1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Dynamic DMA mapping support.
4 *
5 * This implementation is a fallback for platforms that do not support
6 * I/O TLBs (aka DMA address translation hardware).
7 * Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com>
8 * Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com>
9 * Copyright (C) 2000, 2003 Hewlett-Packard Co
10 *	David Mosberger-Tang <davidm@hpl.hp.com>
11 *
12 * 03/05/07 davidm	Switch from PCI-DMA to generic device DMA API.
13 * 00/12/13 davidm	Rename to swiotlb.c and add mark_clean() to avoid
14 *			unnecessary i-cache flushing.
15 * 04/07/.. ak		Better overflow handling. Assorted fixes.
16 * 05/09/10 linville	Add support for syncing ranges, support syncing for
17 *			DMA_BIDIRECTIONAL mappings, miscellaneous cleanup.
18 * 08/12/11 beckyb	Add highmem support
19 */
20
21#define pr_fmt(fmt) "software IO TLB: " fmt
22
23#include <linux/cache.h>
24#include <linux/cc_platform.h>
25#include <linux/ctype.h>
26#include <linux/debugfs.h>
27#include <linux/dma-direct.h>
28#include <linux/dma-map-ops.h>
29#include <linux/export.h>
30#include <linux/gfp.h>
31#include <linux/highmem.h>
32#include <linux/io.h>
33#include <linux/iommu-helper.h>
34#include <linux/init.h>
35#include <linux/memblock.h>
36#include <linux/mm.h>
37#include <linux/pfn.h>
38#include <linux/rculist.h>
39#include <linux/scatterlist.h>
40#include <linux/set_memory.h>
41#include <linux/spinlock.h>
42#include <linux/string.h>
43#include <linux/swiotlb.h>
44#include <linux/types.h>
45#ifdef CONFIG_DMA_RESTRICTED_POOL
46#include <linux/of.h>
47#include <linux/of_fdt.h>
48#include <linux/of_reserved_mem.h>
49#include <linux/slab.h>
50#endif
51
52#define CREATE_TRACE_POINTS
53#include <trace/events/swiotlb.h>
54
55#define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
56
57/*
58 * Minimum IO TLB size to bother booting with.  Systems with mainly
59 * 64bit capable cards will only lightly use the swiotlb.  If we can't
60 * allocate a contiguous 1MB, we're probably in trouble anyway.
61 */
62#define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
63
64#define INVALID_PHYS_ADDR (~(phys_addr_t)0)
65
66/**
67 * struct io_tlb_slot - IO TLB slot descriptor
68 * @orig_addr:	The original address corresponding to a mapped entry.
69 * @alloc_size:	Size of the allocated buffer.
70 * @list:	The free list describing the number of free entries available
71 *		from each index.
72 * @pad_slots:	Number of preceding padding slots. Valid only in the first
73 *		allocated non-padding slot.
74 */
75struct io_tlb_slot {
76	phys_addr_t orig_addr;
77	size_t alloc_size;
78	unsigned short list;
79	unsigned short pad_slots;
80};
81
82static bool swiotlb_force_bounce;
83static bool swiotlb_force_disable;
84
85#ifdef CONFIG_SWIOTLB_DYNAMIC
86
87static void swiotlb_dyn_alloc(struct work_struct *work);
88
89static struct io_tlb_mem io_tlb_default_mem = {
90	.lock = __SPIN_LOCK_UNLOCKED(io_tlb_default_mem.lock),
91	.pools = LIST_HEAD_INIT(io_tlb_default_mem.pools),
92	.dyn_alloc = __WORK_INITIALIZER(io_tlb_default_mem.dyn_alloc,
93					swiotlb_dyn_alloc),
94};
95
96#else  /* !CONFIG_SWIOTLB_DYNAMIC */
97
98static struct io_tlb_mem io_tlb_default_mem;
99
100#endif	/* CONFIG_SWIOTLB_DYNAMIC */
101
102static unsigned long default_nslabs = IO_TLB_DEFAULT_SIZE >> IO_TLB_SHIFT;
103static unsigned long default_nareas;
104
105/**
106 * struct io_tlb_area - IO TLB memory area descriptor
107 *
108 * This is a single area with a single lock.
109 *
110 * @used:	The number of used IO TLB block.
111 * @index:	The slot index to start searching in this area for next round.
112 * @lock:	The lock to protect the above data structures in the map and
113 *		unmap calls.
114 */
115struct io_tlb_area {
116	unsigned long used;
117	unsigned int index;
118	spinlock_t lock;
119};
120
121/*
122 * Round up number of slabs to the next power of 2. The last area is going
123 * be smaller than the rest if default_nslabs is not power of two.
124 * The number of slot in an area should be a multiple of IO_TLB_SEGSIZE,
125 * otherwise a segment may span two or more areas. It conflicts with free
126 * contiguous slots tracking: free slots are treated contiguous no matter
127 * whether they cross an area boundary.
128 *
129 * Return true if default_nslabs is rounded up.
130 */
131static bool round_up_default_nslabs(void)
132{
133	if (!default_nareas)
134		return false;
135
136	if (default_nslabs < IO_TLB_SEGSIZE * default_nareas)
137		default_nslabs = IO_TLB_SEGSIZE * default_nareas;
138	else if (is_power_of_2(default_nslabs))
139		return false;
140	default_nslabs = roundup_pow_of_two(default_nslabs);
141	return true;
142}
143
144/**
145 * swiotlb_adjust_nareas() - adjust the number of areas and slots
146 * @nareas:	Desired number of areas. Zero is treated as 1.
147 *
148 * Adjust the default number of areas in a memory pool.
149 * The default size of the memory pool may also change to meet minimum area
150 * size requirements.
151 */
152static void swiotlb_adjust_nareas(unsigned int nareas)
153{
154	if (!nareas)
155		nareas = 1;
156	else if (!is_power_of_2(nareas))
157		nareas = roundup_pow_of_two(nareas);
158
159	default_nareas = nareas;
160
161	pr_info("area num %d.\n", nareas);
162	if (round_up_default_nslabs())
163		pr_info("SWIOTLB bounce buffer size roundup to %luMB",
164			(default_nslabs << IO_TLB_SHIFT) >> 20);
165}
166
167/**
168 * limit_nareas() - get the maximum number of areas for a given memory pool size
169 * @nareas:	Desired number of areas.
170 * @nslots:	Total number of slots in the memory pool.
171 *
172 * Limit the number of areas to the maximum possible number of areas in
173 * a memory pool of the given size.
174 *
175 * Return: Maximum possible number of areas.
176 */
177static unsigned int limit_nareas(unsigned int nareas, unsigned long nslots)
178{
179	if (nslots < nareas * IO_TLB_SEGSIZE)
180		return nslots / IO_TLB_SEGSIZE;
181	return nareas;
182}
183
184static int __init
185setup_io_tlb_npages(char *str)
186{
187	if (isdigit(*str)) {
188		/* avoid tail segment of size < IO_TLB_SEGSIZE */
189		default_nslabs =
190			ALIGN(simple_strtoul(str, &str, 0), IO_TLB_SEGSIZE);
191	}
192	if (*str == ',')
193		++str;
194	if (isdigit(*str))
195		swiotlb_adjust_nareas(simple_strtoul(str, &str, 0));
196	if (*str == ',')
197		++str;
198	if (!strcmp(str, "force"))
199		swiotlb_force_bounce = true;
200	else if (!strcmp(str, "noforce"))
201		swiotlb_force_disable = true;
202
203	return 0;
204}
205early_param("swiotlb", setup_io_tlb_npages);
206
207unsigned long swiotlb_size_or_default(void)
208{
209	return default_nslabs << IO_TLB_SHIFT;
210}
211
212void __init swiotlb_adjust_size(unsigned long size)
213{
214	/*
215	 * If swiotlb parameter has not been specified, give a chance to
216	 * architectures such as those supporting memory encryption to
217	 * adjust/expand SWIOTLB size for their use.
218	 */
219	if (default_nslabs != IO_TLB_DEFAULT_SIZE >> IO_TLB_SHIFT)
220		return;
221
222	size = ALIGN(size, IO_TLB_SIZE);
223	default_nslabs = ALIGN(size >> IO_TLB_SHIFT, IO_TLB_SEGSIZE);
224	if (round_up_default_nslabs())
225		size = default_nslabs << IO_TLB_SHIFT;
226	pr_info("SWIOTLB bounce buffer size adjusted to %luMB", size >> 20);
227}
228
229void swiotlb_print_info(void)
230{
231	struct io_tlb_pool *mem = &io_tlb_default_mem.defpool;
232
233	if (!mem->nslabs) {
234		pr_warn("No low mem\n");
235		return;
236	}
237
238	pr_info("mapped [mem %pa-%pa] (%luMB)\n", &mem->start, &mem->end,
239	       (mem->nslabs << IO_TLB_SHIFT) >> 20);
240}
241
242static inline unsigned long io_tlb_offset(unsigned long val)
243{
244	return val & (IO_TLB_SEGSIZE - 1);
245}
246
247static inline unsigned long nr_slots(u64 val)
248{
249	return DIV_ROUND_UP(val, IO_TLB_SIZE);
250}
251
252/*
253 * Early SWIOTLB allocation may be too early to allow an architecture to
254 * perform the desired operations.  This function allows the architecture to
255 * call SWIOTLB when the operations are possible.  It needs to be called
256 * before the SWIOTLB memory is used.
