1// SPDX-License-Identifier: GPL-2.0 2/* 3 * Performance events core code: 4 * 5 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> 6 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar 7 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra 8 * Copyright �� 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 9 */ 10 11#include <linux/fs.h> 12#include <linux/mm.h> 13#include <linux/cpu.h> 14#include <linux/smp.h> 15#include <linux/idr.h> 16#include <linux/file.h> 17#include <linux/poll.h> 18#include <linux/slab.h> 19#include <linux/hash.h> 20#include <linux/tick.h> 21#include <linux/sysfs.h> 22#include <linux/dcache.h> 23#include <linux/percpu.h> 24#include <linux/ptrace.h> 25#include <linux/reboot.h> 26#include <linux/vmstat.h> 27#include <linux/device.h> 28#include <linux/export.h> 29#include <linux/vmalloc.h> 30#include <linux/hardirq.h> 31#include <linux/hugetlb.h> 32#include <linux/rculist.h> 33#include <linux/uaccess.h> 34#include <linux/syscalls.h> 35#include <linux/anon_inodes.h> 36#include <linux/kernel_stat.h> 37#include <linux/cgroup.h> 38#include <linux/perf_event.h> 39#include <linux/trace_events.h> 40#include <linux/hw_breakpoint.h> 41#include <linux/mm_types.h> 42#include <linux/module.h> 43#include <linux/mman.h> 44#include <linux/compat.h> 45#include <linux/bpf.h> 46#include <linux/filter.h> 47#include <linux/namei.h> 48#include <linux/parser.h> 49#include <linux/sched/clock.h> 50#include <linux/sched/mm.h> 51#include <linux/proc_ns.h> 52#include <linux/mount.h> 53#include <linux/min_heap.h> 54#include <linux/highmem.h> 55#include <linux/pgtable.h> 56#include <linux/buildid.h> 57#include <linux/task_work.h> 58 59#include "internal.h" 60 61#include <asm/irq_regs.h> 62 63typedef int (*remote_function_f)(void *); 64 65struct remote_function_call { 66 struct task_struct *p; 67 remote_function_f func; 68 void *info; 69 int ret; 70}; 71 72static void remote_function(void *data) 73{ 74 struct remote_function_call *tfc = data; 75 struct task_struct *p = tfc->p; 76 77 if (p) { 78 /* -EAGAIN */ 79 if (task_cpu(p) != smp_processor_id()) 80 return; 81 82 /* 83 * Now that we're on right CPU with IRQs disabled, we can test 84 * if we hit the right task without races. 85 */ 86 87 tfc->ret = -ESRCH; /* No such (running) process */ 88 if (p != current) 89 return; 90 } 91 92 tfc->ret = tfc->func(tfc->info); 93} 94 95/** 96 * task_function_call - call a function on the cpu on which a task runs 97 * @p: the task to evaluate 98 * @func: the function to be called 99 * @info: the function call argument 100 * 101 * Calls the function @func when the task is currently running. This might 102 * be on the current CPU, which just calls the function directly. This will 103 * retry due to any failures in smp_call_function_single(), such as if the 104 * task_cpu() goes offline concurrently. 105 * 106 * returns @func return value or -ESRCH or -ENXIO when the process isn't running 107 */ 108static int 109task_function_call(struct task_struct *p, remote_function_f func, void *info) 110{ 111 struct remote_function_call data = { 112 .p = p, 113 .func = func, 114 .info = info, 115 .ret = -EAGAIN, 116 }; 117 int ret; 118 119 for (;;) { 120 ret = smp_call_function_single(task_cpu(p), remote_function, 121 &data, 1); 122 if (!ret) 123 ret = data.ret; 124 125 if (ret != -EAGAIN) 126 break; 127 128 cond_resched(); 129 } 130 131 return ret; 132} 133 134/** 135 * cpu_function_call - call a function on the cpu 136 * @cpu: target cpu to queue this function 137 * @func: the function to be called 138 * @info: the function call argument 139 * 140 * Calls the function @func on the remote cpu. 141 * 142 * returns: @func return value or -ENXIO when the cpu is offline 143 */ 144static int cpu_function_call(int cpu, remote_function_f func, void *info) 145{ 146 struct remote_function_call data = { 147 .p = NULL, 148 .func = func, 149 .info = info, 150 .ret = -ENXIO, /* No such CPU */ 151 }; 152 153 smp_call_function_single(cpu, remote_function, &data, 1); 154 155 return data.ret; 156} 157 158static void perf_ctx_lock(struct perf_cpu_context *cpuctx, 159 struct perf_event_context *ctx) 160{ 161 raw_spin_lock(&cpuctx->ctx.lock); 162 if (ctx) 163 raw_spin_lock(&ctx->lock); 164} 165 166static void perf_ctx_unlock(struct perf_cpu_context *cpuctx, 167 struct perf_event_context *ctx) 168{ 169 if (ctx) 170 raw_spin_unlock(&ctx->lock); 171 raw_spin_unlock(&cpuctx->ctx.lock); 172} 173 174#define TASK_TOMBSTONE ((void *)-1L) 175 176static bool is_kernel_event(struct perf_event *event) 177{ 178 return READ_ONCE(event->owner) == TASK_TOMBSTONE; 179} 180 181static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context); 182 183struct perf_event_context *perf_cpu_task_ctx(void) 184{ 185 lockdep_assert_irqs_disabled(); 186 return this_cpu_ptr(&perf_cpu_context)->task_ctx; 187} 188 189/* 190 * On task ctx scheduling... 191 * 192 * When !ctx->nr_events a task context will not be scheduled. This means 193 * we can disable the scheduler hooks (for performance) without leaving 194 * pending task ctx state. 195 * 196 * This however results in two special cases: 197 * 198 * - removing the last event from a task ctx; this is relatively straight 199 * forward and is done in __perf_remove_from_context. 200 * 201 * - adding the first event to a task ctx; this is tricky because we cannot 202 * rely on ctx->is_active and therefore cannot use event_function_call(). 203 * See perf_install_in_context(). 204 * 205 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set. 206 */ 207 208typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *, 209 struct perf_event_context *, void *); 210 211struct event_function_struct { 212 struct perf_event *event; 213 event_f func; 214 void *data; 215}; 216 217static int event_function(void *info) 218{ 219 struct event_function_struct *efs = info; 220 struct perf_event *event = efs->event; 221 struct perf_event_context *ctx = event->ctx; 222 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 223 struct perf_event_context *task_ctx = cpuctx->task_ctx; 224 int ret = 0; 225 226 lockdep_assert_irqs_disabled(); 227 228 perf_ctx_lock(cpuctx, task_ctx); 229 /* 230 * Since we do the IPI call without holding ctx->lock things can have 231 * changed, double check we hit the task we set out to hit. 232 */ 233 if (ctx->task) { 234 if (ctx->task != current) { 235 ret = -ESRCH; 236 goto unlock; 237 } 238 239 /* 240 * We only use event_function_call() on established contexts, 241 * and event_function() is only ever called when active (or 242 * rather, we'll have bailed in task_function_call() or the 243 * above ctx->task != current test), therefore we must have 244 * ctx->is_active here. 245 */ 246 WARN_ON_ONCE(!ctx->is_active); 247 /* 248 * And since we have ctx->is_active, cpuctx->task_ctx must 249 * match. 250 */ 251 WARN_ON_ONCE(task_ctx != ctx); 252 } else { 253 WARN_ON_ONCE(&cpuctx->ctx != ctx); 254 } 255 256 efs->func(event, cpuctx, ctx, efs->data); 257unlock: 258 perf_ctx_unlock(cpuctx, task_ctx); 259 260 return ret; 261} 262 263static void event_function_call(struct perf_event *event, event_f func, void *data) 264{ 265 struct perf_event_context *ctx = event->ctx; 266 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */ 267 struct event_function_struct efs = { 268 .event = event, 269 .func = func, 270 .data = data, 271 }; 272 273 if (!event->parent) { 274 /* 275 * If this is a !child event, we must hold ctx::mutex to 276 * stabilize the event->ctx relation. See 277 * perf_event_ctx_lock(). 278 */ 279 lockdep_assert_held(&ctx->mutex); 280 } 281 282 if (!task) { 283 cpu_function_call(event->cpu, event_function, &efs); 284 return; 285 } 286 287 if (task == TASK_TOMBSTONE) 288 return; 289 290again: 291 if (!task_function_call(task, event_function, &efs)) 292 return; 293 294 raw_spin_lock_irq(&ctx->lock); 295 /* 296 * Reload the task pointer, it might have been changed by 297 * a concurrent perf_event_context_sched_out(). 298 */ 299 task = ctx->task; 300 if (task == TASK_TOMBSTONE) { 301 raw_spin_unlock_irq(&ctx->lock); 302 return; 303 } 304 if (ctx->is_active) { 305 raw_spin_unlock_irq(&ctx->lock); 306 goto again; 307 } 308 func(event, NULL, ctx, data); 309 raw_spin_unlock_irq(&ctx->lock); 310} 311 312/* 313 * Similar to event_function_call() + event_function(), but hard assumes IRQs 314 * are already disabled and we're on the right CPU. 315 */ 316static void event_function_local(struct perf_event *event, event_f func, void *data) 317{ 318 struct perf_event_context *ctx = event->ctx; 319 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 320 struct task_struct *task = READ_ONCE(ctx->task); 321 struct perf_event_context *task_ctx = NULL; 322 323 lockdep_assert_irqs_disabled(); 324 325 if (task) { 326 if (task == TASK_TOMBSTONE) 327 return; 328 329 task_ctx = ctx; 330 } 331 332 perf_ctx_lock(cpuctx, task_ctx); 333 334 task = ctx->task; 335 if (task == TASK_TOMBSTONE) 336 goto unlock; 337 338 if (task) { 339 /* 340 * We must be either inactive or active and the right task, 341 * otherwise we're screwed, since we cannot IPI to somewhere 342 * else. 343 */ 344 if (ctx->is_active) { 345 if (WARN_ON_ONCE(task != current)) 346 goto unlock; 347 348 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx)) 349 goto unlock; 350 } 351 } else { 352 WARN_ON_ONCE(&cpuctx->ctx != ctx); 353 } 354 355 func(event, cpuctx, ctx, data); 356unlock: 357 perf_ctx_unlock(cpuctx, task_ctx); 358} 359 360#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\ 361 PERF_FLAG_FD_OUTPUT |\ 362 PERF_FLAG_PID_CGROUP |\ 363 PERF_FLAG_FD_CLOEXEC) 364 365/* 366 * branch priv levels that need permission checks 367 */ 368#define PERF_SAMPLE_BRANCH_PERM_PLM \ 369 (PERF_SAMPLE_BRANCH_KERNEL |\ 370 PERF_SAMPLE_BRANCH_HV) 371 372enum event_type_t { 373 EVENT_FLEXIBLE = 0x1, 374 EVENT_PINNED = 0x2, 375 EVENT_TIME = 0x4, 376 /* see ctx_resched() for details */ 377 EVENT_CPU = 0x8, 378 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED, 379}; 380 381/* 382 * perf_sched_events : >0 events exist 383 */ 384 385static void perf_sched_delayed(struct work_struct *work); 386DEFINE_STATIC_KEY_FALSE(perf_sched_events); 387static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed); 388static DEFINE_MUTEX(perf_sched_mutex); 389static atomic_t perf_sched_count; 390 391static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events); 392 393static atomic_t nr_mmap_events __read_mostly; 394static atomic_t nr_comm_events __read_mostly; 395static atomic_t nr_namespaces_events __read_mostly; 396static atomic_t nr_task_events __read_mostly; 397static atomic_t nr_freq_events __read_mostly; 398static atomic_t nr_switch_events __read_mostly; 399static atomic_t nr_ksymbol_events __read_mostly; 400static atomic_t nr_bpf_events __read_mostly; 401static atomic_t nr_cgroup_events __read_mostly; 402static atomic_t nr_text_poke_events __read_mostly; 403static atomic_t nr_build_id_events __read_mostly; 404 405static LIST_HEAD(pmus); 406static DEFINE_MUTEX(pmus_lock); 407static struct srcu_struct pmus_srcu; 408static cpumask_var_t perf_online_mask; 409static struct kmem_cache *perf_event_cache; 410 411/* 412 * perf event paranoia level: 413 * -1 - not paranoid at all 414 * 0 - disallow raw tracepoint access for unpriv 415 * 1 - disallow cpu events for unpriv 416 * 2 - disallow kernel profiling for unpriv 417 */ 418int sysctl_perf_event_paranoid __read_mostly = 2; 419 420/* Minimum for 512 kiB + 1 user control page */ 421int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */ 422 423/* 424 * max perf event sample rate 425 */ 426#define DEFAULT_MAX_SAMPLE_RATE 100000 427#define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE) 428#define DEFAULT_CPU_TIME_MAX_PERCENT 25 429 430int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE; 431 432static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ); 433static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS; 434 435static int perf_sample_allowed_ns __read_mostly = 436 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100; 437 438static void update_perf_cpu_limits(void) 439{ 440 u64 tmp = perf_sample_period_ns; 441 442 tmp *= sysctl_perf_cpu_time_max_percent; 443 tmp = div_u64(tmp, 100); 444 if (!tmp) 445 tmp = 1; 446 447 WRITE_ONCE(perf_sample_allowed_ns, tmp); 448} 449 450static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc); 451 452int perf_proc_update_handler(struct ctl_table *table, int write, 453 void *buffer, size_t *lenp, loff_t *ppos) 454{ 455 int ret; 456 int perf_cpu = sysctl_perf_cpu_time_max_percent; 457 /* 458 * If throttling is disabled don't allow the write: 459 */ 460 if (write && (perf_cpu == 100 || perf_cpu == 0)) 461 return -EINVAL; 462 463 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 464 if (ret || !write) 465 return ret; 466 467 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ); 468 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 469 update_perf_cpu_limits(); 470 471 return 0; 472} 473 474int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT; 475 476int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write, 477 void *buffer, size_t *lenp, loff_t *ppos) 478{ 479 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 480 481 if (ret || !write) 482 return ret; 483 484 if (sysctl_perf_cpu_time_max_percent == 100 || 485 sysctl_perf_cpu_time_max_percent == 0) { 486 printk(KERN_WARNING 487 "perf: Dynamic interrupt throttling disabled, can hang your system!\n"); 488 WRITE_ONCE(perf_sample_allowed_ns, 0); 489 } else { 490 update_perf_cpu_limits(); 491 } 492 493 return 0; 494} 495 496/* 497 * perf samples are done in some very critical code paths (NMIs). 498 * If they take too much CPU time, the system can lock up and not 499 * get any real work done. This will drop the sample rate when 500 * we detect that events are taking too long. 501 */ 502#define NR_ACCUMULATED_SAMPLES 128 503static DEFINE_PER_CPU(u64, running_sample_length); 504 505static u64 __report_avg; 506static u64 __report_allowed; 507 508static void perf_duration_warn(struct irq_work *w) 509{ 510 printk_ratelimited(KERN_INFO 511 "perf: interrupt took too long (%lld > %lld), lowering " 512 "kernel.perf_event_max_sample_rate to %d\n", 513 __report_avg, __report_allowed, 514 sysctl_perf_event_sample_rate); 515} 516 517static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn); 518 519void perf_sample_event_took(u64 sample_len_ns) 520{ 521 u64 max_len = READ_ONCE(perf_sample_allowed_ns); 522 u64 running_len; 523 u64 avg_len; 524 u32 max; 525 526 if (max_len == 0) 527 return; 528 529 /* Decay the counter by 1 average sample. */ 530 running_len = __this_cpu_read(running_sample_length); 531 running_len -= running_len/NR_ACCUMULATED_SAMPLES; 532 running_len += sample_len_ns; 533 __this_cpu_write(running_sample_length, running_len); 534 535 /* 536 * Note: this will be biased artifically low until we have 537 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us 538 * from having to maintain a count. 539 */ 540 avg_len = running_len/NR_ACCUMULATED_SAMPLES; 541 if (avg_len <= max_len) 542 return; 543 544 __report_avg = avg_len; 545 __report_allowed = max_len; 546 547 /* 548 * Compute a throttle threshold 25% below the current duration. 549 */ 550 avg_len += avg_len / 4; 551 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent; 552 if (avg_len < max) 553 max /= (u32)avg_len; 554 else 555 max = 1; 556 557 WRITE_ONCE(perf_sample_allowed_ns, avg_len); 558 WRITE_ONCE(max_samples_per_tick, max); 559 560 sysctl_perf_event_sample_rate = max * HZ; 561 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 562 563 if (!irq_work_queue(&perf_duration_work)) { 564 early_printk("perf: interrupt took too long (%lld > %lld), lowering " 565 "kernel.perf_event_max_sample_rate to %d\n", 566 __report_avg, __report_allowed, 567 sysctl_perf_event_sample_rate); 568 } 569} 570 571static atomic64_t perf_event_id; 572 573static void update_context_time(struct perf_event_context *ctx); 574static u64 perf_event_time(struct perf_event *event); 575 576void __weak perf_event_print_debug(void) { } 577 578static inline u64 perf_clock(void) 579{ 580 return local_clock(); 581} 582 583static inline u64 perf_event_clock(struct perf_event *event) 584{ 585 return event->clock(); 586} 587 588/* 589 * State based event timekeeping... 590 * 591 * The basic idea is to use event->state to determine which (if any) time 592 * fields to increment with the current delta. This means we only need to 593 * update timestamps when we change state or when they are explicitly requested 594 * (read). 595 * 596 * Event groups make things a little more complicated, but not terribly so. The 597 * rules for a group are that if the group leader is OFF the entire group is 598 * OFF, irrespecive of what the group member states are. This results in 599 * __perf_effective_state(). 600 * 601 * A futher ramification is that when a group leader flips between OFF and 602 * !OFF, we need to update all group member times. 603 * 604 * 605 * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we 606 * need to make sure the relevant context time is updated before we try and 607 * update our timestamps. 608 */ 609 610static __always_inline enum perf_event_state 611__perf_effective_state(struct perf_event *event) 612{ 613 struct perf_event *leader = event->group_leader; 614 615 if (leader->state <= PERF_EVENT_STATE_OFF) 616 return leader->state; 617 618 return event->state; 619} 620 621static __always_inline void 622__perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running) 623{ 624 enum perf_event_state state = __perf_effective_state(event); 625 u64 delta = now - event->tstamp; 626 627 *enabled = event->total_time_enabled; 628 if (state >= PERF_EVENT_STATE_INACTIVE) 629 *enabled += delta; 630 631 *running = event->total_time_running; 632 if (state >= PERF_EVENT_STATE_ACTIVE) 633 *running += delta; 634} 635 636static void perf_event_update_time(struct perf_event *event) 637{ 638 u64 now = perf_event_time(event); 639 640 __perf_update_times(event, now, &event->total_time_enabled, 641 &event->total_time_running); 642 event->tstamp = now; 643} 644 645static void perf_event_update_sibling_time(struct perf_event *leader) 646{ 647 struct perf_event *sibling; 648 649 for_each_sibling_event(sibling, leader) 650 perf_event_update_time(sibling); 651} 652 653static void 654perf_event_set_state(struct perf_event *event, enum perf_event_state state) 655{ 656 if (event->state == state) 657 return; 658 659 perf_event_update_time(event); 660 /* 661 * If a group leader gets enabled/disabled all its siblings 662 * are affected too. 663 */ 664 if ((event->state < 0) ^ (state < 0)) 665 perf_event_update_sibling_time(event); 666 667 WRITE_ONCE(event->state, state); 668} 669 670/* 671 * UP store-release, load-acquire 672 */ 673 674#define __store_release(ptr, val) \ 675do { \ 676 barrier(); \ 677 WRITE_ONCE(*(ptr), (val)); \ 678} while (0) 679 680#define __load_acquire(ptr) \ 681({ \ 682 __unqual_scalar_typeof(*(ptr)) ___p = READ_ONCE(*(ptr)); \ 683 barrier(); \ 684 ___p; \ 685}) 686 687static void perf_ctx_disable(struct perf_event_context *ctx) 688{ 689 struct perf_event_pmu_context *pmu_ctx; 690 691 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) 692 perf_pmu_disable(pmu_ctx->pmu); 693} 694 695static void perf_ctx_enable(struct perf_event_context *ctx) 696{ 697 struct perf_event_pmu_context *pmu_ctx; 698 699 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) 700 perf_pmu_enable(pmu_ctx->pmu); 701} 702 703static void ctx_sched_out(struct perf_event_context *ctx, enum event_type_t event_type); 704static void ctx_sched_in(struct perf_event_context *ctx, enum event_type_t event_type); 705 706#ifdef CONFIG_CGROUP_PERF 707 708static inline bool 709perf_cgroup_match(struct perf_event *event) 710{ 711 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 712 713 /* @event doesn't care about cgroup */ 714 if (!event->cgrp) 715 return true; 716 717 /* wants specific cgroup scope but @cpuctx isn't associated with any */ 718 if (!cpuctx->cgrp) 719 return false; 720 721 /* 722 * Cgroup scoping is recursive. An event enabled for a cgroup is 723 * also enabled for all its descendant cgroups. If @cpuctx's 724 * cgroup is a descendant of @event's (the test covers identity 725 * case), it's a match. 726 */ 727 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup, 728 event->cgrp->css.cgroup); 729} 730 731static inline void perf_detach_cgroup(struct perf_event *event) 732{ 733 css_put(&event->cgrp->css); 734 event->cgrp = NULL; 735} 736 737static inline int is_cgroup_event(struct perf_event *event) 738{ 739 return event->cgrp != NULL; 740} 741 742static inline u64 perf_cgroup_event_time(struct perf_event *event) 743{ 744 struct perf_cgroup_info *t; 745 746 t = per_cpu_ptr(event->cgrp->info, event->cpu); 747 return t->time; 748} 749 750static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now) 751{ 752 struct perf_cgroup_info *t; 753 754 t = per_cpu_ptr(event->cgrp->info, event->cpu); 755 if (!__load_acquire(&t->active)) 756 return t->time; 757 now += READ_ONCE(t->timeoffset); 758 return now; 759} 760 761static inline void __update_cgrp_time(struct perf_cgroup_info *info, u64 now, bool adv) 762{ 763 if (adv) 764 info->time += now - info->timestamp; 765 info->timestamp = now; 766 /* 767 * see update_context_time() 768 */ 769 WRITE_ONCE(info->timeoffset, info->time - info->timestamp); 770} 771 772static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx, bool final) 773{ 774 struct perf_cgroup *cgrp = cpuctx->cgrp; 775 struct cgroup_subsys_state *css; 776 struct perf_cgroup_info *info; 777 778 if (cgrp) { 779 u64 now = perf_clock(); 780 781 for (css = &cgrp->css; css; css = css->parent) { 782 cgrp = container_of(css, struct perf_cgroup, css); 783 info = this_cpu_ptr(cgrp->info); 784 785 __update_cgrp_time(info, now, true); 786 if (final) 787 __store_release(&info->active, 0); 788 } 789 } 790} 791 792static inline void update_cgrp_time_from_event(struct perf_event *event) 793{ 794 struct perf_cgroup_info *info; 795 796 /* 797 * ensure we access cgroup data only when needed and 798 * when we know the cgroup is pinned (css_get) 799 */ 800 if (!is_cgroup_event(event)) 801 return; 802 803 info = this_cpu_ptr(event->cgrp->info); 804 /* 805 * Do not update time when cgroup is not active 806 */ 807 if (info->active) 808 __update_cgrp_time(info, perf_clock(), true); 809} 810 811static inline void 812perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx) 813{ 814 struct perf_event_context *ctx = &cpuctx->ctx; 815 struct perf_cgroup *cgrp = cpuctx->cgrp; 816 struct perf_cgroup_info *info; 817 struct cgroup_subsys_state *css; 818 819 /* 820 * ctx->lock held by caller 821 * ensure we do not access cgroup data 822 * unless we have the cgroup pinned (css_get) 823 */ 824 if (!cgrp) 825 return; 826 827 WARN_ON_ONCE(!ctx->nr_cgroups); 828 829 for (css = &cgrp->css; css; css = css->parent) { 830 cgrp = container_of(css, struct perf_cgroup, css); 831 info = this_cpu_ptr(cgrp->info); 832 __update_cgrp_time(info, ctx->timestamp, false); 833 __store_release(&info->active, 1); 834 } 835} 836 837/* 838 * reschedule events based on the cgroup constraint of task. 839 */ 840static void perf_cgroup_switch(struct task_struct *task) 841{ 842 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 843 struct perf_cgroup *cgrp; 844 845 /* 846 * cpuctx->cgrp is set when the first cgroup event enabled, 847 * and is cleared when the last cgroup event disabled. 