1/*
2 * Kernel Debugger Architecture Independent Support Functions
3 *
4 * This file is subject to the terms and conditions of the GNU General Public
5 * License.  See the file "COPYING" in the main directory of this archive
6 * for more details.
7 *
8 * Copyright (c) 1999-2004 Silicon Graphics, Inc.  All Rights Reserved.
9 * Copyright (c) 2009 Wind River Systems, Inc.  All Rights Reserved.
10 * 03/02/13    added new 2.5 kallsyms <xavier.bru@bull.net>
11 */
12
13#include <linux/types.h>
14#include <linux/sched.h>
15#include <linux/mm.h>
16#include <linux/kallsyms.h>
17#include <linux/stddef.h>
18#include <linux/vmalloc.h>
19#include <linux/ptrace.h>
20#include <linux/highmem.h>
21#include <linux/hardirq.h>
22#include <linux/delay.h>
23#include <linux/uaccess.h>
24#include <linux/kdb.h>
25#include <linux/slab.h>
26#include <linux/ctype.h>
27#include "kdb_private.h"
28
29/*
30 * kdbgetsymval - Return the address of the given symbol.
31 *
32 * Parameters:
33 *	symname	Character string containing symbol name
34 *      symtab  Structure to receive results
35 * Returns:
36 *	0	Symbol not found, symtab zero filled
37 *	1	Symbol mapped to module/symbol/section, data in symtab
38 */
39int kdbgetsymval(const char *symname, kdb_symtab_t *symtab)
40{
41	kdb_dbg_printf(AR, "symname=%s, symtab=%px\n", symname, symtab);
42	memset(symtab, 0, sizeof(*symtab));
43	symtab->sym_start = kallsyms_lookup_name(symname);
44	if (symtab->sym_start) {
45		kdb_dbg_printf(AR, "returns 1, symtab->sym_start=0x%lx\n",
46			       symtab->sym_start);
47		return 1;
48	}
49	kdb_dbg_printf(AR, "returns 0\n");
50	return 0;
51}
52EXPORT_SYMBOL(kdbgetsymval);
53
54/**
55 * kdbnearsym() - Return the name of the symbol with the nearest address
56 *                less than @addr.
57 * @addr: Address to check for near symbol
58 * @symtab: Structure to receive results
59 *
60 * WARNING: This function may return a pointer to a single statically
61 * allocated buffer (namebuf). kdb's unusual calling context (single
62 * threaded, all other CPUs halted) provides us sufficient locking for
63 * this to be safe. The only constraint imposed by the static buffer is
64 * that the caller must consume any previous reply prior to another call
65 * to lookup a new symbol.
66 *
67 * Note that, strictly speaking, some architectures may re-enter the kdb
68 * trap if the system turns out to be very badly damaged and this breaks
69 * the single-threaded assumption above. In these circumstances successful
70 * continuation and exit from the inner trap is unlikely to work and any
71 * user attempting this receives a prominent warning before being allowed
72 * to progress. In these circumstances we remain memory safe because
73 * namebuf[KSYM_NAME_LEN-1] will never change from '\0' although we do
74 * tolerate the possibility of garbled symbol display from the outer kdb
75 * trap.