257 */
258void __init swiotlb_update_mem_attributes(void)
259{
260	struct io_tlb_pool *mem = &io_tlb_default_mem.defpool;
261	unsigned long bytes;
262
263	if (!mem->nslabs || mem->late_alloc)
264		return;
265	bytes = PAGE_ALIGN(mem->nslabs << IO_TLB_SHIFT);
266	set_memory_decrypted((unsigned long)mem->vaddr, bytes >> PAGE_SHIFT);
267}
268
269static void swiotlb_init_io_tlb_pool(struct io_tlb_pool *mem, phys_addr_t start,
270		unsigned long nslabs, bool late_alloc, unsigned int nareas)
271{
272	void *vaddr = phys_to_virt(start);
273	unsigned long bytes = nslabs << IO_TLB_SHIFT, i;
274
275	mem->nslabs = nslabs;
276	mem->start = start;
277	mem->end = mem->start + bytes;
278	mem->late_alloc = late_alloc;
279	mem->nareas = nareas;
280	mem->area_nslabs = nslabs / mem->nareas;
281
282	for (i = 0; i < mem->nareas; i++) {
283		spin_lock_init(&mem->areas[i].lock);
284		mem->areas[i].index = 0;
285		mem->areas[i].used = 0;
286	}
287
288	for (i = 0; i < mem->nslabs; i++) {
289		mem->slots[i].list = min(IO_TLB_SEGSIZE - io_tlb_offset(i),
290					 mem->nslabs - i);
291		mem->slots[i].orig_addr = INVALID_PHYS_ADDR;
292		mem->slots[i].alloc_size = 0;
293		mem->slots[i].pad_slots = 0;
294	}
295
296	memset(vaddr, 0, bytes);
297	mem->vaddr = vaddr;
298	return;
299}
300
301/**
302 * add_mem_pool() - add a memory pool to the allocator
303 * @mem:	Software IO TLB allocator.
304 * @pool:	Memory pool to be added.
305 */
306static void add_mem_pool(struct io_tlb_mem *mem, struct io_tlb_pool *pool)
307{
308#ifdef CONFIG_SWIOTLB_DYNAMIC
309	spin_lock(&mem->lock);
310	list_add_rcu(&pool->node, &mem->pools);
311	mem->nslabs += pool->nslabs;
312	spin_unlock(&mem->lock);
313#else
314	mem->nslabs = pool->nslabs;
315#endif
316}
317
318static void __init *swiotlb_memblock_alloc(unsigned long nslabs,
319		unsigned int flags,
320		int (*remap)(void *tlb, unsigned long nslabs))
321{
322	size_t bytes = PAGE_ALIGN(nslabs << IO_TLB_SHIFT);
323	void *tlb;
324
325	/*
326	 * By default allocate the bounce buffer memory from low memory, but
327	 * allow to pick a location everywhere for hypervisors with guest
328	 * memory encryption.
329	 */
330	if (flags & SWIOTLB_ANY)
331		tlb = memblock_alloc(bytes, PAGE_SIZE);
332	else
333		tlb = memblock_alloc_low(bytes, PAGE_SIZE);
334
335	if (!tlb) {
336		pr_warn("%s: Failed to allocate %zu bytes tlb structure\n",
337			__func__, bytes);
338		return NULL;
339	}
340
341	if (remap && remap(tlb, nslabs) < 0) {
342		memblock_free(tlb, PAGE_ALIGN(bytes));
343		pr_warn("%s: Failed to remap %zu bytes\n", __func__, bytes);
344		return NULL;
345	}
346
347	return tlb;
348}
349
350/*
351 * Statically reserve bounce buffer space and initialize bounce buffer data
352 * structures for the software IO TLB used to implement the DMA API.
353 */
354void __init swiotlb_init_remap(bool addressing_limit, unsigned int flags,
355		int (*remap)(void *tlb, unsigned long nslabs))
356{
357	struct io_tlb_pool *mem = &io_tlb_default_mem.defpool;
358	unsigned long nslabs;
359	unsigned int nareas;
360	size_t alloc_size;
361	void *tlb;
362
363	if (!addressing_limit && !swiotlb_force_bounce)
364		return;
365	if (swiotlb_force_disable)
366		return;
367
368	io_tlb_default_mem.force_bounce =
369		swiotlb_force_bounce || (flags & SWIOTLB_FORCE);
370
371#ifdef CONFIG_SWIOTLB_DYNAMIC
372	if (!remap)
373		io_tlb_default_mem.can_grow = true;
374	if (flags & SWIOTLB_ANY)
375		io_tlb_default_mem.phys_limit = virt_to_phys(high_memory - 1);
376	else
377		io_tlb_default_mem.phys_limit = ARCH_LOW_ADDRESS_LIMIT;
378#endif
379
380	if (!default_nareas)
381		swiotlb_adjust_nareas(num_possible_cpus());
382
383	nslabs = default_nslabs;
384	nareas = limit_nareas(default_nareas, nslabs);
385	while ((tlb = swiotlb_memblock_alloc(nslabs, flags, remap)) == NULL) {
386		if (nslabs <= IO_TLB_MIN_SLABS)
387			return;
388		nslabs = ALIGN(nslabs >> 1, IO_TLB_SEGSIZE);
389		nareas = limit_nareas(nareas, nslabs);
390	}
391
392	if (default_nslabs != nslabs) {
393		pr_info("SWIOTLB bounce buffer size adjusted %lu -> %lu slabs",
394			default_nslabs, nslabs);
395		default_nslabs = nslabs;
396	}
397
398	alloc_size = PAGE_ALIGN(array_size(sizeof(*mem->slots), nslabs));
399	mem->slots = memblock_alloc(alloc_size, PAGE_SIZE);
400	if (!mem->slots) {
401		pr_warn("%s: Failed to allocate %zu bytes align=0x%lx\n",
402			__func__, alloc_size, PAGE_SIZE);
403		return;
404	}
405
406	mem->areas = memblock_alloc(array_size(sizeof(struct io_tlb_area),
407		nareas), SMP_CACHE_BYTES);
408	if (!mem->areas) {
409		pr_warn("%s: Failed to allocate mem->areas.\n", __func__);
410		return;
411	}
412
413	swiotlb_init_io_tlb_pool(mem, __pa(tlb), nslabs, false, nareas);
414	add_mem_pool(&io_tlb_default_mem, mem);
415
416	if (flags & SWIOTLB_VERBOSE)
417		swiotlb_print_info();
418}
419
420void __init swiotlb_init(bool addressing_limit, unsigned int flags)
421{
422	swiotlb_init_remap(addressing_limit, flags, NULL);
423}
424
425/*
426 * Systems with larger DMA zones (those that don't support ISA) can
427 * initialize the swiotlb later using the slab allocator if needed.
428 * This should be just like above, but with some error catching.
