1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * Copyright (C) 2007 Alan Stern
4 * Copyright (C) IBM Corporation, 2009
5 * Copyright (C) 2009, Frederic Weisbecker <fweisbec@gmail.com>
6 *
7 * Thanks to Ingo Molnar for his many suggestions.
8 *
9 * Authors: Alan Stern <stern@rowland.harvard.edu>
10 *          K.Prasad <prasad@linux.vnet.ibm.com>
11 *          Frederic Weisbecker <fweisbec@gmail.com>
12 */
13
14/*
15 * HW_breakpoint: a unified kernel/user-space hardware breakpoint facility,
16 * using the CPU's debug registers.
17 * This file contains the arch-independent routines.
18 */
19
20#include <linux/hw_breakpoint.h>
21
22#include <linux/atomic.h>
23#include <linux/bug.h>
24#include <linux/cpu.h>
25#include <linux/export.h>
26#include <linux/init.h>
27#include <linux/irqflags.h>
28#include <linux/kdebug.h>
29#include <linux/kernel.h>
30#include <linux/mutex.h>
31#include <linux/notifier.h>
32#include <linux/percpu-rwsem.h>
33#include <linux/percpu.h>
34#include <linux/rhashtable.h>
35#include <linux/sched.h>
36#include <linux/slab.h>
37
38/*
39 * Datastructure to track the total uses of N slots across tasks or CPUs;
40 * bp_slots_histogram::count[N] is the number of assigned N+1 breakpoint slots.
41 */
42struct bp_slots_histogram {
43#ifdef hw_breakpoint_slots
44	atomic_t count[hw_breakpoint_slots(0)];
45#else
46	atomic_t *count;
47#endif
48};
49
50/*
51 * Per-CPU constraints data.
52 */
53struct bp_cpuinfo {
54	/* Number of pinned CPU breakpoints in a CPU. */
55	unsigned int			cpu_pinned;
56	/* Histogram of pinned task breakpoints in a CPU. */
57	struct bp_slots_histogram	tsk_pinned;
58};
59
60static DEFINE_PER_CPU(struct bp_cpuinfo, bp_cpuinfo[TYPE_MAX]);
61
62static struct bp_cpuinfo *get_bp_info(int cpu, enum bp_type_idx type)
63{
64	return per_cpu_ptr(bp_cpuinfo + type, cpu);
65}
66
67/* Number of pinned CPU breakpoints globally. */
68static struct bp_slots_histogram cpu_pinned[TYPE_MAX];
69/* Number of pinned CPU-independent task breakpoints. */
70static struct bp_slots_histogram tsk_pinned_all[TYPE_MAX];
71
72/* Keep track of the breakpoints attached to tasks */
73static struct rhltable task_bps_ht;
74static const struct rhashtable_params task_bps_ht_params = {
75	.head_offset = offsetof(struct hw_perf_event, bp_list),
76	.key_offset = offsetof(struct hw_perf_event, target),
77	.key_len = sizeof_field(struct hw_perf_event, target),
78	.automatic_shrinking = true,
79};
80
81static bool constraints_initialized __ro_after_init;
82
83/*
84 * Synchronizes accesses to the per-CPU constraints; the locking rules are:
85 *
86 *  1. Atomic updates to bp_cpuinfo::tsk_pinned only require a held read-lock
87 *     (due to bp_slots_histogram::count being atomic, no update are lost).
88 *
89 *  2. Holding a write-lock is required for computations that require a
90 *     stable snapshot of all bp_cpuinfo::tsk_pinned.
91 *
92 *  3. In all other cases, non-atomic accesses require the appropriately held
93 *     lock (read-lock for read-only accesses; write-lock for reads/writes).
94 */
95DEFINE_STATIC_PERCPU_RWSEM(bp_cpuinfo_sem);
96
97/*
98 * Return mutex to serialize accesses to per-task lists in task_bps_ht. Since
99 * rhltable synchronizes concurrent insertions/deletions, independent tasks may
100 * insert/delete concurrently; therefore, a mutex per task is sufficient.
101 *
102 * Uses task_struct::perf_event_mutex, to avoid extending task_struct with a
103 * hw_breakpoint-only mutex, which may be infrequently used. The caveat here is
104 * that hw_breakpoint may contend with per-task perf event list management. The
105 * assumption is that perf usecases involving hw_breakpoints are very unlikely
106 * to result in unnecessary contention.
