1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 *  Fast Userspace Mutexes (which I call "Futexes!").
4 *  (C) Rusty Russell, IBM 2002
5 *
6 *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
7 *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
8 *
9 *  Removed page pinning, fix privately mapped COW pages and other cleanups
10 *  (C) Copyright 2003, 2004 Jamie Lokier
11 *
12 *  Robust futex support started by Ingo Molnar
13 *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
14 *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
15 *
16 *  PI-futex support started by Ingo Molnar and Thomas Gleixner
17 *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
18 *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
19 *
20 *  PRIVATE futexes by Eric Dumazet
21 *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
22 *
23 *  Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
24 *  Copyright (C) IBM Corporation, 2009
25 *  Thanks to Thomas Gleixner for conceptual design and careful reviews.
26 *
27 *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
28 *  enough at me, Linus for the original (flawed) idea, Matthew
29 *  Kirkwood for proof-of-concept implementation.
30 *
31 *  "The futexes are also cursed."
32 *  "But they come in a choice of three flavours!"
33 */
34#include <linux/compat.h>
35#include <linux/jhash.h>
36#include <linux/pagemap.h>
37#include <linux/plist.h>
38#include <linux/memblock.h>
39#include <linux/fault-inject.h>
40#include <linux/slab.h>
41
42#include "futex.h"
43#include "../locking/rtmutex_common.h"
44
45/*
46 * The base of the bucket array and its size are always used together
47 * (after initialization only in futex_hash()), so ensure that they
48 * reside in the same cacheline.
49 */
50static struct {
51	struct futex_hash_bucket *queues;
52	unsigned long            hashsize;
53} __futex_data __read_mostly __aligned(2*sizeof(long));
54#define futex_queues   (__futex_data.queues)
55#define futex_hashsize (__futex_data.hashsize)
56
57
58/*
59 * Fault injections for futexes.
60 */
61#ifdef CONFIG_FAIL_FUTEX
62
63static struct {
64	struct fault_attr attr;
65
66	bool ignore_private;
67} fail_futex = {
68	.attr = FAULT_ATTR_INITIALIZER,
69	.ignore_private = false,
70};
71
72static int __init setup_fail_futex(char *str)
73{
74	return setup_fault_attr(&fail_futex.attr, str);
75}
76__setup("fail_futex=", setup_fail_futex);
77
78bool should_fail_futex(bool fshared)
79{
80	if (fail_futex.ignore_private && !fshared)
81		return false;
82
83	return should_fail(&fail_futex.attr, 1);
84}
85
86#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
87
88static int __init fail_futex_debugfs(void)
89{
90	umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
91	struct dentry *dir;
92
93	dir = fault_create_debugfs_attr("fail_futex", NULL,
94					&fail_futex.attr);
95	if (IS_ERR(dir))
96		return PTR_ERR(dir);
97
98	debugfs_create_bool("ignore-private", mode, dir,
99			    &fail_futex.ignore_private);
100	return 0;
101}
102
103late_initcall(fail_futex_debugfs);
104
105#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
106
107#endif /* CONFIG_FAIL_FUTEX */
108
109/**
110 * futex_hash - Return the hash bucket in the global hash
111 * @key:	Pointer to the futex key for which the hash is calculated
112 *
113 * We hash on the keys returned from get_futex_key (see below) and return the
114 * corresponding hash bucket in the global hash.
115 */
116struct futex_hash_bucket *futex_hash(union futex_key *key)
117{
118	u32 hash = jhash2((u32 *)key, offsetof(typeof(*key), both.offset) / 4,
119			  key->both.offset);
120
121	return &futex_queues[hash & (futex_hashsize - 1)];
122}
123
124
125/**
126 * futex_setup_timer - set up the sleeping hrtimer.
127 * @time:	ptr to the given timeout value
128 * @timeout:	the hrtimer_sleeper structure to be set up
129 * @flags:	futex flags
130 * @range_ns:	optional range in ns
131 *
132 * Return: Initialized hrtimer_sleeper structure or NULL if no timeout
133 *	   value given
134 */
135struct hrtimer_sleeper *
136futex_setup_timer(ktime_t *time, struct hrtimer_sleeper *timeout,
137		  int flags, u64 range_ns)
138{
139	if (!time)
140		return NULL;
141
142	hrtimer_init_sleeper_on_stack(timeout, (flags & FLAGS_CLOCKRT) ?
143				      CLOCK_REALTIME : CLOCK_MONOTONIC,
144				      HRTIMER_MODE_ABS);
145	/*
146	 * If range_ns is 0, calling hrtimer_set_expires_range_ns() is
147	 * effectively the same as calling hrtimer_set_expires().
148	 */
149	hrtimer_set_expires_range_ns(&timeout->timer, *time, range_ns);
150
151	return timeout;
152}
153
154/*
155 * Generate a machine wide unique identifier for this inode.
156 *
157 * This relies on u64 not wrapping in the life-time of the machine; which with
158 * 1ns resolution means almost 585 years.