848 */ 849 if (READ_ONCE(cpuctx->cgrp) == NULL) 850 return; 851 852 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0); 853 854 cgrp = perf_cgroup_from_task(task, NULL); 855 if (READ_ONCE(cpuctx->cgrp) == cgrp) 856 return; 857 858 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 859 perf_ctx_disable(&cpuctx->ctx); 860 861 ctx_sched_out(&cpuctx->ctx, EVENT_ALL); 862 /* 863 * must not be done before ctxswout due 864 * to update_cgrp_time_from_cpuctx() in 865 * ctx_sched_out() 866 */ 867 cpuctx->cgrp = cgrp; 868 /* 869 * set cgrp before ctxsw in to allow 870 * perf_cgroup_set_timestamp() in ctx_sched_in() 871 * to not have to pass task around 872 */ 873 ctx_sched_in(&cpuctx->ctx, EVENT_ALL); 874 875 perf_ctx_enable(&cpuctx->ctx); 876 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 877} 878 879static int perf_cgroup_ensure_storage(struct perf_event *event, 880 struct cgroup_subsys_state *css) 881{ 882 struct perf_cpu_context *cpuctx; 883 struct perf_event **storage; 884 int cpu, heap_size, ret = 0; 885 886 /* 887 * Allow storage to have sufficent space for an iterator for each 888 * possibly nested cgroup plus an iterator for events with no cgroup. 889 */ 890 for (heap_size = 1; css; css = css->parent) 891 heap_size++; 892 893 for_each_possible_cpu(cpu) { 894 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu); 895 if (heap_size <= cpuctx->heap_size) 896 continue; 897 898 storage = kmalloc_node(heap_size * sizeof(struct perf_event *), 899 GFP_KERNEL, cpu_to_node(cpu)); 900 if (!storage) { 901 ret = -ENOMEM; 902 break; 903 } 904 905 raw_spin_lock_irq(&cpuctx->ctx.lock); 906 if (cpuctx->heap_size < heap_size) { 907 swap(cpuctx->heap, storage); 908 if (storage == cpuctx->heap_default) 909 storage = NULL; 910 cpuctx->heap_size = heap_size; 911 } 912 raw_spin_unlock_irq(&cpuctx->ctx.lock); 913 914 kfree(storage); 915 } 916 917 return ret; 918} 919 920static inline int perf_cgroup_connect(int fd, struct perf_event *event, 921 struct perf_event_attr *attr, 922 struct perf_event *group_leader) 923{ 924 struct perf_cgroup *cgrp; 925 struct cgroup_subsys_state *css; 926 struct fd f = fdget(fd); 927 int ret = 0; 928 929 if (!f.file) 930 return -EBADF; 931 932 css = css_tryget_online_from_dir(f.file->f_path.dentry, 933 &perf_event_cgrp_subsys); 934 if (IS_ERR(css)) { 935 ret = PTR_ERR(css); 936 goto out; 937 } 938 939 ret = perf_cgroup_ensure_storage(event, css); 940 if (ret) 941 goto out; 942 943 cgrp = container_of(css, struct perf_cgroup, css); 944 event->cgrp = cgrp; 945 946 /* 947 * all events in a group must monitor 948 * the same cgroup because a task belongs 949 * to only one perf cgroup at a time 950 */ 951 if (group_leader && group_leader->cgrp != cgrp) { 952 perf_detach_cgroup(event); 953 ret = -EINVAL; 954 } 955out: 956 fdput(f); 957 return ret; 958} 959 960static inline void 961perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx) 962{ 963 struct perf_cpu_context *cpuctx; 964 965 if (!is_cgroup_event(event)) 966 return; 967 968 /* 969 * Because cgroup events are always per-cpu events, 970 * @ctx == &cpuctx->ctx. 971 */ 972 cpuctx = container_of(ctx, struct perf_cpu_context, ctx); 973 974 if (ctx->nr_cgroups++) 975 return; 976 977 cpuctx->cgrp = perf_cgroup_from_task(current, ctx); 978} 979 980static inline void 981perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx) 982{ 983 struct perf_cpu_context *cpuctx; 984 985 if (!is_cgroup_event(event)) 986 return; 987 988 /* 989 * Because cgroup events are always per-cpu events, 990 * @ctx == &cpuctx->ctx. 991 */ 992 cpuctx = container_of(ctx, struct perf_cpu_context, ctx); 993 994 if (--ctx->nr_cgroups) 995 return; 996 997 cpuctx->cgrp = NULL; 998} 999 1000#else /* !CONFIG_CGROUP_PERF */ 1001 1002static inline bool 1003perf_cgroup_match(struct perf_event *event) 1004{ 1005 return true; 1006} 1007 1008static inline void perf_detach_cgroup(struct perf_event *event) 1009{} 1010 1011static inline int is_cgroup_event(struct perf_event *event) 1012{ 1013 return 0; 1014} 1015 1016static inline void update_cgrp_time_from_event(struct perf_event *event) 1017{ 1018} 1019 1020static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx, 1021 bool final) 1022{ 1023} 1024 1025static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event, 1026 struct perf_event_attr *attr, 1027 struct perf_event *group_leader) 1028{ 1029 return -EINVAL; 1030} 1031 1032static inline void 1033perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx) 1034{ 1035} 1036 1037static inline u64 perf_cgroup_event_time(struct perf_event *event) 1038{ 1039 return 0; 1040} 1041 1042static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now) 1043{ 1044 return 0; 1045} 1046 1047static inline void 1048perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx) 1049{ 1050} 1051 1052static inline void 1053perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx) 1054{ 1055} 1056 1057static void perf_cgroup_switch(struct task_struct *task) 1058{ 1059} 1060#endif 1061 1062/* 1063 * set default to be dependent on timer tick just 1064 * like original code 1065 */ 1066#define PERF_CPU_HRTIMER (1000 / HZ) 1067/* 1068 * function must be called with interrupts disabled 1069 */ 1070static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr) 1071{ 1072 struct perf_cpu_pmu_context *cpc; 1073 bool rotations; 1074 1075 lockdep_assert_irqs_disabled(); 1076 1077 cpc = container_of(hr, struct perf_cpu_pmu_context, hrtimer); 1078 rotations = perf_rotate_context(cpc); 1079 1080 raw_spin_lock(&cpc->hrtimer_lock); 1081 if (rotations) 1082 hrtimer_forward_now(hr, cpc->hrtimer_interval); 1083 else 1084 cpc->hrtimer_active = 0; 1085 raw_spin_unlock(&cpc->hrtimer_lock); 1086 1087 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART; 1088} 1089 1090static void __perf_mux_hrtimer_init(struct perf_cpu_pmu_context *cpc, int cpu) 1091{ 1092 struct hrtimer *timer = &cpc->hrtimer; 1093 struct pmu *pmu = cpc->epc.pmu; 1094 u64 interval; 1095 1096 /* 1097 * check default is sane, if not set then force to 1098 * default interval (1/tick) 1099 */ 1100 interval = pmu->hrtimer_interval_ms; 1101 if (interval < 1) 1102 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER; 1103 1104 cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval); 1105 1106 raw_spin_lock_init(&cpc->hrtimer_lock); 1107 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD); 1108 timer->function = perf_mux_hrtimer_handler; 1109} 1110 1111static int perf_mux_hrtimer_restart(struct perf_cpu_pmu_context *cpc) 1112{ 1113 struct hrtimer *timer = &cpc->hrtimer; 1114 unsigned long flags; 1115 1116 raw_spin_lock_irqsave(&cpc->hrtimer_lock, flags); 1117 if (!cpc->hrtimer_active) { 1118 cpc->hrtimer_active = 1; 1119 hrtimer_forward_now(timer, cpc->hrtimer_interval); 1120 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD); 1121 } 1122 raw_spin_unlock_irqrestore(&cpc->hrtimer_lock, flags); 1123 1124 return 0; 1125} 1126 1127static int perf_mux_hrtimer_restart_ipi(void *arg) 1128{ 1129 return perf_mux_hrtimer_restart(arg); 1130} 1131 1132void perf_pmu_disable(struct pmu *pmu) 1133{ 1134 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1135 if (!(*count)++) 1136 pmu->pmu_disable(pmu); 1137} 1138 1139void perf_pmu_enable(struct pmu *pmu) 1140{ 1141 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1142 if (!--(*count)) 1143 pmu->pmu_enable(pmu); 1144} 1145 1146static void perf_assert_pmu_disabled(struct pmu *pmu) 1147{ 1148 WARN_ON_ONCE(*this_cpu_ptr(pmu->pmu_disable_count) == 0); 1149} 1150 1151static void get_ctx(struct perf_event_context *ctx) 1152{ 1153 refcount_inc(&ctx->refcount); 1154} 1155 1156static void *alloc_task_ctx_data(struct pmu *pmu) 1157{ 1158 if (pmu->task_ctx_cache) 1159 return kmem_cache_zalloc(pmu->task_ctx_cache, GFP_KERNEL); 1160 1161 return NULL; 1162} 1163 1164static void free_task_ctx_data(struct pmu *pmu, void *task_ctx_data) 1165{ 1166 if (pmu->task_ctx_cache && task_ctx_data) 1167 kmem_cache_free(pmu->task_ctx_cache, task_ctx_data); 1168} 1169 1170static void free_ctx(struct rcu_head *head) 1171{ 1172 struct perf_event_context *ctx; 1173 1174 ctx = container_of(head, struct perf_event_context, rcu_head); 1175 kfree(ctx); 1176} 1177 1178static void put_ctx(struct perf_event_context *ctx) 1179{ 1180 if (refcount_dec_and_test(&ctx->refcount)) { 1181 if (ctx->parent_ctx) 1182 put_ctx(ctx->parent_ctx); 1183 if (ctx->task && ctx->task != TASK_TOMBSTONE) 1184 put_task_struct(ctx->task); 1185 call_rcu(&ctx->rcu_head, free_ctx); 1186 } 1187} 1188 1189/* 1190 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and 1191 * perf_pmu_migrate_context() we need some magic. 1192 * 1193 * Those places that change perf_event::ctx will hold both 1194 * perf_event_ctx::mutex of the 'old' and 'new' ctx value. 1195 * 1196 * Lock ordering is by mutex address. There are two other sites where 1197 * perf_event_context::mutex nests and those are: 1198 * 1199 * - perf_event_exit_task_context() [ child , 0 ] 1200 * perf_event_exit_event() 1201 * put_event() [ parent, 1 ] 1202 * 1203 * - perf_event_init_context() [ parent, 0 ] 1204 * inherit_task_group() 1205 * inherit_group() 1206 * inherit_event() 1207 * perf_event_alloc() 1208 * perf_init_event() 1209 * perf_try_init_event() [ child , 1 ] 1210 * 1211 * While it appears there is an obvious deadlock here -- the parent and child 1212 * nesting levels are inverted between the two. This is in fact safe because 1213 * life-time rules separate them. That is an exiting task cannot fork, and a 1214 * spawning task cannot (yet) exit. 1215 * 1216 * But remember that these are parent<->child context relations, and 1217 * migration does not affect children, therefore these two orderings should not 1218 * interact. 1219 * 1220 * The change in perf_event::ctx does not affect children (as claimed above) 1221 * because the sys_perf_event_open() case will install a new event and break 1222 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only 1223 * concerned with cpuctx and that doesn't have children. 1224 * 1225 * The places that change perf_event::ctx will issue: 1226 * 1227 * perf_remove_from_context(); 1228 * synchronize_rcu(); 1229 * perf_install_in_context(); 1230 * 1231 * to affect the change. The remove_from_context() + synchronize_rcu() should 1232 * quiesce the event, after which we can install it in the new location. This 1233 * means that only external vectors (perf_fops, prctl) can perturb the event 1234 * while in transit. Therefore all such accessors should also acquire 1235 * perf_event_context::mutex to serialize against this. 1236 * 1237 * However; because event->ctx can change while we're waiting to acquire 1238 * ctx->mutex we must be careful and use the below perf_event_ctx_lock() 1239 * function. 1240 * 1241 * Lock order: 1242 * exec_update_lock 1243 * task_struct::perf_event_mutex 1244 * perf_event_context::mutex 1245 * perf_event::child_mutex; 1246 * perf_event_context::lock 1247 * perf_event::mmap_mutex 1248 * mmap_lock 1249 * perf_addr_filters_head::lock 1250 * 1251 * cpu_hotplug_lock 1252 * pmus_lock 1253 * cpuctx->mutex / perf_event_context::mutex 1254 */ 1255static struct perf_event_context * 1256perf_event_ctx_lock_nested(struct perf_event *event, int nesting) 1257{ 1258 struct perf_event_context *ctx; 1259 1260again: 1261 rcu_read_lock(); 1262 ctx = READ_ONCE(event->ctx); 1263 if (!refcount_inc_not_zero(&ctx->refcount)) { 1264 rcu_read_unlock(); 1265 goto again; 1266 } 1267 rcu_read_unlock(); 1268 1269 mutex_lock_nested(&ctx->mutex, nesting); 1270 if (event->ctx != ctx) { 1271 mutex_unlock(&ctx->mutex); 1272 put_ctx(ctx); 1273 goto again; 1274 } 1275 1276 return ctx; 1277} 1278 1279static inline struct perf_event_context * 1280perf_event_ctx_lock(struct perf_event *event) 1281{ 1282 return perf_event_ctx_lock_nested(event, 0); 1283} 1284 1285static void perf_event_ctx_unlock(struct perf_event *event, 1286 struct perf_event_context *ctx) 1287{ 1288 mutex_unlock(&ctx->mutex); 1289 put_ctx(ctx); 1290} 1291 1292/* 1293 * This must be done under the ctx->lock, such as to serialize against 1294 * context_equiv(), therefore we cannot call put_ctx() since that might end up 1295 * calling scheduler related locks and ctx->lock nests inside those. 1296 */ 1297static __must_check struct perf_event_context * 1298unclone_ctx(struct perf_event_context *ctx) 1299{ 1300 struct perf_event_context *parent_ctx = ctx->parent_ctx; 1301 1302 lockdep_assert_held(&ctx->lock); 1303 1304 if (parent_ctx) 1305 ctx->parent_ctx = NULL; 1306 ctx->generation++; 1307 1308 return parent_ctx; 1309} 1310 1311static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p, 1312 enum pid_type type) 1313{ 1314 u32 nr; 1315 /* 1316 * only top level events have the pid namespace they were created in 1317 */ 1318 if (event->parent) 1319 event = event->parent; 1320 1321 nr = __task_pid_nr_ns(p, type, event->ns); 1322 /* avoid -1 if it is idle thread or runs in another ns */ 1323 if (!nr && !pid_alive(p)) 1324 nr = -1; 1325 return nr; 1326} 1327 1328static u32 perf_event_pid(struct perf_event *event, struct task_struct *p) 1329{ 1330 return perf_event_pid_type(event, p, PIDTYPE_TGID); 1331} 1332 1333static u32 perf_event_tid(struct perf_event *event, struct task_struct *p) 1334{ 1335 return perf_event_pid_type(event, p, PIDTYPE_PID); 1336} 1337 1338/* 1339 * If we inherit events we want to return the parent event id 1340 * to userspace. 1341 */ 1342static u64 primary_event_id(struct perf_event *event) 1343{ 1344 u64 id = event->id; 1345 1346 if (event->parent) 1347 id = event->parent->id; 1348 1349 return id; 1350} 1351 1352/* 1353 * Get the perf_event_context for a task and lock it. 1354 * 1355 * This has to cope with the fact that until it is locked, 1356 * the context could get moved to another task. 1357 */ 1358static struct perf_event_context * 1359perf_lock_task_context(struct task_struct *task, unsigned long *flags) 1360{ 1361 struct perf_event_context *ctx; 1362 1363retry: 1364 /* 1365 * One of the few rules of preemptible RCU is that one cannot do 1366 * rcu_read_unlock() while holding a scheduler (or nested) lock when 1367 * part of the read side critical section was irqs-enabled -- see 1368 * rcu_read_unlock_special(). 1369 * 1370 * Since ctx->lock nests under rq->lock we must ensure the entire read 1371 * side critical section has interrupts disabled. 1372 */ 1373 local_irq_save(*flags); 1374 rcu_read_lock(); 1375 ctx = rcu_dereference(task->perf_event_ctxp); 1376 if (ctx) { 1377 /* 1378 * If this context is a clone of another, it might 1379 * get swapped for another underneath us by 1380 * perf_event_task_sched_out, though the 1381 * rcu_read_lock() protects us from any context 1382 * getting freed. Lock the context and check if it 1383 * got swapped before we could get the lock, and retry 1384 * if so. If we locked the right context, then it 1385 * can't get swapped on us any more. 1386 */ 1387 raw_spin_lock(&ctx->lock); 1388 if (ctx != rcu_dereference(task->perf_event_ctxp)) { 1389 raw_spin_unlock(&ctx->lock); 1390 rcu_read_unlock(); 1391 local_irq_restore(*flags); 1392 goto retry; 1393 } 1394 1395 if (ctx->task == TASK_TOMBSTONE || 1396 !refcount_inc_not_zero(&ctx->refcount)) { 1397 raw_spin_unlock(&ctx->lock); 1398 ctx = NULL; 1399 } else { 1400 WARN_ON_ONCE(ctx->task != task); 1401 } 1402 } 1403 rcu_read_unlock(); 1404 if (!ctx) 1405 local_irq_restore(*flags); 1406 return ctx; 1407} 1408 1409/* 1410 * Get the context for a task and increment its pin_count so it 1411 * can't get swapped to another task. This also increments its 1412 * reference count so that the context can't get freed. 1413 */ 1414static struct perf_event_context * 1415perf_pin_task_context(struct task_struct *task) 1416{ 1417 struct perf_event_context *ctx; 1418 unsigned long flags; 1419 1420 ctx = perf_lock_task_context(task, &flags); 1421 if (ctx) { 1422 ++ctx->pin_count; 1423 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1424 } 1425 return ctx; 1426} 1427 1428static void perf_unpin_context(struct perf_event_context *ctx) 1429{ 1430 unsigned long flags; 1431 1432 raw_spin_lock_irqsave(&ctx->lock, flags); 1433 --ctx->pin_count; 1434 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1435} 1436 1437/* 1438 * Update the record of the current time in a context. 1439 */ 1440static void __update_context_time(struct perf_event_context *ctx, bool adv) 1441{ 1442 u64 now = perf_clock(); 1443 1444 lockdep_assert_held(&ctx->lock); 1445 1446 if (adv) 1447 ctx->time += now - ctx->timestamp; 1448 ctx->timestamp = now; 1449 1450 /* 1451 * The above: time' = time + (now - timestamp), can be re-arranged 1452 * into: time` = now + (time - timestamp), which gives a single value 1453 * offset to compute future time without locks on. 1454 * 1455 * See perf_event_time_now(), which can be used from NMI context where 1456 * it's (obviously) not possible to acquire ctx->lock in order to read 1457 * both the above values in a consistent manner. 1458 */ 1459 WRITE_ONCE(ctx->timeoffset, ctx->time - ctx->timestamp); 1460} 1461 1462static void update_context_time(struct perf_event_context *ctx) 1463{ 1464 __update_context_time(ctx, true); 1465} 1466 1467static u64 perf_event_time(struct perf_event *event) 1468{ 1469 struct perf_event_context *ctx = event->ctx; 1470 1471 if (unlikely(!ctx)) 1472 return 0; 1473 1474 if (is_cgroup_event(event)) 1475 return perf_cgroup_event_time(event); 1476 1477 return ctx->time; 1478} 1479 1480static u64 perf_event_time_now(struct perf_event *event, u64 now) 1481{ 1482 struct perf_event_context *ctx = event->ctx; 1483 1484 if (unlikely(!ctx)) 1485 return 0; 1486 1487 if (is_cgroup_event(event)) 1488 return perf_cgroup_event_time_now(event, now); 1489 1490 if (!(__load_acquire(&ctx->is_active) & EVENT_TIME)) 1491 return ctx->time; 1492 1493 now += READ_ONCE(ctx->timeoffset); 1494 return now; 1495} 1496 1497static enum event_type_t get_event_type(struct perf_event *event) 1498{ 1499 struct perf_event_context *ctx = event->ctx; 1500 enum event_type_t event_type; 1501 1502 lockdep_assert_held(&ctx->lock); 1503 1504 /* 1505 * It's 'group type', really, because if our group leader is 1506 * pinned, so are we. 1507 */ 1508 if (event->group_leader != event) 1509 event = event->group_leader; 1510 1511 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE; 1512 if (!ctx->task) 1513 event_type |= EVENT_CPU; 1514 1515 return event_type; 1516} 1517 1518/* 1519 * Helper function to initialize event group nodes. 1520 */ 1521static void init_event_group(struct perf_event *event) 1522{ 1523 RB_CLEAR_NODE(&event->group_node); 1524 event->group_index = 0; 1525} 1526 1527/* 1528 * Extract pinned or flexible groups from the context 1529 * based on event attrs bits. 1530 */ 1531static struct perf_event_groups * 1532get_event_groups(struct perf_event *event, struct perf_event_context *ctx) 1533{ 1534 if (event->attr.pinned) 1535 return &ctx->pinned_groups; 1536 else 1537 return &ctx->flexible_groups; 1538} 1539 1540/* 1541 * Helper function to initializes perf_event_group trees. 1542 */ 1543static void perf_event_groups_init(struct perf_event_groups *groups) 1544{ 1545 groups->tree = RB_ROOT; 1546 groups->index = 0; 1547} 1548 1549static inline struct cgroup *event_cgroup(const struct perf_event *event) 1550{ 1551 struct cgroup *cgroup = NULL; 1552 1553#ifdef CONFIG_CGROUP_PERF 1554 if (event->cgrp) 1555 cgroup = event->cgrp->css.cgroup; 1556#endif 1557 1558 return cgroup; 1559} 1560 1561/* 1562 * Compare function for event groups; 1563 * 1564 * Implements complex key that first sorts by CPU and then by virtual index 1565 * which provides ordering when rotating groups for the same CPU. 1566 */ 1567static __always_inline int 1568perf_event_groups_cmp(const int left_cpu, const struct pmu *left_pmu, 1569 const struct cgroup *left_cgroup, const u64 left_group_index, 1570 const struct perf_event *right) 1571{ 1572 if (left_cpu < right->cpu) 1573 return -1; 1574 if (left_cpu > right->cpu) 1575 return 1; 1576 1577 if (left_pmu) { 1578 if (left_pmu < right->pmu_ctx->pmu) 1579 return -1; 1580 if (left_pmu > right->pmu_ctx->pmu) 1581 return 1; 1582 } 1583 1584#ifdef CONFIG_CGROUP_PERF 1585 { 1586 const struct cgroup *right_cgroup = event_cgroup(right); 1587 1588 if (left_cgroup != right_cgroup) { 1589 if (!left_cgroup) { 1590 /* 1591 * Left has no cgroup but right does, no 1592 * cgroups come first. 1593 */ 1594 return -1; 1595 } 1596 if (!right_cgroup) { 1597 /* 1598 * Right has no cgroup but left does, no 1599 * cgroups come first. 1600 */ 1601 return 1; 1602 } 1603 /* Two dissimilar cgroups, order by id. */ 1604 if (cgroup_id(left_cgroup) < cgroup_id(right_cgroup)) 1605 return -1; 1606 1607 return 1; 1608 } 1609 } 1610#endif 1611 1612 if (left_group_index < right->group_index) 1613 return -1; 1614 if (left_group_index > right->group_index) 1615 return 1; 1616 1617 return 0; 1618} 1619 1620#define __node_2_pe(node) \ 1621 rb_entry((node), struct perf_event, group_node) 1622 1623static inline bool __group_less(struct rb_node *a, const struct rb_node *b) 1624{ 1625 struct perf_event *e = __node_2_pe(a); 1626 return perf_event_groups_cmp(e->cpu, e->pmu_ctx->pmu, event_cgroup(e), 1627 e->group_index, __node_2_pe(b)) < 0; 1628} 1629 1630struct __group_key { 1631 int cpu; 1632 struct pmu *pmu; 1633 struct cgroup *cgroup; 1634}; 1635 1636static inline int __group_cmp(const void *key, const struct rb_node *node) 1637{ 1638 const struct __group_key *a = key; 1639 const struct perf_event *b = __node_2_pe(node); 1640 1641 /* partial/subtree match: @cpu, @pmu, @cgroup; ignore: @group_index */ 1642 return perf_event_groups_cmp(a->cpu, a->pmu, a->cgroup, b->group_index, b); 1643} 1644 1645static inline int 1646__group_cmp_ignore_cgroup(const void *key, const struct rb_node *node) 1647{ 1648 const struct __group_key *a = key; 1649 const struct perf_event *b = __node_2_pe(node); 1650 1651 /* partial/subtree match: @cpu, @pmu, ignore: @cgroup, @group_index */ 1652 return perf_event_groups_cmp(a->cpu, a->pmu, event_cgroup(b), 1653 b->group_index, b); 1654} 1655 1656/* 1657 * Insert @event into @groups' tree; using 1658 * {@event->cpu, @event->pmu_ctx->pmu, event_cgroup(@event), ++@groups->index} 1659 * as key. This places it last inside the {cpu,pmu,cgroup} subtree. 