ACCESS_COMPOUND));
975DEFINE_MEMORY_BARRIER(rmb, !(sa->type & KCSAN_ACCESS_WRITE) || (sa->type & KCSAN_ACCESS_COMPOUND));
976DEFINE_MEMORY_BARRIER(release, true);
977
978/*
979 * KCSAN uses the same instrumentation that is emitted by supported compilers
980 * for ThreadSanitizer (TSAN).
981 *
982 * When enabled, the compiler emits instrumentation calls (the functions
983 * prefixed with "__tsan" below) for all loads and stores that it generated;
984 * inline asm is not instrumented.
985 *
986 * Note that, not all supported compiler versions distinguish aligned/unaligned
987 * accesses, but e.g. recent versions of Clang do. We simply alias the unaligned
988 * version to the generic version, which can handle both.
989 */
990
991#define DEFINE_TSAN_READ_WRITE(size)                                           \
992	void __tsan_read##size(void *ptr);                                     \
993	void __tsan_read##size(void *ptr)                                      \
994	{                                                                      \
995		check_access(ptr, size, 0, _RET_IP_);                          \
996	}                                                                      \
997	EXPORT_SYMBOL(__tsan_read##size);                                      \
998	void __tsan_unaligned_read##size(void *ptr)                            \
999		__alias(__tsan_read##size);                                    \
1000	EXPORT_SYMBOL(__tsan_unaligned_read##size);                            \
1001	void __tsan_write##size(void *ptr);                                    \
1002	void __tsan_write##size(void *ptr)                                     \
1003	{                                                                      \
1004		check_access(ptr, size, KCSAN_ACCESS_WRITE, _RET_IP_);         \
1005	}                                                                      \
1006	EXPORT_SYMBOL(__tsan_write##size);                                     \
1007	void __tsan_unaligned_write##size(void *ptr)                           \
1008		__alias(__tsan_write##size);                                   \
1009	EXPORT_SYMBOL(__tsan_unaligned_write##size);                           \
1010	void __tsan_read_write##size(void *ptr);                               \
1011	void __tsan_read_write##size(void *ptr)                                \
1012	{                                                                      \
1013		check_access(ptr, size,                                        \
1014			     KCSAN_ACCESS_COMPOUND | KCSAN_ACCESS_WRITE,       \
1015			     _RET_IP_);                                        \
1016	}                                                                      \
1017	EXPORT_SYMBOL(__tsan_read_write##size);                                \
1018	void __tsan_unaligned_read_write##size(void *ptr)                      \
1019		__alias(__tsan_read_write##size);                              \
1020	EXPORT_SYMBOL(__tsan_unaligned_read_write##size)
1021
1022DEFINE_TSAN_READ_WRITE(1);
1023DEFINE_TSAN_READ_WRITE(2);
1024DEFINE_TSAN_READ_WRITE(4);
1025DEFINE_TSAN_READ_WRITE(8);
1026DEFINE_TSAN_READ_WRITE(16);
1027
1028void __tsan_read_range(void *ptr, size_t size);
1029void __tsan_read_range(void *ptr, size_t size)
1030{
1031	check_access(ptr, size, 0, _RET_IP_);
1032}
1033EXPORT_SYMBOL(__tsan_read_range);
1034
1035void __tsan_write_range(void *ptr, size_t size);
1036void __tsan_write_range(void *ptr, size_t size)
1037{
1038	check_access(ptr, size, KCSAN_ACCESS_WRITE, _RET_IP_);
1039}
1040EXPORT_SYMBOL(__tsan_write_range);
1041
1042/*
1043 * Use of explicit volatile is generally disallowed [1], however, volatile is
1044 * still used in various concurrent context, whether in low-level
1045 * synchronization primitives or for legacy reasons.
1046 * [1] https://lwn.net/Articles/233479/
1047 *
1048 * We only consider volatile accesses atomic if they are aligned and would pass
1049 * the size-check of compiletime_assert_rwonce_type().