76 *
77 * Return:
78 * * 0 - No sections contain this address, symtab zero filled
79 * * 1 - Address mapped to module/symbol/section, data in symtab
80 */
81int kdbnearsym(unsigned long addr, kdb_symtab_t *symtab)
82{
83	int ret = 0;
84	unsigned long symbolsize = 0;
85	unsigned long offset = 0;
86	static char namebuf[KSYM_NAME_LEN];
87
88	kdb_dbg_printf(AR, "addr=0x%lx, symtab=%px\n", addr, symtab);
89	memset(symtab, 0, sizeof(*symtab));
90
91	if (addr < 4096)
92		goto out;
93
94	symtab->sym_name = kallsyms_lookup(addr, &symbolsize , &offset,
95				(char **)(&symtab->mod_name), namebuf);
96	if (offset > 8*1024*1024) {
97		symtab->sym_name = NULL;
98		addr = offset = symbolsize = 0;
99	}
100	symtab->sym_start = addr - offset;
101	symtab->sym_end = symtab->sym_start + symbolsize;
102	ret = symtab->sym_name != NULL && *(symtab->sym_name) != '\0';
103
104	if (symtab->mod_name == NULL)
105		symtab->mod_name = "kernel";
106	kdb_dbg_printf(AR, "returns %d symtab->sym_start=0x%lx, symtab->mod_name=%px, symtab->sym_name=%px (%s)\n",
107		       ret, symtab->sym_start, symtab->mod_name, symtab->sym_name, symtab->sym_name);
108out:
109	return ret;
110}
111
112static char ks_namebuf[KSYM_NAME_LEN+1], ks_namebuf_prev[KSYM_NAME_LEN+1];
113
114/*
115 * kallsyms_symbol_complete
116 *
117 * Parameters:
118 *	prefix_name	prefix of a symbol name to lookup
119 *	max_len		maximum length that can be returned
120 * Returns:
121 *	Number of symbols which match the given prefix.
122 * Notes:
123 *	prefix_name is changed to contain the longest unique prefix that
124 *	starts with this prefix (tab completion).
125 */
126int kallsyms_symbol_complete(char *prefix_name, int max_len)
127{
128	loff_t pos = 0;
129	int prefix_len = strlen(prefix_name), prev_len = 0;
130	int i, number = 0;
131	const char *name;
132
133	while ((name = kdb_walk_kallsyms(&pos))) {
134		if (strncmp(name, prefix_name, prefix_len) == 0) {
135			strscpy(ks_namebuf, name, sizeof(ks_namebuf));
136			/* Work out the longest name that matches the prefix */
137			if (++number == 1) {
138				prev_len = min_t(int, max_len-1,
139						 strlen(ks_namebuf));
140				memcpy(ks_namebuf_prev, ks_namebuf, prev_len);
141				ks_namebuf_prev[prev_len] = '\0';
142				continue;
143			}
144			for (i = 0; i < prev_len; i++) {
145				if (ks_namebuf[i] != ks_namebuf_prev[i]) {
146					prev_len = i;
147					ks_namebuf_prev[i] = '\0';
148					break;
149				}
150			}
151		}
152	}
153	if (prev_len > prefix_len)
154		memcpy(prefix_name, ks_namebuf_prev, prev_len+1);
155	return number;
156}
157
158/*
159 * kallsyms_symbol_next
160 *
161 * Parameters:
162 *	prefix_name	prefix of a symbol name to lookup
163 *	flag	0 means search from the head, 1 means continue search.
164 *	buf_size	maximum length that can be written to prefix_name
165 *			buffer
166 * Returns:
167 *	1 if a symbol matches the given prefix.
168 *	0 if no string found
169 */
170int kallsyms_symbol_next(char *prefix_name, int flag, int buf_size)
171{
172	int prefix_len = strlen(prefix_name);
173	static loff_t pos;
174	const char *name;
175
176	if (!flag)
177		pos = 0;
178
179	while ((name = kdb_walk_kallsyms(&pos))) {
180		if (!strncmp(name, prefix_name, prefix_len))
181			return strscpy(prefix_name, name, buf_size);
182	}
183	return 0;
184}
185
186/*
187 * kdb_symbol_print - Standard method for printing a symbol name and offset.
188 * Inputs:
189 *	addr	Address to be printed.
190 *	symtab	Address of symbol data, if NULL this routine does its
191 *		own lookup.
192 *	punc	Punctuation for string, bit field.
193 * Remarks:
194 *	The string and its punctuation is only printed if the address
195 *	is inside the kernel, except that the value is always printed
196 *	when requested.