429 */
430int swiotlb_init_late(size_t size, gfp_t gfp_mask,
431		int (*remap)(void *tlb, unsigned long nslabs))
432{
433	struct io_tlb_pool *mem = &io_tlb_default_mem.defpool;
434	unsigned long nslabs = ALIGN(size >> IO_TLB_SHIFT, IO_TLB_SEGSIZE);
435	unsigned int nareas;
436	unsigned char *vstart = NULL;
437	unsigned int order, area_order;
438	bool retried = false;
439	int rc = 0;
440
441	if (io_tlb_default_mem.nslabs)
442		return 0;
443
444	if (swiotlb_force_disable)
445		return 0;
446
447	io_tlb_default_mem.force_bounce = swiotlb_force_bounce;
448
449#ifdef CONFIG_SWIOTLB_DYNAMIC
450	if (!remap)
451		io_tlb_default_mem.can_grow = true;
452	if (IS_ENABLED(CONFIG_ZONE_DMA) && (gfp_mask & __GFP_DMA))
453		io_tlb_default_mem.phys_limit = DMA_BIT_MASK(zone_dma_bits);
454	else if (IS_ENABLED(CONFIG_ZONE_DMA32) && (gfp_mask & __GFP_DMA32))
455		io_tlb_default_mem.phys_limit = DMA_BIT_MASK(32);
456	else
457		io_tlb_default_mem.phys_limit = virt_to_phys(high_memory - 1);
458#endif
459
460	if (!default_nareas)
461		swiotlb_adjust_nareas(num_possible_cpus());
462
463retry:
464	order = get_order(nslabs << IO_TLB_SHIFT);
465	nslabs = SLABS_PER_PAGE << order;
466
467	while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
468		vstart = (void *)__get_free_pages(gfp_mask | __GFP_NOWARN,
469						  order);
470		if (vstart)
471			break;
472		order--;
473		nslabs = SLABS_PER_PAGE << order;
474		retried = true;
475	}
476
477	if (!vstart)
478		return -ENOMEM;
479
480	if (remap)
481		rc = remap(vstart, nslabs);
482	if (rc) {
483		free_pages((unsigned long)vstart, order);
484
485		nslabs = ALIGN(nslabs >> 1, IO_TLB_SEGSIZE);
486		if (nslabs < IO_TLB_MIN_SLABS)
487			return rc;
488		retried = true;
489		goto retry;
490	}
491
492	if (retried) {
493		pr_warn("only able to allocate %ld MB\n",
494			(PAGE_SIZE << order) >> 20);
495	}
496
497	nareas = limit_nareas(default_nareas, nslabs);
498	area_order = get_order(array_size(sizeof(*mem->areas), nareas));
499	mem->areas = (struct io_tlb_area *)
500		__get_free_pages(GFP_KERNEL | __GFP_ZERO, area_order);
501	if (!mem->areas)
502		goto error_area;
503
504	mem->slots = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
505		get_order(array_size(sizeof(*mem->slots), nslabs)));
506	if (!mem->slots)
507		goto error_slots;
508
509	set_memory_decrypted((unsigned long)vstart,
510			     (nslabs << IO_TLB_SHIFT) >> PAGE_SHIFT);
511	swiotlb_init_io_tlb_pool(mem, virt_to_phys(vstart), nslabs, true,
512				 nareas);
513	add_mem_pool(&io_tlb_default_mem, mem);
514
515	swiotlb_print_info();
516	return 0;
517
518error_slots:
519	free_pages((unsigned long)mem->areas, area_order);
520error_area:
521	free_pages((unsigned long)vstart, order);
522	return -ENOMEM;
523}
524
525void __init swiotlb_exit(void)
526{
527	struct io_tlb_pool *mem = &io_tlb_default_mem.defpool;
528	unsigned long tbl_vaddr;
529	size_t tbl_size, slots_size;
530	unsigned int area_order;
531
532	if (swiotlb_force_bounce)
533		return;
534
535	if (!mem->nslabs)
536		return;
537
538	pr_info("tearing down default memory pool\n");
539	tbl_vaddr = (unsigned long)phys_to_virt(mem->start);
540	tbl_size = PAGE_ALIGN(mem->end - mem->start);
541	slots_size = PAGE_ALIGN(array_size(sizeof(*mem->slots), mem->nslabs));
542
543	set_memory_encrypted(tbl_vaddr, tbl_size >> PAGE_SHIFT);
544	if (mem->late_alloc) {
545		area_order = get_order(array_size(sizeof(*mem->areas),
546			mem->nareas));
547		free_pages((unsigned long)mem->areas, area_order);
548		free_pages(tbl_vaddr, get_order(tbl_size));
549		free_pages((unsigned long)mem->slots, get_order(slots_size));
550	} else {
551		memblock_free_late(__pa(mem->areas),
552			array_size(sizeof(*mem->areas), mem->nareas));
553		memblock_free_late(mem->start, tbl_size);
554		memblock_free_late(__pa(mem->slots), slots_size);
555	}
556
557	memset(mem, 0, sizeof(*mem));
558}
559
560#ifdef CONFIG_SWIOTLB_DYNAMIC
561
562/**
563 * alloc_dma_pages() - allocate pages to be used for DMA
564 * @gfp:	GFP flags for the allocation.
565 * @bytes:	Size of the buffer.
566 * @phys_limit:	Maximum allowed physical address of the buffer.
567 *
568 * Allocate pages from the buddy allocator. If successful, make the allocated
569 * pages decrypted that they can be used for DMA.
570 *
571 * Return: Decrypted pages, %NULL on allocation failure, or ERR_PTR(-EAGAIN)
572 * if the allocated physical address was above @phys_limit.
573 */
574static struct page *alloc_dma_pages(gfp_t gfp, size_t bytes, u64 phys_limit)
575{
576	unsigned int order = get_order(bytes);
577	struct page *page;
578	phys_addr_t paddr;
579	void *vaddr;
580
581	page = alloc_pages(gfp, order);
582	if (!page)
583		return NULL;
584
585	paddr = page_to_phys(page);
586	if (paddr + bytes - 1 > phys_limit) {
587		__free_pages(page, order);
588		return ERR_PTR(-EAGAIN);
589	}
590
591	vaddr = phys_to_virt(paddr);
592	if (set_memory_decrypted((unsigned long)vaddr, PFN_UP(bytes)))
593		goto error;
594	return page;
595
596error:
597	/* Intentional leak if pages cannot be encrypted again. */
598	if (!set_memory_encrypted((unsigned long)vaddr, PFN_UP(bytes)))
599		__free_pages(page, order);
600	return NULL;
601}
602
603/**
604 * swiotlb_alloc_tlb() - allocate a dynamic IO TLB buffer
605 * @dev:	Device for which a memory pool is allocated.
606 * @bytes:	Size of the buffer.
607 * @phys_limit:	Maximum allowed physical address of the buffer.
608 * @gfp:	GFP flags for the allocation.
609 *
610 * Return: Allocated pages, or %NULL on allocation failure.
611 */
612static struct page *swiotlb_alloc_tlb(struct device *dev, size_t bytes,
613		u64 phys_limit, gfp_t gfp)
614{
615	struct page *page;
616
617	/*
618	 * Allocate from the atomic pools if memory is encrypted and
619	 * the allocation is atomic, because decrypting may block.
620	 */
621	if (!gfpflags_allow_blocking(gfp) && dev && force_dma_unencrypted(dev)) {
622		void *vaddr;
623
624		if (!IS_ENABLED(CONFIG_DMA_COHERENT_POOL))
625			return NULL;
626
627		return dma_alloc_from_pool(dev, bytes, &vaddr, gfp,
628					   dma_coherent_ok);
629	}
630
631	gfp &= ~GFP_ZONEMASK;
632	if (phys_limit <= DMA_BIT_MASK(zone_dma_bits))
633		gfp |= __GFP_DMA;
634	else if (phys_limit <= DMA_BIT_MASK(32))
635		gfp |= __GFP_DMA32;
636
637	while (IS_ERR(page = alloc_dma_pages(gfp, bytes, phys_limit))) {
638		if (IS_ENABLED(CONFIG_ZONE_DMA32) &&
639		    phys_limit < DMA_BIT_MASK(64) &&
640		    !(gfp & (__GFP_DMA32 | __GFP_DMA)))
641			gfp |= __GFP_DMA32;
642		else if (IS_ENABLED(CONFIG_ZONE_DMA) &&
643			 !(gfp & __GFP_DMA))
644			gfp = (gfp & ~__GFP_DMA32) | __GFP_DMA;
645		else
646			return NULL;
647	}
648
649	return page;
650}
651
652/**
653 * swiotlb_free_tlb() - free a dynamically allocated IO TLB buffer
654 * @vaddr:	Virtual address of the buffer.
655 * @bytes:	Size of the buffer.
656 */
657static void swiotlb_free_tlb(void *vaddr, size_t bytes)
658{
659	if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
660	    dma_free_from_pool(NULL, vaddr, bytes))
661		return;
662
663	/* Intentional leak if pages cannot be encrypted again. */
664	if (!set_memory_encrypted((unsigned long)vaddr, PFN_UP(bytes)))
665		__free_pages(virt_to_page(vaddr), get_order(bytes));
666}
667
668/**
669 * swiotlb_alloc_pool() - allocate a new IO TLB memory pool
670 * @dev:	Device for which a memory pool is allocated.
671 * @minslabs:	Minimum number of slabs.
672 * @nslabs:	Desired (maximum) number of slabs.
673 * @nareas:	Number of areas.
674 * @phys_limit:	Maximum DMA buffer physical address.
675 * @gfp:	GFP flags for the allocations.
676 *
677 * Allocate and initialize a new IO TLB memory pool. The actual number of
678 * slabs may be reduced if allocation of @nslabs fails. If even
679 * @minslabs cannot be allocated, this function fails.
680 *
681 * Return: New memory pool, or %NULL on allocation failure.
682 */
683static struct io_tlb_pool *swiotlb_alloc_pool(struct device *dev,
684		unsigned long minslabs, unsigned long nslabs,
685		unsigned int nareas, u64 phys_limit, gfp_t gfp)
686{
687	struct io_tlb_pool *pool;
688	unsigned int slot_order;
689	struct page *tlb;
690	size_t pool_size;
691	size_t tlb_size;
692
693	if (nslabs > SLABS_PER_PAGE << MAX_PAGE_ORDER) {
694		nslabs = SLABS_PER_PAGE << MAX_PAGE_ORDER;
695		nareas = limit_nareas(nareas, nslabs);
696	}
697
698	pool_size = sizeof(*pool) + array_size(sizeof(*pool->areas), nareas);
699	pool = kzalloc(pool_size, gfp);
700	if (!pool)
701		goto error;
702	pool->areas = (void *)pool + sizeof(*pool);
703
704	tlb_size = nslabs << IO_TLB_SHIFT;
705	while (!(tlb = swiotlb_alloc_tlb(dev, tlb_size, phys_limit, gfp))) {
706		if (nslabs <= minslabs)
707			goto error_tlb;
708		nslabs = ALIGN(nslabs >> 1, IO_TLB_SEGSIZE);
709		nareas = limit_nareas(nareas, nslabs);
710		tlb_size = nslabs << IO_TLB_SHIFT;
711	}
712
713	slot_order = get_order(array_size(sizeof(*pool->slots), nslabs));
714	pool->slots = (struct io_tlb_slot *)
715		__get_free_pages(gfp, slot_order);
716	if (!pool->slots)
717		goto error_slots;
718
719	swiotlb_init_io_tlb_pool(pool, page_to_phys(tlb), nslabs, true, nareas);
720	return pool;
721
722error_slots:
723	swiotlb_free_tlb(page_address(tlb), tlb_size);
724error_tlb:
725	kfree(pool);
726error:
727	return NULL;
728}
729
730/**
731 * swiotlb_dyn_alloc() - dynamic memory pool allocation worker
732 * @work:	Pointer to dyn_alloc in struct io_tlb_mem.