1050 */
1051#define DEFINE_TSAN_VOLATILE_READ_WRITE(size)                                  \
1052	void __tsan_volatile_read##size(void *ptr);                            \
1053	void __tsan_volatile_read##size(void *ptr)                             \
1054	{                                                                      \
1055		const bool is_atomic = size <= sizeof(long long) &&            \
1056				       IS_ALIGNED((unsigned long)ptr, size);   \
1057		if (IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS) && is_atomic)      \
1058			return;                                                \
1059		check_access(ptr, size, is_atomic ? KCSAN_ACCESS_ATOMIC : 0,   \
1060			     _RET_IP_);                                        \
1061	}                                                                      \
1062	EXPORT_SYMBOL(__tsan_volatile_read##size);                             \
1063	void __tsan_unaligned_volatile_read##size(void *ptr)                   \
1064		__alias(__tsan_volatile_read##size);                           \
1065	EXPORT_SYMBOL(__tsan_unaligned_volatile_read##size);                   \
1066	void __tsan_volatile_write##size(void *ptr);                           \
1067	void __tsan_volatile_write##size(void *ptr)                            \
1068	{                                                                      \
1069		const bool is_atomic = size <= sizeof(long long) &&            \
1070				       IS_ALIGNED((unsigned long)ptr, size);   \
1071		if (IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS) && is_atomic)      \
1072			return;                                                \
1073		check_access(ptr, size,                                        \
1074			     KCSAN_ACCESS_WRITE |                              \
1075				     (is_atomic ? KCSAN_ACCESS_ATOMIC : 0),    \
1076			     _RET_IP_);                                        \
1077	}                                                                      \
1078	EXPORT_SYMBOL(__tsan_volatile_write##size);                            \
1079	void __tsan_unaligned_volatile_write##size(void *ptr)                  \
1080		__alias(__tsan_volatile_write##size);                          \
1081	EXPORT_SYMBOL(__tsan_unaligned_volatile_write##size)
1082
1083DEFINE_TSAN_VOLATILE_READ_WRITE(1);
1084DEFINE_TSAN_VOLATILE_READ_WRITE(2);
1085DEFINE_TSAN_VOLATILE_READ_WRITE(4);
1086DEFINE_TSAN_VOLATILE_READ_WRITE(8);
1087DEFINE_TSAN_VOLATILE_READ_WRITE(16);
1088
1089/*
1090 * Function entry and exit are used to determine the validty of reorder_access.
1091 * Reordering of the access ends at the end of the function scope where the
1092 * access happened. This is done for two reasons:
1093 *
1094 *	1. Artificially limits the scope where missing barriers are detected.
1095 *	   This minimizes false positives due to uninstrumented functions that
1096 *	   contain the required barriers but were missed.
1097 *
1098 *	2. Simplifies generating the stack trace of the access.
1099 */
1100void __tsan_func_entry(void *call_pc);
1101noinline void __tsan_func_entry(void *call_pc)
1102{
1103	if (!IS_ENABLED(CONFIG_KCSAN_WEAK_MEMORY))
1104		return;
1105
1106	add_kcsan_stack_depth(1);
1107}
1108EXPORT_SYMBOL(__tsan_func_entry);
1109
1110void __tsan_func_exit(void);
1111noinline void __tsan_func_exit(void)
1112{
1113	struct kcsan_scoped_access *reorder_access;
1114
1115	if (!IS_ENABLED(CONFIG_KCSAN_WEAK_MEMORY))
1116		return;
1117
1118	reorder_access = get_reorder_access(get_ctx());
1119	if (!reorder_access)
1120		goto out;
1121
1122	if (get_kcsan_stack_depth() <= reorder_access->stack_depth) {
1123		/*
1124		 * Access check to catch cases where write without a barrier
1125		 * (supposed release) was last access in function: because
1126		 * instrumentation is inserted before the real access, a data
1127		 * race due to the write giving up a c-s would only be caught if
1128		 * we do the conflicting access after.
1129		 */
1130		check_access(reorder_access->ptr, reorder_access->size,
1131			     reorder_access->type, reorder_access->ip);
1132		reorder_access->size = 0;
1133		reorder_access->stack_depth = INT_MIN;
1134	}
1135out:
1136	add_kcsan_stack_depth(-1);
1137}
1138EXPORT_SYMBOL(__tsan_func_exit);
1139
1140void __tsan_init(void);
1141void __tsan_init(void)
1142{
1143}
1144EXPORT_SYMBOL(__tsan_init);
1145
1146/*
1147 * Instrumentation for atomic builtins (__atomic_*, __sync_*).