107 */
108static inline struct mutex *get_task_bps_mutex(struct perf_event *bp)
109{
110	struct task_struct *tsk = bp->hw.target;
111
112	return tsk ? &tsk->perf_event_mutex : NULL;
113}
114
115static struct mutex *bp_constraints_lock(struct perf_event *bp)
116{
117	struct mutex *tsk_mtx = get_task_bps_mutex(bp);
118
119	if (tsk_mtx) {
120		/*
121		 * Fully analogous to the perf_try_init_event() nesting
122		 * argument in the comment near perf_event_ctx_lock_nested();
123		 * this child->perf_event_mutex cannot ever deadlock against
124		 * the parent->perf_event_mutex usage from
125		 * perf_event_task_{en,dis}able().
126		 *
127		 * Specifically, inherited events will never occur on
128		 * ->perf_event_list.
129		 */
130		mutex_lock_nested(tsk_mtx, SINGLE_DEPTH_NESTING);
131		percpu_down_read(&bp_cpuinfo_sem);
132	} else {
133		percpu_down_write(&bp_cpuinfo_sem);
134	}
135
136	return tsk_mtx;
137}
138
139static void bp_constraints_unlock(struct mutex *tsk_mtx)
140{
141	if (tsk_mtx) {
142		percpu_up_read(&bp_cpuinfo_sem);
143		mutex_unlock(tsk_mtx);
144	} else {
145		percpu_up_write(&bp_cpuinfo_sem);
146	}
147}
148
149static bool bp_constraints_is_locked(struct perf_event *bp)
150{
151	struct mutex *tsk_mtx = get_task_bps_mutex(bp);
152
153	return percpu_is_write_locked(&bp_cpuinfo_sem) ||
154	       (tsk_mtx ? mutex_is_locked(tsk_mtx) :
155			  percpu_is_read_locked(&bp_cpuinfo_sem));
156}
157
158static inline void assert_bp_constraints_lock_held(struct perf_event *bp)
159{
160	struct mutex *tsk_mtx = get_task_bps_mutex(bp);
161
162	if (tsk_mtx)
163		lockdep_assert_held(tsk_mtx);
164	lockdep_assert_held(&bp_cpuinfo_sem);
165}
166
167#ifdef hw_breakpoint_slots
168/*
169 * Number of breakpoint slots is constant, and the same for all types.
170 */
171static_assert(hw_breakpoint_slots(TYPE_INST) == hw_breakpoint_slots(TYPE_DATA));
172static inline int hw_breakpoint_slots_cached(int type)	{ return hw_breakpoint_slots(type); }
173static inline int init_breakpoint_slots(void)		{ return 0; }
174#else
175/*
176 * Dynamic number of breakpoint slots.
177 */
178static int __nr_bp_slots[TYPE_MAX] __ro_after_init;
179
180static inline int hw_breakpoint_slots_cached(int type)
181{
182	return __nr_bp_slots[type];
183}
184
185static __init bool
186bp_slots_histogram_alloc(struct bp_slots_histogram *hist, enum bp_type_idx type)
187{
188	hist->count = kcalloc(hw_breakpoint_slots_cached(type), sizeof(*hist->count), GFP_KERNEL);
189	return hist->count;
190}
191
192static __init void bp_slots_histogram_free(struct bp_slots_histogram *hist)
193{
194	kfree(hist->count);
195}
196
197static __init int init_breakpoint_slots(void)
198{
199	int i, cpu, err_cpu;
200
201	for (i = 0; i < TYPE_MAX; i++)
202		__nr_bp_slots[i] = hw_breakpoint_slots(i);
203
204	for_each_possible_cpu(cpu) {
205		for (i = 0; i < TYPE_MAX; i++) {
206			struct bp_cpuinfo *info = get_bp_info(cpu, i);
207
208			if (!bp_slots_histogram_alloc(&info->tsk_pinned, i))
209				goto err;
210		}
211	}
212	for (i = 0; i < TYPE_MAX; i++) {
213		if (!bp_slots_histogram_alloc(&cpu_pinned[i], i))
214			goto err;
215		if (!bp_slots_histogram_alloc(&tsk_pinned_all[i], i))
216			goto err;
217	}
218
219	return 0;
220err:
221	for_each_possible_cpu(err_cpu) {
222		for (i = 0; i < TYPE_MAX; i++)
223			bp_slots_histogram_free(&get_bp_info(err_cpu, i)->tsk_pinned);
224		if (err_cpu == cpu)
225			break;
226	}
227	for (i = 0; i < TYPE_MAX; i++) {
228		bp_slots_histogram_free(&cpu_pinned[i]);
229		bp_slots_histogram_free(&tsk_pinned_all[i]);
230	}
231
232	return -ENOMEM;
233}
234#endif
235
236static inline void
237bp_slots_histogram_add(struct bp_slots_histogram *hist, int old, int val)
238{
239	const int old_idx = old - 1;