159 *
160 * This further relies on the fact that a well formed program will not unmap
161 * the file while it has a (shared) futex waiting on it. This mapping will have
162 * a file reference which pins the mount and inode.
163 *
164 * If for some reason an inode gets evicted and read back in again, it will get
165 * a new sequence number and will _NOT_ match, even though it is the exact same
166 * file.
167 *
168 * It is important that futex_match() will never have a false-positive, esp.
169 * for PI futexes that can mess up the state. The above argues that false-negatives
170 * are only possible for malformed programs.
171 */
172static u64 get_inode_sequence_number(struct inode *inode)
173{
174	static atomic64_t i_seq;
175	u64 old;
176
177	/* Does the inode already have a sequence number? */
178	old = atomic64_read(&inode->i_sequence);
179	if (likely(old))
180		return old;
181
182	for (;;) {
183		u64 new = atomic64_add_return(1, &i_seq);
184		if (WARN_ON_ONCE(!new))
185			continue;
186
187		old = atomic64_cmpxchg_relaxed(&inode->i_sequence, 0, new);
188		if (old)
189			return old;
190		return new;
191	}
192}
193
194/**
195 * get_futex_key() - Get parameters which are the keys for a futex
196 * @uaddr:	virtual address of the futex
197 * @flags:	FLAGS_*
198 * @key:	address where result is stored.
199 * @rw:		mapping needs to be read/write (values: FUTEX_READ,
200 *              FUTEX_WRITE)
201 *
202 * Return: a negative error code or 0
203 *
204 * The key words are stored in @key on success.
205 *
206 * For shared mappings (when @fshared), the key is:
207 *
208 *   ( inode->i_sequence, page->index, offset_within_page )
209 *
210 * [ also see get_inode_sequence_number() ]
211 *
212 * For private mappings (or when !@fshared), the key is:
213 *
214 *   ( current->mm, address, 0 )
215 *
216 * This allows (cross process, where applicable) identification of the futex
217 * without keeping the page pinned for the duration of the FUTEX_WAIT.
218 *
219 * lock_page() might sleep, the caller should not hold a spinlock.
220 */
221int get_futex_key(u32 __user *uaddr, unsigned int flags, union futex_key *key,
222		  enum futex_access rw)
223{
224	unsigned long address = (unsigned long)uaddr;
225	struct mm_struct *mm = current->mm;
226	struct page *page;
227	struct folio *folio;
228	struct address_space *mapping;
229	int err, ro = 0;
230	bool fshared;
231
232	fshared = flags & FLAGS_SHARED;
233
234	/*
235	 * The futex address must be "naturally" aligned.
236	 */
237	key->both.offset = address % PAGE_SIZE;
238	if (unlikely((address % sizeof(u32)) != 0))
239		return -EINVAL;
240	address -= key->both.offset;
241
242	if (unlikely(!access_ok(uaddr, sizeof(u32))))
243		return -EFAULT;
244
245	if (unlikely(should_fail_futex(fshared)))
246		return -EFAULT;
247
248	/*
249	 * PROCESS_PRIVATE futexes are fast.
250	 * As the mm cannot disappear under us and the 'key' only needs
251	 * virtual address, we dont even have to find the underlying vma.
252	 * Note : We do have to check 'uaddr' is a valid user address,
253	 *        but access_ok() should be faster than find_vma()
254	 */
255	if (!fshared) {
256		/*
257		 * On no-MMU, shared futexes are treated as private, therefore
258		 * we must not include the current process in the key. Since
259		 * there is only one address space, the address is a unique key
260		 * on its own.
261		 */
262		if (IS_ENABLED(CONFIG_MMU))
263			key->private.mm = mm;
264		else
265			key->private.mm = NULL;
266
267		key->private.address = address;
268		return 0;
269	}
270
271again:
272	/* Ignore any VERIFY_READ mapping (futex common case) */
273	if (unlikely(should_fail_futex(true)))
274		return -EFAULT;
275
276	err = get_user_pages_fast(address, 1, FOLL_WRITE, &page);
277	/*
278	 * If write access is not required (eg. FUTEX_WAIT), try
279	 * and get read-only access.
280	 */
281	if (err == -EFAULT && rw == FUTEX_READ) {
282		err = get_user_pages_fast(address, 1, 0, &page);
283		ro = 1;
284	}
285	if (err < 0)
286		return err;
287	else
288		err = 0;
289
290	/*
291	 * The treatment of mapping from this point on is critical. The folio
292	 * lock protects many things but in this context the folio lock
293	 * stabilizes mapping, prevents inode freeing in the shared
294	 * file-backed region case and guards against movement to swap cache.
295	 *
296	 * Strictly speaking the folio lock is not needed in all cases being
297	 * considered here and folio lock forces unnecessarily serialization.
298	 * From this point on, mapping will be re-verified if necessary and
299	 * folio lock will be acquired only if it is unavoidable
300	 *
301	 * Mapping checks require the folio so it is looked up now. For
302	 * anonymous pages, it does not matter if the folio is split
303	 * in the future as the key is based on the address. For
304	 * filesystem-backed pages, the precise page is required as the
305	 * index of the page determines the key.