733 */
734static void swiotlb_dyn_alloc(struct work_struct *work)
735{
736	struct io_tlb_mem *mem =
737		container_of(work, struct io_tlb_mem, dyn_alloc);
738	struct io_tlb_pool *pool;
739
740	pool = swiotlb_alloc_pool(NULL, IO_TLB_MIN_SLABS, default_nslabs,
741				  default_nareas, mem->phys_limit, GFP_KERNEL);
742	if (!pool) {
743		pr_warn_ratelimited("Failed to allocate new pool");
744		return;
745	}
746
747	add_mem_pool(mem, pool);
748}
749
750/**
751 * swiotlb_dyn_free() - RCU callback to free a memory pool
752 * @rcu:	RCU head in the corresponding struct io_tlb_pool.
753 */
754static void swiotlb_dyn_free(struct rcu_head *rcu)
755{
756	struct io_tlb_pool *pool = container_of(rcu, struct io_tlb_pool, rcu);
757	size_t slots_size = array_size(sizeof(*pool->slots), pool->nslabs);
758	size_t tlb_size = pool->end - pool->start;
759
760	free_pages((unsigned long)pool->slots, get_order(slots_size));
761	swiotlb_free_tlb(pool->vaddr, tlb_size);
762	kfree(pool);
763}
764
765/**
766 * swiotlb_find_pool() - find the IO TLB pool for a physical address
767 * @dev:        Device which has mapped the DMA buffer.
768 * @paddr:      Physical address within the DMA buffer.
769 *
770 * Find the IO TLB memory pool descriptor which contains the given physical
771 * address, if any.
772 *
773 * Return: Memory pool which contains @paddr, or %NULL if none.
774 */
775struct io_tlb_pool *swiotlb_find_pool(struct device *dev, phys_addr_t paddr)
776{
777	struct io_tlb_mem *mem = dev->dma_io_tlb_mem;
778	struct io_tlb_pool *pool;
779
780	rcu_read_lock();
781	list_for_each_entry_rcu(pool, &mem->pools, node) {
782		if (paddr >= pool->start && paddr < pool->end)
783			goto out;
784	}
785
786	list_for_each_entry_rcu(pool, &dev->dma_io_tlb_pools, node) {
787		if (paddr >= pool->start && paddr < pool->end)
788			goto out;
789	}
790	pool = NULL;
791out:
792	rcu_read_unlock();
793	return pool;
794}
795
796/**
797 * swiotlb_del_pool() - remove an IO TLB pool from a device
798 * @dev:	Owning device.
799 * @pool:	Memory pool to be removed.
800 */
801static void swiotlb_del_pool(struct device *dev, struct io_tlb_pool *pool)
802{
803	unsigned long flags;
804
805	spin_lock_irqsave(&dev->dma_io_tlb_lock, flags);
806	list_del_rcu(&pool->node);
807	spin_unlock_irqrestore(&dev->dma_io_tlb_lock, flags);
808
809	call_rcu(&pool->rcu, swiotlb_dyn_free);
810}
811
812#endif	/* CONFIG_SWIOTLB_DYNAMIC */
813
814/**
815 * swiotlb_dev_init() - initialize swiotlb fields in &struct device
816 * @dev:	Device to be initialized.
817 */
818void swiotlb_dev_init(struct device *dev)
819{
820	dev->dma_io_tlb_mem = &io_tlb_default_mem;
821#ifdef CONFIG_SWIOTLB_DYNAMIC
822	INIT_LIST_HEAD(&dev->dma_io_tlb_pools);
823	spin_lock_init(&dev->dma_io_tlb_lock);
824	dev->dma_uses_io_tlb = false;
825#endif
826}
827
828/**
829 * swiotlb_align_offset() - Get required offset into an IO TLB allocation.
830 * @dev:         Owning device.
831 * @align_mask:  Allocation alignment mask.
832 * @addr:        DMA address.
833 *
834 * Return the minimum offset from the start of an IO TLB allocation which is
835 * required for a given buffer address and allocation alignment to keep the
836 * device happy.
837 *
838 * First, the address bits covered by min_align_mask must be identical in the
839 * original address and the bounce buffer address. High bits are preserved by
840 * choosing a suitable IO TLB slot, but bits below IO_TLB_SHIFT require extra
841 * padding bytes before the bounce buffer.
842 *
843 * Second, @align_mask specifies which bits of the first allocated slot must
844 * be zero. This may require allocating additional padding slots, and then the
845 * offset (in bytes) from the first such padding slot is returned.
846 */
847static unsigned int swiotlb_align_offset(struct device *dev,
848					 unsigned int align_mask, u64 addr)
849{
850	return addr & dma_get_min_align_mask(dev) &
851		(align_mask | (IO_TLB_SIZE - 1));
852}
853
854/*
855 * Bounce: copy the swiotlb buffer from or back to the original dma location
856 */
857static void swiotlb_bounce(struct device *dev, phys_addr_t tlb_addr, size_t size,
858			   enum dma_data_direction dir)
859{
860	struct io_tlb_pool *mem = swiotlb_find_pool(dev, tlb_addr);
861	int index = (tlb_addr - mem->start) >> IO_TLB_SHIFT;
862	phys_addr_t orig_addr = mem->slots[index].orig_addr;
863	size_t alloc_size = mem->slots[index].alloc_size;
864	unsigned long pfn = PFN_DOWN(orig_addr);
865	unsigned char *vaddr = mem->vaddr + tlb_addr - mem->start;
866	int tlb_offset;
867
868	if (orig_addr == INVALID_PHYS_ADDR)
869		return;
870
871	/*
872	 * It's valid for tlb_offset to be negative. This can happen when the
873	 * "offset" returned by swiotlb_align_offset() is non-zero, and the
874	 * tlb_addr is pointing within the first "offset" bytes of the second
875	 * or subsequent slots of the allocated swiotlb area. While it's not
876	 * valid for tlb_addr to be pointing within the first "offset" bytes
877	 * of the first slot, there's no way to check for such an error since
878	 * this function can't distinguish the first slot from the second and
879	 * subsequent slots.
880	 */
881	tlb_offset = (tlb_addr & (IO_TLB_SIZE - 1)) -
882		     swiotlb_align_offset(dev, 0, orig_addr);
883
884	orig_addr += tlb_offset;
885	alloc_size -= tlb_offset;
886
887	if (size > alloc_size) {
888		dev_WARN_ONCE(dev, 1,
889			"Buffer overflow detected. Allocation size: %zu. Mapping size: %zu.\n",
890			alloc_size, size);
891		size = alloc_size;
892	}
893
894	if (PageHighMem(pfn_to_page(pfn))) {
895		unsigned int offset = orig_addr & ~PAGE_MASK;
896		struct page *page;
897		unsigned int sz = 0;
898		unsigned long flags;
899
900		while (size) {
901			sz = min_t(size_t, PAGE_SIZE - offset, size);
902
903			local_irq_save(flags);
904			page = pfn_to_page(pfn);
905			if (dir == DMA_TO_DEVICE)
906				memcpy_from_page(vaddr, page, offset, sz);
907			else
908				memcpy_to_page(page, offset, vaddr, sz);
909			local_irq_restore(flags);
910
911			size -= sz;
912			pfn++;
913			vaddr += sz;
914			offset = 0;
915		}
916	} else if (dir == DMA_TO_DEVICE) {
917		memcpy(vaddr, phys_to_virt(orig_addr), size);
918	} else {
919		memcpy(phys_to_virt(orig_addr), vaddr, size);
920	}
921}
922
923static inline phys_addr_t slot_addr(phys_addr_t start, phys_addr_t idx)
924{
925	return start + (idx << IO_TLB_SHIFT);
926}
927
928/*
929 * Carefully handle integer overflow which can occur when boundary_mask == ~0UL.
930 */
931static inline unsigned long get_max_slots(unsigned long boundary_mask)
932{
933	return (boundary_mask >> IO_TLB_SHIFT) + 1;
934}
935
936static unsigned int wrap_area_index(struct io_tlb_pool *mem, unsigned int index)
937{
938	if (index >= mem->area_nslabs)
939		return 0;
940	return index;
941}
942
943/*
944 * Track the total used slots with a global atomic value in order to have
945 * correct information to determine the high water mark. The mem_used()
946 * function gives imprecise results because there's no locking across
947 * multiple areas.