1660 */ 1661static void 1662perf_event_groups_insert(struct perf_event_groups *groups, 1663 struct perf_event *event) 1664{ 1665 event->group_index = ++groups->index; 1666 1667 rb_add(&event->group_node, &groups->tree, __group_less); 1668} 1669 1670/* 1671 * Helper function to insert event into the pinned or flexible groups. 1672 */ 1673static void 1674add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx) 1675{ 1676 struct perf_event_groups *groups; 1677 1678 groups = get_event_groups(event, ctx); 1679 perf_event_groups_insert(groups, event); 1680} 1681 1682/* 1683 * Delete a group from a tree. 1684 */ 1685static void 1686perf_event_groups_delete(struct perf_event_groups *groups, 1687 struct perf_event *event) 1688{ 1689 WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) || 1690 RB_EMPTY_ROOT(&groups->tree)); 1691 1692 rb_erase(&event->group_node, &groups->tree); 1693 init_event_group(event); 1694} 1695 1696/* 1697 * Helper function to delete event from its groups. 1698 */ 1699static void 1700del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx) 1701{ 1702 struct perf_event_groups *groups; 1703 1704 groups = get_event_groups(event, ctx); 1705 perf_event_groups_delete(groups, event); 1706} 1707 1708/* 1709 * Get the leftmost event in the {cpu,pmu,cgroup} subtree. 1710 */ 1711static struct perf_event * 1712perf_event_groups_first(struct perf_event_groups *groups, int cpu, 1713 struct pmu *pmu, struct cgroup *cgrp) 1714{ 1715 struct __group_key key = { 1716 .cpu = cpu, 1717 .pmu = pmu, 1718 .cgroup = cgrp, 1719 }; 1720 struct rb_node *node; 1721 1722 node = rb_find_first(&key, &groups->tree, __group_cmp); 1723 if (node) 1724 return __node_2_pe(node); 1725 1726 return NULL; 1727} 1728 1729static struct perf_event * 1730perf_event_groups_next(struct perf_event *event, struct pmu *pmu) 1731{ 1732 struct __group_key key = { 1733 .cpu = event->cpu, 1734 .pmu = pmu, 1735 .cgroup = event_cgroup(event), 1736 }; 1737 struct rb_node *next; 1738 1739 next = rb_next_match(&key, &event->group_node, __group_cmp); 1740 if (next) 1741 return __node_2_pe(next); 1742 1743 return NULL; 1744} 1745 1746#define perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu) \ 1747 for (event = perf_event_groups_first(groups, cpu, pmu, NULL); \ 1748 event; event = perf_event_groups_next(event, pmu)) 1749 1750/* 1751 * Iterate through the whole groups tree. 1752 */ 1753#define perf_event_groups_for_each(event, groups) \ 1754 for (event = rb_entry_safe(rb_first(&((groups)->tree)), \ 1755 typeof(*event), group_node); event; \ 1756 event = rb_entry_safe(rb_next(&event->group_node), \ 1757 typeof(*event), group_node)) 1758 1759/* 1760 * Add an event from the lists for its context. 1761 * Must be called with ctx->mutex and ctx->lock held. 1762 */ 1763static void 1764list_add_event(struct perf_event *event, struct perf_event_context *ctx) 1765{ 1766 lockdep_assert_held(&ctx->lock); 1767 1768 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 1769 event->attach_state |= PERF_ATTACH_CONTEXT; 1770 1771 event->tstamp = perf_event_time(event); 1772 1773 /* 1774 * If we're a stand alone event or group leader, we go to the context 1775 * list, group events are kept attached to the group so that 1776 * perf_group_detach can, at all times, locate all siblings. 1777 */ 1778 if (event->group_leader == event) { 1779 event->group_caps = event->event_caps; 1780 add_event_to_groups(event, ctx); 1781 } 1782 1783 list_add_rcu(&event->event_entry, &ctx->event_list); 1784 ctx->nr_events++; 1785 if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT) 1786 ctx->nr_user++; 1787 if (event->attr.inherit_stat) 1788 ctx->nr_stat++; 1789 1790 if (event->state > PERF_EVENT_STATE_OFF) 1791 perf_cgroup_event_enable(event, ctx); 1792 1793 ctx->generation++; 1794 event->pmu_ctx->nr_events++; 1795} 1796 1797/* 1798 * Initialize event state based on the perf_event_attr::disabled. 1799 */ 1800static inline void perf_event__state_init(struct perf_event *event) 1801{ 1802 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF : 1803 PERF_EVENT_STATE_INACTIVE; 1804} 1805 1806static void __perf_event_read_size(struct perf_event *event, int nr_siblings) 1807{ 1808 int entry = sizeof(u64); /* value */ 1809 int size = 0; 1810 int nr = 1; 1811 1812 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1813 size += sizeof(u64); 1814 1815 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1816 size += sizeof(u64); 1817 1818 if (event->attr.read_format & PERF_FORMAT_ID) 1819 entry += sizeof(u64); 1820 1821 if (event->attr.read_format & PERF_FORMAT_LOST) 1822 entry += sizeof(u64); 1823 1824 if (event->attr.read_format & PERF_FORMAT_GROUP) { 1825 nr += nr_siblings; 1826 size += sizeof(u64); 1827 } 1828 1829 size += entry * nr; 1830 event->read_size = size; 1831} 1832 1833static void __perf_event_header_size(struct perf_event *event, u64 sample_type) 1834{ 1835 struct perf_sample_data *data; 1836 u16 size = 0; 1837 1838 if (sample_type & PERF_SAMPLE_IP) 1839 size += sizeof(data->ip); 1840 1841 if (sample_type & PERF_SAMPLE_ADDR) 1842 size += sizeof(data->addr); 1843 1844 if (sample_type & PERF_SAMPLE_PERIOD) 1845 size += sizeof(data->period); 1846 1847 if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) 1848 size += sizeof(data->weight.full); 1849 1850 if (sample_type & PERF_SAMPLE_READ) 1851 size += event->read_size; 1852 1853 if (sample_type & PERF_SAMPLE_DATA_SRC) 1854 size += sizeof(data->data_src.val); 1855 1856 if (sample_type & PERF_SAMPLE_TRANSACTION) 1857 size += sizeof(data->txn); 1858 1859 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 1860 size += sizeof(data->phys_addr); 1861 1862 if (sample_type & PERF_SAMPLE_CGROUP) 1863 size += sizeof(data->cgroup); 1864 1865 if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) 1866 size += sizeof(data->data_page_size); 1867 1868 if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) 1869 size += sizeof(data->code_page_size); 1870 1871 event->header_size = size; 1872} 1873 1874/* 1875 * Called at perf_event creation and when events are attached/detached from a 1876 * group. 1877 */ 1878static void perf_event__header_size(struct perf_event *event) 1879{ 1880 __perf_event_read_size(event, 1881 event->group_leader->nr_siblings); 1882 __perf_event_header_size(event, event->attr.sample_type); 1883} 1884 1885static void perf_event__id_header_size(struct perf_event *event) 1886{ 1887 struct perf_sample_data *data; 1888 u64 sample_type = event->attr.sample_type; 1889 u16 size = 0; 1890 1891 if (sample_type & PERF_SAMPLE_TID) 1892 size += sizeof(data->tid_entry); 1893 1894 if (sample_type & PERF_SAMPLE_TIME) 1895 size += sizeof(data->time); 1896 1897 if (sample_type & PERF_SAMPLE_IDENTIFIER) 1898 size += sizeof(data->id); 1899 1900 if (sample_type & PERF_SAMPLE_ID) 1901 size += sizeof(data->id); 1902 1903 if (sample_type & PERF_SAMPLE_STREAM_ID) 1904 size += sizeof(data->stream_id); 1905 1906 if (sample_type & PERF_SAMPLE_CPU) 1907 size += sizeof(data->cpu_entry); 1908 1909 event->id_header_size = size; 1910} 1911 1912static bool perf_event_validate_size(struct perf_event *event) 1913{ 1914 /* 1915 * The values computed here will be over-written when we actually 1916 * attach the event. 1917 */ 1918 __perf_event_read_size(event, event->group_leader->nr_siblings + 1); 1919 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ); 1920 perf_event__id_header_size(event); 1921 1922 /* 1923 * Sum the lot; should not exceed the 64k limit we have on records. 1924 * Conservative limit to allow for callchains and other variable fields. 1925 */ 1926 if (event->read_size + event->header_size + 1927 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024) 1928 return false; 1929 1930 return true; 1931} 1932 1933static void perf_group_attach(struct perf_event *event) 1934{ 1935 struct perf_event *group_leader = event->group_leader, *pos; 1936 1937 lockdep_assert_held(&event->ctx->lock); 1938 1939 /* 1940 * We can have double attach due to group movement (move_group) in 1941 * perf_event_open(). 1942 */ 1943 if (event->attach_state & PERF_ATTACH_GROUP) 1944 return; 1945 1946 event->attach_state |= PERF_ATTACH_GROUP; 1947 1948 if (group_leader == event) 1949 return; 1950 1951 WARN_ON_ONCE(group_leader->ctx != event->ctx); 1952 1953 group_leader->group_caps &= event->event_caps; 1954 1955 list_add_tail(&event->sibling_list, &group_leader->sibling_list); 1956 group_leader->nr_siblings++; 1957 1958 perf_event__header_size(group_leader); 1959 1960 for_each_sibling_event(pos, group_leader) 1961 perf_event__header_size(pos); 1962} 1963 1964/* 1965 * Remove an event from the lists for its context. 1966 * Must be called with ctx->mutex and ctx->lock held. 1967 */ 1968static void 1969list_del_event(struct perf_event *event, struct perf_event_context *ctx) 1970{ 1971 WARN_ON_ONCE(event->ctx != ctx); 1972 lockdep_assert_held(&ctx->lock); 1973 1974 /* 1975 * We can have double detach due to exit/hot-unplug + close. 1976 */ 1977 if (!(event->attach_state & PERF_ATTACH_CONTEXT)) 1978 return; 1979 1980 event->attach_state &= ~PERF_ATTACH_CONTEXT; 1981 1982 ctx->nr_events--; 1983 if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT) 1984 ctx->nr_user--; 1985 if (event->attr.inherit_stat) 1986 ctx->nr_stat--; 1987 1988 list_del_rcu(&event->event_entry); 1989 1990 if (event->group_leader == event) 1991 del_event_from_groups(event, ctx); 1992 1993 /* 1994 * If event was in error state, then keep it 1995 * that way, otherwise bogus counts will be 1996 * returned on read(). The only way to get out 1997 * of error state is by explicit re-enabling 1998 * of the event 1999 */ 2000 if (event->state > PERF_EVENT_STATE_OFF) { 2001 perf_cgroup_event_disable(event, ctx); 2002 perf_event_set_state(event, PERF_EVENT_STATE_OFF); 2003 } 2004 2005 ctx->generation++; 2006 event->pmu_ctx->nr_events--; 2007} 2008 2009static int 2010perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event) 2011{ 2012 if (!has_aux(aux_event)) 2013 return 0; 2014 2015 if (!event->pmu->aux_output_match) 2016 return 0; 2017 2018 return event->pmu->aux_output_match(aux_event); 2019} 2020 2021static void put_event(struct perf_event *event); 2022static void event_sched_out(struct perf_event *event, 2023 struct perf_event_context *ctx); 2024 2025static void perf_put_aux_event(struct perf_event *event) 2026{ 2027 struct perf_event_context *ctx = event->ctx; 2028 struct perf_event *iter; 2029 2030 /* 2031 * If event uses aux_event tear down the link 2032 */ 2033 if (event->aux_event) { 2034 iter = event->aux_event; 2035 event->aux_event = NULL; 2036 put_event(iter); 2037 return; 2038 } 2039 2040 /* 2041 * If the event is an aux_event, tear down all links to 2042 * it from other events. 2043 */ 2044 for_each_sibling_event(iter, event->group_leader) { 2045 if (iter->aux_event != event) 2046 continue; 2047 2048 iter->aux_event = NULL; 2049 put_event(event); 2050 2051 /* 2052 * If it's ACTIVE, schedule it out and put it into ERROR 2053 * state so that we don't try to schedule it again. Note 2054 * that perf_event_enable() will clear the ERROR status. 2055 */ 2056 event_sched_out(iter, ctx); 2057 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 2058 } 2059} 2060 2061static bool perf_need_aux_event(struct perf_event *event) 2062{ 2063 return !!event->attr.aux_output || !!event->attr.aux_sample_size; 2064} 2065 2066static int perf_get_aux_event(struct perf_event *event, 2067 struct perf_event *group_leader) 2068{ 2069 /* 2070 * Our group leader must be an aux event if we want to be 2071 * an aux_output. This way, the aux event will precede its 2072 * aux_output events in the group, and therefore will always 2073 * schedule first. 2074 */ 2075 if (!group_leader) 2076 return 0; 2077 2078 /* 2079 * aux_output and aux_sample_size are mutually exclusive. 2080 */ 2081 if (event->attr.aux_output && event->attr.aux_sample_size) 2082 return 0; 2083 2084 if (event->attr.aux_output && 2085 !perf_aux_output_match(event, group_leader)) 2086 return 0; 2087 2088 if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux) 2089 return 0; 2090 2091 if (!atomic_long_inc_not_zero(&group_leader->refcount)) 2092 return 0; 2093 2094 /* 2095 * Link aux_outputs to their aux event; this is undone in 2096 * perf_group_detach() by perf_put_aux_event(). When the 2097 * group in torn down, the aux_output events loose their 2098 * link to the aux_event and can't schedule any more. 2099 */ 2100 event->aux_event = group_leader; 2101 2102 return 1; 2103} 2104 2105static inline struct list_head *get_event_list(struct perf_event *event) 2106{ 2107 return event->attr.pinned ? &event->pmu_ctx->pinned_active : 2108 &event->pmu_ctx->flexible_active; 2109} 2110 2111/* 2112 * Events that have PERF_EV_CAP_SIBLING require being part of a group and 2113 * cannot exist on their own, schedule them out and move them into the ERROR 2114 * state. Also see _perf_event_enable(), it will not be able to recover 2115 * this ERROR state. 2116 */ 2117static inline void perf_remove_sibling_event(struct perf_event *event) 2118{ 2119 event_sched_out(event, event->ctx); 2120 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 2121} 2122 2123static void perf_group_detach(struct perf_event *event) 2124{ 2125 struct perf_event *leader = event->group_leader; 2126 struct perf_event *sibling, *tmp; 2127 struct perf_event_context *ctx = event->ctx; 2128 2129 lockdep_assert_held(&ctx->lock); 2130 2131 /* 2132 * We can have double detach due to exit/hot-unplug + close. 2133 */ 2134 if (!(event->attach_state & PERF_ATTACH_GROUP)) 2135 return; 2136 2137 event->attach_state &= ~PERF_ATTACH_GROUP; 2138 2139 perf_put_aux_event(event); 2140 2141 /* 2142 * If this is a sibling, remove it from its group. 2143 */ 2144 if (leader != event) { 2145 list_del_init(&event->sibling_list); 2146 event->group_leader->nr_siblings--; 2147 goto out; 2148 } 2149 2150 /* 2151 * If this was a group event with sibling events then 2152 * upgrade the siblings to singleton events by adding them 2153 * to whatever list we are on. 2154 */ 2155 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) { 2156 2157 if (sibling->event_caps & PERF_EV_CAP_SIBLING) 2158 perf_remove_sibling_event(sibling); 2159 2160 sibling->group_leader = sibling; 2161 list_del_init(&sibling->sibling_list); 2162 2163 /* Inherit group flags from the previous leader */ 2164 sibling->group_caps = event->group_caps; 2165 2166 if (sibling->attach_state & PERF_ATTACH_CONTEXT) { 2167 add_event_to_groups(sibling, event->ctx); 2168 2169 if (sibling->state == PERF_EVENT_STATE_ACTIVE) 2170 list_add_tail(&sibling->active_list, get_event_list(sibling)); 2171 } 2172 2173 WARN_ON_ONCE(sibling->ctx != event->ctx); 2174 } 2175 2176out: 2177 for_each_sibling_event(tmp, leader) 2178 perf_event__header_size(tmp); 2179 2180 perf_event__header_size(leader); 2181} 2182 2183static void sync_child_event(struct perf_event *child_event); 2184 2185static void perf_child_detach(struct perf_event *event) 2186{ 2187 struct perf_event *parent_event = event->parent; 2188 2189 if (!(event->attach_state & PERF_ATTACH_CHILD)) 2190 return; 2191 2192 event->attach_state &= ~PERF_ATTACH_CHILD; 2193 2194 if (WARN_ON_ONCE(!parent_event)) 2195 return; 2196 2197 lockdep_assert_held(&parent_event->child_mutex); 2198 2199 sync_child_event(event); 2200 list_del_init(&event->child_list); 2201} 2202 2203static bool is_orphaned_event(struct perf_event *event) 2204{ 2205 return event->state == PERF_EVENT_STATE_DEAD; 2206} 2207 2208static inline int 2209event_filter_match(struct perf_event *event) 2210{ 2211 return (event->cpu == -1 || event->cpu == smp_processor_id()) && 2212 perf_cgroup_match(event); 2213} 2214 2215static void 2216event_sched_out(struct perf_event *event, struct perf_event_context *ctx) 2217{ 2218 struct perf_event_pmu_context *epc = event->pmu_ctx; 2219 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context); 2220 enum perf_event_state state = PERF_EVENT_STATE_INACTIVE; 2221 2222 // XXX cpc serialization, probably per-cpu IRQ disabled 2223 2224 WARN_ON_ONCE(event->ctx != ctx); 2225 lockdep_assert_held(&ctx->lock); 2226 2227 if (event->state != PERF_EVENT_STATE_ACTIVE) 2228 return; 2229 2230 /* 2231 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but 2232 * we can schedule events _OUT_ individually through things like 2233 * __perf_remove_from_context(). 2234 */ 2235 list_del_init(&event->active_list); 2236 2237 perf_pmu_disable(event->pmu); 2238 2239 event->pmu->del(event, 0); 2240 event->oncpu = -1; 2241 2242 if (event->pending_disable) { 2243 event->pending_disable = 0; 2244 perf_cgroup_event_disable(event, ctx); 2245 state = PERF_EVENT_STATE_OFF; 2246 } 2247 2248 if (event->pending_sigtrap) { 2249 bool dec = true; 2250 2251 event->pending_sigtrap = 0; 2252 if (state != PERF_EVENT_STATE_OFF && 2253 !event->pending_work) { 2254 event->pending_work = 1; 2255 dec = false; 2256 WARN_ON_ONCE(!atomic_long_inc_not_zero(&event->refcount)); 2257 task_work_add(current, &event->pending_task, TWA_RESUME); 2258 } 2259 if (dec) 2260 local_dec(&event->ctx->nr_pending); 2261 } 2262 2263 perf_event_set_state(event, state); 2264 2265 if (!is_software_event(event)) 2266 cpc->active_oncpu--; 2267 if (event->attr.freq && event->attr.sample_freq) 2268 ctx->nr_freq--; 2269 if (event->attr.exclusive || !cpc->active_oncpu) 2270 cpc->exclusive = 0; 2271 2272 perf_pmu_enable(event->pmu); 2273} 2274 2275static void 2276group_sched_out(struct perf_event *group_event, struct perf_event_context *ctx) 2277{ 2278 struct perf_event *event; 2279 2280 if (group_event->state != PERF_EVENT_STATE_ACTIVE) 2281 return; 2282 2283 perf_assert_pmu_disabled(group_event->pmu_ctx->pmu); 2284 2285 event_sched_out(group_event, ctx); 2286 2287 /* 2288 * Schedule out siblings (if any): 2289 */ 2290 for_each_sibling_event(event, group_event) 2291 event_sched_out(event, ctx); 2292} 2293 2294#define DETACH_GROUP 0x01UL 2295#define DETACH_CHILD 0x02UL 2296#define DETACH_DEAD 0x04UL 2297 2298/* 2299 * Cross CPU call to remove a performance event 2300 * 2301 * We disable the event on the hardware level first. After that we 2302 * remove it from the context list. 2303 */ 2304static void 2305__perf_remove_from_context(struct perf_event *event, 2306 struct perf_cpu_context *cpuctx, 2307 struct perf_event_context *ctx, 2308 void *info) 2309{ 2310 struct perf_event_pmu_context *pmu_ctx = event->pmu_ctx; 2311 unsigned long flags = (unsigned long)info; 2312 2313 if (ctx->is_active & EVENT_TIME) { 2314 update_context_time(ctx); 2315 update_cgrp_time_from_cpuctx(cpuctx, false); 2316 } 2317 2318 /* 2319 * Ensure event_sched_out() switches to OFF, at the very least 2320 * this avoids raising perf_pending_task() at this time. 2321 */ 2322 if (flags & DETACH_DEAD) 2323 event->pending_disable = 1; 2324 event_sched_out(event, ctx); 2325 if (flags & DETACH_GROUP) 2326 perf_group_detach(event); 2327 if (flags & DETACH_CHILD) 2328 perf_child_detach(event); 2329 list_del_event(event, ctx); 2330 if (flags & DETACH_DEAD) 2331 event->state = PERF_EVENT_STATE_DEAD; 2332 2333 if (!pmu_ctx->nr_events) { 2334 pmu_ctx->rotate_necessary = 0; 2335 2336 if (ctx->task && ctx->is_active) { 2337 struct perf_cpu_pmu_context *cpc; 2338 2339 cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context); 2340 WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx); 2341 cpc->task_epc = NULL; 2342 } 2343 } 2344 2345 if (!ctx->nr_events && ctx->is_active) { 2346 if (ctx == &cpuctx->ctx) 2347 update_cgrp_time_from_cpuctx(cpuctx, true); 2348 2349 ctx->is_active = 0; 2350 if (ctx->task) { 2351 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 2352 cpuctx->task_ctx = NULL; 2353 } 2354 } 2355} 2356 2357/* 2358 * Remove the event from a task's (or a CPU's) list of events. 2359 * 2360 * If event->ctx is a cloned context, callers must make sure that 2361 * every task struct that event->ctx->task could possibly point to 2362 * remains valid. This is OK when called from perf_release since 2363 * that only calls us on the top-level context, which can't be a clone. 2364 * When called from perf_event_exit_task, it's OK because the 2365 * context has been detached from its task. 2366 */ 2367static void perf_remove_from_context(struct perf_event *event, unsigned long flags) 2368{ 2369 struct perf_event_context *ctx = event->ctx; 2370 2371 lockdep_assert_held(&ctx->mutex); 2372 2373 /* 2374 * Because of perf_event_exit_task(), perf_remove_from_context() ought 2375 * to work in the face of TASK_TOMBSTONE, unlike every other 2376 * event_function_call() user. 2377 */ 2378 raw_spin_lock_irq(&ctx->lock); 2379 if (!ctx->is_active) { 2380 __perf_remove_from_context(event, this_cpu_ptr(&perf_cpu_context), 2381 ctx, (void *)flags); 2382 raw_spin_unlock_irq(&ctx->lock); 2383 return; 2384 } 2385 raw_spin_unlock_irq(&ctx->lock); 2386 2387 event_function_call(event, __perf_remove_from_context, (void *)flags); 2388} 2389 2390/* 2391 * Cross CPU call to disable a performance event 2392 */ 2393static void __perf_event_disable(struct perf_event *event, 2394 struct perf_cpu_context *cpuctx, 2395 struct perf_event_context *ctx, 2396 void *info) 2397{ 2398 if (event->state < PERF_EVENT_STATE_INACTIVE) 2399 return; 2400 2401 if (ctx->is_active & EVENT_TIME) { 2402 update_context_time(ctx); 2403 update_cgrp_time_from_event(event); 2404 } 2405 2406 perf_pmu_disable(event->pmu_ctx->pmu); 2407 2408 if (event == event->group_leader) 2409 group_sched_out(event, ctx); 2410 else 2411 event_sched_out(event, ctx); 2412 2413 perf_event_set_state(event, PERF_EVENT_STATE_OFF); 2414 perf_cgroup_event_disable(event, ctx); 2415 2416 perf_pmu_enable(event->pmu_ctx->pmu); 2417} 2418 2419/* 2420 * Disable an event. 