306	 */
307	folio = page_folio(page);
308	mapping = READ_ONCE(folio->mapping);
309
310	/*
311	 * If folio->mapping is NULL, then it cannot be an anonymous
312	 * page; but it might be the ZERO_PAGE or in the gate area or
313	 * in a special mapping (all cases which we are happy to fail);
314	 * or it may have been a good file page when get_user_pages_fast
315	 * found it, but truncated or holepunched or subjected to
316	 * invalidate_complete_page2 before we got the folio lock (also
317	 * cases which we are happy to fail).  And we hold a reference,
318	 * so refcount care in invalidate_inode_page's remove_mapping
319	 * prevents drop_caches from setting mapping to NULL beneath us.
320	 *
321	 * The case we do have to guard against is when memory pressure made
322	 * shmem_writepage move it from filecache to swapcache beneath us:
323	 * an unlikely race, but we do need to retry for folio->mapping.
324	 */
325	if (unlikely(!mapping)) {
326		int shmem_swizzled;
327
328		/*
329		 * Folio lock is required to identify which special case above
330		 * applies. If this is really a shmem page then the folio lock
331		 * will prevent unexpected transitions.
332		 */
333		folio_lock(folio);
334		shmem_swizzled = folio_test_swapcache(folio) || folio->mapping;
335		folio_unlock(folio);
336		folio_put(folio);
337
338		if (shmem_swizzled)
339			goto again;
340
341		return -EFAULT;
342	}
343
344	/*
345	 * Private mappings are handled in a simple way.
346	 *
347	 * If the futex key is stored in anonymous memory, then the associated
348	 * object is the mm which is implicitly pinned by the calling process.
349	 *
350	 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
351	 * it's a read-only handle, it's expected that futexes attach to
352	 * the object not the particular process.
353	 */
354	if (folio_test_anon(folio)) {
355		/*
356		 * A RO anonymous page will never change and thus doesn't make
357		 * sense for futex operations.
358		 */
359		if (unlikely(should_fail_futex(true)) || ro) {
360			err = -EFAULT;
361			goto out;
362		}
363
364		key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
365		key->private.mm = mm;
366		key->private.address = address;
367
368	} else {
369		struct inode *inode;
370
371		/*
372		 * The associated futex object in this case is the inode and
373		 * the folio->mapping must be traversed. Ordinarily this should
374		 * be stabilised under folio lock but it's not strictly
375		 * necessary in this case as we just want to pin the inode, not
376		 * update i_pages or anything like that.
377		 *
378		 * The RCU read lock is taken as the inode is finally freed
379		 * under RCU. If the mapping still matches expectations then the
380		 * mapping->host can be safely accessed as being a valid inode.
381		 */
382		rcu_read_lock();
383
384		if (READ_ONCE(folio->mapping) != mapping) {
385			rcu_read_unlock();
386			folio_put(folio);
387
388			goto again;
389		}
390
391		inode = READ_ONCE(mapping->host);
392		if (!inode) {
393			rcu_read_unlock();
394			folio_put(folio);
395
396			goto again;
397		}
398
399		key->both.offset |= FUT_OFF_INODE; /* inode-based key */
400		key->shared.i_seq = get_inode_sequence_number(inode);
401		key->shared.pgoff = folio->index + folio_page_idx(folio, page);
402		rcu_read_unlock();
403	}
404
405out:
406	folio_put(folio);
407	return err;
408}
409
410/**
411 * fault_in_user_writeable() - Fault in user address and verify RW access
412 * @uaddr:	pointer to faulting user space address
413 *
414 * Slow path to fixup the fault we just took in the atomic write
415 * access to @uaddr.
416 *
417 * We have no generic implementation of a non-destructive write to the
418 * user address. We know that we faulted in the atomic pagefault
419 * disabled section so we can as well avoid the #PF overhead by
420 * calling get_user_pages() right away.
421 */
422int fault_in_user_writeable(u32 __user *uaddr)
423{
424	struct mm_struct *mm = current->mm;
425	int ret;
426
427	mmap_read_lock(mm);
428	ret = fixup_user_fault(mm, (unsigned long)uaddr,
429			       FAULT_FLAG_WRITE, NULL);
430	mmap_read_unlock(mm);
431
432	return ret < 0 ? ret : 0;
433}
434
435/**
436 * futex_top_waiter() - Return the highest priority waiter on a futex
437 * @hb:		the hash bucket the futex_q's reside in
438 * @key:	the futex key (to distinguish it from other futex futex_q's)
439 *
440 * Must be called with the hb lock held.