948 */
949#ifdef CONFIG_DEBUG_FS
950static void inc_used_and_hiwater(struct io_tlb_mem *mem, unsigned int nslots)
951{
952	unsigned long old_hiwater, new_used;
953
954	new_used = atomic_long_add_return(nslots, &mem->total_used);
955	old_hiwater = atomic_long_read(&mem->used_hiwater);
956	do {
957		if (new_used <= old_hiwater)
958			break;
959	} while (!atomic_long_try_cmpxchg(&mem->used_hiwater,
960					  &old_hiwater, new_used));
961}
962
963static void dec_used(struct io_tlb_mem *mem, unsigned int nslots)
964{
965	atomic_long_sub(nslots, &mem->total_used);
966}
967
968#else /* !CONFIG_DEBUG_FS */
969static void inc_used_and_hiwater(struct io_tlb_mem *mem, unsigned int nslots)
970{
971}
972static void dec_used(struct io_tlb_mem *mem, unsigned int nslots)
973{
974}
975#endif /* CONFIG_DEBUG_FS */
976
977#ifdef CONFIG_SWIOTLB_DYNAMIC
978#ifdef CONFIG_DEBUG_FS
979static void inc_transient_used(struct io_tlb_mem *mem, unsigned int nslots)
980{
981	atomic_long_add(nslots, &mem->transient_nslabs);
982}
983
984static void dec_transient_used(struct io_tlb_mem *mem, unsigned int nslots)
985{
986	atomic_long_sub(nslots, &mem->transient_nslabs);
987}
988
989#else /* !CONFIG_DEBUG_FS */
990static void inc_transient_used(struct io_tlb_mem *mem, unsigned int nslots)
991{
992}
993static void dec_transient_used(struct io_tlb_mem *mem, unsigned int nslots)
994{
995}
996#endif /* CONFIG_DEBUG_FS */
997#endif /* CONFIG_SWIOTLB_DYNAMIC */
998
999/**
1000 * swiotlb_search_pool_area() - search one memory area in one pool
1001 * @dev:	Device which maps the buffer.
1002 * @pool:	Memory pool to be searched.
1003 * @area_index:	Index of the IO TLB memory area to be searched.
1004 * @orig_addr:	Original (non-bounced) IO buffer address.
1005 * @alloc_size: Total requested size of the bounce buffer,
1006 *		including initial alignment padding.
1007 * @alloc_align_mask:	Required alignment of the allocated buffer.
1008 *
1009 * Find a suitable sequence of IO TLB entries for the request and allocate
1010 * a buffer from the given IO TLB memory area.
1011 * This function takes care of locking.
1012 *
1013 * Return: Index of the first allocated slot, or -1 on error.
1014 */
1015static int swiotlb_search_pool_area(struct device *dev, struct io_tlb_pool *pool,
1016		int area_index, phys_addr_t orig_addr, size_t alloc_size,
1017		unsigned int alloc_align_mask)
1018{
1019	struct io_tlb_area *area = pool->areas + area_index;
1020	unsigned long boundary_mask = dma_get_seg_boundary(dev);
1021	dma_addr_t tbl_dma_addr =
1022		phys_to_dma_unencrypted(dev, pool->start) & boundary_mask;
1023	unsigned long max_slots = get_max_slots(boundary_mask);
1024	unsigned int iotlb_align_mask = dma_get_min_align_mask(dev);
1025	unsigned int nslots = nr_slots(alloc_size), stride;
1026	unsigned int offset = swiotlb_align_offset(dev, 0, orig_addr);
1027	unsigned int index, slots_checked, count = 0, i;
1028	unsigned long flags;
1029	unsigned int slot_base;
1030	unsigned int slot_index;
1031
1032	BUG_ON(!nslots);
1033	BUG_ON(area_index >= pool->nareas);
1034
1035	/*
1036	 * Historically, swiotlb allocations >= PAGE_SIZE were guaranteed to be
1037	 * page-aligned in the absence of any other alignment requirements.
1038	 * 'alloc_align_mask' was later introduced to specify the alignment
1039	 * explicitly, however this is passed as zero for streaming mappings
1040	 * and so we preserve the old behaviour there in case any drivers are
1041	 * relying on it.
1042	 */
1043	if (!alloc_align_mask && !iotlb_align_mask && alloc_size >= PAGE_SIZE)
1044		alloc_align_mask = PAGE_SIZE - 1;
1045
1046	/*
1047	 * Ensure that the allocation is at least slot-aligned and update
1048	 * 'iotlb_align_mask' to ignore bits that will be preserved when
1049	 * offsetting into the allocation.
1050	 */
1051	alloc_align_mask |= (IO_TLB_SIZE - 1);
1052	iotlb_align_mask &= ~alloc_align_mask;
1053
1054	/*
1055	 * For mappings with an alignment requirement don't bother looping to
1056	 * unaligned slots once we found an aligned one.
1057	 */
1058	stride = get_max_slots(max(alloc_align_mask, iotlb_align_mask));
1059
1060	spin_lock_irqsave(&area->lock, flags);
1061	if (unlikely(nslots > pool->area_nslabs - area->used))
1062		goto not_found;
1063
1064	slot_base = area_index * pool->area_nslabs;
1065	index = area->index;
1066
1067	for (slots_checked = 0; slots_checked < pool->area_nslabs; ) {
1068		phys_addr_t tlb_addr;
1069
1070		slot_index = slot_base + index;
1071		tlb_addr = slot_addr(tbl_dma_addr, slot_index);
1072
1073		if ((tlb_addr & alloc_align_mask) ||
1074		    (orig_addr && (tlb_addr & iotlb_align_mask) !=
1075				  (orig_addr & iotlb_align_mask))) {
1076			index = wrap_area_index(pool, index + 1);
1077			slots_checked++;
1078			continue;
1079		}
1080
1081		if (!iommu_is_span_boundary(slot_index, nslots,
1082					    nr_slots(tbl_dma_addr),
1083					    max_slots)) {
1084			if (pool->slots[slot_index].list >= nslots)
1085				goto found;
1086		}
1087		index = wrap_area_index(pool, index + stride);
1088		slots_checked += stride;
1089	}
1090
1091not_found:
1092	spin_unlock_irqrestore(&area->lock, flags);
1093	return -1;
1094
1095found:
1096	/*
1097	 * If we find a slot that indicates we have 'nslots' number of
1098	 * contiguous buffers, we allocate the buffers from that slot onwards
1099	 * and set the list of free entries to '0' indicating unavailable.
1100	 */
1101	for (i = slot_index; i < slot_index + nslots; i++) {
1102		pool->slots[i].list = 0;
1103		pool->slots[i].alloc_size = alloc_size - (offset +
1104				((i - slot_index) << IO_TLB_SHIFT));
1105	}
1106	for (i = slot_index - 1;
1107	     io_tlb_offset(i) != IO_TLB_SEGSIZE - 1 &&
1108	     pool->slots[i].list; i--)
1109		pool->slots[i].list = ++count;
1110
1111	/*
1112	 * Update the indices to avoid searching in the next round.
1113	 */
1114	area->index = wrap_area_index(pool, index + nslots);
1115	area->used += nslots;
1116	spin_unlock_irqrestore(&area->lock, flags);
1117
1118	inc_used_and_hiwater(dev->dma_io_tlb_mem, nslots);
1119	return slot_index;
1120}
1121
1122#ifdef CONFIG_SWIOTLB_DYNAMIC
1123
1124/**
1125 * swiotlb_search_area() - search one memory area in all pools
1126 * @dev:	Device which maps the buffer.
1127 * @start_cpu:	Start CPU number.
1128 * @cpu_offset:	Offset from @start_cpu.
1129 * @orig_addr:	Original (non-bounced) IO buffer address.
1130 * @alloc_size: Total requested size of the bounce buffer,
1131 *		including initial alignment padding.
1132 * @alloc_align_mask:	Required alignment of the allocated buffer.
1133 * @retpool:	Used memory pool, updated on return.
1134 *
1135 * Search one memory area in all pools for a sequence of slots that match the
1136 * allocation constraints.
1137 *
1138 * Return: Index of the first allocated slot, or -1 on error.
1139 */
1140static int swiotlb_search_area(struct device *dev, int start_cpu,
1141		int cpu_offset, phys_addr_t orig_addr, size_t alloc_size,
1142		unsigned int alloc_align_mask, struct io_tlb_pool **retpool)
1143{
1144	struct io_tlb_mem *mem = dev->dma_io_tlb_mem;
1145	struct io_tlb_pool *pool;
1146	int area_index;
1147	int index = -1;
1148
1149	rcu_read_lock();
1150	list_for_each_entry_rcu(pool, &mem->pools, node) {
1151		if (cpu_offset >= pool->nareas)
1152			continue;
1153		area_index = (start_cpu + cpu_offset) & (pool->nareas - 1);
1154		index = swiotlb_search_pool_area(dev, pool, area_index,
1155						 orig_addr, alloc_size,
1156						 alloc_align_mask);
1157		if (index >= 0) {
1158			*retpool = pool;
1159			break;
1160		}
1161	}
1162	rcu_read_unlock();
1163	return index;
1164}
1165
1166/**
1167 * swiotlb_find_slots() - search for slots in the whole swiotlb
1168 * @dev:	Device which maps the buffer.