2421 * 2422 * If event->ctx is a cloned context, callers must make sure that 2423 * every task struct that event->ctx->task could possibly point to 2424 * remains valid. This condition is satisfied when called through 2425 * perf_event_for_each_child or perf_event_for_each because they 2426 * hold the top-level event's child_mutex, so any descendant that 2427 * goes to exit will block in perf_event_exit_event(). 2428 * 2429 * When called from perf_pending_irq it's OK because event->ctx 2430 * is the current context on this CPU and preemption is disabled, 2431 * hence we can't get into perf_event_task_sched_out for this context. 2432 */ 2433static void _perf_event_disable(struct perf_event *event) 2434{ 2435 struct perf_event_context *ctx = event->ctx; 2436 2437 raw_spin_lock_irq(&ctx->lock); 2438 if (event->state <= PERF_EVENT_STATE_OFF) { 2439 raw_spin_unlock_irq(&ctx->lock); 2440 return; 2441 } 2442 raw_spin_unlock_irq(&ctx->lock); 2443 2444 event_function_call(event, __perf_event_disable, NULL); 2445} 2446 2447void perf_event_disable_local(struct perf_event *event) 2448{ 2449 event_function_local(event, __perf_event_disable, NULL); 2450} 2451 2452/* 2453 * Strictly speaking kernel users cannot create groups and therefore this 2454 * interface does not need the perf_event_ctx_lock() magic. 2455 */ 2456void perf_event_disable(struct perf_event *event) 2457{ 2458 struct perf_event_context *ctx; 2459 2460 ctx = perf_event_ctx_lock(event); 2461 _perf_event_disable(event); 2462 perf_event_ctx_unlock(event, ctx); 2463} 2464EXPORT_SYMBOL_GPL(perf_event_disable); 2465 2466void perf_event_disable_inatomic(struct perf_event *event) 2467{ 2468 event->pending_disable = 1; 2469 irq_work_queue(&event->pending_irq); 2470} 2471 2472#define MAX_INTERRUPTS (~0ULL) 2473 2474static void perf_log_throttle(struct perf_event *event, int enable); 2475static void perf_log_itrace_start(struct perf_event *event); 2476 2477static int 2478event_sched_in(struct perf_event *event, struct perf_event_context *ctx) 2479{ 2480 struct perf_event_pmu_context *epc = event->pmu_ctx; 2481 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context); 2482 int ret = 0; 2483 2484 WARN_ON_ONCE(event->ctx != ctx); 2485 2486 lockdep_assert_held(&ctx->lock); 2487 2488 if (event->state <= PERF_EVENT_STATE_OFF) 2489 return 0; 2490 2491 WRITE_ONCE(event->oncpu, smp_processor_id()); 2492 /* 2493 * Order event::oncpu write to happen before the ACTIVE state is 2494 * visible. This allows perf_event_{stop,read}() to observe the correct 2495 * ->oncpu if it sees ACTIVE. 2496 */ 2497 smp_wmb(); 2498 perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE); 2499 2500 /* 2501 * Unthrottle events, since we scheduled we might have missed several 2502 * ticks already, also for a heavily scheduling task there is little 2503 * guarantee it'll get a tick in a timely manner. 2504 */ 2505 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) { 2506 perf_log_throttle(event, 1); 2507 event->hw.interrupts = 0; 2508 } 2509 2510 perf_pmu_disable(event->pmu); 2511 2512 perf_log_itrace_start(event); 2513 2514 if (event->pmu->add(event, PERF_EF_START)) { 2515 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 2516 event->oncpu = -1; 2517 ret = -EAGAIN; 2518 goto out; 2519 } 2520 2521 if (!is_software_event(event)) 2522 cpc->active_oncpu++; 2523 if (event->attr.freq && event->attr.sample_freq) 2524 ctx->nr_freq++; 2525 2526 if (event->attr.exclusive) 2527 cpc->exclusive = 1; 2528 2529out: 2530 perf_pmu_enable(event->pmu); 2531 2532 return ret; 2533} 2534 2535static int 2536group_sched_in(struct perf_event *group_event, struct perf_event_context *ctx) 2537{ 2538 struct perf_event *event, *partial_group = NULL; 2539 struct pmu *pmu = group_event->pmu_ctx->pmu; 2540 2541 if (group_event->state == PERF_EVENT_STATE_OFF) 2542 return 0; 2543 2544 pmu->start_txn(pmu, PERF_PMU_TXN_ADD); 2545 2546 if (event_sched_in(group_event, ctx)) 2547 goto error; 2548 2549 /* 2550 * Schedule in siblings as one group (if any): 2551 */ 2552 for_each_sibling_event(event, group_event) { 2553 if (event_sched_in(event, ctx)) { 2554 partial_group = event; 2555 goto group_error; 2556 } 2557 } 2558 2559 if (!pmu->commit_txn(pmu)) 2560 return 0; 2561 2562group_error: 2563 /* 2564 * Groups can be scheduled in as one unit only, so undo any 2565 * partial group before returning: 2566 * The events up to the failed event are scheduled out normally. 2567 */ 2568 for_each_sibling_event(event, group_event) { 2569 if (event == partial_group) 2570 break; 2571 2572 event_sched_out(event, ctx); 2573 } 2574 event_sched_out(group_event, ctx); 2575 2576error: 2577 pmu->cancel_txn(pmu); 2578 return -EAGAIN; 2579} 2580 2581/* 2582 * Work out whether we can put this event group on the CPU now. 2583 */ 2584static int group_can_go_on(struct perf_event *event, int can_add_hw) 2585{ 2586 struct perf_event_pmu_context *epc = event->pmu_ctx; 2587 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context); 2588 2589 /* 2590 * Groups consisting entirely of software events can always go on. 2591 */ 2592 if (event->group_caps & PERF_EV_CAP_SOFTWARE) 2593 return 1; 2594 /* 2595 * If an exclusive group is already on, no other hardware 2596 * events can go on. 2597 */ 2598 if (cpc->exclusive) 2599 return 0; 2600 /* 2601 * If this group is exclusive and there are already 2602 * events on the CPU, it can't go on. 2603 */ 2604 if (event->attr.exclusive && !list_empty(get_event_list(event))) 2605 return 0; 2606 /* 2607 * Otherwise, try to add it if all previous groups were able 2608 * to go on. 2609 */ 2610 return can_add_hw; 2611} 2612 2613static void add_event_to_ctx(struct perf_event *event, 2614 struct perf_event_context *ctx) 2615{ 2616 list_add_event(event, ctx); 2617 perf_group_attach(event); 2618} 2619 2620static void task_ctx_sched_out(struct perf_event_context *ctx, 2621 enum event_type_t event_type) 2622{ 2623 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 2624 2625 if (!cpuctx->task_ctx) 2626 return; 2627 2628 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) 2629 return; 2630 2631 ctx_sched_out(ctx, event_type); 2632} 2633 2634static void perf_event_sched_in(struct perf_cpu_context *cpuctx, 2635 struct perf_event_context *ctx) 2636{ 2637 ctx_sched_in(&cpuctx->ctx, EVENT_PINNED); 2638 if (ctx) 2639 ctx_sched_in(ctx, EVENT_PINNED); 2640 ctx_sched_in(&cpuctx->ctx, EVENT_FLEXIBLE); 2641 if (ctx) 2642 ctx_sched_in(ctx, EVENT_FLEXIBLE); 2643} 2644 2645/* 2646 * We want to maintain the following priority of scheduling: 2647 * - CPU pinned (EVENT_CPU | EVENT_PINNED) 2648 * - task pinned (EVENT_PINNED) 2649 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE) 2650 * - task flexible (EVENT_FLEXIBLE). 2651 * 2652 * In order to avoid unscheduling and scheduling back in everything every 2653 * time an event is added, only do it for the groups of equal priority and 2654 * below. 2655 * 2656 * This can be called after a batch operation on task events, in which case 2657 * event_type is a bit mask of the types of events involved. For CPU events, 2658 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE. 2659 */ 2660/* 2661 * XXX: ctx_resched() reschedule entire perf_event_context while adding new 2662 * event to the context or enabling existing event in the context. We can 2663 * probably optimize it by rescheduling only affected pmu_ctx. 2664 */ 2665static void ctx_resched(struct perf_cpu_context *cpuctx, 2666 struct perf_event_context *task_ctx, 2667 enum event_type_t event_type) 2668{ 2669 bool cpu_event = !!(event_type & EVENT_CPU); 2670 2671 /* 2672 * If pinned groups are involved, flexible groups also need to be 2673 * scheduled out. 2674 */ 2675 if (event_type & EVENT_PINNED) 2676 event_type |= EVENT_FLEXIBLE; 2677 2678 event_type &= EVENT_ALL; 2679 2680 perf_ctx_disable(&cpuctx->ctx); 2681 if (task_ctx) { 2682 perf_ctx_disable(task_ctx); 2683 task_ctx_sched_out(task_ctx, event_type); 2684 } 2685 2686 /* 2687 * Decide which cpu ctx groups to schedule out based on the types 2688 * of events that caused rescheduling: 2689 * - EVENT_CPU: schedule out corresponding groups; 2690 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups; 2691 * - otherwise, do nothing more. 2692 */ 2693 if (cpu_event) 2694 ctx_sched_out(&cpuctx->ctx, event_type); 2695 else if (event_type & EVENT_PINNED) 2696 ctx_sched_out(&cpuctx->ctx, EVENT_FLEXIBLE); 2697 2698 perf_event_sched_in(cpuctx, task_ctx); 2699 2700 perf_ctx_enable(&cpuctx->ctx); 2701 if (task_ctx) 2702 perf_ctx_enable(task_ctx); 2703} 2704 2705void perf_pmu_resched(struct pmu *pmu) 2706{ 2707 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 2708 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2709 2710 perf_ctx_lock(cpuctx, task_ctx); 2711 ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU); 2712 perf_ctx_unlock(cpuctx, task_ctx); 2713} 2714 2715/* 2716 * Cross CPU call to install and enable a performance event 2717 * 2718 * Very similar to remote_function() + event_function() but cannot assume that 2719 * things like ctx->is_active and cpuctx->task_ctx are set. 2720 */ 2721static int __perf_install_in_context(void *info) 2722{ 2723 struct perf_event *event = info; 2724 struct perf_event_context *ctx = event->ctx; 2725 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 2726 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2727 bool reprogram = true; 2728 int ret = 0; 2729 2730 raw_spin_lock(&cpuctx->ctx.lock); 2731 if (ctx->task) { 2732 raw_spin_lock(&ctx->lock); 2733 task_ctx = ctx; 2734 2735 reprogram = (ctx->task == current); 2736 2737 /* 2738 * If the task is running, it must be running on this CPU, 2739 * otherwise we cannot reprogram things. 2740 * 2741 * If its not running, we don't care, ctx->lock will 2742 * serialize against it becoming runnable. 2743 */ 2744 if (task_curr(ctx->task) && !reprogram) { 2745 ret = -ESRCH; 2746 goto unlock; 2747 } 2748 2749 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx); 2750 } else if (task_ctx) { 2751 raw_spin_lock(&task_ctx->lock); 2752 } 2753 2754#ifdef CONFIG_CGROUP_PERF 2755 if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) { 2756 /* 2757 * If the current cgroup doesn't match the event's 2758 * cgroup, we should not try to schedule it. 2759 */ 2760 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx); 2761 reprogram = cgroup_is_descendant(cgrp->css.cgroup, 2762 event->cgrp->css.cgroup); 2763 } 2764#endif 2765 2766 if (reprogram) { 2767 ctx_sched_out(ctx, EVENT_TIME); 2768 add_event_to_ctx(event, ctx); 2769 ctx_resched(cpuctx, task_ctx, get_event_type(event)); 2770 } else { 2771 add_event_to_ctx(event, ctx); 2772 } 2773 2774unlock: 2775 perf_ctx_unlock(cpuctx, task_ctx); 2776 2777 return ret; 2778} 2779 2780static bool exclusive_event_installable(struct perf_event *event, 2781 struct perf_event_context *ctx); 2782 2783/* 2784 * Attach a performance event to a context. 2785 * 2786 * Very similar to event_function_call, see comment there. 2787 */ 2788static void 2789perf_install_in_context(struct perf_event_context *ctx, 2790 struct perf_event *event, 2791 int cpu) 2792{ 2793 struct task_struct *task = READ_ONCE(ctx->task); 2794 2795 lockdep_assert_held(&ctx->mutex); 2796 2797 WARN_ON_ONCE(!exclusive_event_installable(event, ctx)); 2798 2799 if (event->cpu != -1) 2800 WARN_ON_ONCE(event->cpu != cpu); 2801 2802 /* 2803 * Ensures that if we can observe event->ctx, both the event and ctx 2804 * will be 'complete'. See perf_iterate_sb_cpu(). 2805 */ 2806 smp_store_release(&event->ctx, ctx); 2807 2808 /* 2809 * perf_event_attr::disabled events will not run and can be initialized 2810 * without IPI. Except when this is the first event for the context, in 2811 * that case we need the magic of the IPI to set ctx->is_active. 2812 * 2813 * The IOC_ENABLE that is sure to follow the creation of a disabled 2814 * event will issue the IPI and reprogram the hardware. 2815 */ 2816 if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF && 2817 ctx->nr_events && !is_cgroup_event(event)) { 2818 raw_spin_lock_irq(&ctx->lock); 2819 if (ctx->task == TASK_TOMBSTONE) { 2820 raw_spin_unlock_irq(&ctx->lock); 2821 return; 2822 } 2823 add_event_to_ctx(event, ctx); 2824 raw_spin_unlock_irq(&ctx->lock); 2825 return; 2826 } 2827 2828 if (!task) { 2829 cpu_function_call(cpu, __perf_install_in_context, event); 2830 return; 2831 } 2832 2833 /* 2834 * Should not happen, we validate the ctx is still alive before calling. 2835 */ 2836 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) 2837 return; 2838 2839 /* 2840 * Installing events is tricky because we cannot rely on ctx->is_active 2841 * to be set in case this is the nr_events 0 -> 1 transition. 2842 * 2843 * Instead we use task_curr(), which tells us if the task is running. 2844 * However, since we use task_curr() outside of rq::lock, we can race 2845 * against the actual state. This means the result can be wrong. 2846 * 2847 * If we get a false positive, we retry, this is harmless. 2848 * 2849 * If we get a false negative, things are complicated. If we are after 2850 * perf_event_context_sched_in() ctx::lock will serialize us, and the 2851 * value must be correct. If we're before, it doesn't matter since 2852 * perf_event_context_sched_in() will program the counter. 2853 * 2854 * However, this hinges on the remote context switch having observed 2855 * our task->perf_event_ctxp[] store, such that it will in fact take 2856 * ctx::lock in perf_event_context_sched_in(). 2857 * 2858 * We do this by task_function_call(), if the IPI fails to hit the task 2859 * we know any future context switch of task must see the 2860 * perf_event_ctpx[] store. 2861 */ 2862 2863 /* 2864 * This smp_mb() orders the task->perf_event_ctxp[] store with the 2865 * task_cpu() load, such that if the IPI then does not find the task 2866 * running, a future context switch of that task must observe the 2867 * store. 2868 */ 2869 smp_mb(); 2870again: 2871 if (!task_function_call(task, __perf_install_in_context, event)) 2872 return; 2873 2874 raw_spin_lock_irq(&ctx->lock); 2875 task = ctx->task; 2876 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) { 2877 /* 2878 * Cannot happen because we already checked above (which also 2879 * cannot happen), and we hold ctx->mutex, which serializes us 2880 * against perf_event_exit_task_context(). 2881 */ 2882 raw_spin_unlock_irq(&ctx->lock); 2883 return; 2884 } 2885 /* 2886 * If the task is not running, ctx->lock will avoid it becoming so, 2887 * thus we can safely install the event. 2888 */ 2889 if (task_curr(task)) { 2890 raw_spin_unlock_irq(&ctx->lock); 2891 goto again; 2892 } 2893 add_event_to_ctx(event, ctx); 2894 raw_spin_unlock_irq(&ctx->lock); 2895} 2896 2897/* 2898 * Cross CPU call to enable a performance event 2899 */ 2900static void __perf_event_enable(struct perf_event *event, 2901 struct perf_cpu_context *cpuctx, 2902 struct perf_event_context *ctx, 2903 void *info) 2904{ 2905 struct perf_event *leader = event->group_leader; 2906 struct perf_event_context *task_ctx; 2907 2908 if (event->state >= PERF_EVENT_STATE_INACTIVE || 2909 event->state <= PERF_EVENT_STATE_ERROR) 2910 return; 2911 2912 if (ctx->is_active) 2913 ctx_sched_out(ctx, EVENT_TIME); 2914 2915 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 2916 perf_cgroup_event_enable(event, ctx); 2917 2918 if (!ctx->is_active) 2919 return; 2920 2921 if (!event_filter_match(event)) { 2922 ctx_sched_in(ctx, EVENT_TIME); 2923 return; 2924 } 2925 2926 /* 2927 * If the event is in a group and isn't the group leader, 2928 * then don't put it on unless the group is on. 2929 */ 2930 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) { 2931 ctx_sched_in(ctx, EVENT_TIME); 2932 return; 2933 } 2934 2935 task_ctx = cpuctx->task_ctx; 2936 if (ctx->task) 2937 WARN_ON_ONCE(task_ctx != ctx); 2938 2939 ctx_resched(cpuctx, task_ctx, get_event_type(event)); 2940} 2941 2942/* 2943 * Enable an event. 2944 * 2945 * If event->ctx is a cloned context, callers must make sure that 2946 * every task struct that event->ctx->task could possibly point to 2947 * remains valid. This condition is satisfied when called through 2948 * perf_event_for_each_child or perf_event_for_each as described 2949 * for perf_event_disable. 2950 */ 2951static void _perf_event_enable(struct perf_event *event) 2952{ 2953 struct perf_event_context *ctx = event->ctx; 2954 2955 raw_spin_lock_irq(&ctx->lock); 2956 if (event->state >= PERF_EVENT_STATE_INACTIVE || 2957 event->state < PERF_EVENT_STATE_ERROR) { 2958out: 2959 raw_spin_unlock_irq(&ctx->lock); 2960 return; 2961 } 2962 2963 /* 2964 * If the event is in error state, clear that first. 2965 * 2966 * That way, if we see the event in error state below, we know that it 2967 * has gone back into error state, as distinct from the task having 2968 * been scheduled away before the cross-call arrived. 2969 */ 2970 if (event->state == PERF_EVENT_STATE_ERROR) { 2971 /* 2972 * Detached SIBLING events cannot leave ERROR state. 2973 */ 2974 if (event->event_caps & PERF_EV_CAP_SIBLING && 2975 event->group_leader == event) 2976 goto out; 2977 2978 event->state = PERF_EVENT_STATE_OFF; 2979 } 2980 raw_spin_unlock_irq(&ctx->lock); 2981 2982 event_function_call(event, __perf_event_enable, NULL); 2983} 2984 2985/* 2986 * See perf_event_disable(); 2987 */ 2988void perf_event_enable(struct perf_event *event) 2989{ 2990 struct perf_event_context *ctx; 2991 2992 ctx = perf_event_ctx_lock(event); 2993 _perf_event_enable(event); 2994 perf_event_ctx_unlock(event, ctx); 2995} 2996EXPORT_SYMBOL_GPL(perf_event_enable); 2997 2998struct stop_event_data { 2999 struct perf_event *event; 3000 unsigned int restart; 3001}; 3002 3003static int __perf_event_stop(void *info) 3004{ 3005 struct stop_event_data *sd = info; 3006 struct perf_event *event = sd->event; 3007 3008 /* if it's already INACTIVE, do nothing */ 3009 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 3010 return 0; 3011 3012 /* matches smp_wmb() in event_sched_in() */ 3013 smp_rmb(); 3014 3015 /* 3016 * There is a window with interrupts enabled before we get here, 3017 * so we need to check again lest we try to stop another CPU's event. 3018 */ 3019 if (READ_ONCE(event->oncpu) != smp_processor_id()) 3020 return -EAGAIN; 3021 3022 event->pmu->stop(event, PERF_EF_UPDATE); 3023 3024 /* 3025 * May race with the actual stop (through perf_pmu_output_stop()), 3026 * but it is only used for events with AUX ring buffer, and such 3027 * events will refuse to restart because of rb::aux_mmap_count==0, 3028 * see comments in perf_aux_output_begin(). 3029 * 3030 * Since this is happening on an event-local CPU, no trace is lost 3031 * while restarting. 3032 */ 3033 if (sd->restart) 3034 event->pmu->start(event, 0); 3035 3036 return 0; 3037} 3038 3039static int perf_event_stop(struct perf_event *event, int restart) 3040{ 3041 struct stop_event_data sd = { 3042 .event = event, 3043 .restart = restart, 3044 }; 3045 int ret = 0; 3046 3047 do { 3048 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 3049 return 0; 3050 3051 /* matches smp_wmb() in event_sched_in() */ 3052 smp_rmb(); 3053 3054 /* 3055 * We only want to restart ACTIVE events, so if the event goes 3056 * inactive here (event->oncpu==-1), there's nothing more to do; 3057 * fall through with ret==-ENXIO. 3058 */ 3059 ret = cpu_function_call(READ_ONCE(event->oncpu), 3060 __perf_event_stop, &sd); 3061 } while (ret == -EAGAIN); 3062 3063 return ret; 3064} 3065 3066/* 3067 * In order to contain the amount of racy and tricky in the address filter 3068 * configuration management, it is a two part process: 3069 * 3070 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below, 3071 * we update the addresses of corresponding vmas in 3072 * event::addr_filter_ranges array and bump the event::addr_filters_gen; 3073 * (p2) when an event is scheduled in (pmu::add), it calls 3074 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync() 3075 * if the generation has changed since the previous call. 3076 * 3077 * If (p1) happens while the event is active, we restart it to force (p2). 3078 * 3079 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on 3080 * pre-existing mappings, called once when new filters arrive via SET_FILTER 3081 * ioctl; 3082 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly 3083 * registered mapping, called for every new mmap(), with mm::mmap_lock down 3084 * for reading; 3085 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process 3086 * of exec. 3087 */ 3088void perf_event_addr_filters_sync(struct perf_event *event) 3089{ 3090 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 3091 3092 if (!has_addr_filter(event)) 3093 return; 3094 3095 raw_spin_lock(&ifh->lock); 3096 if (event->addr_filters_gen != event->hw.addr_filters_gen) { 3097 event->pmu->addr_filters_sync(event); 3098 event->hw.addr_filters_gen = event->addr_filters_gen; 3099 } 3100 raw_spin_unlock(&ifh->lock); 3101} 3102EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync); 3103 3104static int _perf_event_refresh(struct perf_event *event, int refresh) 3105{ 3106 /* 3107 * not supported on inherited events 3108 */ 3109 if (event->attr.inherit || !is_sampling_event(event)) 3110 return -EINVAL; 3111 3112 atomic_add(refresh, &event->event_limit); 3113 _perf_event_enable(event); 3114 3115 return 0; 3116} 3117 3118/* 3119 * See perf_event_disable() 3120 */ 3121int perf_event_refresh(struct perf_event *event, int refresh) 3122{ 3123 struct perf_event_context *ctx; 3124 int ret; 3125 3126 ctx = perf_event_ctx_lock(event); 3127 ret = _perf_event_refresh(event, refresh); 3128 perf_event_ctx_unlock(event, ctx); 3129 3130 return ret; 3131} 3132EXPORT_SYMBOL_GPL(perf_event_refresh); 3133 3134static int perf_event_modify_breakpoint(struct perf_event *bp, 3135 struct perf_event_attr *attr) 3136{ 3137 int err; 3138 3139 _perf_event_disable(bp); 3140 3141 err = modify_user_hw_breakpoint_check(bp, attr, true); 3142 3143 if (!bp->attr.disabled) 3144 _perf_event_enable(bp); 3145 3146 return err; 3147} 3148 3149/* 3150 * Copy event-type-independent attributes that may be modified. 3151 */ 3152static void perf_event_modify_copy_attr(struct perf_event_attr *to, 3153 const struct perf_event_attr *from) 3154{ 3155 to->sig_data = from->sig_data; 3156} 3157 3158static int perf_event_modify_attr(struct perf_event *event, 3159 struct perf_event_attr *attr) 3160{ 3161 int (*func)(struct perf_event *, struct perf_event_attr *); 3162 struct perf_event *child; 3163 int err; 3164 3165 if (event->attr.type != attr->type) 3166 return -EINVAL; 3167 3168 switch (event->attr.type) { 3169 case PERF_TYPE_BREAKPOINT: 3170 func = perf_event_modify_breakpoint; 3171 break; 3172 default: 3173 /* Place holder for future additions. */ 3174 return -EOPNOTSUPP; 3175 } 3176 3177 WARN_ON_ONCE(event->ctx->parent_ctx); 3178 3179 mutex_lock(&event->child_mutex); 3180 /* 3181 * Event-type-independent attributes must be copied before event-type 3182 * modification, which will validate that final attributes match the 3183 * source attributes after all relevant attributes have been copied. 