240	const int new_idx = old_idx + val;
241
242	if (old_idx >= 0)
243		WARN_ON(atomic_dec_return_relaxed(&hist->count[old_idx]) < 0);
244	if (new_idx >= 0)
245		WARN_ON(atomic_inc_return_relaxed(&hist->count[new_idx]) < 0);
246}
247
248static int
249bp_slots_histogram_max(struct bp_slots_histogram *hist, enum bp_type_idx type)
250{
251	for (int i = hw_breakpoint_slots_cached(type) - 1; i >= 0; i--) {
252		const int count = atomic_read(&hist->count[i]);
253
254		/* Catch unexpected writers; we want a stable snapshot. */
255		ASSERT_EXCLUSIVE_WRITER(hist->count[i]);
256		if (count > 0)
257			return i + 1;
258		WARN(count < 0, "inconsistent breakpoint slots histogram");
259	}
260
261	return 0;
262}
263
264static int
265bp_slots_histogram_max_merge(struct bp_slots_histogram *hist1, struct bp_slots_histogram *hist2,
266			     enum bp_type_idx type)
267{
268	for (int i = hw_breakpoint_slots_cached(type) - 1; i >= 0; i--) {
269		const int count1 = atomic_read(&hist1->count[i]);
270		const int count2 = atomic_read(&hist2->count[i]);
271
272		/* Catch unexpected writers; we want a stable snapshot. */
273		ASSERT_EXCLUSIVE_WRITER(hist1->count[i]);
274		ASSERT_EXCLUSIVE_WRITER(hist2->count[i]);
275		if (count1 + count2 > 0)
276			return i + 1;
277		WARN(count1 < 0, "inconsistent breakpoint slots histogram");
278		WARN(count2 < 0, "inconsistent breakpoint slots histogram");
279	}
280
281	return 0;
282}
283
284#ifndef hw_breakpoint_weight
285static inline int hw_breakpoint_weight(struct perf_event *bp)
286{
287	return 1;
288}
289#endif
290
291static inline enum bp_type_idx find_slot_idx(u64 bp_type)
292{
293	if (bp_type & HW_BREAKPOINT_RW)
294		return TYPE_DATA;
295
296	return TYPE_INST;
297}
298
299/*
300 * Return the maximum number of pinned breakpoints a task has in this CPU.
301 */
302static unsigned int max_task_bp_pinned(int cpu, enum bp_type_idx type)
303{
304	struct bp_slots_histogram *tsk_pinned = &get_bp_info(cpu, type)->tsk_pinned;
305
306	/*
307	 * At this point we want to have acquired the bp_cpuinfo_sem as a
308	 * writer to ensure that there are no concurrent writers in
309	 * toggle_bp_task_slot() to tsk_pinned, and we get a stable snapshot.
310	 */
311	lockdep_assert_held_write(&bp_cpuinfo_sem);
312	return bp_slots_histogram_max_merge(tsk_pinned, &tsk_pinned_all[type], type);
313}
314
315/*
316 * Count the number of breakpoints of the same type and same task.
317 * The given event must be not on the list.
318 *
319 * If @cpu is -1, but the result of task_bp_pinned() is not CPU-independent,
320 * returns a negative value.
321 */
322static int task_bp_pinned(int cpu, struct perf_event *bp, enum bp_type_idx type)
323{
324	struct rhlist_head *head, *pos;
325	struct perf_event *iter;
326	int count = 0;
327
328	/*
329	 * We need a stable snapshot of the per-task breakpoint list.
330	 */
331	assert_bp_constraints_lock_held(bp);
332
333	rcu_read_lock();
334	head = rhltable_lookup(&task_bps_ht, &bp->hw.target, task_bps_ht_params);
335	if (!head)
336		goto out;
337
338	rhl_for_each_entry_rcu(iter, pos, head, hw.bp_list) {
339		if (find_slot_idx(iter->attr.bp_type) != type)
340			continue;
341
342		if (iter->cpu >= 0) {
343			if (cpu == -1) {
344				count = -1;
345				goto out;
346			} else if (cpu != iter->cpu)
347				continue;
348		}
349
350		count += hw_breakpoint_weight(iter);
351	}
352
353out:
354	rcu_read_unlock();
355	return count;
356}
357
358static const struct cpumask *cpumask_of_bp(struct perf_event *bp)
359{
360	if (bp->cpu >= 0)
361		return cpumask_of(bp->cpu);
362	return cpu_possible_mask;
363}
364
365/*
366 * Returns the max pinned breakpoint slots in a given
367 * CPU (cpu > -1) or across all of them (cpu = -1).