1148 *
1149 * Normal kernel code _should not_ be using them directly, but some
1150 * architectures may implement some or all atomics using the compilers'
1151 * builtins.
1152 *
1153 * Note: If an architecture decides to fully implement atomics using the
1154 * builtins, because they are implicitly instrumented by KCSAN (and KASAN,
1155 * etc.), implementing the ARCH_ATOMIC interface (to get instrumentation via
1156 * atomic-instrumented) is no longer necessary.
1157 *
1158 * TSAN instrumentation replaces atomic accesses with calls to any of the below
1159 * functions, whose job is to also execute the operation itself.
1160 */
1161
1162static __always_inline void kcsan_atomic_builtin_memorder(int memorder)
1163{
1164	if (memorder == __ATOMIC_RELEASE ||
1165	    memorder == __ATOMIC_SEQ_CST ||
1166	    memorder == __ATOMIC_ACQ_REL)
1167		__kcsan_release();
1168}
1169
1170#define DEFINE_TSAN_ATOMIC_LOAD_STORE(bits)                                                        \
1171	u##bits __tsan_atomic##bits##_load(const u##bits *ptr, int memorder);                      \
1172	u##bits __tsan_atomic##bits##_load(const u##bits *ptr, int memorder)                       \
1173	{                                                                                          \
1174		kcsan_atomic_builtin_memorder(memorder);                                           \
1175		if (!IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS)) {                                    \
1176			check_access(ptr, bits / BITS_PER_BYTE, KCSAN_ACCESS_ATOMIC, _RET_IP_);    \
1177		}                                                                                  \
1178		return __atomic_load_n(ptr, memorder);                                             \
1179	}                                                                                          \
1180	EXPORT_SYMBOL(__tsan_atomic##bits##_load);                                                 \
1181	void __tsan_atomic##bits##_store(u##bits *ptr, u##bits v, int memorder);                   \
1182	void __tsan_atomic##bits##_store(u##bits *ptr, u##bits v, int memorder)                    \
1183	{                                                                                          \
1184		kcsan_atomic_builtin_memorder(memorder);                                           \
1185		if (!IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS)) {                                    \
1186			check_access(ptr, bits / BITS_PER_BYTE,                                    \
1187				     KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ATOMIC, _RET_IP_);          \
1188		}                                                                                  \
1189		__atomic_store_n(ptr, v, memorder);                                                \
1190	}                                                                                          \
1191	EXPORT_SYMBOL(__tsan_atomic##bits##_store)
1192
1193#define DEFINE_TSAN_ATOMIC_RMW(op, bits, suffix)                                                   \
1194	u##bits __tsan_atomic##bits##_##op(u##bits *ptr, u##bits v, int memorder);                 \
1195	u##bits __tsan_atomic##bits##_##op(u##bits *ptr, u##bits v, int memorder)                  \
1196	{                                                                                          \
1197		kcsan_atomic_builtin_memorder(memorder);                                           \
1198		if (!IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS)) {                                    \
1199			check_access(ptr, bits / BITS_PER_BYTE,                                    \
1200				     KCSAN_ACCESS_COMPOUND | KCSAN_ACCESS_WRITE |                  \
1201					     KCSAN_ACCESS_ATOMIC, _RET_IP_);                       \
1202		}                                                                                  \
1203		return __atomic_##op##suffix(ptr, v, memorder);                                    \
1204	}                                                                                          \
1205	EXPORT_SYMBOL(__tsan_atomic##bits##_##op)
1206
1207/*
1208 * Note: CAS operations are always classified as write, even in case they
1209 * fail. We cannot perform check_access() after a write, as it might lead to
1210 * false positives, in cases such as:
1211 *
1212 *	T0: __atomic_compare_exchange_n(&p->flag, &old, 1, ...)
1213 *
1214 *	T1: if (__atomic_load_n(&p->flag, ...)) {
1215 *		modify *p;
1216 *		p->flag = 0;
1217 *	    }
1218 *
1219 * The only downside is that, if there are 3 threads, with one CAS that
1220 * succeeds, another CAS that fails, and an unmarked racing operation, we may
1221 * point at the wrong CAS as the source of the race. However, if we assume that
1222 * all CAS can succeed in some other execution, the data race is still valid.