441 */
442struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb, union futex_key *key)
443{
444	struct futex_q *this;
445
446	plist_for_each_entry(this, &hb->chain, list) {
447		if (futex_match(&this->key, key))
448			return this;
449	}
450	return NULL;
451}
452
453int futex_cmpxchg_value_locked(u32 *curval, u32 __user *uaddr, u32 uval, u32 newval)
454{
455	int ret;
456
457	pagefault_disable();
458	ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
459	pagefault_enable();
460
461	return ret;
462}
463
464int futex_get_value_locked(u32 *dest, u32 __user *from)
465{
466	int ret;
467
468	pagefault_disable();
469	ret = __get_user(*dest, from);
470	pagefault_enable();
471
472	return ret ? -EFAULT : 0;
473}
474
475/**
476 * wait_for_owner_exiting - Block until the owner has exited
477 * @ret: owner's current futex lock status
478 * @exiting:	Pointer to the exiting task
479 *
480 * Caller must hold a refcount on @exiting.
481 */
482void wait_for_owner_exiting(int ret, struct task_struct *exiting)
483{
484	if (ret != -EBUSY) {
485		WARN_ON_ONCE(exiting);
486		return;
487	}
488
489	if (WARN_ON_ONCE(ret == -EBUSY && !exiting))
490		return;
491
492	mutex_lock(&exiting->futex_exit_mutex);
493	/*
494	 * No point in doing state checking here. If the waiter got here
495	 * while the task was in exec()->exec_futex_release() then it can
496	 * have any FUTEX_STATE_* value when the waiter has acquired the
497	 * mutex. OK, if running, EXITING or DEAD if it reached exit()
498	 * already. Highly unlikely and not a problem. Just one more round
499	 * through the futex maze.
500	 */
501	mutex_unlock(&exiting->futex_exit_mutex);
502
503	put_task_struct(exiting);
504}
505
506/**
507 * __futex_unqueue() - Remove the futex_q from its futex_hash_bucket
508 * @q:	The futex_q to unqueue
509 *
510 * The q->lock_ptr must not be NULL and must be held by the caller.
511 */
512void __futex_unqueue(struct futex_q *q)
513{
514	struct futex_hash_bucket *hb;
515
516	if (WARN_ON_SMP(!q->lock_ptr) || WARN_ON(plist_node_empty(&q->list)))
517		return;
518	lockdep_assert_held(q->lock_ptr);
519
520	hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
521	plist_del(&q->list, &hb->chain);
522	futex_hb_waiters_dec(hb);
523}
524
525/* The key must be already stored in q->key. */
526struct futex_hash_bucket *futex_q_lock(struct futex_q *q)
527	__acquires(&hb->lock)
528{
529	struct futex_hash_bucket *hb;
530
531	hb = futex_hash(&q->key);
532
533	/*
534	 * Increment the counter before taking the lock so that
535	 * a potential waker won't miss a to-be-slept task that is
536	 * waiting for the spinlock. This is safe as all futex_q_lock()
537	 * users end up calling futex_queue(). Similarly, for housekeeping,
538	 * decrement the counter at futex_q_unlock() when some error has
539	 * occurred and we don't end up adding the task to the list.
540	 */
541	futex_hb_waiters_inc(hb); /* implies smp_mb(); (A) */
542
543	q->lock_ptr = &hb->lock;
544
545	spin_lock(&hb->lock);
546	return hb;
547}
548
549void futex_q_unlock(struct futex_hash_bucket *hb)
550	__releases(&hb->lock)
551{
552	spin_unlock(&hb->lock);
553	futex_hb_waiters_dec(hb);
554}
555
556void __futex_queue(struct futex_q *q, struct futex_hash_bucket *hb)
557{
558	int prio;
559
560	/*
561	 * The priority used to register this element is
562	 * - either the real thread-priority for the real-time threads
563	 * (i.e. threads with a priority lower than MAX_RT_PRIO)
564	 * - or MAX_RT_PRIO for non-RT threads.
565	 * Thus, all RT-threads are woken first in priority order, and
566	 * the others are woken last, in FIFO order.
567	 */
568	prio = min(current->normal_prio, MAX_RT_PRIO);
569
570	plist_node_init(&q->list, prio);
571	plist_add(&q->list, &hb->chain);
572	q->task = current;
573}
574
575/**
576 * futex_unqueue() - Remove the futex_q from its futex_hash_bucket
577 * @q:	The futex_q to unqueue
578 *
579 * The q->lock_ptr must not be held by the caller. A call to futex_unqueue() must
580 * be paired with exactly one earlier call to futex_queue().
581 *
582 * Return:
583 *  - 1 - if the futex_q was still queued (and we removed unqueued it);
584 *  - 0 - if the futex_q was already removed by the waking thread
585 */
586int futex_unqueue(struct futex_q *q)
587{
588	spinlock_t *lock_ptr;
589	int ret = 0;
590
591	/* In the common case we don't take the spinlock, which is nice. */
592retry:
593	/*
594	 * q->lock_ptr can change between this read and the following spin_lock.
595	 * Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and
596	 * optimizing lock_ptr out of the logic below.
597	 */
598	lock_ptr = READ_ONCE(q->lock_ptr);
599	if (lock_ptr != NULL) {
600		spin_lock(lock_ptr);
601		/*
602		 * q->lock_ptr can change between reading it and
603		 * spin_lock(), causing us to take the wrong lock.  This
604		 * corrects the race condition.