368 */
369static int
370max_bp_pinned_slots(struct perf_event *bp, enum bp_type_idx type)
371{
372	const struct cpumask *cpumask = cpumask_of_bp(bp);
373	int pinned_slots = 0;
374	int cpu;
375
376	if (bp->hw.target && bp->cpu < 0) {
377		int max_pinned = task_bp_pinned(-1, bp, type);
378
379		if (max_pinned >= 0) {
380			/*
381			 * Fast path: task_bp_pinned() is CPU-independent and
382			 * returns the same value for any CPU.
383			 */
384			max_pinned += bp_slots_histogram_max(&cpu_pinned[type], type);
385			return max_pinned;
386		}
387	}
388
389	for_each_cpu(cpu, cpumask) {
390		struct bp_cpuinfo *info = get_bp_info(cpu, type);
391		int nr;
392
393		nr = info->cpu_pinned;
394		if (!bp->hw.target)
395			nr += max_task_bp_pinned(cpu, type);
396		else
397			nr += task_bp_pinned(cpu, bp, type);
398
399		pinned_slots = max(nr, pinned_slots);
400	}
401
402	return pinned_slots;
403}
404
405/*
406 * Add/remove the given breakpoint in our constraint table
407 */
408static int
409toggle_bp_slot(struct perf_event *bp, bool enable, enum bp_type_idx type, int weight)
410{
411	int cpu, next_tsk_pinned;
412
413	if (!enable)
414		weight = -weight;
415
416	if (!bp->hw.target) {
417		/*
418		 * Update the pinned CPU slots, in per-CPU bp_cpuinfo and in the
419		 * global histogram.
420		 */
421		struct bp_cpuinfo *info = get_bp_info(bp->cpu, type);
422
423		lockdep_assert_held_write(&bp_cpuinfo_sem);
424		bp_slots_histogram_add(&cpu_pinned[type], info->cpu_pinned, weight);
425		info->cpu_pinned += weight;
426		return 0;
427	}
428
429	/*
430	 * If bp->hw.target, tsk_pinned is only modified, but not used
431	 * otherwise. We can permit concurrent updates as long as there are no
432	 * other uses: having acquired bp_cpuinfo_sem as a reader allows
433	 * concurrent updates here. Uses of tsk_pinned will require acquiring
434	 * bp_cpuinfo_sem as a writer to stabilize tsk_pinned's value.
435	 */
436	lockdep_assert_held_read(&bp_cpuinfo_sem);
437
438	/*
439	 * Update the pinned task slots, in per-CPU bp_cpuinfo and in the global
440	 * histogram. We need to take care of 4 cases:
441	 *
442	 *  1. This breakpoint targets all CPUs (cpu < 0), and there may only
443	 *     exist other task breakpoints targeting all CPUs. In this case we
444	 *     can simply update the global slots histogram.
445	 *
446	 *  2. This breakpoint targets a specific CPU (cpu >= 0), but there may
447	 *     only exist other task breakpoints targeting all CPUs.
448	 *
449	 *     a. On enable: remove the existing breakpoints from the global
450	 *        slots histogram and use the per-CPU histogram.
451	 *
452	 *     b. On disable: re-insert the existing breakpoints into the global
453	 *        slots histogram and remove from per-CPU histogram.
454	 *
455	 *  3. Some other existing task breakpoints target specific CPUs. Only
456	 *     update the per-CPU slots histogram.
457	 */
458
459	if (!enable) {
460		/*
461		 * Remove before updating histograms so we can determine if this
462		 * was the last task breakpoint for a specific CPU.
463		 */
464		int ret = rhltable_remove(&task_bps_ht, &bp->hw.bp_list, task_bps_ht_params);
465
466		if (ret)
467			return ret;
468	}
469	/*
470	 * Note: If !enable, next_tsk_pinned will not count the to-be-removed breakpoint.