1223 */
1224#define DEFINE_TSAN_ATOMIC_CMPXCHG(bits, strength, weak)                                           \
1225	int __tsan_atomic##bits##_compare_exchange_##strength(u##bits *ptr, u##bits *exp,          \
1226							      u##bits val, int mo, int fail_mo);   \
1227	int __tsan_atomic##bits##_compare_exchange_##strength(u##bits *ptr, u##bits *exp,          \
1228							      u##bits val, int mo, int fail_mo)    \
1229	{                                                                                          \
1230		kcsan_atomic_builtin_memorder(mo);                                                 \
1231		if (!IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS)) {                                    \
1232			check_access(ptr, bits / BITS_PER_BYTE,                                    \
1233				     KCSAN_ACCESS_COMPOUND | KCSAN_ACCESS_WRITE |                  \
1234					     KCSAN_ACCESS_ATOMIC, _RET_IP_);                       \
1235		}                                                                                  \
1236		return __atomic_compare_exchange_n(ptr, exp, val, weak, mo, fail_mo);              \
1237	}                                                                                          \
1238	EXPORT_SYMBOL(__tsan_atomic##bits##_compare_exchange_##strength)
1239
1240#define DEFINE_TSAN_ATOMIC_CMPXCHG_VAL(bits)                                                       \
1241	u##bits __tsan_atomic##bits##_compare_exchange_val(u##bits *ptr, u##bits exp, u##bits val, \
1242							   int mo, int fail_mo);                   \
1243	u##bits __tsan_atomic##bits##_compare_exchange_val(u##bits *ptr, u##bits exp, u##bits val, \
1244							   int mo, int fail_mo)                    \
1245	{                                                                                          \
1246		kcsan_atomic_builtin_memorder(mo);                                                 \
1247		if (!IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS)) {                                    \
1248			check_access(ptr, bits / BITS_PER_BYTE,                                    \
1249				     KCSAN_ACCESS_COMPOUND | KCSAN_ACCESS_WRITE |                  \
1250					     KCSAN_ACCESS_ATOMIC, _RET_IP_);                       \
1251		}                                                                                  \
1252		__atomic_compare_exchange_n(ptr, &exp, val, 0, mo, fail_mo);                       \
1253		return exp;                                                                        \
1254	}                                                                                          \
1255	EXPORT_SYMBOL(__tsan_atomic##bits##_compare_exchange_val)
1256
1257#define DEFINE_TSAN_ATOMIC_OPS(bits)                                                               \
1258	DEFINE_TSAN_ATOMIC_LOAD_STORE(bits);                                                       \
1259	DEFINE_TSAN_ATOMIC_RMW(exchange, bits, _n);                                                \
1260	DEFINE_TSAN_ATOMIC_RMW(fetch_add, bits, );                                                 \
1261	DEFINE_TSAN_ATOMIC_RMW(fetch_sub, bits, );                                                 \
1262	DEFINE_TSAN_ATOMIC_RMW(fetch_and, bits, );                                                 \
1263	DEFINE_TSAN_ATOMIC_RMW(fetch_or, bits, );                                                  \
1264	DEFINE_TSAN_ATOMIC_RMW(fetch_xor, bits, );                                                 \
1265	DEFINE_TSAN_ATOMIC_RMW(fetch_nand, bits, );                                                \
1266	DEFINE_TSAN_ATOMIC_CMPXCHG(bits, strong, 0);                                               \
1267	DEFINE_TSAN_ATOMIC_CMPXCHG(bits, weak, 1);                                                 \
1268	DEFINE_TSAN_ATOMIC_CMPXCHG_VAL(bits)
1269
1270DEFINE_TSAN_ATOMIC_OPS(8);
1271DEFINE_TSAN_ATOMIC_OPS(16);
1272DEFINE_TSAN_ATOMIC_OPS(32);
1273#ifdef CONFIG_64BIT
1274DEFINE_TSAN_ATOMIC_OPS(64);
1275#endif
1276
1277void __tsan_atomic_thread_fence(int memorder);
1278void __tsan_atomic_thread_fence(int memorder)
1279{
1280	kcsan_atomic_builtin_memorder(memorder);
1281	__atomic_thread_fence(memorder);
1282}
1283EXPORT_SYMBOL(__tsan_atomic_thread_fence);
1284
1285/*
1286 * In instrumented files, we emit instrumentation for barriers by mapping the
1287 * kernel barriers to an __atomic_signal_fence(), which is interpreted specially
1288 * and otherwise has no relation to a real __atomic_signal_fence(). No known
1289 * kernel code uses __atomic_signal_fence().