3184 */ 3185 perf_event_modify_copy_attr(&event->attr, attr); 3186 err = func(event, attr); 3187 if (err) 3188 goto out; 3189 list_for_each_entry(child, &event->child_list, child_list) { 3190 perf_event_modify_copy_attr(&child->attr, attr); 3191 err = func(child, attr); 3192 if (err) 3193 goto out; 3194 } 3195out: 3196 mutex_unlock(&event->child_mutex); 3197 return err; 3198} 3199 3200static void __pmu_ctx_sched_out(struct perf_event_pmu_context *pmu_ctx, 3201 enum event_type_t event_type) 3202{ 3203 struct perf_event_context *ctx = pmu_ctx->ctx; 3204 struct perf_event *event, *tmp; 3205 struct pmu *pmu = pmu_ctx->pmu; 3206 3207 if (ctx->task && !ctx->is_active) { 3208 struct perf_cpu_pmu_context *cpc; 3209 3210 cpc = this_cpu_ptr(pmu->cpu_pmu_context); 3211 WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx); 3212 cpc->task_epc = NULL; 3213 } 3214 3215 if (!event_type) 3216 return; 3217 3218 perf_pmu_disable(pmu); 3219 if (event_type & EVENT_PINNED) { 3220 list_for_each_entry_safe(event, tmp, 3221 &pmu_ctx->pinned_active, 3222 active_list) 3223 group_sched_out(event, ctx); 3224 } 3225 3226 if (event_type & EVENT_FLEXIBLE) { 3227 list_for_each_entry_safe(event, tmp, 3228 &pmu_ctx->flexible_active, 3229 active_list) 3230 group_sched_out(event, ctx); 3231 /* 3232 * Since we cleared EVENT_FLEXIBLE, also clear 3233 * rotate_necessary, is will be reset by 3234 * ctx_flexible_sched_in() when needed. 3235 */ 3236 pmu_ctx->rotate_necessary = 0; 3237 } 3238 perf_pmu_enable(pmu); 3239} 3240 3241static void 3242ctx_sched_out(struct perf_event_context *ctx, enum event_type_t event_type) 3243{ 3244 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 3245 struct perf_event_pmu_context *pmu_ctx; 3246 int is_active = ctx->is_active; 3247 3248 lockdep_assert_held(&ctx->lock); 3249 3250 if (likely(!ctx->nr_events)) { 3251 /* 3252 * See __perf_remove_from_context(). 3253 */ 3254 WARN_ON_ONCE(ctx->is_active); 3255 if (ctx->task) 3256 WARN_ON_ONCE(cpuctx->task_ctx); 3257 return; 3258 } 3259 3260 /* 3261 * Always update time if it was set; not only when it changes. 3262 * Otherwise we can 'forget' to update time for any but the last 3263 * context we sched out. For example: 3264 * 3265 * ctx_sched_out(.event_type = EVENT_FLEXIBLE) 3266 * ctx_sched_out(.event_type = EVENT_PINNED) 3267 * 3268 * would only update time for the pinned events. 3269 */ 3270 if (is_active & EVENT_TIME) { 3271 /* update (and stop) ctx time */ 3272 update_context_time(ctx); 3273 update_cgrp_time_from_cpuctx(cpuctx, ctx == &cpuctx->ctx); 3274 /* 3275 * CPU-release for the below ->is_active store, 3276 * see __load_acquire() in perf_event_time_now() 3277 */ 3278 barrier(); 3279 } 3280 3281 ctx->is_active &= ~event_type; 3282 if (!(ctx->is_active & EVENT_ALL)) 3283 ctx->is_active = 0; 3284 3285 if (ctx->task) { 3286 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 3287 if (!ctx->is_active) 3288 cpuctx->task_ctx = NULL; 3289 } 3290 3291 is_active ^= ctx->is_active; /* changed bits */ 3292 3293 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) 3294 __pmu_ctx_sched_out(pmu_ctx, is_active); 3295} 3296 3297/* 3298 * Test whether two contexts are equivalent, i.e. whether they have both been 3299 * cloned from the same version of the same context. 3300 * 3301 * Equivalence is measured using a generation number in the context that is 3302 * incremented on each modification to it; see unclone_ctx(), list_add_event() 3303 * and list_del_event(). 3304 */ 3305static int context_equiv(struct perf_event_context *ctx1, 3306 struct perf_event_context *ctx2) 3307{ 3308 lockdep_assert_held(&ctx1->lock); 3309 lockdep_assert_held(&ctx2->lock); 3310 3311 /* Pinning disables the swap optimization */ 3312 if (ctx1->pin_count || ctx2->pin_count) 3313 return 0; 3314 3315 /* If ctx1 is the parent of ctx2 */ 3316 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen) 3317 return 1; 3318 3319 /* If ctx2 is the parent of ctx1 */ 3320 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation) 3321 return 1; 3322 3323 /* 3324 * If ctx1 and ctx2 have the same parent; we flatten the parent 3325 * hierarchy, see perf_event_init_context(). 3326 */ 3327 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx && 3328 ctx1->parent_gen == ctx2->parent_gen) 3329 return 1; 3330 3331 /* Unmatched */ 3332 return 0; 3333} 3334 3335static void __perf_event_sync_stat(struct perf_event *event, 3336 struct perf_event *next_event) 3337{ 3338 u64 value; 3339 3340 if (!event->attr.inherit_stat) 3341 return; 3342 3343 /* 3344 * Update the event value, we cannot use perf_event_read() 3345 * because we're in the middle of a context switch and have IRQs 3346 * disabled, which upsets smp_call_function_single(), however 3347 * we know the event must be on the current CPU, therefore we 3348 * don't need to use it. 3349 */ 3350 if (event->state == PERF_EVENT_STATE_ACTIVE) 3351 event->pmu->read(event); 3352 3353 perf_event_update_time(event); 3354 3355 /* 3356 * In order to keep per-task stats reliable we need to flip the event 3357 * values when we flip the contexts. 3358 */ 3359 value = local64_read(&next_event->count); 3360 value = local64_xchg(&event->count, value); 3361 local64_set(&next_event->count, value); 3362 3363 swap(event->total_time_enabled, next_event->total_time_enabled); 3364 swap(event->total_time_running, next_event->total_time_running); 3365 3366 /* 3367 * Since we swizzled the values, update the user visible data too. 3368 */ 3369 perf_event_update_userpage(event); 3370 perf_event_update_userpage(next_event); 3371} 3372 3373static void perf_event_sync_stat(struct perf_event_context *ctx, 3374 struct perf_event_context *next_ctx) 3375{ 3376 struct perf_event *event, *next_event; 3377 3378 if (!ctx->nr_stat) 3379 return; 3380 3381 update_context_time(ctx); 3382 3383 event = list_first_entry(&ctx->event_list, 3384 struct perf_event, event_entry); 3385 3386 next_event = list_first_entry(&next_ctx->event_list, 3387 struct perf_event, event_entry); 3388 3389 while (&event->event_entry != &ctx->event_list && 3390 &next_event->event_entry != &next_ctx->event_list) { 3391 3392 __perf_event_sync_stat(event, next_event); 3393 3394 event = list_next_entry(event, event_entry); 3395 next_event = list_next_entry(next_event, event_entry); 3396 } 3397} 3398 3399#define double_list_for_each_entry(pos1, pos2, head1, head2, member) \ 3400 for (pos1 = list_first_entry(head1, typeof(*pos1), member), \ 3401 pos2 = list_first_entry(head2, typeof(*pos2), member); \ 3402 !list_entry_is_head(pos1, head1, member) && \ 3403 !list_entry_is_head(pos2, head2, member); \ 3404 pos1 = list_next_entry(pos1, member), \ 3405 pos2 = list_next_entry(pos2, member)) 3406 3407static void perf_event_swap_task_ctx_data(struct perf_event_context *prev_ctx, 3408 struct perf_event_context *next_ctx) 3409{ 3410 struct perf_event_pmu_context *prev_epc, *next_epc; 3411 3412 if (!prev_ctx->nr_task_data) 3413 return; 3414 3415 double_list_for_each_entry(prev_epc, next_epc, 3416 &prev_ctx->pmu_ctx_list, &next_ctx->pmu_ctx_list, 3417 pmu_ctx_entry) { 3418 3419 if (WARN_ON_ONCE(prev_epc->pmu != next_epc->pmu)) 3420 continue; 3421 3422 /* 3423 * PMU specific parts of task perf context can require 3424 * additional synchronization. As an example of such 3425 * synchronization see implementation details of Intel 3426 * LBR call stack data profiling; 3427 */ 3428 if (prev_epc->pmu->swap_task_ctx) 3429 prev_epc->pmu->swap_task_ctx(prev_epc, next_epc); 3430 else 3431 swap(prev_epc->task_ctx_data, next_epc->task_ctx_data); 3432 } 3433} 3434 3435static void perf_ctx_sched_task_cb(struct perf_event_context *ctx, bool sched_in) 3436{ 3437 struct perf_event_pmu_context *pmu_ctx; 3438 struct perf_cpu_pmu_context *cpc; 3439 3440 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) { 3441 cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context); 3442 3443 if (cpc->sched_cb_usage && pmu_ctx->pmu->sched_task) 3444 pmu_ctx->pmu->sched_task(pmu_ctx, sched_in); 3445 } 3446} 3447 3448static void 3449perf_event_context_sched_out(struct task_struct *task, struct task_struct *next) 3450{ 3451 struct perf_event_context *ctx = task->perf_event_ctxp; 3452 struct perf_event_context *next_ctx; 3453 struct perf_event_context *parent, *next_parent; 3454 int do_switch = 1; 3455 3456 if (likely(!ctx)) 3457 return; 3458 3459 rcu_read_lock(); 3460 next_ctx = rcu_dereference(next->perf_event_ctxp); 3461 if (!next_ctx) 3462 goto unlock; 3463 3464 parent = rcu_dereference(ctx->parent_ctx); 3465 next_parent = rcu_dereference(next_ctx->parent_ctx); 3466 3467 /* If neither context have a parent context; they cannot be clones. */ 3468 if (!parent && !next_parent) 3469 goto unlock; 3470 3471 if (next_parent == ctx || next_ctx == parent || next_parent == parent) { 3472 /* 3473 * Looks like the two contexts are clones, so we might be 3474 * able to optimize the context switch. We lock both 3475 * contexts and check that they are clones under the 3476 * lock (including re-checking that neither has been 3477 * uncloned in the meantime). It doesn't matter which 3478 * order we take the locks because no other cpu could 3479 * be trying to lock both of these tasks. 3480 */ 3481 raw_spin_lock(&ctx->lock); 3482 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING); 3483 if (context_equiv(ctx, next_ctx)) { 3484 3485 perf_ctx_disable(ctx); 3486 3487 /* PMIs are disabled; ctx->nr_pending is stable. */ 3488 if (local_read(&ctx->nr_pending) || 3489 local_read(&next_ctx->nr_pending)) { 3490 /* 3491 * Must not swap out ctx when there's pending 3492 * events that rely on the ctx->task relation. 3493 */ 3494 raw_spin_unlock(&next_ctx->lock); 3495 rcu_read_unlock(); 3496 goto inside_switch; 3497 } 3498 3499 WRITE_ONCE(ctx->task, next); 3500 WRITE_ONCE(next_ctx->task, task); 3501 3502 perf_ctx_sched_task_cb(ctx, false); 3503 perf_event_swap_task_ctx_data(ctx, next_ctx); 3504 3505 perf_ctx_enable(ctx); 3506 3507 /* 3508 * RCU_INIT_POINTER here is safe because we've not 3509 * modified the ctx and the above modification of 3510 * ctx->task and ctx->task_ctx_data are immaterial 3511 * since those values are always verified under 3512 * ctx->lock which we're now holding. 3513 */ 3514 RCU_INIT_POINTER(task->perf_event_ctxp, next_ctx); 3515 RCU_INIT_POINTER(next->perf_event_ctxp, ctx); 3516 3517 do_switch = 0; 3518 3519 perf_event_sync_stat(ctx, next_ctx); 3520 } 3521 raw_spin_unlock(&next_ctx->lock); 3522 raw_spin_unlock(&ctx->lock); 3523 } 3524unlock: 3525 rcu_read_unlock(); 3526 3527 if (do_switch) { 3528 raw_spin_lock(&ctx->lock); 3529 perf_ctx_disable(ctx); 3530 3531inside_switch: 3532 perf_ctx_sched_task_cb(ctx, false); 3533 task_ctx_sched_out(ctx, EVENT_ALL); 3534 3535 perf_ctx_enable(ctx); 3536 raw_spin_unlock(&ctx->lock); 3537 } 3538} 3539 3540static DEFINE_PER_CPU(struct list_head, sched_cb_list); 3541static DEFINE_PER_CPU(int, perf_sched_cb_usages); 3542 3543void perf_sched_cb_dec(struct pmu *pmu) 3544{ 3545 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(pmu->cpu_pmu_context); 3546 3547 this_cpu_dec(perf_sched_cb_usages); 3548 barrier(); 3549 3550 if (!--cpc->sched_cb_usage) 3551 list_del(&cpc->sched_cb_entry); 3552} 3553 3554 3555void perf_sched_cb_inc(struct pmu *pmu) 3556{ 3557 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(pmu->cpu_pmu_context); 3558 3559 if (!cpc->sched_cb_usage++) 3560 list_add(&cpc->sched_cb_entry, this_cpu_ptr(&sched_cb_list)); 3561 3562 barrier(); 3563 this_cpu_inc(perf_sched_cb_usages); 3564} 3565 3566/* 3567 * This function provides the context switch callback to the lower code 3568 * layer. It is invoked ONLY when the context switch callback is enabled. 3569 * 3570 * This callback is relevant even to per-cpu events; for example multi event 3571 * PEBS requires this to provide PID/TID information. This requires we flush 3572 * all queued PEBS records before we context switch to a new task. 3573 */ 3574static void __perf_pmu_sched_task(struct perf_cpu_pmu_context *cpc, bool sched_in) 3575{ 3576 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 3577 struct pmu *pmu; 3578 3579 pmu = cpc->epc.pmu; 3580 3581 /* software PMUs will not have sched_task */ 3582 if (WARN_ON_ONCE(!pmu->sched_task)) 3583 return; 3584 3585 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 3586 perf_pmu_disable(pmu); 3587 3588 pmu->sched_task(cpc->task_epc, sched_in); 3589 3590 perf_pmu_enable(pmu); 3591 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 3592} 3593 3594static void perf_pmu_sched_task(struct task_struct *prev, 3595 struct task_struct *next, 3596 bool sched_in) 3597{ 3598 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 3599 struct perf_cpu_pmu_context *cpc; 3600 3601 /* cpuctx->task_ctx will be handled in perf_event_context_sched_in/out */ 3602 if (prev == next || cpuctx->task_ctx) 3603 return; 3604 3605 list_for_each_entry(cpc, this_cpu_ptr(&sched_cb_list), sched_cb_entry) 3606 __perf_pmu_sched_task(cpc, sched_in); 3607} 3608 3609static void perf_event_switch(struct task_struct *task, 3610 struct task_struct *next_prev, bool sched_in); 3611 3612/* 3613 * Called from scheduler to remove the events of the current task, 3614 * with interrupts disabled. 3615 * 3616 * We stop each event and update the event value in event->count. 3617 * 3618 * This does not protect us against NMI, but disable() 3619 * sets the disabled bit in the control field of event _before_ 3620 * accessing the event control register. If a NMI hits, then it will 3621 * not restart the event. 3622 */ 3623void __perf_event_task_sched_out(struct task_struct *task, 3624 struct task_struct *next) 3625{ 3626 if (__this_cpu_read(perf_sched_cb_usages)) 3627 perf_pmu_sched_task(task, next, false); 3628 3629 if (atomic_read(&nr_switch_events)) 3630 perf_event_switch(task, next, false); 3631 3632 perf_event_context_sched_out(task, next); 3633 3634 /* 3635 * if cgroup events exist on this CPU, then we need 3636 * to check if we have to switch out PMU state. 3637 * cgroup event are system-wide mode only 3638 */ 3639 perf_cgroup_switch(next); 3640} 3641 3642static bool perf_less_group_idx(const void *l, const void *r) 3643{ 3644 const struct perf_event *le = *(const struct perf_event **)l; 3645 const struct perf_event *re = *(const struct perf_event **)r; 3646 3647 return le->group_index < re->group_index; 3648} 3649 3650static void swap_ptr(void *l, void *r) 3651{ 3652 void **lp = l, **rp = r; 3653 3654 swap(*lp, *rp); 3655} 3656 3657static const struct min_heap_callbacks perf_min_heap = { 3658 .elem_size = sizeof(struct perf_event *), 3659 .less = perf_less_group_idx, 3660 .swp = swap_ptr, 3661}; 3662 3663static void __heap_add(struct min_heap *heap, struct perf_event *event) 3664{ 3665 struct perf_event **itrs = heap->data; 3666 3667 if (event) { 3668 itrs[heap->nr] = event; 3669 heap->nr++; 3670 } 3671} 3672 3673static void __link_epc(struct perf_event_pmu_context *pmu_ctx) 3674{ 3675 struct perf_cpu_pmu_context *cpc; 3676 3677 if (!pmu_ctx->ctx->task) 3678 return; 3679 3680 cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context); 3681 WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx); 3682 cpc->task_epc = pmu_ctx; 3683} 3684 3685static noinline int visit_groups_merge(struct perf_event_context *ctx, 3686 struct perf_event_groups *groups, int cpu, 3687 struct pmu *pmu, 3688 int (*func)(struct perf_event *, void *), 3689 void *data) 3690{ 3691#ifdef CONFIG_CGROUP_PERF 3692 struct cgroup_subsys_state *css = NULL; 3693#endif 3694 struct perf_cpu_context *cpuctx = NULL; 3695 /* Space for per CPU and/or any CPU event iterators. */ 3696 struct perf_event *itrs[2]; 3697 struct min_heap event_heap; 3698 struct perf_event **evt; 3699 int ret; 3700 3701 if (pmu->filter && pmu->filter(pmu, cpu)) 3702 return 0; 3703 3704 if (!ctx->task) { 3705 cpuctx = this_cpu_ptr(&perf_cpu_context); 3706 event_heap = (struct min_heap){ 3707 .data = cpuctx->heap, 3708 .nr = 0, 3709 .size = cpuctx->heap_size, 3710 }; 3711 3712 lockdep_assert_held(&cpuctx->ctx.lock); 3713 3714#ifdef CONFIG_CGROUP_PERF 3715 if (cpuctx->cgrp) 3716 css = &cpuctx->cgrp->css; 3717#endif 3718 } else { 3719 event_heap = (struct min_heap){ 3720 .data = itrs, 3721 .nr = 0, 3722 .size = ARRAY_SIZE(itrs), 3723 }; 3724 /* Events not within a CPU context may be on any CPU. */ 3725 __heap_add(&event_heap, perf_event_groups_first(groups, -1, pmu, NULL)); 3726 } 3727 evt = event_heap.data; 3728 3729 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, NULL)); 3730 3731#ifdef CONFIG_CGROUP_PERF 3732 for (; css; css = css->parent) 3733 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, css->cgroup)); 3734#endif 3735 3736 if (event_heap.nr) { 3737 __link_epc((*evt)->pmu_ctx); 3738 perf_assert_pmu_disabled((*evt)->pmu_ctx->pmu); 3739 } 3740 3741 min_heapify_all(&event_heap, &perf_min_heap); 3742 3743 while (event_heap.nr) { 3744 ret = func(*evt, data); 3745 if (ret) 3746 return ret; 3747 3748 *evt = perf_event_groups_next(*evt, pmu); 3749 if (*evt) 3750 min_heapify(&event_heap, 0, &perf_min_heap); 3751 else 3752 min_heap_pop(&event_heap, &perf_min_heap); 3753 } 3754 3755 return 0; 3756} 3757 3758/* 3759 * Because the userpage is strictly per-event (there is no concept of context, 3760 * so there cannot be a context indirection), every userpage must be updated 3761 * when context time starts :-( 3762 * 3763 * IOW, we must not miss EVENT_TIME edges. 3764 */ 3765static inline bool event_update_userpage(struct perf_event *event) 3766{ 3767 if (likely(!atomic_read(&event->mmap_count))) 3768 return false; 3769 3770 perf_event_update_time(event); 3771 perf_event_update_userpage(event); 3772 3773 return true; 3774} 3775 3776static inline void group_update_userpage(struct perf_event *group_event) 3777{ 3778 struct perf_event *event; 3779 3780 if (!event_update_userpage(group_event)) 3781 return; 3782 3783 for_each_sibling_event(event, group_event) 3784 event_update_userpage(event); 3785} 3786 3787static int merge_sched_in(struct perf_event *event, void *data) 3788{ 3789 struct perf_event_context *ctx = event->ctx; 3790 int *can_add_hw = data; 3791 3792 if (event->state <= PERF_EVENT_STATE_OFF) 3793 return 0; 3794 3795 if (!event_filter_match(event)) 3796 return 0; 3797 3798 if (group_can_go_on(event, *can_add_hw)) { 3799 if (!group_sched_in(event, ctx)) 3800 list_add_tail(&event->active_list, get_event_list(event)); 3801 } 3802 3803 if (event->state == PERF_EVENT_STATE_INACTIVE) { 3804 *can_add_hw = 0; 3805 if (event->attr.pinned) { 3806 perf_cgroup_event_disable(event, ctx); 3807 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 3808 } else { 3809 struct perf_cpu_pmu_context *cpc; 3810 3811 event->pmu_ctx->rotate_necessary = 1; 3812 cpc = this_cpu_ptr(event->pmu_ctx->pmu->cpu_pmu_context); 3813 perf_mux_hrtimer_restart(cpc); 3814 group_update_userpage(event); 3815 } 3816 } 3817 3818 return 0; 3819} 3820 3821static void ctx_pinned_sched_in(struct perf_event_context *ctx, struct pmu *pmu) 3822{ 3823 struct perf_event_pmu_context *pmu_ctx; 3824 int can_add_hw = 1; 3825 3826 if (pmu) { 3827 visit_groups_merge(ctx, &ctx->pinned_groups, 3828 smp_processor_id(), pmu, 3829 merge_sched_in, &can_add_hw); 3830 } else { 3831 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) { 3832 can_add_hw = 1; 3833 visit_groups_merge(ctx, &ctx->pinned_groups, 3834 smp_processor_id(), pmu_ctx->pmu, 3835 merge_sched_in, &can_add_hw); 3836 } 3837 } 3838} 3839 3840static void ctx_flexible_sched_in(struct perf_event_context *ctx, struct pmu *pmu) 3841{ 3842 struct perf_event_pmu_context *pmu_ctx; 3843 int can_add_hw = 1; 3844 3845 if (pmu) { 3846 visit_groups_merge(ctx, &ctx->flexible_groups, 3847 smp_processor_id(), pmu, 3848 merge_sched_in, &can_add_hw); 3849 } else { 3850 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) { 3851 can_add_hw = 1; 3852 visit_groups_merge(ctx, &ctx->flexible_groups, 3853 smp_processor_id(), pmu_ctx->pmu, 3854 merge_sched_in, &can_add_hw); 3855 } 3856 } 3857} 3858 3859static void __pmu_ctx_sched_in(struct perf_event_context *ctx, struct pmu *pmu) 3860{ 3861 ctx_flexible_sched_in(ctx, pmu); 3862} 3863 3864static void 3865ctx_sched_in(struct perf_event_context *ctx, enum event_type_t event_type) 3866{ 3867 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 3868 int is_active = ctx->is_active; 3869 3870 lockdep_assert_held(&ctx->lock); 3871 3872 if (likely(!ctx->nr_events)) 3873 return; 3874 3875 if (!(is_active & EVENT_TIME)) { 3876 /* start ctx time */ 3877 __update_context_time(ctx, false); 3878 perf_cgroup_set_timestamp(cpuctx); 3879 /* 3880 * CPU-release for the below ->is_active store, 3881 * see __load_acquire() in perf_event_time_now() 3882 */ 3883 barrier(); 3884 } 3885 3886 ctx->is_active |= (event_type | EVENT_TIME); 3887 if (ctx->task) { 3888 if (!is_active) 3889 cpuctx->task_ctx = ctx; 3890 else 3891 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 3892 } 3893 3894 is_active ^= ctx->is_active; /* changed bits */ 3895 3896 /* 3897 * First go through the list and put on any pinned groups 3898 * in order to give them the best chance of going on. 3899 */ 3900 if (is_active & EVENT_PINNED) 3901 ctx_pinned_sched_in(ctx, NULL); 3902 3903 /* Then walk through the lower prio flexible groups */ 3904 if (is_active & EVENT_FLEXIBLE) 3905 ctx_flexible_sched_in(ctx, NULL); 3906} 3907 3908static void perf_event_context_sched_in(struct task_struct *task) 3909{ 3910 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 3911 struct perf_event_context *ctx; 3912 3913 rcu_read_lock(); 3914 ctx = rcu_dereference(task->perf_event_ctxp); 3915 if (!ctx) 3916 goto rcu_unlock; 3917 3918 if (cpuctx->task_ctx == ctx) { 3919 perf_ctx_lock(cpuctx, ctx); 3920 perf_ctx_disable(ctx); 3921 3922 perf_ctx_sched_task_cb(ctx, true); 3923 3924 perf_ctx_enable(ctx); 3925 perf_ctx_unlock(cpuctx, ctx); 3926 goto rcu_unlock; 3927 } 3928 3929 perf_ctx_lock(cpuctx, ctx); 3930 /* 3931 * We must check ctx->nr_events while holding ctx->lock, such 3932 * that we serialize against perf_install_in_context(). 3933 */ 3934 if (!ctx->nr_events) 3935 goto unlock; 3936 3937 perf_ctx_disable(ctx); 3938 /* 3939 * We want to keep the following priority order: 3940 * cpu pinned (that don't need to move), task pinned, 3941 * cpu flexible, task flexible. 