471	 */
472	next_tsk_pinned = task_bp_pinned(-1, bp, type);
473
474	if (next_tsk_pinned >= 0) {
475		if (bp->cpu < 0) { /* Case 1: fast path */
476			if (!enable)
477				next_tsk_pinned += hw_breakpoint_weight(bp);
478			bp_slots_histogram_add(&tsk_pinned_all[type], next_tsk_pinned, weight);
479		} else if (enable) { /* Case 2.a: slow path */
480			/* Add existing to per-CPU histograms. */
481			for_each_possible_cpu(cpu) {
482				bp_slots_histogram_add(&get_bp_info(cpu, type)->tsk_pinned,
483						       0, next_tsk_pinned);
484			}
485			/* Add this first CPU-pinned task breakpoint. */
486			bp_slots_histogram_add(&get_bp_info(bp->cpu, type)->tsk_pinned,
487					       next_tsk_pinned, weight);
488			/* Rebalance global task pinned histogram. */
489			bp_slots_histogram_add(&tsk_pinned_all[type], next_tsk_pinned,
490					       -next_tsk_pinned);
491		} else { /* Case 2.b: slow path */
492			/* Remove this last CPU-pinned task breakpoint. */
493			bp_slots_histogram_add(&get_bp_info(bp->cpu, type)->tsk_pinned,
494					       next_tsk_pinned + hw_breakpoint_weight(bp), weight);
495			/* Remove all from per-CPU histograms. */
496			for_each_possible_cpu(cpu) {
497				bp_slots_histogram_add(&get_bp_info(cpu, type)->tsk_pinned,
498						       next_tsk_pinned, -next_tsk_pinned);
499			}
500			/* Rebalance global task pinned histogram. */
501			bp_slots_histogram_add(&tsk_pinned_all[type], 0, next_tsk_pinned);
502		}
503	} else { /* Case 3: slow path */
504		const struct cpumask *cpumask = cpumask_of_bp(bp);
505
506		for_each_cpu(cpu, cpumask) {
507			next_tsk_pinned = task_bp_pinned(cpu, bp, type);
508			if (!enable)
509				next_tsk_pinned += hw_breakpoint_weight(bp);
510			bp_slots_histogram_add(&get_bp_info(cpu, type)->tsk_pinned,
511					       next_tsk_pinned, weight);
512		}
513	}
514
515	/*
516	 * Readers want a stable snapshot of the per-task breakpoint list.
517	 */
518	assert_bp_constraints_lock_held(bp);
519
520	if (enable)
521		return rhltable_insert(&task_bps_ht, &bp->hw.bp_list, task_bps_ht_params);
522
523	return 0;
524}
525
526/*
527 * Constraints to check before allowing this new breakpoint counter.
528 *
529 * Note: Flexible breakpoints are currently unimplemented, but outlined in the
530 * below algorithm for completeness.  The implementation treats flexible as
531 * pinned due to no guarantee that we currently always schedule flexible events
532 * before a pinned event in a same CPU.
533 *
534 *  == Non-pinned counter == (Considered as pinned for now)
535 *
536 *   - If attached to a single cpu, check:
537 *
538 *       (per_cpu(info->flexible, cpu) || (per_cpu(info->cpu_pinned, cpu)
539 *           + max(per_cpu(info->tsk_pinned, cpu)))) < HBP_NUM
540 *
541 *       -> If there are already non-pinned counters in this cpu, it means
542 *          there is already a free slot for them.
543 *          Otherwise, we check that the maximum number of per task
544 *          breakpoints (for this cpu) plus the number of per cpu breakpoint
545 *          (for this cpu) doesn't cover every registers.
546 *
547 *   - If attached to every cpus, check:
548 *
549 *       (per_cpu(info->flexible, *) || (max(per_cpu(info->cpu_pinned, *))
550 *           + max(per_cpu(info->tsk_pinned, *)))) < HBP_NUM
551 *
552 *       -> This is roughly the same, except we check the number of per cpu
553 *          bp for every cpu and we keep the max one. Same for the per tasks
554 *          breakpoints.
555 *
556 *
557 * == Pinned counter ==
558 *
559 *   - If attached to a single cpu, check:
560 *
561 *       ((per_cpu(info->flexible, cpu) > 1) + per_cpu(info->cpu_pinned, cpu)
562 *            + max(per_cpu(info->tsk_pinned, cpu))) < HBP_NUM
563 *
564 *       -> Same checks as before. But now the info->flexible, if any, must keep
565 *          one register at least (or they will never be fed).