197 */
198void kdb_symbol_print(unsigned long addr, const kdb_symtab_t *symtab_p,
199		      unsigned int punc)
200{
201	kdb_symtab_t symtab, *symtab_p2;
202	if (symtab_p) {
203		symtab_p2 = (kdb_symtab_t *)symtab_p;
204	} else {
205		symtab_p2 = &symtab;
206		kdbnearsym(addr, symtab_p2);
207	}
208	if (!(symtab_p2->sym_name || (punc & KDB_SP_VALUE)))
209		return;
210	if (punc & KDB_SP_SPACEB)
211		kdb_printf(" ");
212	if (punc & KDB_SP_VALUE)
213		kdb_printf(kdb_machreg_fmt0, addr);
214	if (symtab_p2->sym_name) {
215		if (punc & KDB_SP_VALUE)
216			kdb_printf(" ");
217		if (punc & KDB_SP_PAREN)
218			kdb_printf("(");
219		if (strcmp(symtab_p2->mod_name, "kernel"))
220			kdb_printf("[%s]", symtab_p2->mod_name);
221		kdb_printf("%s", symtab_p2->sym_name);
222		if (addr != symtab_p2->sym_start)
223			kdb_printf("+0x%lx", addr - symtab_p2->sym_start);
224		if (punc & KDB_SP_SYMSIZE)
225			kdb_printf("/0x%lx",
226				   symtab_p2->sym_end - symtab_p2->sym_start);
227		if (punc & KDB_SP_PAREN)
228			kdb_printf(")");
229	}
230	if (punc & KDB_SP_SPACEA)
231		kdb_printf(" ");
232	if (punc & KDB_SP_NEWLINE)
233		kdb_printf("\n");
234}
235
236/*
237 * kdb_strdup - kdb equivalent of strdup, for disasm code.
238 * Inputs:
239 *	str	The string to duplicate.
240 *	type	Flags to kmalloc for the new string.
241 * Returns:
242 *	Address of the new string, NULL if storage could not be allocated.
243 * Remarks:
244 *	This is not in lib/string.c because it uses kmalloc which is not
245 *	available when string.o is used in boot loaders.
246 */
247char *kdb_strdup(const char *str, gfp_t type)
248{
249	int n = strlen(str)+1;
250	char *s = kmalloc(n, type);
251	if (!s)
252		return NULL;
253	return strcpy(s, str);
254}
255
256/*
257 * kdb_getarea_size - Read an area of data.  The kdb equivalent of
258 *	copy_from_user, with kdb messages for invalid addresses.
259 * Inputs:
260 *	res	Pointer to the area to receive the result.
261 *	addr	Address of the area to copy.
262 *	size	Size of the area.
263 * Returns:
264 *	0 for success, < 0 for error.
265 */
266int kdb_getarea_size(void *res, unsigned long addr, size_t size)
267{
268	int ret = copy_from_kernel_nofault((char *)res, (char *)addr, size);
269	if (ret) {
270		if (!KDB_STATE(SUPPRESS)) {
271			kdb_func_printf("Bad address 0x%lx\n", addr);
272			KDB_STATE_SET(SUPPRESS);
273		}
274		ret = KDB_BADADDR;
275	} else {
276		KDB_STATE_CLEAR(SUPPRESS);
277	}
278	return ret;
279}
280
281/*
282 * kdb_putarea_size - Write an area of data.  The kdb equivalent of
283 *	copy_to_user, with kdb messages for invalid addresses.
284 * Inputs:
285 *	addr	Address of the area to write to.
286 *	res	Pointer to the area holding the data.
287 *	size	Size of the area.
288 * Returns:
289 *	0 for success, < 0 for error.