1169 * @orig_addr:	Original (non-bounced) IO buffer address.
1170 * @alloc_size: Total requested size of the bounce buffer,
1171 *		including initial alignment padding.
1172 * @alloc_align_mask:	Required alignment of the allocated buffer.
1173 * @retpool:	Used memory pool, updated on return.
1174 *
1175 * Search through the whole software IO TLB to find a sequence of slots that
1176 * match the allocation constraints.
1177 *
1178 * Return: Index of the first allocated slot, or -1 on error.
1179 */
1180static int swiotlb_find_slots(struct device *dev, phys_addr_t orig_addr,
1181		size_t alloc_size, unsigned int alloc_align_mask,
1182		struct io_tlb_pool **retpool)
1183{
1184	struct io_tlb_mem *mem = dev->dma_io_tlb_mem;
1185	struct io_tlb_pool *pool;
1186	unsigned long nslabs;
1187	unsigned long flags;
1188	u64 phys_limit;
1189	int cpu, i;
1190	int index;
1191
1192	if (alloc_size > IO_TLB_SEGSIZE * IO_TLB_SIZE)
1193		return -1;
1194
1195	cpu = raw_smp_processor_id();
1196	for (i = 0; i < default_nareas; ++i) {
1197		index = swiotlb_search_area(dev, cpu, i, orig_addr, alloc_size,
1198					    alloc_align_mask, &pool);
1199		if (index >= 0)
1200			goto found;
1201	}
1202
1203	if (!mem->can_grow)
1204		return -1;
1205
1206	schedule_work(&mem->dyn_alloc);
1207
1208	nslabs = nr_slots(alloc_size);
1209	phys_limit = min_not_zero(*dev->dma_mask, dev->bus_dma_limit);
1210	pool = swiotlb_alloc_pool(dev, nslabs, nslabs, 1, phys_limit,
1211				  GFP_NOWAIT | __GFP_NOWARN);
1212	if (!pool)
1213		return -1;
1214
1215	index = swiotlb_search_pool_area(dev, pool, 0, orig_addr,
1216					 alloc_size, alloc_align_mask);
1217	if (index < 0) {
1218		swiotlb_dyn_free(&pool->rcu);
1219		return -1;
1220	}
1221
1222	pool->transient = true;
1223	spin_lock_irqsave(&dev->dma_io_tlb_lock, flags);
1224	list_add_rcu(&pool->node, &dev->dma_io_tlb_pools);
1225	spin_unlock_irqrestore(&dev->dma_io_tlb_lock, flags);
1226	inc_transient_used(mem, pool->nslabs);
1227
1228found:
1229	WRITE_ONCE(dev->dma_uses_io_tlb, true);
1230
1231	/*
1232	 * The general barrier orders reads and writes against a presumed store
1233	 * of the SWIOTLB buffer address by a device driver (to a driver private
1234	 * data structure). It serves two purposes.
1235	 *
1236	 * First, the store to dev->dma_uses_io_tlb must be ordered before the
1237	 * presumed store. This guarantees that the returned buffer address
1238	 * cannot be passed to another CPU before updating dev->dma_uses_io_tlb.
1239	 *
1240	 * Second, the load from mem->pools must be ordered before the same
1241	 * presumed store. This guarantees that the returned buffer address
1242	 * cannot be observed by another CPU before an update of the RCU list
1243	 * that was made by swiotlb_dyn_alloc() on a third CPU (cf. multicopy
1244	 * atomicity).
1245	 *
1246	 * See also the comment in is_swiotlb_buffer().
1247	 */
1248	smp_mb();
1249
1250	*retpool = pool;
1251	return index;
1252}
1253
1254#else  /* !CONFIG_SWIOTLB_DYNAMIC */
1255
1256static int swiotlb_find_slots(struct device *dev, phys_addr_t orig_addr,
1257		size_t alloc_size, unsigned int alloc_align_mask,
1258		struct io_tlb_pool **retpool)
1259{
1260	struct io_tlb_pool *pool;
1261	int start, i;
1262	int index;
1263
1264	*retpool = pool = &dev->dma_io_tlb_mem->defpool;
1265	i = start = raw_smp_processor_id() & (pool->nareas - 1);
1266	do {
1267		index = swiotlb_search_pool_area(dev, pool, i, orig_addr,
1268						 alloc_size, alloc_align_mask);
1269		if (index >= 0)
1270			return index;
1271		if (++i >= pool->nareas)
1272			i = 0;
1273	} while (i != start);
1274	return -1;
1275}
1276
1277#endif /* CONFIG_SWIOTLB_DYNAMIC */
1278
1279#ifdef CONFIG_DEBUG_FS
1280
1281/**
1282 * mem_used() - get number of used slots in an allocator
1283 * @mem:	Software IO TLB allocator.
1284 *
1285 * The result is accurate in this version of the function, because an atomic
1286 * counter is available if CONFIG_DEBUG_FS is set.
1287 *
1288 * Return: Number of used slots.
1289 */
1290static unsigned long mem_used(struct io_tlb_mem *mem)
1291{
1292	return atomic_long_read(&mem->total_used);
1293}
1294
1295#else /* !CONFIG_DEBUG_FS */
1296
1297/**
1298 * mem_pool_used() - get number of used slots in a memory pool
1299 * @pool:	Software IO TLB memory pool.
1300 *
1301 * The result is not accurate, see mem_used().
1302 *
1303 * Return: Approximate number of used slots.
1304 */
1305static unsigned long mem_pool_used(struct io_tlb_pool *pool)
1306{
1307	int i;
1308	unsigned long used = 0;
1309
1310	for (i = 0; i < pool->nareas; i++)
1311		used += pool->areas[i].used;
1312	return used;
1313}
1314
1315/**
1316 * mem_used() - get number of used slots in an allocator
1317 * @mem:	Software IO TLB allocator.
1318 *
1319 * The result is not accurate, because there is no locking of individual
1320 * areas.
1321 *
1322 * Return: Approximate number of used slots.
1323 */
1324static unsigned long mem_used(struct io_tlb_mem *mem)
1325{
1326#ifdef CONFIG_SWIOTLB_DYNAMIC
1327	struct io_tlb_pool *pool;
1328	unsigned long used = 0;
1329
1330	rcu_read_lock();
1331	list_for_each_entry_rcu(pool, &mem->pools, node)
1332		used += mem_pool_used(pool);
1333	rcu_read_unlock();
1334
1335	return used;
1336#else
1337	return mem_pool_used(&mem->defpool);
1338#endif
1339}
1340
1341#endif /* CONFIG_DEBUG_FS */
1342
1343phys_addr_t swiotlb_tbl_map_single(struct device *dev, phys_addr_t orig_addr,
1344		size_t mapping_size, size_t alloc_size,
1345		unsigned int alloc_align_mask, enum dma_data_direction dir,
1346		unsigned long attrs)
1347{
1348	struct io_tlb_mem *mem = dev->dma_io_tlb_mem;
1349	unsigned int offset;
1350	struct io_tlb_pool *pool;
1351	unsigned int i;
1352	int index;
1353	phys_addr_t tlb_addr;
1354	unsigned short pad_slots;
1355
1356	if (!mem || !mem->nslabs) {
1357		dev_warn_ratelimited(dev,
1358			"Can not allocate SWIOTLB buffer earlier and can't now provide you with the DMA bounce buffer");
1359		return (phys_addr_t)DMA_MAPPING_ERROR;
1360	}
1361
1362	if (cc_platform_has(CC_ATTR_MEM_ENCRYPT))
1363		pr_warn_once("Memory encryption is active and system is using DMA bounce buffers\n");
1364
1365	if (mapping_size > alloc_size) {
1366		dev_warn_once(dev, "Invalid sizes (mapping: %zd bytes, alloc: %zd bytes)",
1367			      mapping_size, alloc_size);
1368		return (phys_addr_t)DMA_MAPPING_ERROR;
1369	}
1370
1371	offset = swiotlb_align_offset(dev, alloc_align_mask, orig_addr);
1372	index = swiotlb_find_slots(dev, orig_addr,
1373				   alloc_size + offset, alloc_align_mask, &pool);
1374	if (index == -1) {
1375		if (!(attrs & DMA_ATTR_NO_WARN))
1376			dev_warn_ratelimited(dev,
1377	"swiotlb buffer is full (sz: %zd bytes), total %lu (slots), used %lu (slots)\n",
1378				 alloc_size, mem->nslabs, mem_used(mem));
1379		return (phys_addr_t)DMA_MAPPING_ERROR;
1380	}
1381
1382	/*
1383	 * Save away the mapping from the original address to the DMA address.
1384	 * This is needed when we sync the memory.  Then we sync the buffer if
1385	 * needed.