1290 *
1291 * Since fsanitize=thread instrumentation handles __atomic_signal_fence(), which
1292 * are turned into calls to __tsan_atomic_signal_fence(), such instrumentation
1293 * can be disabled via the __no_kcsan function attribute (vs. an explicit call
1294 * which could not). When __no_kcsan is requested, __atomic_signal_fence()
1295 * generates no code.
1296 *
1297 * Note: The result of using __atomic_signal_fence() with KCSAN enabled is
1298 * potentially limiting the compiler's ability to reorder operations; however,
1299 * if barriers were instrumented with explicit calls (without LTO), the compiler
1300 * couldn't optimize much anyway. The result of a hypothetical architecture
1301 * using __atomic_signal_fence() in normal code would be KCSAN false negatives.
1302 */
1303void __tsan_atomic_signal_fence(int memorder);
1304noinline void __tsan_atomic_signal_fence(int memorder)
1305{
1306	switch (memorder) {
1307	case __KCSAN_BARRIER_TO_SIGNAL_FENCE_mb:
1308		__kcsan_mb();
1309		break;
1310	case __KCSAN_BARRIER_TO_SIGNAL_FENCE_wmb:
1311		__kcsan_wmb();
1312		break;
1313	case __KCSAN_BARRIER_TO_SIGNAL_FENCE_rmb:
1314		__kcsan_rmb();
1315		break;
1316	case __KCSAN_BARRIER_TO_SIGNAL_FENCE_release:
1317		__kcsan_release();
1318		break;
1319	default:
1320		break;
1321	}
1322}
1323EXPORT_SYMBOL(__tsan_atomic_signal_fence);
1324
1325#ifdef __HAVE_ARCH_MEMSET
1326void *__tsan_memset(void *s, int c, size_t count);
1327noinline void *__tsan_memset(void *s, int c, size_t count)
1328{
1329	/*
1330	 * Instead of not setting up watchpoints where accessed size is greater
1331	 * than MAX_ENCODABLE_SIZE, truncate checked size to MAX_ENCODABLE_SIZE.
1332	 */
1333	size_t check_len = min_t(size_t, count, MAX_ENCODABLE_SIZE);
1334
1335	check_access(s, check_len, KCSAN_ACCESS_WRITE, _RET_IP_);
1336	return memset(s, c, count);
1337}
1338#else
1339void *__tsan_memset(void *s, int c, size_t count) __alias(memset);
1340#endif
1341EXPORT_SYMBOL(__tsan_memset);
1342
1343#ifdef __HAVE_ARCH_MEMMOVE
1344void *__tsan_memmove(void *dst, const void *src, size_t len);
1345noinline void *__tsan_memmove(void *dst, const void *src, size_t len)
1346{
1347	size_t check_len = min_t(size_t, len, MAX_ENCODABLE_SIZE);
1348
1349	check_access(dst, check_len, KCSAN_ACCESS_WRITE, _RET_IP_);
1350	check_access(src, check_len, 0, _RET_IP_);
1351	return memmove(dst, src, len);
1352}
1353#else
1354void *__tsan_memmove(void *dst, const void *src, size_t len) __alias(memmove);
1355#endif
1356EXPORT_SYMBOL(__tsan_memmove);
1357
1358#ifdef __HAVE_ARCH_MEMCPY
1359void *__tsan_memcpy(void *dst, const void *src, size_t len);
1360noinline void *__tsan_memcpy(void *dst, const void *src, size_t len)
1361{
1362	size_t check_len = min_t(size_t, len, MAX_ENCODABLE_SIZE);
1363
1364	check_access(dst, check_len, KCSAN_ACCESS_WRITE, _RET_IP_);
1365	check_access(src, check_len, 0, _RET_IP_);
1366	return memcpy(dst, src, len);
1367}
1368#else
1369void *__tsan_memcpy(void *dst, const void *src, size_t len) __alias(memcpy);
1370#endif
1371EXPORT_SYMBOL(__tsan_memcpy);
1372