605		 *
606		 * Reasoning goes like this: if we have the wrong lock,
607		 * q->lock_ptr must have changed (maybe several times)
608		 * between reading it and the spin_lock().  It can
609		 * change again after the spin_lock() but only if it was
610		 * already changed before the spin_lock().  It cannot,
611		 * however, change back to the original value.  Therefore
612		 * we can detect whether we acquired the correct lock.
613		 */
614		if (unlikely(lock_ptr != q->lock_ptr)) {
615			spin_unlock(lock_ptr);
616			goto retry;
617		}
618		__futex_unqueue(q);
619
620		BUG_ON(q->pi_state);
621
622		spin_unlock(lock_ptr);
623		ret = 1;
624	}
625
626	return ret;
627}
628
629/*
630 * PI futexes can not be requeued and must remove themselves from the hash
631 * bucket. The hash bucket lock (i.e. lock_ptr) is held.
632 */
633void futex_unqueue_pi(struct futex_q *q)
634{
635	/*
636	 * If the lock was not acquired (due to timeout or signal) then the
637	 * rt_waiter is removed before futex_q is. If this is observed by
638	 * an unlocker after dropping the rtmutex wait lock and before
639	 * acquiring the hash bucket lock, then the unlocker dequeues the
640	 * futex_q from the hash bucket list to guarantee consistent state
641	 * vs. userspace. Therefore the dequeue here must be conditional.
642	 */
643	if (!plist_node_empty(&q->list))
644		__futex_unqueue(q);
645
646	BUG_ON(!q->pi_state);
647	put_pi_state(q->pi_state);
648	q->pi_state = NULL;
649}
650
651/* Constants for the pending_op argument of handle_futex_death */
652#define HANDLE_DEATH_PENDING	true
653#define HANDLE_DEATH_LIST	false
654
655/*
656 * Process a futex-list entry, check whether it's owned by the
657 * dying task, and do notification if so:
658 */
659static int handle_futex_death(u32 __user *uaddr, struct task_struct *curr,
660			      bool pi, bool pending_op)
661{
662	u32 uval, nval, mval;
663	pid_t owner;
664	int err;
665
666	/* Futex address must be 32bit aligned */
667	if ((((unsigned long)uaddr) % sizeof(*uaddr)) != 0)
668		return -1;
669
670retry:
671	if (get_user(uval, uaddr))
672		return -1;
673
674	/*
675	 * Special case for regular (non PI) futexes. The unlock path in
676	 * user space has two race scenarios:
677	 *
678	 * 1. The unlock path releases the user space futex value and
679	 *    before it can execute the futex() syscall to wake up
680	 *    waiters it is killed.
681	 *
682	 * 2. A woken up waiter is killed before it can acquire the
683	 *    futex in user space.
684	 *
685	 * In the second case, the wake up notification could be generated
686	 * by the unlock path in user space after setting the futex value
687	 * to zero or by the kernel after setting the OWNER_DIED bit below.
688	 *
689	 * In both cases the TID validation below prevents a wakeup of
690	 * potential waiters which can cause these waiters to block
691	 * forever.
692	 *
693	 * In both cases the following conditions are met:
694	 *
695	 *	1) task->robust_list->list_op_pending != NULL
696	 *	   @pending_op == true
697	 *	2) The owner part of user space futex value == 0
698	 *	3) Regular futex: @pi == false
699	 *
700	 * If these conditions are met, it is safe to attempt waking up a
701	 * potential waiter without touching the user space futex value and
702	 * trying to set the OWNER_DIED bit. If the futex value is zero,
703	 * the rest of the user space mutex state is consistent, so a woken
704	 * waiter will just take over the uncontended futex. Setting the
705	 * OWNER_DIED bit would create inconsistent state and malfunction
706	 * of the user space owner died handling. Otherwise, the OWNER_DIED
707	 * bit is already set, and the woken waiter is expected to deal with
708	 * this.
709	 */
710	owner = uval & FUTEX_TID_MASK;
711
712	if (pending_op && !pi && !owner) {
713		futex_wake(uaddr, FLAGS_SIZE_32 | FLAGS_SHARED, 1,
714			   FUTEX_BITSET_MATCH_ANY);
715		return 0;
716	}
717
718	if (owner != task_pid_vnr(curr))
719		return 0;
720
721	/*
722	 * Ok, this dying thread is truly holding a futex
723	 * of interest. Set the OWNER_DIED bit atomically
724	 * via cmpxchg, and if the value had FUTEX_WAITERS
725	 * set, wake up a waiter (if any). (We have to do a
726	 * futex_wake() even if OWNER_DIED is already set -
727	 * to handle the rare but possible case of recursive
728	 * thread-death.) The rest of the cleanup is done in
729	 * userspace.