1386	 */
1387	pad_slots = offset >> IO_TLB_SHIFT;
1388	offset &= (IO_TLB_SIZE - 1);
1389	index += pad_slots;
1390	pool->slots[index].pad_slots = pad_slots;
1391	for (i = 0; i < nr_slots(alloc_size + offset); i++)
1392		pool->slots[index + i].orig_addr = slot_addr(orig_addr, i);
1393	tlb_addr = slot_addr(pool->start, index) + offset;
1394	/*
1395	 * When the device is writing memory, i.e. dir == DMA_FROM_DEVICE, copy
1396	 * the original buffer to the TLB buffer before initiating DMA in order
1397	 * to preserve the original's data if the device does a partial write,
1398	 * i.e. if the device doesn't overwrite the entire buffer.  Preserving
1399	 * the original data, even if it's garbage, is necessary to match
1400	 * hardware behavior.  Use of swiotlb is supposed to be transparent,
1401	 * i.e. swiotlb must not corrupt memory by clobbering unwritten bytes.
1402	 */
1403	swiotlb_bounce(dev, tlb_addr, mapping_size, DMA_TO_DEVICE);
1404	return tlb_addr;
1405}
1406
1407static void swiotlb_release_slots(struct device *dev, phys_addr_t tlb_addr)
1408{
1409	struct io_tlb_pool *mem = swiotlb_find_pool(dev, tlb_addr);
1410	unsigned long flags;
1411	unsigned int offset = swiotlb_align_offset(dev, 0, tlb_addr);
1412	int index, nslots, aindex;
1413	struct io_tlb_area *area;
1414	int count, i;
1415
1416	index = (tlb_addr - offset - mem->start) >> IO_TLB_SHIFT;
1417	index -= mem->slots[index].pad_slots;
1418	nslots = nr_slots(mem->slots[index].alloc_size + offset);
1419	aindex = index / mem->area_nslabs;
1420	area = &mem->areas[aindex];
1421
1422	/*
1423	 * Return the buffer to the free list by setting the corresponding
1424	 * entries to indicate the number of contiguous entries available.
1425	 * While returning the entries to the free list, we merge the entries
1426	 * with slots below and above the pool being returned.
1427	 */
1428	BUG_ON(aindex >= mem->nareas);
1429
1430	spin_lock_irqsave(&area->lock, flags);
1431	if (index + nslots < ALIGN(index + 1, IO_TLB_SEGSIZE))
1432		count = mem->slots[index + nslots].list;
1433	else
1434		count = 0;
1435
1436	/*
1437	 * Step 1: return the slots to the free list, merging the slots with
1438	 * superceeding slots
1439	 */
1440	for (i = index + nslots - 1; i >= index; i--) {
1441		mem->slots[i].list = ++count;
1442		mem->slots[i].orig_addr = INVALID_PHYS_ADDR;
1443		mem->slots[i].alloc_size = 0;
1444		mem->slots[i].pad_slots = 0;
1445	}
1446
1447	/*
1448	 * Step 2: merge the returned slots with the preceding slots, if
1449	 * available (non zero)
1450	 */
1451	for (i = index - 1;
1452	     io_tlb_offset(i) != IO_TLB_SEGSIZE - 1 && mem->slots[i].list;
1453	     i--)
1454		mem->slots[i].list = ++count;
1455	area->used -= nslots;
1456	spin_unlock_irqrestore(&area->lock, flags);
1457
1458	dec_used(dev->dma_io_tlb_mem, nslots);
1459}
1460
1461#ifdef CONFIG_SWIOTLB_DYNAMIC
1462
1463/**
1464 * swiotlb_del_transient() - delete a transient memory pool
1465 * @dev:	Device which mapped the buffer.
1466 * @tlb_addr:	Physical address within a bounce buffer.
1467 *
1468 * Check whether the address belongs to a transient SWIOTLB memory pool.
1469 * If yes, then delete the pool.
1470 *
1471 * Return: %true if @tlb_addr belonged to a transient pool that was released.
1472 */
1473static bool swiotlb_del_transient(struct device *dev, phys_addr_t tlb_addr)
1474{
1475	struct io_tlb_pool *pool;
1476
1477	pool = swiotlb_find_pool(dev, tlb_addr);
1478	if (!pool->transient)
1479		return false;
1480
1481	dec_used(dev->dma_io_tlb_mem, pool->nslabs);
1482	swiotlb_del_pool(dev, pool);
1483	dec_transient_used(dev->dma_io_tlb_mem, pool->nslabs);
1484	return true;
1485}
1486
1487#else  /* !CONFIG_SWIOTLB_DYNAMIC */
1488
1489static inline bool swiotlb_del_transient(struct device *dev,
1490					 phys_addr_t tlb_addr)
1491{
1492	return false;
1493}
1494
1495#endif	/* CONFIG_SWIOTLB_DYNAMIC */
1496
1497/*
1498 * tlb_addr is the physical address of the bounce buffer to unmap.
1499 */
1500void swiotlb_tbl_unmap_single(struct device *dev, phys_addr_t tlb_addr,
1501			      size_t mapping_size, enum dma_data_direction dir,
1502			      unsigned long attrs)
1503{
1504	/*
1505	 * First, sync the memory before unmapping the entry
1506	 */
1507	if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
1508	    (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL))
1509		swiotlb_bounce(dev, tlb_addr, mapping_size, DMA_FROM_DEVICE);
1510
1511	if (swiotlb_del_transient(dev, tlb_addr))
1512		return;
1513	swiotlb_release_slots(dev, tlb_addr);
1514}
1515
1516void swiotlb_sync_single_for_device(struct device *dev, phys_addr_t tlb_addr,
1517		size_t size, enum dma_data_direction dir)
1518{
1519	if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)
1520		swiotlb_bounce(dev, tlb_addr, size, DMA_TO_DEVICE);
1521	else
1522		BUG_ON(dir != DMA_FROM_DEVICE);
1523}
1524
1525void swiotlb_sync_single_for_cpu(struct device *dev, phys_addr_t tlb_addr,
1526		size_t size, enum dma_data_direction dir)
1527{
1528	if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
1529		swiotlb_bounce(dev, tlb_addr, size, DMA_FROM_DEVICE);
1530	else
1531		BUG_ON(dir != DMA_TO_DEVICE);
1532}
1533
1534/*
1535 * Create a swiotlb mapping for the buffer at @paddr, and in case of DMAing
1536 * to the device copy the data into it as well.
1537 */
1538dma_addr_t swiotlb_map(struct device *dev, phys_addr_t paddr, size_t size,
1539		enum dma_data_direction dir, unsigned long attrs)
1540{
1541	phys_addr_t swiotlb_addr;
1542	dma_addr_t dma_addr;
1543
1544	trace_swiotlb_bounced(dev, phys_to_dma(dev, paddr), size);
1545
1546	swiotlb_addr = swiotlb_tbl_map_single(dev, paddr, size, size, 0, dir,
1547			attrs);
1548	if (swiotlb_addr == (phys_addr_t)DMA_MAPPING_ERROR)
1549		return DMA_MAPPING_ERROR;
1550
1551	/* Ensure that the address returned is DMA'ble */
1552	dma_addr = phys_to_dma_unencrypted(dev, swiotlb_addr);
1553	if (unlikely(!dma_capable(dev, dma_addr, size, true))) {
1554		swiotlb_tbl_unmap_single(dev, swiotlb_addr, size, dir,
1555			attrs | DMA_ATTR_SKIP_CPU_SYNC);
1556		dev_WARN_ONCE(dev, 1,
1557			"swiotlb addr %pad+%zu overflow (mask %llx, bus limit %llx).\n",
1558			&dma_addr, size, *dev->dma_mask, dev->bus_dma_limit);
1559		return DMA_MAPPING_ERROR;
1560	}
1561
1562	if (!dev_is_dma_coherent(dev) && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
1563		arch_sync_dma_for_device(swiotlb_addr, size, dir);
1564	return dma_addr;
1565}
1566
1567size_t swiotlb_max_mapping_size(struct device *dev)
1568{
1569	int min_align_mask = dma_get_min_align_mask(dev);
1570	int min_align = 0;
1571
1572	/*
1573	 * swiotlb_find_slots() skips slots according to
1574	 * min align mask. This affects max mapping size.
1575	 * Take it into acount here.
1576	 */
1577	if (min_align_mask)
1578		min_align = roundup(min_align_mask, IO_TLB_SIZE);
1579
1580	return ((size_t)IO_TLB_SIZE) * IO_TLB_SEGSIZE - min_align;
1581}
1582
1583/**
1584 * is_swiotlb_allocated() - check if the default software IO TLB is initialized
1585 */
1586bool is_swiotlb_allocated(void)
1587{
1588	return io_tlb_default_mem.nslabs;
1589}
1590
1591bool is_swiotlb_active(struct device *dev)
1592{
1593	struct io_tlb_mem *mem = dev->dma_io_tlb_mem;
1594
1595	return mem && mem->nslabs;
1596}
1597
1598/**
1599 * default_swiotlb_base() - get the base address of the default SWIOTLB
1600 *
1601 * Get the lowest physical address used by the default software IO TLB pool.