3942 * 3943 * However, if task's ctx is not carrying any pinned 3944 * events, no need to flip the cpuctx's events around. 3945 */ 3946 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) { 3947 perf_ctx_disable(&cpuctx->ctx); 3948 ctx_sched_out(&cpuctx->ctx, EVENT_FLEXIBLE); 3949 } 3950 3951 perf_event_sched_in(cpuctx, ctx); 3952 3953 perf_ctx_sched_task_cb(cpuctx->task_ctx, true); 3954 3955 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) 3956 perf_ctx_enable(&cpuctx->ctx); 3957 3958 perf_ctx_enable(ctx); 3959 3960unlock: 3961 perf_ctx_unlock(cpuctx, ctx); 3962rcu_unlock: 3963 rcu_read_unlock(); 3964} 3965 3966/* 3967 * Called from scheduler to add the events of the current task 3968 * with interrupts disabled. 3969 * 3970 * We restore the event value and then enable it. 3971 * 3972 * This does not protect us against NMI, but enable() 3973 * sets the enabled bit in the control field of event _before_ 3974 * accessing the event control register. If a NMI hits, then it will 3975 * keep the event running. 3976 */ 3977void __perf_event_task_sched_in(struct task_struct *prev, 3978 struct task_struct *task) 3979{ 3980 perf_event_context_sched_in(task); 3981 3982 if (atomic_read(&nr_switch_events)) 3983 perf_event_switch(task, prev, true); 3984 3985 if (__this_cpu_read(perf_sched_cb_usages)) 3986 perf_pmu_sched_task(prev, task, true); 3987} 3988 3989static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count) 3990{ 3991 u64 frequency = event->attr.sample_freq; 3992 u64 sec = NSEC_PER_SEC; 3993 u64 divisor, dividend; 3994 3995 int count_fls, nsec_fls, frequency_fls, sec_fls; 3996 3997 count_fls = fls64(count); 3998 nsec_fls = fls64(nsec); 3999 frequency_fls = fls64(frequency); 4000 sec_fls = 30; 4001 4002 /* 4003 * We got @count in @nsec, with a target of sample_freq HZ 4004 * the target period becomes: 4005 * 4006 * @count * 10^9 4007 * period = ------------------- 4008 * @nsec * sample_freq 4009 * 4010 */ 4011 4012 /* 4013 * Reduce accuracy by one bit such that @a and @b converge 4014 * to a similar magnitude. 4015 */ 4016#define REDUCE_FLS(a, b) \ 4017do { \ 4018 if (a##_fls > b##_fls) { \ 4019 a >>= 1; \ 4020 a##_fls--; \ 4021 } else { \ 4022 b >>= 1; \ 4023 b##_fls--; \ 4024 } \ 4025} while (0) 4026 4027 /* 4028 * Reduce accuracy until either term fits in a u64, then proceed with 4029 * the other, so that finally we can do a u64/u64 division. 4030 */ 4031 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) { 4032 REDUCE_FLS(nsec, frequency); 4033 REDUCE_FLS(sec, count); 4034 } 4035 4036 if (count_fls + sec_fls > 64) { 4037 divisor = nsec * frequency; 4038 4039 while (count_fls + sec_fls > 64) { 4040 REDUCE_FLS(count, sec); 4041 divisor >>= 1; 4042 } 4043 4044 dividend = count * sec; 4045 } else { 4046 dividend = count * sec; 4047 4048 while (nsec_fls + frequency_fls > 64) { 4049 REDUCE_FLS(nsec, frequency); 4050 dividend >>= 1; 4051 } 4052 4053 divisor = nsec * frequency; 4054 } 4055 4056 if (!divisor) 4057 return dividend; 4058 4059 return div64_u64(dividend, divisor); 4060} 4061 4062static DEFINE_PER_CPU(int, perf_throttled_count); 4063static DEFINE_PER_CPU(u64, perf_throttled_seq); 4064 4065static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable) 4066{ 4067 struct hw_perf_event *hwc = &event->hw; 4068 s64 period, sample_period; 4069 s64 delta; 4070 4071 period = perf_calculate_period(event, nsec, count); 4072 4073 delta = (s64)(period - hwc->sample_period); 4074 delta = (delta + 7) / 8; /* low pass filter */ 4075 4076 sample_period = hwc->sample_period + delta; 4077 4078 if (!sample_period) 4079 sample_period = 1; 4080 4081 hwc->sample_period = sample_period; 4082 4083 if (local64_read(&hwc->period_left) > 8*sample_period) { 4084 if (disable) 4085 event->pmu->stop(event, PERF_EF_UPDATE); 4086 4087 local64_set(&hwc->period_left, 0); 4088 4089 if (disable) 4090 event->pmu->start(event, PERF_EF_RELOAD); 4091 } 4092} 4093 4094/* 4095 * combine freq adjustment with unthrottling to avoid two passes over the 4096 * events. At the same time, make sure, having freq events does not change 4097 * the rate of unthrottling as that would introduce bias. 4098 */ 4099static void 4100perf_adjust_freq_unthr_context(struct perf_event_context *ctx, bool unthrottle) 4101{ 4102 struct perf_event *event; 4103 struct hw_perf_event *hwc; 4104 u64 now, period = TICK_NSEC; 4105 s64 delta; 4106 4107 /* 4108 * only need to iterate over all events iff: 4109 * - context have events in frequency mode (needs freq adjust) 4110 * - there are events to unthrottle on this cpu 4111 */ 4112 if (!(ctx->nr_freq || unthrottle)) 4113 return; 4114 4115 raw_spin_lock(&ctx->lock); 4116 4117 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 4118 if (event->state != PERF_EVENT_STATE_ACTIVE) 4119 continue; 4120 4121 // XXX use visit thingy to avoid the -1,cpu match 4122 if (!event_filter_match(event)) 4123 continue; 4124 4125 perf_pmu_disable(event->pmu); 4126 4127 hwc = &event->hw; 4128 4129 if (hwc->interrupts == MAX_INTERRUPTS) { 4130 hwc->interrupts = 0; 4131 perf_log_throttle(event, 1); 4132 event->pmu->start(event, 0); 4133 } 4134 4135 if (!event->attr.freq || !event->attr.sample_freq) 4136 goto next; 4137 4138 /* 4139 * stop the event and update event->count 4140 */ 4141 event->pmu->stop(event, PERF_EF_UPDATE); 4142 4143 now = local64_read(&event->count); 4144 delta = now - hwc->freq_count_stamp; 4145 hwc->freq_count_stamp = now; 4146 4147 /* 4148 * restart the event 4149 * reload only if value has changed 4150 * we have stopped the event so tell that 4151 * to perf_adjust_period() to avoid stopping it 4152 * twice. 4153 */ 4154 if (delta > 0) 4155 perf_adjust_period(event, period, delta, false); 4156 4157 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0); 4158 next: 4159 perf_pmu_enable(event->pmu); 4160 } 4161 4162 raw_spin_unlock(&ctx->lock); 4163} 4164 4165/* 4166 * Move @event to the tail of the @ctx's elegible events. 4167 */ 4168static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event) 4169{ 4170 /* 4171 * Rotate the first entry last of non-pinned groups. Rotation might be 4172 * disabled by the inheritance code. 4173 */ 4174 if (ctx->rotate_disable) 4175 return; 4176 4177 perf_event_groups_delete(&ctx->flexible_groups, event); 4178 perf_event_groups_insert(&ctx->flexible_groups, event); 4179} 4180 4181/* pick an event from the flexible_groups to rotate */ 4182static inline struct perf_event * 4183ctx_event_to_rotate(struct perf_event_pmu_context *pmu_ctx) 4184{ 4185 struct perf_event *event; 4186 struct rb_node *node; 4187 struct rb_root *tree; 4188 struct __group_key key = { 4189 .pmu = pmu_ctx->pmu, 4190 }; 4191 4192 /* pick the first active flexible event */ 4193 event = list_first_entry_or_null(&pmu_ctx->flexible_active, 4194 struct perf_event, active_list); 4195 if (event) 4196 goto out; 4197 4198 /* if no active flexible event, pick the first event */ 4199 tree = &pmu_ctx->ctx->flexible_groups.tree; 4200 4201 if (!pmu_ctx->ctx->task) { 4202 key.cpu = smp_processor_id(); 4203 4204 node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup); 4205 if (node) 4206 event = __node_2_pe(node); 4207 goto out; 4208 } 4209 4210 key.cpu = -1; 4211 node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup); 4212 if (node) { 4213 event = __node_2_pe(node); 4214 goto out; 4215 } 4216 4217 key.cpu = smp_processor_id(); 4218 node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup); 4219 if (node) 4220 event = __node_2_pe(node); 4221 4222out: 4223 /* 4224 * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in() 4225 * finds there are unschedulable events, it will set it again. 4226 */ 4227 pmu_ctx->rotate_necessary = 0; 4228 4229 return event; 4230} 4231 4232static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc) 4233{ 4234 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 4235 struct perf_event_pmu_context *cpu_epc, *task_epc = NULL; 4236 struct perf_event *cpu_event = NULL, *task_event = NULL; 4237 int cpu_rotate, task_rotate; 4238 struct pmu *pmu; 4239 4240 /* 4241 * Since we run this from IRQ context, nobody can install new 4242 * events, thus the event count values are stable. 4243 */ 4244 4245 cpu_epc = &cpc->epc; 4246 pmu = cpu_epc->pmu; 4247 task_epc = cpc->task_epc; 4248 4249 cpu_rotate = cpu_epc->rotate_necessary; 4250 task_rotate = task_epc ? task_epc->rotate_necessary : 0; 4251 4252 if (!(cpu_rotate || task_rotate)) 4253 return false; 4254 4255 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 4256 perf_pmu_disable(pmu); 4257 4258 if (task_rotate) 4259 task_event = ctx_event_to_rotate(task_epc); 4260 if (cpu_rotate) 4261 cpu_event = ctx_event_to_rotate(cpu_epc); 4262 4263 /* 4264 * As per the order given at ctx_resched() first 'pop' task flexible 4265 * and then, if needed CPU flexible. 4266 */ 4267 if (task_event || (task_epc && cpu_event)) { 4268 update_context_time(task_epc->ctx); 4269 __pmu_ctx_sched_out(task_epc, EVENT_FLEXIBLE); 4270 } 4271 4272 if (cpu_event) { 4273 update_context_time(&cpuctx->ctx); 4274 __pmu_ctx_sched_out(cpu_epc, EVENT_FLEXIBLE); 4275 rotate_ctx(&cpuctx->ctx, cpu_event); 4276 __pmu_ctx_sched_in(&cpuctx->ctx, pmu); 4277 } 4278 4279 if (task_event) 4280 rotate_ctx(task_epc->ctx, task_event); 4281 4282 if (task_event || (task_epc && cpu_event)) 4283 __pmu_ctx_sched_in(task_epc->ctx, pmu); 4284 4285 perf_pmu_enable(pmu); 4286 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 4287 4288 return true; 4289} 4290 4291void perf_event_task_tick(void) 4292{ 4293 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 4294 struct perf_event_context *ctx; 4295 int throttled; 4296 4297 lockdep_assert_irqs_disabled(); 4298 4299 __this_cpu_inc(perf_throttled_seq); 4300 throttled = __this_cpu_xchg(perf_throttled_count, 0); 4301 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 4302 4303 perf_adjust_freq_unthr_context(&cpuctx->ctx, !!throttled); 4304 4305 rcu_read_lock(); 4306 ctx = rcu_dereference(current->perf_event_ctxp); 4307 if (ctx) 4308 perf_adjust_freq_unthr_context(ctx, !!throttled); 4309 rcu_read_unlock(); 4310} 4311 4312static int event_enable_on_exec(struct perf_event *event, 4313 struct perf_event_context *ctx) 4314{ 4315 if (!event->attr.enable_on_exec) 4316 return 0; 4317 4318 event->attr.enable_on_exec = 0; 4319 if (event->state >= PERF_EVENT_STATE_INACTIVE) 4320 return 0; 4321 4322 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 4323 4324 return 1; 4325} 4326 4327/* 4328 * Enable all of a task's events that have been marked enable-on-exec. 4329 * This expects task == current. 4330 */ 4331static void perf_event_enable_on_exec(struct perf_event_context *ctx) 4332{ 4333 struct perf_event_context *clone_ctx = NULL; 4334 enum event_type_t event_type = 0; 4335 struct perf_cpu_context *cpuctx; 4336 struct perf_event *event; 4337 unsigned long flags; 4338 int enabled = 0; 4339 4340 local_irq_save(flags); 4341 if (WARN_ON_ONCE(current->perf_event_ctxp != ctx)) 4342 goto out; 4343 4344 if (!ctx->nr_events) 4345 goto out; 4346 4347 cpuctx = this_cpu_ptr(&perf_cpu_context); 4348 perf_ctx_lock(cpuctx, ctx); 4349 ctx_sched_out(ctx, EVENT_TIME); 4350 4351 list_for_each_entry(event, &ctx->event_list, event_entry) { 4352 enabled |= event_enable_on_exec(event, ctx); 4353 event_type |= get_event_type(event); 4354 } 4355 4356 /* 4357 * Unclone and reschedule this context if we enabled any event. 4358 */ 4359 if (enabled) { 4360 clone_ctx = unclone_ctx(ctx); 4361 ctx_resched(cpuctx, ctx, event_type); 4362 } else { 4363 ctx_sched_in(ctx, EVENT_TIME); 4364 } 4365 perf_ctx_unlock(cpuctx, ctx); 4366 4367out: 4368 local_irq_restore(flags); 4369 4370 if (clone_ctx) 4371 put_ctx(clone_ctx); 4372} 4373 4374static void perf_remove_from_owner(struct perf_event *event); 4375static void perf_event_exit_event(struct perf_event *event, 4376 struct perf_event_context *ctx); 4377 4378/* 4379 * Removes all events from the current task that have been marked 4380 * remove-on-exec, and feeds their values back to parent events. 4381 */ 4382static void perf_event_remove_on_exec(struct perf_event_context *ctx) 4383{ 4384 struct perf_event_context *clone_ctx = NULL; 4385 struct perf_event *event, *next; 4386 unsigned long flags; 4387 bool modified = false; 4388 4389 mutex_lock(&ctx->mutex); 4390 4391 if (WARN_ON_ONCE(ctx->task != current)) 4392 goto unlock; 4393 4394 list_for_each_entry_safe(event, next, &ctx->event_list, event_entry) { 4395 if (!event->attr.remove_on_exec) 4396 continue; 4397 4398 if (!is_kernel_event(event)) 4399 perf_remove_from_owner(event); 4400 4401 modified = true; 4402 4403 perf_event_exit_event(event, ctx); 4404 } 4405 4406 raw_spin_lock_irqsave(&ctx->lock, flags); 4407 if (modified) 4408 clone_ctx = unclone_ctx(ctx); 4409 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4410 4411unlock: 4412 mutex_unlock(&ctx->mutex); 4413 4414 if (clone_ctx) 4415 put_ctx(clone_ctx); 4416} 4417 4418struct perf_read_data { 4419 struct perf_event *event; 4420 bool group; 4421 int ret; 4422}; 4423 4424static int __perf_event_read_cpu(struct perf_event *event, int event_cpu) 4425{ 4426 u16 local_pkg, event_pkg; 4427 4428 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) { 4429 int local_cpu = smp_processor_id(); 4430 4431 event_pkg = topology_physical_package_id(event_cpu); 4432 local_pkg = topology_physical_package_id(local_cpu); 4433 4434 if (event_pkg == local_pkg) 4435 return local_cpu; 4436 } 4437 4438 return event_cpu; 4439} 4440 4441/* 4442 * Cross CPU call to read the hardware event 4443 */ 4444static void __perf_event_read(void *info) 4445{ 4446 struct perf_read_data *data = info; 4447 struct perf_event *sub, *event = data->event; 4448 struct perf_event_context *ctx = event->ctx; 4449 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 4450 struct pmu *pmu = event->pmu; 4451 4452 /* 4453 * If this is a task context, we need to check whether it is 4454 * the current task context of this cpu. If not it has been 4455 * scheduled out before the smp call arrived. In that case 4456 * event->count would have been updated to a recent sample 4457 * when the event was scheduled out. 4458 */ 4459 if (ctx->task && cpuctx->task_ctx != ctx) 4460 return; 4461 4462 raw_spin_lock(&ctx->lock); 4463 if (ctx->is_active & EVENT_TIME) { 4464 update_context_time(ctx); 4465 update_cgrp_time_from_event(event); 4466 } 4467 4468 perf_event_update_time(event); 4469 if (data->group) 4470 perf_event_update_sibling_time(event); 4471 4472 if (event->state != PERF_EVENT_STATE_ACTIVE) 4473 goto unlock; 4474 4475 if (!data->group) { 4476 pmu->read(event); 4477 data->ret = 0; 4478 goto unlock; 4479 } 4480 4481 pmu->start_txn(pmu, PERF_PMU_TXN_READ); 4482 4483 pmu->read(event); 4484 4485 for_each_sibling_event(sub, event) { 4486 if (sub->state == PERF_EVENT_STATE_ACTIVE) { 4487 /* 4488 * Use sibling's PMU rather than @event's since 4489 * sibling could be on different (eg: software) PMU. 4490 */ 4491 sub->pmu->read(sub); 4492 } 4493 } 4494 4495 data->ret = pmu->commit_txn(pmu); 4496 4497unlock: 4498 raw_spin_unlock(&ctx->lock); 4499} 4500 4501static inline u64 perf_event_count(struct perf_event *event) 4502{ 4503 return local64_read(&event->count) + atomic64_read(&event->child_count); 4504} 4505 4506static void calc_timer_values(struct perf_event *event, 4507 u64 *now, 4508 u64 *enabled, 4509 u64 *running) 4510{ 4511 u64 ctx_time; 4512 4513 *now = perf_clock(); 4514 ctx_time = perf_event_time_now(event, *now); 4515 __perf_update_times(event, ctx_time, enabled, running); 4516} 4517 4518/* 4519 * NMI-safe method to read a local event, that is an event that 4520 * is: 4521 * - either for the current task, or for this CPU 4522 * - does not have inherit set, for inherited task events 4523 * will not be local and we cannot read them atomically 4524 * - must not have a pmu::count method 4525 */ 4526int perf_event_read_local(struct perf_event *event, u64 *value, 4527 u64 *enabled, u64 *running) 4528{ 4529 unsigned long flags; 4530 int ret = 0; 4531 4532 /* 4533 * Disabling interrupts avoids all counter scheduling (context 4534 * switches, timer based rotation and IPIs). 4535 */ 4536 local_irq_save(flags); 4537 4538 /* 4539 * It must not be an event with inherit set, we cannot read 4540 * all child counters from atomic context. 4541 */ 4542 if (event->attr.inherit) { 4543 ret = -EOPNOTSUPP; 4544 goto out; 4545 } 4546 4547 /* If this is a per-task event, it must be for current */ 4548 if ((event->attach_state & PERF_ATTACH_TASK) && 4549 event->hw.target != current) { 4550 ret = -EINVAL; 4551 goto out; 4552 } 4553 4554 /* If this is a per-CPU event, it must be for this CPU */ 4555 if (!(event->attach_state & PERF_ATTACH_TASK) && 4556 event->cpu != smp_processor_id()) { 4557 ret = -EINVAL; 4558 goto out; 4559 } 4560 4561 /* If this is a pinned event it must be running on this CPU */ 4562 if (event->attr.pinned && event->oncpu != smp_processor_id()) { 4563 ret = -EBUSY; 4564 goto out; 4565 } 4566 4567 /* 4568 * If the event is currently on this CPU, its either a per-task event, 4569 * or local to this CPU. Furthermore it means its ACTIVE (otherwise 4570 * oncpu == -1). 4571 */ 4572 if (event->oncpu == smp_processor_id()) 4573 event->pmu->read(event); 4574 4575 *value = local64_read(&event->count); 4576 if (enabled || running) { 4577 u64 __enabled, __running, __now; 4578 4579 calc_timer_values(event, &__now, &__enabled, &__running); 4580 if (enabled) 4581 *enabled = __enabled; 4582 if (running) 4583 *running = __running; 4584 } 4585out: 4586 local_irq_restore(flags); 4587 4588 return ret; 4589} 4590 4591static int perf_event_read(struct perf_event *event, bool group) 4592{ 4593 enum perf_event_state state = READ_ONCE(event->state); 4594 int event_cpu, ret = 0; 4595 4596 /* 4597 * If event is enabled and currently active on a CPU, update the 4598 * value in the event structure: 4599 */ 4600again: 4601 if (state == PERF_EVENT_STATE_ACTIVE) { 4602 struct perf_read_data data; 4603 4604 /* 4605 * Orders the ->state and ->oncpu loads such that if we see 4606 * ACTIVE we must also see the right ->oncpu. 4607 * 4608 * Matches the smp_wmb() from event_sched_in(). 4609 */ 4610 smp_rmb(); 4611 4612 event_cpu = READ_ONCE(event->oncpu); 4613 if ((unsigned)event_cpu >= nr_cpu_ids) 4614 return 0; 4615 4616 data = (struct perf_read_data){ 4617 .event = event, 4618 .group = group, 4619 .ret = 0, 4620 }; 4621 4622 preempt_disable(); 4623 event_cpu = __perf_event_read_cpu(event, event_cpu); 4624 4625 /* 4626 * Purposely ignore the smp_call_function_single() return 4627 * value. 4628 * 4629 * If event_cpu isn't a valid CPU it means the event got 4630 * scheduled out and that will have updated the event count. 4631 * 4632 * Therefore, either way, we'll have an up-to-date event count 4633 * after this. 4634 */ 4635 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1); 4636 preempt_enable(); 4637 ret = data.ret; 4638 4639 } else if (state == PERF_EVENT_STATE_INACTIVE) { 4640 struct perf_event_context *ctx = event->ctx; 4641 unsigned long flags; 4642 4643 raw_spin_lock_irqsave(&ctx->lock, flags); 4644 state = event->state; 4645 if (state != PERF_EVENT_STATE_INACTIVE) { 4646 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4647 goto again; 4648 } 4649 4650 /* 4651 * May read while context is not active (e.g., thread is 4652 * blocked), in that case we cannot update context time 4653 */ 4654 if (ctx->is_active & EVENT_TIME) { 4655 update_context_time(ctx); 4656 update_cgrp_time_from_event(event); 4657 } 4658 4659 perf_event_update_time(event); 4660 if (group) 4661 perf_event_update_sibling_time(event); 4662 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4663 } 4664 4665 return ret; 4666} 4667 4668/* 4669 * Initialize the perf_event context in a task_struct: 4670 */ 4671static void __perf_event_init_context(struct perf_event_context *ctx) 4672{ 4673 raw_spin_lock_init(&ctx->lock); 4674 mutex_init(&ctx->mutex); 4675 INIT_LIST_HEAD(&ctx->pmu_ctx_list); 4676 perf_event_groups_init(&ctx->pinned_groups); 4677 perf_event_groups_init(&ctx->flexible_groups); 4678 INIT_LIST_HEAD(&ctx->event_list); 4679 refcount_set(&ctx->refcount, 1); 4680} 4681 4682static void 4683__perf_init_event_pmu_context(struct perf_event_pmu_context *epc, struct pmu *pmu) 4684{ 4685 epc->pmu = pmu; 4686 INIT_LIST_HEAD(&epc->pmu_ctx_entry); 4687 INIT_LIST_HEAD(&epc->pinned_active); 4688 INIT_LIST_HEAD(&epc->flexible_active); 4689 atomic_set(&epc->refcount, 1); 4690} 4691 4692static struct perf_event_context * 4693alloc_perf_context(struct task_struct *task) 4694{ 4695 struct perf_event_context *ctx; 4696 4697 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL); 4698 if (!ctx) 4699 return NULL; 4700 4701 __perf_event_init_context(ctx); 4702 if (task) 4703 ctx->task = get_task_struct(task); 4704 4705 return ctx; 4706} 4707 4708static struct task_struct * 4709find_lively_task_by_vpid(pid_t vpid) 4710{ 4711 struct task_struct *task; 4712 4713 rcu_read_lock(); 4714 if (!vpid) 4715 task = current; 4716 else 4717 task = find_task_by_vpid(vpid); 4718 if (task) 4719 get_task_struct(task); 4720 rcu_read_unlock(); 4721 4722 if (!task) 4723 return ERR_PTR(-ESRCH); 4724 4725 return task; 4726} 4727 4728/* 4729 * Returns a matching context with refcount and pincount. 4730 */ 4731static struct perf_event_context * 4732find_get_context(struct task_struct *task, struct perf_event *event) 4733{ 4734 struct perf_event_context *ctx, *clone_ctx = NULL; 4735 struct perf_cpu_context *cpuctx; 4736 unsigned long flags; 4737 int err; 4738 4739 if (!task) { 4740 /* Must be root to operate on a CPU event: */ 4741 err = perf_allow_cpu(&event->attr); 4742 if (err) 4743 return ERR_PTR(err); 4744 4745 cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu); 4746 ctx = &cpuctx->ctx; 4747 get_ctx(ctx); 4748 raw_spin_lock_irqsave(&ctx->lock, flags); 4749 ++ctx->pin_count; 4750 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4751 4752 return ctx; 4753 } 4754 4755 err = -EINVAL; 4756retry: 4757 ctx = perf_lock_task_context(task, &flags); 4758 if (ctx) { 4759 clone_ctx = unclone_ctx(ctx); 4760 ++ctx->pin_count; 4761 4762 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4763 4764 if (clone_ctx) 4765 put_ctx(clone_ctx); 4766 } else { 4767 ctx = alloc_perf_context(task); 4768 err = -ENOMEM; 4769 if (!ctx) 4770 goto errout; 4771 4772 err = 0; 4773 mutex_lock(&task->perf_event_mutex); 4774 /* 4775 * If it has already passed perf_event_exit_task(). 