730	 */
731	mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
732
733	/*
734	 * We are not holding a lock here, but we want to have
735	 * the pagefault_disable/enable() protection because
736	 * we want to handle the fault gracefully. If the
737	 * access fails we try to fault in the futex with R/W
738	 * verification via get_user_pages. get_user() above
739	 * does not guarantee R/W access. If that fails we
740	 * give up and leave the futex locked.
741	 */
742	if ((err = futex_cmpxchg_value_locked(&nval, uaddr, uval, mval))) {
743		switch (err) {
744		case -EFAULT:
745			if (fault_in_user_writeable(uaddr))
746				return -1;
747			goto retry;
748
749		case -EAGAIN:
750			cond_resched();
751			goto retry;
752
753		default:
754			WARN_ON_ONCE(1);
755			return err;
756		}
757	}
758
759	if (nval != uval)
760		goto retry;
761
762	/*
763	 * Wake robust non-PI futexes here. The wakeup of
764	 * PI futexes happens in exit_pi_state():
765	 */
766	if (!pi && (uval & FUTEX_WAITERS)) {
767		futex_wake(uaddr, FLAGS_SIZE_32 | FLAGS_SHARED, 1,
768			   FUTEX_BITSET_MATCH_ANY);
769	}
770
771	return 0;
772}
773
774/*
775 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
776 */
777static inline int fetch_robust_entry(struct robust_list __user **entry,
778				     struct robust_list __user * __user *head,
779				     unsigned int *pi)
780{
781	unsigned long uentry;
782
783	if (get_user(uentry, (unsigned long __user *)head))
784		return -EFAULT;
785
786	*entry = (void __user *)(uentry & ~1UL);
787	*pi = uentry & 1;
788
789	return 0;
790}
791
792/*
793 * Walk curr->robust_list (very carefully, it's a userspace list!)
794 * and mark any locks found there dead, and notify any waiters.
795 *
796 * We silently return on any sign of list-walking problem.
797 */
798static void exit_robust_list(struct task_struct *curr)
799{
800	struct robust_list_head __user *head = curr->robust_list;
801	struct robust_list __user *entry, *next_entry, *pending;
802	unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
803	unsigned int next_pi;
804	unsigned long futex_offset;
805	int rc;
806
807	/*
808	 * Fetch the list head (which was registered earlier, via
809	 * sys_set_robust_list()):
810	 */
811	if (fetch_robust_entry(&entry, &head->list.next, &pi))
812		return;
813	/*
814	 * Fetch the relative futex offset:
815	 */
816	if (get_user(futex_offset, &head->futex_offset))
817		return;
818	/*
819	 * Fetch any possibly pending lock-add first, and handle it
820	 * if it exists:
821	 */
822	if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
823		return;
824
825	next_entry = NULL;	/* avoid warning with gcc */
826	while (entry != &head->list) {
827		/*
828		 * Fetch the next entry in the list before calling
829		 * handle_futex_death:
830		 */
831		rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
832		/*
833		 * A pending lock might already be on the list, so
834		 * don't process it twice:
835		 */
836		if (entry != pending) {
837			if (handle_futex_death((void __user *)entry + futex_offset,
838						curr, pi, HANDLE_DEATH_LIST))
839				return;
840		}
841		if (rc)
842			return;
843		entry = next_entry;
844		pi = next_pi;
845		/*
846		 * Avoid excessively long or circular lists:
847		 */
848		if (!--limit)
849			break;
850
851		cond_resched();
852	}
853
854	if (pending) {
855		handle_futex_death((void __user *)pending + futex_offset,
856				   curr, pip, HANDLE_DEATH_PENDING);
857	}
858}
859
860#ifdef CONFIG_COMPAT
861static void __user *futex_uaddr(struct robust_list __user *entry,
862				compat_long_t futex_offset)
863{
864	compat_uptr_t base = ptr_to_compat(entry);
865	void __user *uaddr = compat_ptr(base + futex_offset);
866
867	return uaddr;
868}
869
870/*
871 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
872 */
873static inline int
874compat_fetch_robust_entry(compat_uptr_t *uentry, struct robust_list __user **entry,
875		   compat_uptr_t __user *head, unsigned int *pi)
876{
877	if (get_user(*uentry, head))
878		return -EFAULT;
879
880	*entry = compat_ptr((*uentry) & ~1);
881	*pi = (unsigned int)(*uentry) & 1;
882
883	return 0;
884}
885
886/*
887 * Walk curr->robust_list (very carefully, it's a userspace list!)
888 * and mark any locks found there dead, and notify any waiters.
889 *
890 * We silently return on any sign of list-walking problem.