566 *
567 *   - If attached to every cpus, check:
568 *
569 *       ((per_cpu(info->flexible, *) > 1) + max(per_cpu(info->cpu_pinned, *))
570 *            + max(per_cpu(info->tsk_pinned, *))) < HBP_NUM
571 */
572static int __reserve_bp_slot(struct perf_event *bp, u64 bp_type)
573{
574	enum bp_type_idx type;
575	int max_pinned_slots;
576	int weight;
577
578	/* We couldn't initialize breakpoint constraints on boot */
579	if (!constraints_initialized)
580		return -ENOMEM;
581
582	/* Basic checks */
583	if (bp_type == HW_BREAKPOINT_EMPTY ||
584	    bp_type == HW_BREAKPOINT_INVALID)
585		return -EINVAL;
586
587	type = find_slot_idx(bp_type);
588	weight = hw_breakpoint_weight(bp);
589
590	/* Check if this new breakpoint can be satisfied across all CPUs. */
591	max_pinned_slots = max_bp_pinned_slots(bp, type) + weight;
592	if (max_pinned_slots > hw_breakpoint_slots_cached(type))
593		return -ENOSPC;
594
595	return toggle_bp_slot(bp, true, type, weight);
596}
597
598int reserve_bp_slot(struct perf_event *bp)
599{
600	struct mutex *mtx = bp_constraints_lock(bp);
601	int ret = __reserve_bp_slot(bp, bp->attr.bp_type);
602
603	bp_constraints_unlock(mtx);
604	return ret;
605}
606
607static void __release_bp_slot(struct perf_event *bp, u64 bp_type)
608{
609	enum bp_type_idx type;
610	int weight;
611
612	type = find_slot_idx(bp_type);
613	weight = hw_breakpoint_weight(bp);
614	WARN_ON(toggle_bp_slot(bp, false, type, weight));
615}
616
617void release_bp_slot(struct perf_event *bp)
618{
619	struct mutex *mtx = bp_constraints_lock(bp);
620
621	__release_bp_slot(bp, bp->attr.bp_type);
622	bp_constraints_unlock(mtx);
623}
624
625static int __modify_bp_slot(struct perf_event *bp, u64 old_type, u64 new_type)
626{
627	int err;
628
629	__release_bp_slot(bp, old_type);
630
631	err = __reserve_bp_slot(bp, new_type);
632	if (err) {
633		/*
634		 * Reserve the old_type slot back in case
635		 * there's no space for the new type.
636		 *
637		 * This must succeed, because we just released
638		 * the old_type slot in the __release_bp_slot
639		 * call above. If not, something is broken.
640		 */
641		WARN_ON(__reserve_bp_slot(bp, old_type));
642	}
643
644	return err;
645}
646
647static int modify_bp_slot(struct perf_event *bp, u64 old_type, u64 new_type)
648{
649	struct mutex *mtx = bp_constraints_lock(bp);
650	int ret = __modify_bp_slot(bp, old_type, new_type);
651
652	bp_constraints_unlock(mtx);
653	return ret;
654}
655
656/*
657 * Allow the kernel debugger to reserve breakpoint slots without
658 * taking a lock using the dbg_* variant of for the reserve and
659 * release breakpoint slots.
660 */
661int dbg_reserve_bp_slot(struct perf_event *bp)
662{
663	int ret;
664
665	if (bp_constraints_is_locked(bp))
666		return -1;
667
668	/* Locks aren't held; disable lockdep assert checking. */
669	lockdep_off();
670	ret = __reserve_bp_slot(bp, bp->attr.bp_type);
671	lockdep_on();
672
673	return ret;
674}
675
676int dbg_release_bp_slot(struct perf_event *bp)
677{
678	if (bp_constraints_is_locked(bp))
679		return -1;
680
681	/* Locks aren't held; disable lockdep assert checking. */
682	lockdep_off();
683	__release_bp_slot(bp, bp->attr.bp_type);
684	lockdep_on();
685
686	return 0;
687}
688
689static int hw_breakpoint_parse(struct perf_event *bp,
690			       const struct perf_event_attr *attr,
691			       struct arch_hw_breakpoint *hw)
692{
693	int err;
694
695	err = hw_breakpoint_arch_parse(bp, attr, hw);
696	if (err)
697		return err;
698
699	if (arch_check_bp_in_kernelspace(hw)) {
700		if (attr->exclude_kernel)
701			return -EINVAL;
702		/*
703		 * Don't let unprivileged users set a breakpoint in the trap
704		 * path to avoid trap recursion attacks.