290 */
291int kdb_putarea_size(unsigned long addr, void *res, size_t size)
292{
293	int ret = copy_to_kernel_nofault((char *)addr, (char *)res, size);
294	if (ret) {
295		if (!KDB_STATE(SUPPRESS)) {
296			kdb_func_printf("Bad address 0x%lx\n", addr);
297			KDB_STATE_SET(SUPPRESS);
298		}
299		ret = KDB_BADADDR;
300	} else {
301		KDB_STATE_CLEAR(SUPPRESS);
302	}
303	return ret;
304}
305
306/*
307 * kdb_getphys - Read data from a physical address. Validate the
308 * 	address is in range, use kmap_atomic() to get data
309 * 	similar to kdb_getarea() - but for phys addresses
310 * Inputs:
311 * 	res	Pointer to the word to receive the result
312 * 	addr	Physical address of the area to copy
313 * 	size	Size of the area
314 * Returns:
315 *	0 for success, < 0 for error.
316 */
317static int kdb_getphys(void *res, unsigned long addr, size_t size)
318{
319	unsigned long pfn;
320	void *vaddr;
321	struct page *page;
322
323	pfn = (addr >> PAGE_SHIFT);
324	if (!pfn_valid(pfn))
325		return 1;
326	page = pfn_to_page(pfn);
327	vaddr = kmap_atomic(page);
328	memcpy(res, vaddr + (addr & (PAGE_SIZE - 1)), size);
329	kunmap_atomic(vaddr);
330
331	return 0;
332}
333
334/*
335 * kdb_getphysword
336 * Inputs:
337 *	word	Pointer to the word to receive the result.
338 *	addr	Address of the area to copy.
339 *	size	Size of the area.
340 * Returns:
341 *	0 for success, < 0 for error.
342 */
343int kdb_getphysword(unsigned long *word, unsigned long addr, size_t size)
344{
345	int diag;
346	__u8  w1;
347	__u16 w2;
348	__u32 w4;
349	__u64 w8;
350	*word = 0;	/* Default value if addr or size is invalid */
351
352	switch (size) {
353	case 1:
354		diag = kdb_getphys(&w1, addr, sizeof(w1));
355		if (!diag)
356			*word = w1;
357		break;
358	case 2:
359		diag = kdb_getphys(&w2, addr, sizeof(w2));
360		if (!diag)
361			*word = w2;
362		break;
363	case 4:
364		diag = kdb_getphys(&w4, addr, sizeof(w4));
365		if (!diag)
366			*word = w4;
367		break;
368	case 8:
369		if (size <= sizeof(*word)) {
370			diag = kdb_getphys(&w8, addr, sizeof(w8));
371			if (!diag)
372				*word = w8;
373			break;
374		}
375		fallthrough;
376	default:
377		diag = KDB_BADWIDTH;
378		kdb_func_printf("bad width %zu\n", size);
379	}
380	return diag;
381}
382
383/*
384 * kdb_getword - Read a binary value.  Unlike kdb_getarea, this treats
385 *	data as numbers.
386 * Inputs:
387 *	word	Pointer to the word to receive the result.
388 *	addr	Address of the area to copy.
389 *	size	Size of the area.
390 * Returns:
391 *	0 for success, < 0 for error.
392 */
393int kdb_getword(unsigned long *word, unsigned long addr, size_t size)
394{
395	int diag;
396	__u8  w1;
397	__u16 w2;
398	__u32 w4;
399	__u64 w8;
400	*word = 0;	/* Default value if addr or size is invalid */
401	switch (size) {
402	case 1:
403		diag = kdb_getarea(w1, addr);
404		if (!diag)
405			*word = w1;
406		break;
407	case 2:
408		diag = kdb_getarea(w2, addr);
409		if (!diag)
410			*word = w2;
411		break;
412	case 4:
413		diag = kdb_getarea(w4, addr);
414		if (!diag)
415			*word = w4;
416		break;
417	case 8:
418		if (size <= sizeof(*word)) {
419			diag = kdb_getarea(w8, addr);
420			if (!diag)
421				*word = w8;
422			break;
423		}
424		fallthrough;
425	default:
426		diag = KDB_BADWIDTH;
427		kdb_func_printf("bad width %zu\n", size);
428	}
429	return diag;
430}
431
432/*
433 * kdb_putword - Write a binary value.  Unlike kdb_putarea, this
434 *	treats data as numbers.