891 */
892static void compat_exit_robust_list(struct task_struct *curr)
893{
894	struct compat_robust_list_head __user *head = curr->compat_robust_list;
895	struct robust_list __user *entry, *next_entry, *pending;
896	unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
897	unsigned int next_pi;
898	compat_uptr_t uentry, next_uentry, upending;
899	compat_long_t futex_offset;
900	int rc;
901
902	/*
903	 * Fetch the list head (which was registered earlier, via
904	 * sys_set_robust_list()):
905	 */
906	if (compat_fetch_robust_entry(&uentry, &entry, &head->list.next, &pi))
907		return;
908	/*
909	 * Fetch the relative futex offset:
910	 */
911	if (get_user(futex_offset, &head->futex_offset))
912		return;
913	/*
914	 * Fetch any possibly pending lock-add first, and handle it
915	 * if it exists:
916	 */
917	if (compat_fetch_robust_entry(&upending, &pending,
918			       &head->list_op_pending, &pip))
919		return;
920
921	next_entry = NULL;	/* avoid warning with gcc */
922	while (entry != (struct robust_list __user *) &head->list) {
923		/*
924		 * Fetch the next entry in the list before calling
925		 * handle_futex_death:
926		 */
927		rc = compat_fetch_robust_entry(&next_uentry, &next_entry,
928			(compat_uptr_t __user *)&entry->next, &next_pi);
929		/*
930		 * A pending lock might already be on the list, so
931		 * dont process it twice:
932		 */
933		if (entry != pending) {
934			void __user *uaddr = futex_uaddr(entry, futex_offset);
935
936			if (handle_futex_death(uaddr, curr, pi,
937					       HANDLE_DEATH_LIST))
938				return;
939		}
940		if (rc)
941			return;
942		uentry = next_uentry;
943		entry = next_entry;
944		pi = next_pi;
945		/*
946		 * Avoid excessively long or circular lists:
947		 */
948		if (!--limit)
949			break;
950
951		cond_resched();
952	}
953	if (pending) {
954		void __user *uaddr = futex_uaddr(pending, futex_offset);
955
956		handle_futex_death(uaddr, curr, pip, HANDLE_DEATH_PENDING);
957	}
958}
959#endif
960
961#ifdef CONFIG_FUTEX_PI
962
963/*
964 * This task is holding PI mutexes at exit time => bad.
965 * Kernel cleans up PI-state, but userspace is likely hosed.
966 * (Robust-futex cleanup is separate and might save the day for userspace.)
967 */
968static void exit_pi_state_list(struct task_struct *curr)
969{
970	struct list_head *next, *head = &curr->pi_state_list;
971	struct futex_pi_state *pi_state;
972	struct futex_hash_bucket *hb;
973	union futex_key key = FUTEX_KEY_INIT;
974
975	/*
976	 * We are a ZOMBIE and nobody can enqueue itself on
977	 * pi_state_list anymore, but we have to be careful
978	 * versus waiters unqueueing themselves:
979	 */
980	raw_spin_lock_irq(&curr->pi_lock);
981	while (!list_empty(head)) {
982		next = head->next;
983		pi_state = list_entry(next, struct futex_pi_state, list);
984		key = pi_state->key;
985		hb = futex_hash(&key);
986
987		/*
988		 * We can race against put_pi_state() removing itself from the
989		 * list (a waiter going away). put_pi_state() will first
990		 * decrement the reference count and then modify the list, so
991		 * its possible to see the list entry but fail this reference
992		 * acquire.
993		 *
994		 * In that case; drop the locks to let put_pi_state() make
995		 * progress and retry the loop.
996		 */
997		if (!refcount_inc_not_zero(&pi_state->refcount)) {
998			raw_spin_unlock_irq(&curr->pi_lock);
999			cpu_relax();
1000			raw_spin_lock_irq(&curr->pi_lock);
1001			continue;
1002		}
1003		raw_spin_unlock_irq(&curr->pi_lock);
1004
1005		spin_lock(&hb->lock);
1006		raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
1007		raw_spin_lock(&curr->pi_lock);
1008		/*
1009		 * We dropped the pi-lock, so re-check whether this
1010		 * task still owns the PI-state:
1011		 */
1012		if (head->next != next) {
1013			/* retain curr->pi_lock for the loop invariant */
1014			raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
1015			spin_unlock(&hb->lock);
1016			put_pi_state(pi_state);
1017			continue;
1018		}
1019
1020		WARN_ON(pi_state->owner != curr);
1021		WARN_ON(list_empty(&pi_state->list));
1022		list_del_init(&pi_state->list);
1023		pi_state->owner = NULL;
1024
1025		raw_spin_unlock(&curr->pi_lock);
1026		raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1027		spin_unlock(&hb->lock);
1028
1029		rt_mutex_futex_unlock(&pi_state->pi_mutex);
1030		put_pi_state(pi_state);
1031
1032		raw_spin_lock_irq(&curr->pi_lock);
1033	}
1034	raw_spin_unlock_irq(&curr->pi_lock);
1035}
1036#else
1037static inline void exit_pi_state_list(struct task_struct *curr) { }
1038#endif
1039
1040static void futex_cleanup(struct task_struct *tsk)
1041{
1042	if (unlikely(tsk->robust_list)) {
1043		exit_robust_list(tsk);
1044		tsk->robust_list = NULL;
1045	}
1046
1047#ifdef CONFIG_COMPAT
1048	if (unlikely(tsk->compat_robust_list)) {
1049		compat_exit_robust_list(tsk);
1050		tsk->compat_robust_list = NULL;
1051	}
1052#endif
1053
1054	if (unlikely(!list_empty(&tsk->pi_state_list)))
1055		exit_pi_state_list(tsk);
1056}
1057
1058/**
1059 * futex_exit_recursive - Set the tasks futex state to FUTEX_STATE_DEAD
1060 * @tsk:	task to set the state on
1061 *
1062 * Set the futex exit state of the task lockless. The futex waiter code
1063 * observes that state when a task is exiting and loops until the task has
1064 * actually finished the futex cleanup. The worst case for this is that the
1065 * waiter runs through the wait loop until the state becomes visible.