705		 */
706		if (!capable(CAP_SYS_ADMIN))
707			return -EPERM;
708	}
709
710	return 0;
711}
712
713int register_perf_hw_breakpoint(struct perf_event *bp)
714{
715	struct arch_hw_breakpoint hw = { };
716	int err;
717
718	err = reserve_bp_slot(bp);
719	if (err)
720		return err;
721
722	err = hw_breakpoint_parse(bp, &bp->attr, &hw);
723	if (err) {
724		release_bp_slot(bp);
725		return err;
726	}
727
728	bp->hw.info = hw;
729
730	return 0;
731}
732
733/**
734 * register_user_hw_breakpoint - register a hardware breakpoint for user space
735 * @attr: breakpoint attributes
736 * @triggered: callback to trigger when we hit the breakpoint
737 * @context: context data could be used in the triggered callback
738 * @tsk: pointer to 'task_struct' of the process to which the address belongs
739 */
740struct perf_event *
741register_user_hw_breakpoint(struct perf_event_attr *attr,
742			    perf_overflow_handler_t triggered,
743			    void *context,
744			    struct task_struct *tsk)
745{
746	return perf_event_create_kernel_counter(attr, -1, tsk, triggered,
747						context);
748}
749EXPORT_SYMBOL_GPL(register_user_hw_breakpoint);
750
751static void hw_breakpoint_copy_attr(struct perf_event_attr *to,
752				    struct perf_event_attr *from)
753{
754	to->bp_addr = from->bp_addr;
755	to->bp_type = from->bp_type;
756	to->bp_len  = from->bp_len;
757	to->disabled = from->disabled;
758}
759
760int
761modify_user_hw_breakpoint_check(struct perf_event *bp, struct perf_event_attr *attr,
762			        bool check)
763{
764	struct arch_hw_breakpoint hw = { };
765	int err;
766
767	err = hw_breakpoint_parse(bp, attr, &hw);
768	if (err)
769		return err;
770
771	if (check) {
772		struct perf_event_attr old_attr;
773
774		old_attr = bp->attr;
775		hw_breakpoint_copy_attr(&old_attr, attr);
776		if (memcmp(&old_attr, attr, sizeof(*attr)))
777			return -EINVAL;
778	}
779
780	if (bp->attr.bp_type != attr->bp_type) {
781		err = modify_bp_slot(bp, bp->attr.bp_type, attr->bp_type);
782		if (err)
783			return err;
784	}
785
786	hw_breakpoint_copy_attr(&bp->attr, attr);
787	bp->hw.info = hw;
788
789	return 0;
790}
791
792/**
793 * modify_user_hw_breakpoint - modify a user-space hardware breakpoint
794 * @bp: the breakpoint structure to modify
795 * @attr: new breakpoint attributes
796 */
797int modify_user_hw_breakpoint(struct perf_event *bp, struct perf_event_attr *attr)
798{
799	int err;
800
801	/*
802	 * modify_user_hw_breakpoint can be invoked with IRQs disabled and hence it
803	 * will not be possible to raise IPIs that invoke __perf_event_disable.
804	 * So call the function directly after making sure we are targeting the
805	 * current task.
806	 */
807	if (irqs_disabled() && bp->ctx && bp->ctx->task == current)
808		perf_event_disable_local(bp);
809	else
810		perf_event_disable(bp);
811
812	err = modify_user_hw_breakpoint_check(bp, attr, false);
813
814	if (!bp->attr.disabled)
815		perf_event_enable(bp);
816
817	return err;
818}
819EXPORT_SYMBOL_GPL(modify_user_hw_breakpoint);
820
821/**
822 * unregister_hw_breakpoint - unregister a user-space hardware breakpoint
823 * @bp: the breakpoint structure to unregister
824 */
825void unregister_hw_breakpoint(struct perf_event *bp)
826{
827	if (!bp)
828		return;
829	perf_event_release_kernel(bp);
830}
831EXPORT_SYMBOL_GPL(unregister_hw_breakpoint);
832
833/**
834 * register_wide_hw_breakpoint - register a wide breakpoint in the kernel
835 * @attr: breakpoint attributes
836 * @triggered: callback to trigger when we hit the breakpoint
837 * @context: context data could be used in the triggered callback
838 *
839 * @return a set of per_cpu pointers to perf events
840 */
841struct perf_event * __percpu *
842register_wide_hw_breakpoint(struct perf_event_attr *attr,
843			    perf_overflow_handler_t triggered,
844			    void *context)
845{
846	struct perf_event * __percpu *cpu_events, *bp;
847	long err = 0;
848	int cpu;
849
850	cpu_events = alloc_percpu(typeof(*cpu_events));
851	if (!cpu_events)
852		return (void __percpu __force *)ERR_PTR(-ENOMEM);
853
854	cpus_read_lock();
855	for_each_online_cpu(cpu) {
856		bp = perf_event_create_kernel_counter(attr, cpu, NULL,
857						      triggered, context);
858		if (IS_ERR(bp)) {
859			err = PTR_ERR(bp);
860			break;
861		}
862
863		per_cpu(*cpu_events, cpu) = bp;
864	}
865	cpus_read_unlock();
866
867	if (likely(!err))
868		return cpu_events;
869
870	unregister_wide_hw_breakpoint(cpu_events);
871	return (void __percpu __force *)ERR_PTR(err);
872}
873EXPORT_SYMBOL_GPL(register_wide_hw_breakpoint);
874
875/**
876 * unregister_wide_hw_breakpoint - unregister a wide breakpoint in the kernel
877 * @cpu_events: the per cpu set of events to unregister
878 */
879void unregister_wide_hw_breakpoint(struct perf_event * __percpu *cpu_events)
880{
881	int cpu;
882
883	for_each_possible_cpu(cpu)
884		unregister_hw_breakpoint(per_cpu(*cpu_events, cpu));
885
886	free_percpu(cpu_events);
887}
888EXPORT_SYMBOL_GPL(unregister_wide_hw_breakpoint);
889
890/**
891 * hw_breakpoint_is_used - check if breakpoints are currently used
892 *
893 * Returns: true if breakpoints are used, false otherwise.