4776 * we must see PF_EXITING, it takes this mutex too. 4777 */ 4778 if (task->flags & PF_EXITING) 4779 err = -ESRCH; 4780 else if (task->perf_event_ctxp) 4781 err = -EAGAIN; 4782 else { 4783 get_ctx(ctx); 4784 ++ctx->pin_count; 4785 rcu_assign_pointer(task->perf_event_ctxp, ctx); 4786 } 4787 mutex_unlock(&task->perf_event_mutex); 4788 4789 if (unlikely(err)) { 4790 put_ctx(ctx); 4791 4792 if (err == -EAGAIN) 4793 goto retry; 4794 goto errout; 4795 } 4796 } 4797 4798 return ctx; 4799 4800errout: 4801 return ERR_PTR(err); 4802} 4803 4804static struct perf_event_pmu_context * 4805find_get_pmu_context(struct pmu *pmu, struct perf_event_context *ctx, 4806 struct perf_event *event) 4807{ 4808 struct perf_event_pmu_context *new = NULL, *epc; 4809 void *task_ctx_data = NULL; 4810 4811 if (!ctx->task) { 4812 struct perf_cpu_pmu_context *cpc; 4813 4814 cpc = per_cpu_ptr(pmu->cpu_pmu_context, event->cpu); 4815 epc = &cpc->epc; 4816 raw_spin_lock_irq(&ctx->lock); 4817 if (!epc->ctx) { 4818 atomic_set(&epc->refcount, 1); 4819 epc->embedded = 1; 4820 list_add(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list); 4821 epc->ctx = ctx; 4822 } else { 4823 WARN_ON_ONCE(epc->ctx != ctx); 4824 atomic_inc(&epc->refcount); 4825 } 4826 raw_spin_unlock_irq(&ctx->lock); 4827 return epc; 4828 } 4829 4830 new = kzalloc(sizeof(*epc), GFP_KERNEL); 4831 if (!new) 4832 return ERR_PTR(-ENOMEM); 4833 4834 if (event->attach_state & PERF_ATTACH_TASK_DATA) { 4835 task_ctx_data = alloc_task_ctx_data(pmu); 4836 if (!task_ctx_data) { 4837 kfree(new); 4838 return ERR_PTR(-ENOMEM); 4839 } 4840 } 4841 4842 __perf_init_event_pmu_context(new, pmu); 4843 4844 /* 4845 * XXX 4846 * 4847 * lockdep_assert_held(&ctx->mutex); 4848 * 4849 * can't because perf_event_init_task() doesn't actually hold the 4850 * child_ctx->mutex. 4851 */ 4852 4853 raw_spin_lock_irq(&ctx->lock); 4854 list_for_each_entry(epc, &ctx->pmu_ctx_list, pmu_ctx_entry) { 4855 if (epc->pmu == pmu) { 4856 WARN_ON_ONCE(epc->ctx != ctx); 4857 atomic_inc(&epc->refcount); 4858 goto found_epc; 4859 } 4860 } 4861 4862 epc = new; 4863 new = NULL; 4864 4865 list_add(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list); 4866 epc->ctx = ctx; 4867 4868found_epc: 4869 if (task_ctx_data && !epc->task_ctx_data) { 4870 epc->task_ctx_data = task_ctx_data; 4871 task_ctx_data = NULL; 4872 ctx->nr_task_data++; 4873 } 4874 raw_spin_unlock_irq(&ctx->lock); 4875 4876 free_task_ctx_data(pmu, task_ctx_data); 4877 kfree(new); 4878 4879 return epc; 4880} 4881 4882static void get_pmu_ctx(struct perf_event_pmu_context *epc) 4883{ 4884 WARN_ON_ONCE(!atomic_inc_not_zero(&epc->refcount)); 4885} 4886 4887static void free_epc_rcu(struct rcu_head *head) 4888{ 4889 struct perf_event_pmu_context *epc = container_of(head, typeof(*epc), rcu_head); 4890 4891 kfree(epc->task_ctx_data); 4892 kfree(epc); 4893} 4894 4895static void put_pmu_ctx(struct perf_event_pmu_context *epc) 4896{ 4897 struct perf_event_context *ctx = epc->ctx; 4898 unsigned long flags; 4899 4900 /* 4901 * XXX 4902 * 4903 * lockdep_assert_held(&ctx->mutex); 4904 * 4905 * can't because of the call-site in _free_event()/put_event() 4906 * which isn't always called under ctx->mutex. 4907 */ 4908 if (!atomic_dec_and_raw_lock_irqsave(&epc->refcount, &ctx->lock, flags)) 4909 return; 4910 4911 WARN_ON_ONCE(list_empty(&epc->pmu_ctx_entry)); 4912 4913 list_del_init(&epc->pmu_ctx_entry); 4914 epc->ctx = NULL; 4915 4916 WARN_ON_ONCE(!list_empty(&epc->pinned_active)); 4917 WARN_ON_ONCE(!list_empty(&epc->flexible_active)); 4918 4919 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4920 4921 if (epc->embedded) 4922 return; 4923 4924 call_rcu(&epc->rcu_head, free_epc_rcu); 4925} 4926 4927static void perf_event_free_filter(struct perf_event *event); 4928 4929static void free_event_rcu(struct rcu_head *head) 4930{ 4931 struct perf_event *event = container_of(head, typeof(*event), rcu_head); 4932 4933 if (event->ns) 4934 put_pid_ns(event->ns); 4935 perf_event_free_filter(event); 4936 kmem_cache_free(perf_event_cache, event); 4937} 4938 4939static void ring_buffer_attach(struct perf_event *event, 4940 struct perf_buffer *rb); 4941 4942static void detach_sb_event(struct perf_event *event) 4943{ 4944 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 4945 4946 raw_spin_lock(&pel->lock); 4947 list_del_rcu(&event->sb_list); 4948 raw_spin_unlock(&pel->lock); 4949} 4950 4951static bool is_sb_event(struct perf_event *event) 4952{ 4953 struct perf_event_attr *attr = &event->attr; 4954 4955 if (event->parent) 4956 return false; 4957 4958 if (event->attach_state & PERF_ATTACH_TASK) 4959 return false; 4960 4961 if (attr->mmap || attr->mmap_data || attr->mmap2 || 4962 attr->comm || attr->comm_exec || 4963 attr->task || attr->ksymbol || 4964 attr->context_switch || attr->text_poke || 4965 attr->bpf_event) 4966 return true; 4967 return false; 4968} 4969 4970static void unaccount_pmu_sb_event(struct perf_event *event) 4971{ 4972 if (is_sb_event(event)) 4973 detach_sb_event(event); 4974} 4975 4976#ifdef CONFIG_NO_HZ_FULL 4977static DEFINE_SPINLOCK(nr_freq_lock); 4978#endif 4979 4980static void unaccount_freq_event_nohz(void) 4981{ 4982#ifdef CONFIG_NO_HZ_FULL 4983 spin_lock(&nr_freq_lock); 4984 if (atomic_dec_and_test(&nr_freq_events)) 4985 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS); 4986 spin_unlock(&nr_freq_lock); 4987#endif 4988} 4989 4990static void unaccount_freq_event(void) 4991{ 4992 if (tick_nohz_full_enabled()) 4993 unaccount_freq_event_nohz(); 4994 else 4995 atomic_dec(&nr_freq_events); 4996} 4997 4998static void unaccount_event(struct perf_event *event) 4999{ 5000 bool dec = false; 5001 5002 if (event->parent) 5003 return; 5004 5005 if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB)) 5006 dec = true; 5007 if (event->attr.mmap || event->attr.mmap_data) 5008 atomic_dec(&nr_mmap_events); 5009 if (event->attr.build_id) 5010 atomic_dec(&nr_build_id_events); 5011 if (event->attr.comm) 5012 atomic_dec(&nr_comm_events); 5013 if (event->attr.namespaces) 5014 atomic_dec(&nr_namespaces_events); 5015 if (event->attr.cgroup) 5016 atomic_dec(&nr_cgroup_events); 5017 if (event->attr.task) 5018 atomic_dec(&nr_task_events); 5019 if (event->attr.freq) 5020 unaccount_freq_event(); 5021 if (event->attr.context_switch) { 5022 dec = true; 5023 atomic_dec(&nr_switch_events); 5024 } 5025 if (is_cgroup_event(event)) 5026 dec = true; 5027 if (has_branch_stack(event)) 5028 dec = true; 5029 if (event->attr.ksymbol) 5030 atomic_dec(&nr_ksymbol_events); 5031 if (event->attr.bpf_event) 5032 atomic_dec(&nr_bpf_events); 5033 if (event->attr.text_poke) 5034 atomic_dec(&nr_text_poke_events); 5035 5036 if (dec) { 5037 if (!atomic_add_unless(&perf_sched_count, -1, 1)) 5038 schedule_delayed_work(&perf_sched_work, HZ); 5039 } 5040 5041 unaccount_pmu_sb_event(event); 5042} 5043 5044static void perf_sched_delayed(struct work_struct *work) 5045{ 5046 mutex_lock(&perf_sched_mutex); 5047 if (atomic_dec_and_test(&perf_sched_count)) 5048 static_branch_disable(&perf_sched_events); 5049 mutex_unlock(&perf_sched_mutex); 5050} 5051 5052/* 5053 * The following implement mutual exclusion of events on "exclusive" pmus 5054 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled 5055 * at a time, so we disallow creating events that might conflict, namely: 5056 * 5057 * 1) cpu-wide events in the presence of per-task events, 5058 * 2) per-task events in the presence of cpu-wide events, 5059 * 3) two matching events on the same perf_event_context. 5060 * 5061 * The former two cases are handled in the allocation path (perf_event_alloc(), 5062 * _free_event()), the latter -- before the first perf_install_in_context(). 5063 */ 5064static int exclusive_event_init(struct perf_event *event) 5065{ 5066 struct pmu *pmu = event->pmu; 5067 5068 if (!is_exclusive_pmu(pmu)) 5069 return 0; 5070 5071 /* 5072 * Prevent co-existence of per-task and cpu-wide events on the 5073 * same exclusive pmu. 5074 * 5075 * Negative pmu::exclusive_cnt means there are cpu-wide 5076 * events on this "exclusive" pmu, positive means there are 5077 * per-task events. 5078 * 5079 * Since this is called in perf_event_alloc() path, event::ctx 5080 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK 5081 * to mean "per-task event", because unlike other attach states it 5082 * never gets cleared. 5083 */ 5084 if (event->attach_state & PERF_ATTACH_TASK) { 5085 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt)) 5086 return -EBUSY; 5087 } else { 5088 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt)) 5089 return -EBUSY; 5090 } 5091 5092 return 0; 5093} 5094 5095static void exclusive_event_destroy(struct perf_event *event) 5096{ 5097 struct pmu *pmu = event->pmu; 5098 5099 if (!is_exclusive_pmu(pmu)) 5100 return; 5101 5102 /* see comment in exclusive_event_init() */ 5103 if (event->attach_state & PERF_ATTACH_TASK) 5104 atomic_dec(&pmu->exclusive_cnt); 5105 else 5106 atomic_inc(&pmu->exclusive_cnt); 5107} 5108 5109static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2) 5110{ 5111 if ((e1->pmu == e2->pmu) && 5112 (e1->cpu == e2->cpu || 5113 e1->cpu == -1 || 5114 e2->cpu == -1)) 5115 return true; 5116 return false; 5117} 5118 5119static bool exclusive_event_installable(struct perf_event *event, 5120 struct perf_event_context *ctx) 5121{ 5122 struct perf_event *iter_event; 5123 struct pmu *pmu = event->pmu; 5124 5125 lockdep_assert_held(&ctx->mutex); 5126 5127 if (!is_exclusive_pmu(pmu)) 5128 return true; 5129 5130 list_for_each_entry(iter_event, &ctx->event_list, event_entry) { 5131 if (exclusive_event_match(iter_event, event)) 5132 return false; 5133 } 5134 5135 return true; 5136} 5137 5138static void perf_addr_filters_splice(struct perf_event *event, 5139 struct list_head *head); 5140 5141static void _free_event(struct perf_event *event) 5142{ 5143 irq_work_sync(&event->pending_irq); 5144 5145 unaccount_event(event); 5146 5147 security_perf_event_free(event); 5148 5149 if (event->rb) { 5150 /* 5151 * Can happen when we close an event with re-directed output. 5152 * 5153 * Since we have a 0 refcount, perf_mmap_close() will skip 5154 * over us; possibly making our ring_buffer_put() the last. 5155 */ 5156 mutex_lock(&event->mmap_mutex); 5157 ring_buffer_attach(event, NULL); 5158 mutex_unlock(&event->mmap_mutex); 5159 } 5160 5161 if (is_cgroup_event(event)) 5162 perf_detach_cgroup(event); 5163 5164 if (!event->parent) { 5165 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 5166 put_callchain_buffers(); 5167 } 5168 5169 perf_event_free_bpf_prog(event); 5170 perf_addr_filters_splice(event, NULL); 5171 kfree(event->addr_filter_ranges); 5172 5173 if (event->destroy) 5174 event->destroy(event); 5175 5176 /* 5177 * Must be after ->destroy(), due to uprobe_perf_close() using 5178 * hw.target. 5179 */ 5180 if (event->hw.target) 5181 put_task_struct(event->hw.target); 5182 5183 if (event->pmu_ctx) 5184 put_pmu_ctx(event->pmu_ctx); 5185 5186 /* 5187 * perf_event_free_task() relies on put_ctx() being 'last', in particular 5188 * all task references must be cleaned up. 5189 */ 5190 if (event->ctx) 5191 put_ctx(event->ctx); 5192 5193 exclusive_event_destroy(event); 5194 module_put(event->pmu->module); 5195 5196 call_rcu(&event->rcu_head, free_event_rcu); 5197} 5198 5199/* 5200 * Used to free events which have a known refcount of 1, such as in error paths 5201 * where the event isn't exposed yet and inherited events. 5202 */ 5203static void free_event(struct perf_event *event) 5204{ 5205 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1, 5206 "unexpected event refcount: %ld; ptr=%p\n", 5207 atomic_long_read(&event->refcount), event)) { 5208 /* leak to avoid use-after-free */ 5209 return; 5210 } 5211 5212 _free_event(event); 5213} 5214 5215/* 5216 * Remove user event from the owner task. 5217 */ 5218static void perf_remove_from_owner(struct perf_event *event) 5219{ 5220 struct task_struct *owner; 5221 5222 rcu_read_lock(); 5223 /* 5224 * Matches the smp_store_release() in perf_event_exit_task(). If we 5225 * observe !owner it means the list deletion is complete and we can 5226 * indeed free this event, otherwise we need to serialize on 5227 * owner->perf_event_mutex. 5228 */ 5229 owner = READ_ONCE(event->owner); 5230 if (owner) { 5231 /* 5232 * Since delayed_put_task_struct() also drops the last 5233 * task reference we can safely take a new reference 5234 * while holding the rcu_read_lock(). 5235 */ 5236 get_task_struct(owner); 5237 } 5238 rcu_read_unlock(); 5239 5240 if (owner) { 5241 /* 5242 * If we're here through perf_event_exit_task() we're already 5243 * holding ctx->mutex which would be an inversion wrt. the 5244 * normal lock order. 5245 * 5246 * However we can safely take this lock because its the child 5247 * ctx->mutex. 5248 */ 5249 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING); 5250 5251 /* 5252 * We have to re-check the event->owner field, if it is cleared 5253 * we raced with perf_event_exit_task(), acquiring the mutex 5254 * ensured they're done, and we can proceed with freeing the 5255 * event. 5256 */ 5257 if (event->owner) { 5258 list_del_init(&event->owner_entry); 5259 smp_store_release(&event->owner, NULL); 5260 } 5261 mutex_unlock(&owner->perf_event_mutex); 5262 put_task_struct(owner); 5263 } 5264} 5265 5266static void put_event(struct perf_event *event) 5267{ 5268 if (!atomic_long_dec_and_test(&event->refcount)) 5269 return; 5270 5271 _free_event(event); 5272} 5273 5274/* 5275 * Kill an event dead; while event:refcount will preserve the event 5276 * object, it will not preserve its functionality. Once the last 'user' 5277 * gives up the object, we'll destroy the thing. 5278 */ 5279int perf_event_release_kernel(struct perf_event *event) 5280{ 5281 struct perf_event_context *ctx = event->ctx; 5282 struct perf_event *child, *tmp; 5283 LIST_HEAD(free_list); 5284 5285 /* 5286 * If we got here through err_alloc: free_event(event); we will not 5287 * have attached to a context yet. 5288 */ 5289 if (!ctx) { 5290 WARN_ON_ONCE(event->attach_state & 5291 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP)); 5292 goto no_ctx; 5293 } 5294 5295 if (!is_kernel_event(event)) 5296 perf_remove_from_owner(event); 5297 5298 ctx = perf_event_ctx_lock(event); 5299 WARN_ON_ONCE(ctx->parent_ctx); 5300 5301 /* 5302 * Mark this event as STATE_DEAD, there is no external reference to it 5303 * anymore. 5304 * 5305 * Anybody acquiring event->child_mutex after the below loop _must_ 5306 * also see this, most importantly inherit_event() which will avoid 5307 * placing more children on the list. 5308 * 5309 * Thus this guarantees that we will in fact observe and kill _ALL_ 5310 * child events. 5311 */ 5312 perf_remove_from_context(event, DETACH_GROUP|DETACH_DEAD); 5313 5314 perf_event_ctx_unlock(event, ctx); 5315 5316again: 5317 mutex_lock(&event->child_mutex); 5318 list_for_each_entry(child, &event->child_list, child_list) { 5319 5320 /* 5321 * Cannot change, child events are not migrated, see the 5322 * comment with perf_event_ctx_lock_nested(). 5323 */ 5324 ctx = READ_ONCE(child->ctx); 5325 /* 5326 * Since child_mutex nests inside ctx::mutex, we must jump 5327 * through hoops. We start by grabbing a reference on the ctx. 5328 * 5329 * Since the event cannot get freed while we hold the 5330 * child_mutex, the context must also exist and have a !0 5331 * reference count. 5332 */ 5333 get_ctx(ctx); 5334 5335 /* 5336 * Now that we have a ctx ref, we can drop child_mutex, and 5337 * acquire ctx::mutex without fear of it going away. Then we 5338 * can re-acquire child_mutex. 5339 */ 5340 mutex_unlock(&event->child_mutex); 5341 mutex_lock(&ctx->mutex); 5342 mutex_lock(&event->child_mutex); 5343 5344 /* 5345 * Now that we hold ctx::mutex and child_mutex, revalidate our 5346 * state, if child is still the first entry, it didn't get freed 5347 * and we can continue doing so. 5348 */ 5349 tmp = list_first_entry_or_null(&event->child_list, 5350 struct perf_event, child_list); 5351 if (tmp == child) { 5352 perf_remove_from_context(child, DETACH_GROUP); 5353 list_move(&child->child_list, &free_list); 5354 /* 5355 * This matches the refcount bump in inherit_event(); 5356 * this can't be the last reference. 5357 */ 5358 put_event(event); 5359 } 5360 5361 mutex_unlock(&event->child_mutex); 5362 mutex_unlock(&ctx->mutex); 5363 put_ctx(ctx); 5364 goto again; 5365 } 5366 mutex_unlock(&event->child_mutex); 5367 5368 list_for_each_entry_safe(child, tmp, &free_list, child_list) { 5369 void *var = &child->ctx->refcount; 5370 5371 list_del(&child->child_list); 5372 free_event(child); 5373 5374 /* 5375 * Wake any perf_event_free_task() waiting for this event to be 5376 * freed. 5377 */ 5378 smp_mb(); /* pairs with wait_var_event() */ 5379 wake_up_var(var); 5380 } 5381 5382no_ctx: 5383 put_event(event); /* Must be the 'last' reference */ 5384 return 0; 5385} 5386EXPORT_SYMBOL_GPL(perf_event_release_kernel); 5387 5388/* 5389 * Called when the last reference to the file is gone. 5390 */ 5391static int perf_release(struct inode *inode, struct file *file) 5392{ 5393 perf_event_release_kernel(file->private_data); 5394 return 0; 5395} 5396 5397static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 5398{ 5399 struct perf_event *child; 5400 u64 total = 0; 5401 5402 *enabled = 0; 5403 *running = 0; 5404 5405 mutex_lock(&event->child_mutex); 5406 5407 (void)perf_event_read(event, false); 5408 total += perf_event_count(event); 5409 5410 *enabled += event->total_time_enabled + 5411 atomic64_read(&event->child_total_time_enabled); 5412 *running += event->total_time_running + 5413 atomic64_read(&event->child_total_time_running); 5414 5415 list_for_each_entry(child, &event->child_list, child_list) { 5416 (void)perf_event_read(child, false); 5417 total += perf_event_count(child); 5418 *enabled += child->total_time_enabled; 5419 *running += child->total_time_running; 5420 } 5421 mutex_unlock(&event->child_mutex); 5422 5423 return total; 5424} 5425 5426u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 5427{ 5428 struct perf_event_context *ctx; 5429 u64 count; 5430 5431 ctx = perf_event_ctx_lock(event); 5432 count = __perf_event_read_value(event, enabled, running); 5433 perf_event_ctx_unlock(event, ctx); 5434 5435 return count; 5436} 5437EXPORT_SYMBOL_GPL(perf_event_read_value); 5438 5439static int __perf_read_group_add(struct perf_event *leader, 5440 u64 read_format, u64 *values) 5441{ 5442 struct perf_event_context *ctx = leader->ctx; 5443 struct perf_event *sub; 5444 unsigned long flags; 5445 int n = 1; /* skip @nr */ 5446 int ret; 5447 5448 ret = perf_event_read(leader, true); 5449 if (ret) 5450 return ret; 5451 5452 raw_spin_lock_irqsave(&ctx->lock, flags); 5453 5454 /* 5455 * Since we co-schedule groups, {enabled,running} times of siblings 5456 * will be identical to those of the leader, so we only publish one 5457 * set. 5458 */ 5459 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 5460 values[n++] += leader->total_time_enabled + 5461 atomic64_read(&leader->child_total_time_enabled); 5462 } 5463 5464 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 5465 values[n++] += leader->total_time_running + 5466 atomic64_read(&leader->child_total_time_running); 5467 } 5468 5469 /* 5470 * Write {count,id} tuples for every sibling. 5471 */ 5472 values[n++] += perf_event_count(leader); 5473 if (read_format & PERF_FORMAT_ID) 5474 values[n++] = primary_event_id(leader); 5475 if (read_format & PERF_FORMAT_LOST) 5476 values[n++] = atomic64_read(&leader->lost_samples); 5477 5478 for_each_sibling_event(sub, leader) { 5479 values[n++] += perf_event_count(sub); 5480 if (read_format & PERF_FORMAT_ID) 5481 values[n++] = primary_event_id(sub); 5482 if (read_format & PERF_FORMAT_LOST) 5483 values[n++] = atomic64_read(&sub->lost_samples); 5484 } 5485 5486 raw_spin_unlock_irqrestore(&ctx->lock, flags); 5487 return 0; 5488} 5489 5490static int perf_read_group(struct perf_event *event, 5491 u64 read_format, char __user *buf) 5492{ 5493 struct perf_event *leader = event->group_leader, *child; 5494 struct perf_event_context *ctx = leader->ctx; 5495 int ret; 5496 u64 *values; 5497 5498 lockdep_assert_held(&ctx->mutex); 5499 5500 values = kzalloc(event->read_size, GFP_KERNEL); 5501 if (!values) 5502 return -ENOMEM; 5503 5504 values[0] = 1 + leader->nr_siblings; 5505 5506 /* 5507 * By locking the child_mutex of the leader we effectively 5508 * lock the child list of all siblings.. XXX explain how. 5509 */ 5510 mutex_lock(&leader->child_mutex); 5511 5512 ret = __perf_read_group_add(leader, read_format, values); 5513 if (ret) 5514 goto unlock; 5515 5516 list_for_each_entry(child, &leader->child_list, child_list) { 5517 ret = __perf_read_group_add(child, read_format, values); 5518 if (ret) 5519 goto unlock; 5520 } 5521 5522 mutex_unlock(&leader->child_mutex); 5523 5524 ret = event->read_size; 5525 if (copy_to_user(buf, values, event->read_size)) 5526 ret = -EFAULT; 5527 goto out; 5528 5529unlock: 5530 mutex_unlock(&leader->child_mutex); 5531out: 5532 kfree(values); 5533 return ret; 5534} 5535 5536static int perf_read_one(struct perf_event *event, 5537 u64 read_format, char __user *buf) 5538{ 5539 u64 enabled, running; 5540 u64 values[5]; 5541 int n = 0; 5542 5543 values[n++] = __perf_event_read_value(event, &enabled, &running); 5544 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 5545 values[n++] = enabled; 5546 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 5547 values[n++] = running; 5548 if (read_format & PERF_FORMAT_ID) 5549 values[n++] = primary_event_id(event); 5550 if (read_format & PERF_FORMAT_LOST) 5551 values[n++] = atomic64_read(&event->lost_samples); 5552 5553 if (copy_to_user(buf, values, n * sizeof(u64))) 5554 return -EFAULT; 5555 5556 return n * sizeof(u64); 5557} 5558 5559static bool is_event_hup(struct perf_event *event) 5560{ 5561 bool no_children; 5562 5563 if (event->state > PERF_EVENT_STATE_EXIT) 5564 return false; 5565 5566 mutex_lock(&event->child_mutex); 5567 no_children = list_empty(&event->child_list); 5568 mutex_unlock(&event->child_mutex); 5569 return no_children; 5570} 5571 5572/* 5573 * Read the performance event - simple non blocking version for now 5574 */ 5575static ssize_t 5576__perf_read(struct perf_event *event, char __user *buf, size_t count) 5577{ 5578 u64 read_format = event->attr.read_format; 5579 int ret; 5580 5581 /* 5582 * Return end-of-file for a read on an event that is in 5583 * error state (i.e. because it was pinned but it couldn't be 5584 * scheduled on to the CPU at some point). 