1066 *
1067 * This is called from the recursive fault handling path in make_task_dead().
1068 *
1069 * This is best effort. Either the futex exit code has run already or
1070 * not. If the OWNER_DIED bit has been set on the futex then the waiter can
1071 * take it over. If not, the problem is pushed back to user space. If the
1072 * futex exit code did not run yet, then an already queued waiter might
1073 * block forever, but there is nothing which can be done about that.
1074 */
1075void futex_exit_recursive(struct task_struct *tsk)
1076{
1077	/* If the state is FUTEX_STATE_EXITING then futex_exit_mutex is held */
1078	if (tsk->futex_state == FUTEX_STATE_EXITING)
1079		mutex_unlock(&tsk->futex_exit_mutex);
1080	tsk->futex_state = FUTEX_STATE_DEAD;
1081}
1082
1083static void futex_cleanup_begin(struct task_struct *tsk)
1084{
1085	/*
1086	 * Prevent various race issues against a concurrent incoming waiter
1087	 * including live locks by forcing the waiter to block on
1088	 * tsk->futex_exit_mutex when it observes FUTEX_STATE_EXITING in
1089	 * attach_to_pi_owner().
1090	 */
1091	mutex_lock(&tsk->futex_exit_mutex);
1092
1093	/*
1094	 * Switch the state to FUTEX_STATE_EXITING under tsk->pi_lock.
1095	 *
1096	 * This ensures that all subsequent checks of tsk->futex_state in
1097	 * attach_to_pi_owner() must observe FUTEX_STATE_EXITING with
1098	 * tsk->pi_lock held.
1099	 *
1100	 * It guarantees also that a pi_state which was queued right before
1101	 * the state change under tsk->pi_lock by a concurrent waiter must
1102	 * be observed in exit_pi_state_list().
1103	 */
1104	raw_spin_lock_irq(&tsk->pi_lock);
1105	tsk->futex_state = FUTEX_STATE_EXITING;
1106	raw_spin_unlock_irq(&tsk->pi_lock);
1107}
1108
1109static void futex_cleanup_end(struct task_struct *tsk, int state)
1110{
1111	/*
1112	 * Lockless store. The only side effect is that an observer might
1113	 * take another loop until it becomes visible.
1114	 */
1115	tsk->futex_state = state;
1116	/*
1117	 * Drop the exit protection. This unblocks waiters which observed
1118	 * FUTEX_STATE_EXITING to reevaluate the state.
1119	 */
1120	mutex_unlock(&tsk->futex_exit_mutex);
1121}
1122
1123void futex_exec_release(struct task_struct *tsk)
1124{
1125	/*
1126	 * The state handling is done for consistency, but in the case of
1127	 * exec() there is no way to prevent further damage as the PID stays
1128	 * the same. But for the unlikely and arguably buggy case that a
1129	 * futex is held on exec(), this provides at least as much state
1130	 * consistency protection which is possible.
1131	 */
1132	futex_cleanup_begin(tsk);
1133	futex_cleanup(tsk);
1134	/*
1135	 * Reset the state to FUTEX_STATE_OK. The task is alive and about
1136	 * exec a new binary.
1137	 */
1138	futex_cleanup_end(tsk, FUTEX_STATE_OK);
1139}
1140
1141void futex_exit_release(struct task_struct *tsk)
1142{
1143	futex_cleanup_begin(tsk);
1144	futex_cleanup(tsk);
1145	futex_cleanup_end(tsk, FUTEX_STATE_DEAD);
1146}
1147
1148static int __init futex_init(void)
1149{
1150	unsigned int futex_shift;
1151	unsigned long i;
1152
1153#if CONFIG_BASE_SMALL
1154	futex_hashsize = 16;
1155#else
1156	futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
1157#endif
1158
1159	futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
1160					       futex_hashsize, 0, 0,
1161					       &futex_shift, NULL,
1162					       futex_hashsize, futex_hashsize);
1163	futex_hashsize = 1UL << futex_shift;
1164
1165	for (i = 0; i < futex_hashsize; i++) {
1166		atomic_set(&futex_queues[i].waiters, 0);
1167		plist_head_init(&futex_queues[i].chain);
1168		spin_lock_init(&futex_queues[i].lock);
1169	}
1170
1171	return 0;
1172}
1173core_initcall(futex_init);
1174