894 */
895bool hw_breakpoint_is_used(void)
896{
897	int cpu;
898
899	if (!constraints_initialized)
900		return false;
901
902	for_each_possible_cpu(cpu) {
903		for (int type = 0; type < TYPE_MAX; ++type) {
904			struct bp_cpuinfo *info = get_bp_info(cpu, type);
905
906			if (info->cpu_pinned)
907				return true;
908
909			for (int slot = 0; slot < hw_breakpoint_slots_cached(type); ++slot) {
910				if (atomic_read(&info->tsk_pinned.count[slot]))
911					return true;
912			}
913		}
914	}
915
916	for (int type = 0; type < TYPE_MAX; ++type) {
917		for (int slot = 0; slot < hw_breakpoint_slots_cached(type); ++slot) {
918			/*
919			 * Warn, because if there are CPU pinned counters,
920			 * should never get here; bp_cpuinfo::cpu_pinned should
921			 * be consistent with the global cpu_pinned histogram.
922			 */
923			if (WARN_ON(atomic_read(&cpu_pinned[type].count[slot])))
924				return true;
925
926			if (atomic_read(&tsk_pinned_all[type].count[slot]))
927				return true;
928		}
929	}
930
931	return false;
932}
933
934static struct notifier_block hw_breakpoint_exceptions_nb = {
935	.notifier_call = hw_breakpoint_exceptions_notify,
936	/* we need to be notified first */
937	.priority = 0x7fffffff
938};
939
940static void bp_perf_event_destroy(struct perf_event *event)
941{
942	release_bp_slot(event);
943}
944
945static int hw_breakpoint_event_init(struct perf_event *bp)
946{
947	int err;
948
949	if (bp->attr.type != PERF_TYPE_BREAKPOINT)
950		return -ENOENT;
951
952	/*
953	 * no branch sampling for breakpoint events
954	 */
955	if (has_branch_stack(bp))
956		return -EOPNOTSUPP;
957
958	err = register_perf_hw_breakpoint(bp);
959	if (err)
960		return err;
961
962	bp->destroy = bp_perf_event_destroy;
963
964	return 0;
965}
966
967static int hw_breakpoint_add(struct perf_event *bp, int flags)
968{
969	if (!(flags & PERF_EF_START))
970		bp->hw.state = PERF_HES_STOPPED;
971
972	if (is_sampling_event(bp)) {
973		bp->hw.last_period = bp->hw.sample_period;
974		perf_swevent_set_period(bp);
975	}
976
977	return arch_install_hw_breakpoint(bp);
978}
979
980static void hw_breakpoint_del(struct perf_event *bp, int flags)
981{
982	arch_uninstall_hw_breakpoint(bp);
983}
984
985static void hw_breakpoint_start(struct perf_event *bp, int flags)
986{
987	bp->hw.state = 0;
988}
989
990static void hw_breakpoint_stop(struct perf_event *bp, int flags)
991{
992	bp->hw.state = PERF_HES_STOPPED;
993}
994
995static struct pmu perf_breakpoint = {
996	.task_ctx_nr	= perf_sw_context, /* could eventually get its own */
997
998	.event_init	= hw_breakpoint_event_init,
999	.add		= hw_breakpoint_add,
1000	.del		= hw_breakpoint_del,
1001	.start		= hw_breakpoint_start,
1002	.stop		= hw_breakpoint_stop,
1003	.read		= hw_breakpoint_pmu_read,
1004};
1005
1006int __init init_hw_breakpoint(void)
1007{
1008	int ret;
1009
1010	ret = rhltable_init(&task_bps_ht, &task_bps_ht_params);
1011	if (ret)
1012		return ret;
1013
1014	ret = init_breakpoint_slots();
1015	if (ret)
1016		return ret;
1017
1018	constraints_initialized = true;
1019
1020	perf_pmu_register(&perf_breakpoint, "breakpoint", PERF_TYPE_BREAKPOINT);
1021
1022	return register_die_notifier(&hw_breakpoint_exceptions_nb);
1023}
1024