435 * Inputs:
436 *	addr	Address of the area to write to..
437 *	word	The value to set.
438 *	size	Size of the area.
439 * Returns:
440 *	0 for success, < 0 for error.
441 */
442int kdb_putword(unsigned long addr, unsigned long word, size_t size)
443{
444	int diag;
445	__u8  w1;
446	__u16 w2;
447	__u32 w4;
448	__u64 w8;
449	switch (size) {
450	case 1:
451		w1 = word;
452		diag = kdb_putarea(addr, w1);
453		break;
454	case 2:
455		w2 = word;
456		diag = kdb_putarea(addr, w2);
457		break;
458	case 4:
459		w4 = word;
460		diag = kdb_putarea(addr, w4);
461		break;
462	case 8:
463		if (size <= sizeof(word)) {
464			w8 = word;
465			diag = kdb_putarea(addr, w8);
466			break;
467		}
468		fallthrough;
469	default:
470		diag = KDB_BADWIDTH;
471		kdb_func_printf("bad width %zu\n", size);
472	}
473	return diag;
474}
475
476
477
478/*
479 * kdb_task_state_char - Return the character that represents the task state.
480 * Inputs:
481 *	p	struct task for the process
482 * Returns:
483 *	One character to represent the task state.
484 */
485char kdb_task_state_char (const struct task_struct *p)
486{
487	unsigned long tmp;
488	char state;
489	int cpu;
490
491	if (!p ||
492	    copy_from_kernel_nofault(&tmp, (char *)p, sizeof(unsigned long)))
493		return 'E';
494
495	state = task_state_to_char((struct task_struct *) p);
496
497	if (is_idle_task(p)) {
498		/* Idle task.  Is it really idle, apart from the kdb
499		 * interrupt? */
500		cpu = kdb_process_cpu(p);
501		if (!kdb_task_has_cpu(p) || kgdb_info[cpu].irq_depth == 1) {
502			if (cpu != kdb_initial_cpu)
503				state = '-';	/* idle task */
504		}
505	} else if (!p->mm && strchr("IMS", state)) {
506		state = tolower(state);		/* sleeping system daemon */
507	}
508	return state;
509}
510
511/*
512 * kdb_task_state - Return true if a process has the desired state
513 *	given by the mask.
514 * Inputs:
515 *	p	struct task for the process
516 *	mask	set of characters used to select processes; both NULL
517 *	        and the empty string mean adopt a default filter, which
518 *	        is to suppress sleeping system daemons and the idle tasks
519 * Returns:
520 *	True if the process matches at least one criteria defined by the mask.
521 */
522bool kdb_task_state(const struct task_struct *p, const char *mask)
523{
524	char state = kdb_task_state_char(p);
525
526	/* If there is no mask, then we will filter code that runs when the
527	 * scheduler is idling and any system daemons that are currently
528	 * sleeping.
529	 */
530	if (!mask || mask[0] == '\0')
531		return !strchr("-ims", state);
532
533	/* A is a special case that matches all states */
534	if (strchr(mask, 'A'))
535		return true;
536
537	return strchr(mask, state);
538}
539
540/* Maintain a small stack of kdb_flags to allow recursion without disturbing
541 * the global kdb state.
542 */
543
544static int kdb_flags_stack[4], kdb_flags_index;
545
546void kdb_save_flags(void)
547{
548	BUG_ON(kdb_flags_index >= ARRAY_SIZE(kdb_flags_stack));
549	kdb_flags_stack[kdb_flags_index++] = kdb_flags;
550}
551
552void kdb_restore_flags(void)
553{
554	BUG_ON(kdb_flags_index <= 0);
555	kdb_flags = kdb_flags_stack[--kdb_flags_index];
556}
557