1602 */
1603phys_addr_t default_swiotlb_base(void)
1604{
1605#ifdef CONFIG_SWIOTLB_DYNAMIC
1606	io_tlb_default_mem.can_grow = false;
1607#endif
1608	return io_tlb_default_mem.defpool.start;
1609}
1610
1611/**
1612 * default_swiotlb_limit() - get the address limit of the default SWIOTLB
1613 *
1614 * Get the highest physical address used by the default software IO TLB pool.
1615 */
1616phys_addr_t default_swiotlb_limit(void)
1617{
1618#ifdef CONFIG_SWIOTLB_DYNAMIC
1619	return io_tlb_default_mem.phys_limit;
1620#else
1621	return io_tlb_default_mem.defpool.end - 1;
1622#endif
1623}
1624
1625#ifdef CONFIG_DEBUG_FS
1626#ifdef CONFIG_SWIOTLB_DYNAMIC
1627static unsigned long mem_transient_used(struct io_tlb_mem *mem)
1628{
1629	return atomic_long_read(&mem->transient_nslabs);
1630}
1631
1632static int io_tlb_transient_used_get(void *data, u64 *val)
1633{
1634	struct io_tlb_mem *mem = data;
1635
1636	*val = mem_transient_used(mem);
1637	return 0;
1638}
1639
1640DEFINE_DEBUGFS_ATTRIBUTE(fops_io_tlb_transient_used, io_tlb_transient_used_get,
1641			 NULL, "%llu\n");
1642#endif /* CONFIG_SWIOTLB_DYNAMIC */
1643
1644static int io_tlb_used_get(void *data, u64 *val)
1645{
1646	struct io_tlb_mem *mem = data;
1647
1648	*val = mem_used(mem);
1649	return 0;
1650}
1651
1652static int io_tlb_hiwater_get(void *data, u64 *val)
1653{
1654	struct io_tlb_mem *mem = data;
1655
1656	*val = atomic_long_read(&mem->used_hiwater);
1657	return 0;
1658}
1659
1660static int io_tlb_hiwater_set(void *data, u64 val)
1661{
1662	struct io_tlb_mem *mem = data;
1663
1664	/* Only allow setting to zero */
1665	if (val != 0)
1666		return -EINVAL;
1667
1668	atomic_long_set(&mem->used_hiwater, val);
1669	return 0;
1670}
1671
1672DEFINE_DEBUGFS_ATTRIBUTE(fops_io_tlb_used, io_tlb_used_get, NULL, "%llu\n");
1673DEFINE_DEBUGFS_ATTRIBUTE(fops_io_tlb_hiwater, io_tlb_hiwater_get,
1674				io_tlb_hiwater_set, "%llu\n");
1675
1676static void swiotlb_create_debugfs_files(struct io_tlb_mem *mem,
1677					 const char *dirname)
1678{
1679	mem->debugfs = debugfs_create_dir(dirname, io_tlb_default_mem.debugfs);
1680	if (!mem->nslabs)
1681		return;
1682
1683	debugfs_create_ulong("io_tlb_nslabs", 0400, mem->debugfs, &mem->nslabs);
1684	debugfs_create_file("io_tlb_used", 0400, mem->debugfs, mem,
1685			&fops_io_tlb_used);
1686	debugfs_create_file("io_tlb_used_hiwater", 0600, mem->debugfs, mem,
1687			&fops_io_tlb_hiwater);
1688#ifdef CONFIG_SWIOTLB_DYNAMIC
1689	debugfs_create_file("io_tlb_transient_nslabs", 0400, mem->debugfs,
1690			    mem, &fops_io_tlb_transient_used);
1691#endif
1692}
1693
1694static int __init swiotlb_create_default_debugfs(void)
1695{
1696	swiotlb_create_debugfs_files(&io_tlb_default_mem, "swiotlb");
1697	return 0;
1698}
1699
1700late_initcall(swiotlb_create_default_debugfs);
1701
1702#else  /* !CONFIG_DEBUG_FS */
1703
1704static inline void swiotlb_create_debugfs_files(struct io_tlb_mem *mem,
1705						const char *dirname)
1706{
1707}
1708
1709#endif	/* CONFIG_DEBUG_FS */
1710
1711#ifdef CONFIG_DMA_RESTRICTED_POOL
1712
1713struct page *swiotlb_alloc(struct device *dev, size_t size)
1714{
1715	struct io_tlb_mem *mem = dev->dma_io_tlb_mem;
1716	struct io_tlb_pool *pool;
1717	phys_addr_t tlb_addr;
1718	unsigned int align;
1719	int index;
1720
1721	if (!mem)
1722		return NULL;
1723
1724	align = (1 << (get_order(size) + PAGE_SHIFT)) - 1;
1725	index = swiotlb_find_slots(dev, 0, size, align, &pool);
1726	if (index == -1)
1727		return NULL;
1728
1729	tlb_addr = slot_addr(pool->start, index);
1730	if (unlikely(!PAGE_ALIGNED(tlb_addr))) {
1731		dev_WARN_ONCE(dev, 1, "Cannot allocate pages from non page-aligned swiotlb addr 0x%pa.\n",
1732			      &tlb_addr);
1733		swiotlb_release_slots(dev, tlb_addr);
1734		return NULL;
1735	}
1736
1737	return pfn_to_page(PFN_DOWN(tlb_addr));
1738}
1739
1740bool swiotlb_free(struct device *dev, struct page *page, size_t size)
1741{
1742	phys_addr_t tlb_addr = page_to_phys(page);
1743
1744	if (!is_swiotlb_buffer(dev, tlb_addr))
1745		return false;
1746
1747	swiotlb_release_slots(dev, tlb_addr);
1748
1749	return true;
1750}
1751
1752static int rmem_swiotlb_device_init(struct reserved_mem *rmem,
1753				    struct device *dev)
1754{
1755	struct io_tlb_mem *mem = rmem->priv;
1756	unsigned long nslabs = rmem->size >> IO_TLB_SHIFT;
1757
1758	/* Set Per-device io tlb area to one */
1759	unsigned int nareas = 1;
1760
1761	if (PageHighMem(pfn_to_page(PHYS_PFN(rmem->base)))) {
1762		dev_err(dev, "Restricted DMA pool must be accessible within the linear mapping.");
1763		return -EINVAL;
1764	}
1765
1766	/*
1767	 * Since multiple devices can share the same pool, the private data,
1768	 * io_tlb_mem struct, will be initialized by the first device attached
1769	 * to it.
1770	 */
1771	if (!mem) {
1772		struct io_tlb_pool *pool;
1773
1774		mem = kzalloc(sizeof(*mem), GFP_KERNEL);
1775		if (!mem)
1776			return -ENOMEM;
1777		pool = &mem->defpool;
1778
1779		pool->slots = kcalloc(nslabs, sizeof(*pool->slots), GFP_KERNEL);
1780		if (!pool->slots) {
1781			kfree(mem);
1782			return -ENOMEM;
1783		}
1784
1785		pool->areas = kcalloc(nareas, sizeof(*pool->areas),
1786				GFP_KERNEL);
1787		if (!pool->areas) {
1788			kfree(pool->slots);
1789			kfree(mem);
1790			return -ENOMEM;
1791		}
1792
1793		set_memory_decrypted((unsigned long)phys_to_virt(rmem->base),
1794				     rmem->size >> PAGE_SHIFT);
1795		swiotlb_init_io_tlb_pool(pool, rmem->base, nslabs,
1796					 false, nareas);
1797		mem->force_bounce = true;
1798		mem->for_alloc = true;
1799#ifdef CONFIG_SWIOTLB_DYNAMIC
1800		spin_lock_init(&mem->lock);
1801#endif
1802		add_mem_pool(mem, pool);
1803
1804		rmem->priv = mem;
1805
1806		swiotlb_create_debugfs_files(mem, rmem->name);
1807	}
1808
1809	dev->dma_io_tlb_mem = mem;
1810
1811	return 0;
1812}
1813
1814static void rmem_swiotlb_device_release(struct reserved_mem *rmem,
1815					struct device *dev)
1816{
1817	dev->dma_io_tlb_mem = &io_tlb_default_mem;
1818}
1819
1820static const struct reserved_mem_ops rmem_swiotlb_ops = {
1821	.device_init = rmem_swiotlb_device_init,
1822	.device_release = rmem_swiotlb_device_release,
1823};
1824
1825static int __init rmem_swiotlb_setup(struct reserved_mem *rmem)
1826{
1827	unsigned long node = rmem->fdt_node;
1828
1829	if (of_get_flat_dt_prop(node, "reusable", NULL) ||
1830	    of_get_flat_dt_prop(node, "linux,cma-default", NULL) ||
1831	    of_get_flat_dt_prop(node, "linux,dma-default", NULL) ||
1832	    of_get_flat_dt_prop(node, "no-map", NULL))
1833		return -EINVAL;
1834
1835	rmem->ops = &rmem_swiotlb_ops;
1836	pr_info("Reserved memory: created restricted DMA pool at %pa, size %ld MiB\n",
1837		&rmem->base, (unsigned long)rmem->size / SZ_1M);
1838	return 0;
1839}
1840
1841RESERVEDMEM_OF_DECLARE(dma, "restricted-dma-pool", rmem_swiotlb_setup);
1842#endif /* CONFIG_DMA_RESTRICTED_POOL */
1843