5585 */ 5586 if (event->state == PERF_EVENT_STATE_ERROR) 5587 return 0; 5588 5589 if (count < event->read_size) 5590 return -ENOSPC; 5591 5592 WARN_ON_ONCE(event->ctx->parent_ctx); 5593 if (read_format & PERF_FORMAT_GROUP) 5594 ret = perf_read_group(event, read_format, buf); 5595 else 5596 ret = perf_read_one(event, read_format, buf); 5597 5598 return ret; 5599} 5600 5601static ssize_t 5602perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) 5603{ 5604 struct perf_event *event = file->private_data; 5605 struct perf_event_context *ctx; 5606 int ret; 5607 5608 ret = security_perf_event_read(event); 5609 if (ret) 5610 return ret; 5611 5612 ctx = perf_event_ctx_lock(event); 5613 ret = __perf_read(event, buf, count); 5614 perf_event_ctx_unlock(event, ctx); 5615 5616 return ret; 5617} 5618 5619static __poll_t perf_poll(struct file *file, poll_table *wait) 5620{ 5621 struct perf_event *event = file->private_data; 5622 struct perf_buffer *rb; 5623 __poll_t events = EPOLLHUP; 5624 5625 poll_wait(file, &event->waitq, wait); 5626 5627 if (is_event_hup(event)) 5628 return events; 5629 5630 /* 5631 * Pin the event->rb by taking event->mmap_mutex; otherwise 5632 * perf_event_set_output() can swizzle our rb and make us miss wakeups. 5633 */ 5634 mutex_lock(&event->mmap_mutex); 5635 rb = event->rb; 5636 if (rb) 5637 events = atomic_xchg(&rb->poll, 0); 5638 mutex_unlock(&event->mmap_mutex); 5639 return events; 5640} 5641 5642static void _perf_event_reset(struct perf_event *event) 5643{ 5644 (void)perf_event_read(event, false); 5645 local64_set(&event->count, 0); 5646 perf_event_update_userpage(event); 5647} 5648 5649/* Assume it's not an event with inherit set. */ 5650u64 perf_event_pause(struct perf_event *event, bool reset) 5651{ 5652 struct perf_event_context *ctx; 5653 u64 count; 5654 5655 ctx = perf_event_ctx_lock(event); 5656 WARN_ON_ONCE(event->attr.inherit); 5657 _perf_event_disable(event); 5658 count = local64_read(&event->count); 5659 if (reset) 5660 local64_set(&event->count, 0); 5661 perf_event_ctx_unlock(event, ctx); 5662 5663 return count; 5664} 5665EXPORT_SYMBOL_GPL(perf_event_pause); 5666 5667/* 5668 * Holding the top-level event's child_mutex means that any 5669 * descendant process that has inherited this event will block 5670 * in perf_event_exit_event() if it goes to exit, thus satisfying the 5671 * task existence requirements of perf_event_enable/disable. 5672 */ 5673static void perf_event_for_each_child(struct perf_event *event, 5674 void (*func)(struct perf_event *)) 5675{ 5676 struct perf_event *child; 5677 5678 WARN_ON_ONCE(event->ctx->parent_ctx); 5679 5680 mutex_lock(&event->child_mutex); 5681 func(event); 5682 list_for_each_entry(child, &event->child_list, child_list) 5683 func(child); 5684 mutex_unlock(&event->child_mutex); 5685} 5686 5687static void perf_event_for_each(struct perf_event *event, 5688 void (*func)(struct perf_event *)) 5689{ 5690 struct perf_event_context *ctx = event->ctx; 5691 struct perf_event *sibling; 5692 5693 lockdep_assert_held(&ctx->mutex); 5694 5695 event = event->group_leader; 5696 5697 perf_event_for_each_child(event, func); 5698 for_each_sibling_event(sibling, event) 5699 perf_event_for_each_child(sibling, func); 5700} 5701 5702static void __perf_event_period(struct perf_event *event, 5703 struct perf_cpu_context *cpuctx, 5704 struct perf_event_context *ctx, 5705 void *info) 5706{ 5707 u64 value = *((u64 *)info); 5708 bool active; 5709 5710 if (event->attr.freq) { 5711 event->attr.sample_freq = value; 5712 } else { 5713 event->attr.sample_period = value; 5714 event->hw.sample_period = value; 5715 } 5716 5717 active = (event->state == PERF_EVENT_STATE_ACTIVE); 5718 if (active) { 5719 perf_pmu_disable(event->pmu); 5720 /* 5721 * We could be throttled; unthrottle now to avoid the tick 5722 * trying to unthrottle while we already re-started the event. 5723 */ 5724 if (event->hw.interrupts == MAX_INTERRUPTS) { 5725 event->hw.interrupts = 0; 5726 perf_log_throttle(event, 1); 5727 } 5728 event->pmu->stop(event, PERF_EF_UPDATE); 5729 } 5730 5731 local64_set(&event->hw.period_left, 0); 5732 5733 if (active) { 5734 event->pmu->start(event, PERF_EF_RELOAD); 5735 perf_pmu_enable(event->pmu); 5736 } 5737} 5738 5739static int perf_event_check_period(struct perf_event *event, u64 value) 5740{ 5741 return event->pmu->check_period(event, value); 5742} 5743 5744static int _perf_event_period(struct perf_event *event, u64 value) 5745{ 5746 if (!is_sampling_event(event)) 5747 return -EINVAL; 5748 5749 if (!value) 5750 return -EINVAL; 5751 5752 if (event->attr.freq && value > sysctl_perf_event_sample_rate) 5753 return -EINVAL; 5754 5755 if (perf_event_check_period(event, value)) 5756 return -EINVAL; 5757 5758 if (!event->attr.freq && (value & (1ULL << 63))) 5759 return -EINVAL; 5760 5761 event_function_call(event, __perf_event_period, &value); 5762 5763 return 0; 5764} 5765 5766int perf_event_period(struct perf_event *event, u64 value) 5767{ 5768 struct perf_event_context *ctx; 5769 int ret; 5770 5771 ctx = perf_event_ctx_lock(event); 5772 ret = _perf_event_period(event, value); 5773 perf_event_ctx_unlock(event, ctx); 5774 5775 return ret; 5776} 5777EXPORT_SYMBOL_GPL(perf_event_period); 5778 5779static const struct file_operations perf_fops; 5780 5781static inline int perf_fget_light(int fd, struct fd *p) 5782{ 5783 struct fd f = fdget(fd); 5784 if (!f.file) 5785 return -EBADF; 5786 5787 if (f.file->f_op != &perf_fops) { 5788 fdput(f); 5789 return -EBADF; 5790 } 5791 *p = f; 5792 return 0; 5793} 5794 5795static int perf_event_set_output(struct perf_event *event, 5796 struct perf_event *output_event); 5797static int perf_event_set_filter(struct perf_event *event, void __user *arg); 5798static int perf_copy_attr(struct perf_event_attr __user *uattr, 5799 struct perf_event_attr *attr); 5800 5801static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg) 5802{ 5803 void (*func)(struct perf_event *); 5804 u32 flags = arg; 5805 5806 switch (cmd) { 5807 case PERF_EVENT_IOC_ENABLE: 5808 func = _perf_event_enable; 5809 break; 5810 case PERF_EVENT_IOC_DISABLE: 5811 func = _perf_event_disable; 5812 break; 5813 case PERF_EVENT_IOC_RESET: 5814 func = _perf_event_reset; 5815 break; 5816 5817 case PERF_EVENT_IOC_REFRESH: 5818 return _perf_event_refresh(event, arg); 5819 5820 case PERF_EVENT_IOC_PERIOD: 5821 { 5822 u64 value; 5823 5824 if (copy_from_user(&value, (u64 __user *)arg, sizeof(value))) 5825 return -EFAULT; 5826 5827 return _perf_event_period(event, value); 5828 } 5829 case PERF_EVENT_IOC_ID: 5830 { 5831 u64 id = primary_event_id(event); 5832 5833 if (copy_to_user((void __user *)arg, &id, sizeof(id))) 5834 return -EFAULT; 5835 return 0; 5836 } 5837 5838 case PERF_EVENT_IOC_SET_OUTPUT: 5839 { 5840 int ret; 5841 if (arg != -1) { 5842 struct perf_event *output_event; 5843 struct fd output; 5844 ret = perf_fget_light(arg, &output); 5845 if (ret) 5846 return ret; 5847 output_event = output.file->private_data; 5848 ret = perf_event_set_output(event, output_event); 5849 fdput(output); 5850 } else { 5851 ret = perf_event_set_output(event, NULL); 5852 } 5853 return ret; 5854 } 5855 5856 case PERF_EVENT_IOC_SET_FILTER: 5857 return perf_event_set_filter(event, (void __user *)arg); 5858 5859 case PERF_EVENT_IOC_SET_BPF: 5860 { 5861 struct bpf_prog *prog; 5862 int err; 5863 5864 prog = bpf_prog_get(arg); 5865 if (IS_ERR(prog)) 5866 return PTR_ERR(prog); 5867 5868 err = perf_event_set_bpf_prog(event, prog, 0); 5869 if (err) { 5870 bpf_prog_put(prog); 5871 return err; 5872 } 5873 5874 return 0; 5875 } 5876 5877 case PERF_EVENT_IOC_PAUSE_OUTPUT: { 5878 struct perf_buffer *rb; 5879 5880 rcu_read_lock(); 5881 rb = rcu_dereference(event->rb); 5882 if (!rb || !rb->nr_pages) { 5883 rcu_read_unlock(); 5884 return -EINVAL; 5885 } 5886 rb_toggle_paused(rb, !!arg); 5887 rcu_read_unlock(); 5888 return 0; 5889 } 5890 5891 case PERF_EVENT_IOC_QUERY_BPF: 5892 return perf_event_query_prog_array(event, (void __user *)arg); 5893 5894 case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: { 5895 struct perf_event_attr new_attr; 5896 int err = perf_copy_attr((struct perf_event_attr __user *)arg, 5897 &new_attr); 5898 5899 if (err) 5900 return err; 5901 5902 return perf_event_modify_attr(event, &new_attr); 5903 } 5904 default: 5905 return -ENOTTY; 5906 } 5907 5908 if (flags & PERF_IOC_FLAG_GROUP) 5909 perf_event_for_each(event, func); 5910 else 5911 perf_event_for_each_child(event, func); 5912 5913 return 0; 5914} 5915 5916static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 5917{ 5918 struct perf_event *event = file->private_data; 5919 struct perf_event_context *ctx; 5920 long ret; 5921 5922 /* Treat ioctl like writes as it is likely a mutating operation. */ 5923 ret = security_perf_event_write(event); 5924 if (ret) 5925 return ret; 5926 5927 ctx = perf_event_ctx_lock(event); 5928 ret = _perf_ioctl(event, cmd, arg); 5929 perf_event_ctx_unlock(event, ctx); 5930 5931 return ret; 5932} 5933 5934#ifdef CONFIG_COMPAT 5935static long perf_compat_ioctl(struct file *file, unsigned int cmd, 5936 unsigned long arg) 5937{ 5938 switch (_IOC_NR(cmd)) { 5939 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER): 5940 case _IOC_NR(PERF_EVENT_IOC_ID): 5941 case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF): 5942 case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES): 5943 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */ 5944 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) { 5945 cmd &= ~IOCSIZE_MASK; 5946 cmd |= sizeof(void *) << IOCSIZE_SHIFT; 5947 } 5948 break; 5949 } 5950 return perf_ioctl(file, cmd, arg); 5951} 5952#else 5953# define perf_compat_ioctl NULL 5954#endif 5955 5956int perf_event_task_enable(void) 5957{ 5958 struct perf_event_context *ctx; 5959 struct perf_event *event; 5960 5961 mutex_lock(¤t->perf_event_mutex); 5962 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 5963 ctx = perf_event_ctx_lock(event); 5964 perf_event_for_each_child(event, _perf_event_enable); 5965 perf_event_ctx_unlock(event, ctx); 5966 } 5967 mutex_unlock(¤t->perf_event_mutex); 5968 5969 return 0; 5970} 5971 5972int perf_event_task_disable(void) 5973{ 5974 struct perf_event_context *ctx; 5975 struct perf_event *event; 5976 5977 mutex_lock(¤t->perf_event_mutex); 5978 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 5979 ctx = perf_event_ctx_lock(event); 5980 perf_event_for_each_child(event, _perf_event_disable); 5981 perf_event_ctx_unlock(event, ctx); 5982 } 5983 mutex_unlock(¤t->perf_event_mutex); 5984 5985 return 0; 5986} 5987 5988static int perf_event_index(struct perf_event *event) 5989{ 5990 if (event->hw.state & PERF_HES_STOPPED) 5991 return 0; 5992 5993 if (event->state != PERF_EVENT_STATE_ACTIVE) 5994 return 0; 5995 5996 return event->pmu->event_idx(event); 5997} 5998 5999static void perf_event_init_userpage(struct perf_event *event) 6000{ 6001 struct perf_event_mmap_page *userpg; 6002 struct perf_buffer *rb; 6003 6004 rcu_read_lock(); 6005 rb = rcu_dereference(event->rb); 6006 if (!rb) 6007 goto unlock; 6008 6009 userpg = rb->user_page; 6010 6011 /* Allow new userspace to detect that bit 0 is deprecated */ 6012 userpg->cap_bit0_is_deprecated = 1; 6013 userpg->size = offsetof(struct perf_event_mmap_page, __reserved); 6014 userpg->data_offset = PAGE_SIZE; 6015 userpg->data_size = perf_data_size(rb); 6016 6017unlock: 6018 rcu_read_unlock(); 6019} 6020 6021void __weak arch_perf_update_userpage( 6022 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now) 6023{ 6024} 6025 6026/* 6027 * Callers need to ensure there can be no nesting of this function, otherwise 6028 * the seqlock logic goes bad. We can not serialize this because the arch 6029 * code calls this from NMI context. 6030 */ 6031void perf_event_update_userpage(struct perf_event *event) 6032{ 6033 struct perf_event_mmap_page *userpg; 6034 struct perf_buffer *rb; 6035 u64 enabled, running, now; 6036 6037 rcu_read_lock(); 6038 rb = rcu_dereference(event->rb); 6039 if (!rb) 6040 goto unlock; 6041 6042 /* 6043 * compute total_time_enabled, total_time_running 6044 * based on snapshot values taken when the event 6045 * was last scheduled in. 6046 * 6047 * we cannot simply called update_context_time() 6048 * because of locking issue as we can be called in 6049 * NMI context 6050 */ 6051 calc_timer_values(event, &now, &enabled, &running); 6052 6053 userpg = rb->user_page; 6054 /* 6055 * Disable preemption to guarantee consistent time stamps are stored to 6056 * the user page. 6057 */ 6058 preempt_disable(); 6059 ++userpg->lock; 6060 barrier(); 6061 userpg->index = perf_event_index(event); 6062 userpg->offset = perf_event_count(event); 6063 if (userpg->index) 6064 userpg->offset -= local64_read(&event->hw.prev_count); 6065 6066 userpg->time_enabled = enabled + 6067 atomic64_read(&event->child_total_time_enabled); 6068 6069 userpg->time_running = running + 6070 atomic64_read(&event->child_total_time_running); 6071 6072 arch_perf_update_userpage(event, userpg, now); 6073 6074 barrier(); 6075 ++userpg->lock; 6076 preempt_enable(); 6077unlock: 6078 rcu_read_unlock(); 6079} 6080EXPORT_SYMBOL_GPL(perf_event_update_userpage); 6081 6082static vm_fault_t perf_mmap_fault(struct vm_fault *vmf) 6083{ 6084 struct perf_event *event = vmf->vma->vm_file->private_data; 6085 struct perf_buffer *rb; 6086 vm_fault_t ret = VM_FAULT_SIGBUS; 6087 6088 if (vmf->flags & FAULT_FLAG_MKWRITE) { 6089 if (vmf->pgoff == 0) 6090 ret = 0; 6091 return ret; 6092 } 6093 6094 rcu_read_lock(); 6095 rb = rcu_dereference(event->rb); 6096 if (!rb) 6097 goto unlock; 6098 6099 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE)) 6100 goto unlock; 6101 6102 vmf->page = perf_mmap_to_page(rb, vmf->pgoff); 6103 if (!vmf->page) 6104 goto unlock; 6105 6106 get_page(vmf->page); 6107 vmf->page->mapping = vmf->vma->vm_file->f_mapping; 6108 vmf->page->index = vmf->pgoff; 6109 6110 ret = 0; 6111unlock: 6112 rcu_read_unlock(); 6113 6114 return ret; 6115} 6116 6117static void ring_buffer_attach(struct perf_event *event, 6118 struct perf_buffer *rb) 6119{ 6120 struct perf_buffer *old_rb = NULL; 6121 unsigned long flags; 6122 6123 WARN_ON_ONCE(event->parent); 6124 6125 if (event->rb) { 6126 /* 6127 * Should be impossible, we set this when removing 6128 * event->rb_entry and wait/clear when adding event->rb_entry. 6129 */ 6130 WARN_ON_ONCE(event->rcu_pending); 6131 6132 old_rb = event->rb; 6133 spin_lock_irqsave(&old_rb->event_lock, flags); 6134 list_del_rcu(&event->rb_entry); 6135 spin_unlock_irqrestore(&old_rb->event_lock, flags); 6136 6137 event->rcu_batches = get_state_synchronize_rcu(); 6138 event->rcu_pending = 1; 6139 } 6140 6141 if (rb) { 6142 if (event->rcu_pending) { 6143 cond_synchronize_rcu(event->rcu_batches); 6144 event->rcu_pending = 0; 6145 } 6146 6147 spin_lock_irqsave(&rb->event_lock, flags); 6148 list_add_rcu(&event->rb_entry, &rb->event_list); 6149 spin_unlock_irqrestore(&rb->event_lock, flags); 6150 } 6151 6152 /* 6153 * Avoid racing with perf_mmap_close(AUX): stop the event 6154 * before swizzling the event::rb pointer; if it's getting 6155 * unmapped, its aux_mmap_count will be 0 and it won't 6156 * restart. See the comment in __perf_pmu_output_stop(). 6157 * 6158 * Data will inevitably be lost when set_output is done in 6159 * mid-air, but then again, whoever does it like this is 6160 * not in for the data anyway. 6161 */ 6162 if (has_aux(event)) 6163 perf_event_stop(event, 0); 6164 6165 rcu_assign_pointer(event->rb, rb); 6166 6167 if (old_rb) { 6168 ring_buffer_put(old_rb); 6169 /* 6170 * Since we detached before setting the new rb, so that we 6171 * could attach the new rb, we could have missed a wakeup. 6172 * Provide it now. 6173 */ 6174 wake_up_all(&event->waitq); 6175 } 6176} 6177 6178static void ring_buffer_wakeup(struct perf_event *event) 6179{ 6180 struct perf_buffer *rb; 6181 6182 if (event->parent) 6183 event = event->parent; 6184 6185 rcu_read_lock(); 6186 rb = rcu_dereference(event->rb); 6187 if (rb) { 6188 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) 6189 wake_up_all(&event->waitq); 6190 } 6191 rcu_read_unlock(); 6192} 6193 6194struct perf_buffer *ring_buffer_get(struct perf_event *event) 6195{ 6196 struct perf_buffer *rb; 6197 6198 if (event->parent) 6199 event = event->parent; 6200 6201 rcu_read_lock(); 6202 rb = rcu_dereference(event->rb); 6203 if (rb) { 6204 if (!refcount_inc_not_zero(&rb->refcount)) 6205 rb = NULL; 6206 } 6207 rcu_read_unlock(); 6208 6209 return rb; 6210} 6211 6212void ring_buffer_put(struct perf_buffer *rb) 6213{ 6214 if (!refcount_dec_and_test(&rb->refcount)) 6215 return; 6216 6217 WARN_ON_ONCE(!list_empty(&rb->event_list)); 6218 6219 call_rcu(&rb->rcu_head, rb_free_rcu); 6220} 6221 6222static void perf_mmap_open(struct vm_area_struct *vma) 6223{ 6224 struct perf_event *event = vma->vm_file->private_data; 6225 6226 atomic_inc(&event->mmap_count); 6227 atomic_inc(&event->rb->mmap_count); 6228 6229 if (vma->vm_pgoff) 6230 atomic_inc(&event->rb->aux_mmap_count); 6231 6232 if (event->pmu->event_mapped) 6233 event->pmu->event_mapped(event, vma->vm_mm); 6234} 6235 6236static void perf_pmu_output_stop(struct perf_event *event); 6237 6238/* 6239 * A buffer can be mmap()ed multiple times; either directly through the same 6240 * event, or through other events by use of perf_event_set_output(). 6241 * 6242 * In order to undo the VM accounting done by perf_mmap() we need to destroy 6243 * the buffer here, where we still have a VM context. This means we need 6244 * to detach all events redirecting to us. 6245 */ 6246static void perf_mmap_close(struct vm_area_struct *vma) 6247{ 6248 struct perf_event *event = vma->vm_file->private_data; 6249 struct perf_buffer *rb = ring_buffer_get(event); 6250 struct user_struct *mmap_user = rb->mmap_user; 6251 int mmap_locked = rb->mmap_locked; 6252 unsigned long size = perf_data_size(rb); 6253 bool detach_rest = false; 6254 6255 if (event->pmu->event_unmapped) 6256 event->pmu->event_unmapped(event, vma->vm_mm); 6257 6258 /* 6259 * rb->aux_mmap_count will always drop before rb->mmap_count and 6260 * event->mmap_count, so it is ok to use event->mmap_mutex to 6261 * serialize with perf_mmap here. 6262 */ 6263 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff && 6264 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) { 6265 /* 6266 * Stop all AUX events that are writing to this buffer, 6267 * so that we can free its AUX pages and corresponding PMU 6268 * data. Note that after rb::aux_mmap_count dropped to zero, 6269 * they won't start any more (see perf_aux_output_begin()). 6270 */ 6271 perf_pmu_output_stop(event); 6272 6273 /* now it's safe to free the pages */ 6274 atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm); 6275 atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm); 6276 6277 /* this has to be the last one */ 6278 rb_free_aux(rb); 6279 WARN_ON_ONCE(refcount_read(&rb->aux_refcount)); 6280 6281 mutex_unlock(&event->mmap_mutex); 6282 } 6283 6284 if (atomic_dec_and_test(&rb->mmap_count)) 6285 detach_rest = true; 6286 6287 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) 6288 goto out_put; 6289 6290 ring_buffer_attach(event, NULL); 6291 mutex_unlock(&event->mmap_mutex); 6292 6293 /* If there's still other mmap()s of this buffer, we're done. */ 6294 if (!detach_rest) 6295 goto out_put; 6296 6297 /* 6298 * No other mmap()s, detach from all other events that might redirect 6299 * into the now unreachable buffer. Somewhat complicated by the 6300 * fact that rb::event_lock otherwise nests inside mmap_mutex. 6301 */ 6302again: 6303 rcu_read_lock(); 6304 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) { 6305 if (!atomic_long_inc_not_zero(&event->refcount)) { 6306 /* 6307 * This event is en-route to free_event() which will 6308 * detach it and remove it from the list. 6309 */ 6310 continue; 6311 } 6312 rcu_read_unlock(); 6313 6314 mutex_lock(&event->mmap_mutex); 6315 /* 6316 * Check we didn't race with perf_event_set_output() which can 6317 * swizzle the rb from under us while we were waiting to 6318 * acquire mmap_mutex. 6319 * 6320 * If we find a different rb; ignore this event, a next 6321 * iteration will no longer find it on the list. We have to 6322 * still restart the iteration to make sure we're not now 6323 * iterating the wrong list. 6324 */ 6325 if (event->rb == rb) 6326 ring_buffer_attach(event, NULL); 6327 6328 mutex_unlock(&event->mmap_mutex); 6329 put_event(event); 6330 6331 /* 6332 * Restart the iteration; either we're on the wrong list or 6333 * destroyed its integrity by doing a deletion. 6334 */ 6335 goto again; 6336 } 6337 rcu_read_unlock(); 6338 6339 /* 6340 * It could be there's still a few 0-ref events on the list; they'll 6341 * get cleaned up by free_event() -- they'll also still have their 6342 * ref on the rb and will free it whenever they are done with it. 6343 * 6344 * Aside from that, this buffer is 'fully' detached and unmapped, 6345 * undo the VM accounting. 6346 */ 6347 6348 atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked, 6349 &mmap_user->locked_vm); 6350 atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm); 6351 free_uid(mmap_user); 6352 6353out_put: 6354 ring_buffer_put(rb); /* could be last */ 6355} 6356 6357static const struct vm_operations_struct perf_mmap_vmops = { 6358 .open = perf_mmap_open, 6359 .close = perf_mmap_close, /* non mergeable */ 6360 .fault = perf_mmap_fault, 6361 .page_mkwrite = perf_mmap_fault, 6362}; 6363 6364static int perf_mmap(struct file *file, struct vm_area_struct *vma) 6365{ 6366 struct perf_event *event = file->private_data; 6367 unsigned long user_locked, user_lock_limit; 6368 struct user_struct *user = current_user(); 6369 struct perf_buffer *rb = NULL; 6370 unsigned long locked, lock_limit; 6371 unsigned long vma_size; 6372 unsigned long nr_pages; 6373 long user_extra = 0, extra = 0; 6374 int ret = 0, flags = 0; 6375 6376 /* 6377 * Don't allow mmap() of inherited per-task counters. This would 6378 * create a performance issue due to all children writing to the 6379 * same rb. 6380 */ 6381 if (event->cpu == -1 && event->attr.inherit) 6382 return -EINVAL; 6383 6384 if (!(vma->vm_flags & VM_SHARED)) 6385 return -EINVAL; 6386 6387 ret = security_perf_event_read(event); 6388 if (ret) 6389 return ret; 6390 6391 vma_size = vma->vm_end - vma->vm_start; 6392 6393 if (vma->vm_pgoff == 0) { 6394 nr_pages = (vma_size / PAGE_SIZE) - 1; 6395 } else { 6396 /* 6397 * AUX area mapping: if rb->aux_nr_pages != 0, it's already 6398 * mapped, all subsequent mappings should have the same size 6399 * and offset. Must be above the normal perf buffer. 6400 */ 6401 u64 aux_offset, aux_size; 6402 6403 if (!<