1/* SPDX-License-Identifier: MIT */
2/******************************************************************************
3 * blkif.h
4 *
5 * Unified block-device I/O interface for Xen guest OSes.
6 *
7 * Copyright (c) 2003-2004, Keir Fraser
8 */
9
10#ifndef __XEN_PUBLIC_IO_BLKIF_H__
11#define __XEN_PUBLIC_IO_BLKIF_H__
12
13#include <xen/interface/io/ring.h>
14#include <xen/interface/grant_table.h>
15
16/*
17 * Front->back notifications: When enqueuing a new request, sending a
18 * notification can be made conditional on req_event (i.e., the generic
19 * hold-off mechanism provided by the ring macros). Backends must set
20 * req_event appropriately (e.g., using RING_FINAL_CHECK_FOR_REQUESTS()).
21 *
22 * Back->front notifications: When enqueuing a new response, sending a
23 * notification can be made conditional on rsp_event (i.e., the generic
24 * hold-off mechanism provided by the ring macros). Frontends must set
25 * rsp_event appropriately (e.g., using RING_FINAL_CHECK_FOR_RESPONSES()).
26 */
27
28typedef uint16_t blkif_vdev_t;
29typedef uint64_t blkif_sector_t;
30
31/*
32 * Multiple hardware queues/rings:
33 * If supported, the backend will write the key "multi-queue-max-queues" to
34 * the directory for that vbd, and set its value to the maximum supported
35 * number of queues.
36 * Frontends that are aware of this feature and wish to use it can write the
37 * key "multi-queue-num-queues" with the number they wish to use, which must be
38 * greater than zero, and no more than the value reported by the backend in
39 * "multi-queue-max-queues".
40 *
41 * For frontends requesting just one queue, the usual event-channel and
42 * ring-ref keys are written as before, simplifying the backend processing
43 * to avoid distinguishing between a frontend that doesn't understand the
44 * multi-queue feature, and one that does, but requested only one queue.
45 *
46 * Frontends requesting two or more queues must not write the toplevel
47 * event-channel and ring-ref keys, instead writing those keys under sub-keys
48 * having the name "queue-N" where N is the integer ID of the queue/ring for
49 * which those keys belong. Queues are indexed from zero.
50 * For example, a frontend with two queues must write the following set of
51 * queue-related keys:
52 *
53 * /local/domain/1/device/vbd/0/multi-queue-num-queues = "2"
54 * /local/domain/1/device/vbd/0/queue-0 = ""
55 * /local/domain/1/device/vbd/0/queue-0/ring-ref = "<ring-ref#0>"
56 * /local/domain/1/device/vbd/0/queue-0/event-channel = "<evtchn#0>"
57 * /local/domain/1/device/vbd/0/queue-1 = ""
58 * /local/domain/1/device/vbd/0/queue-1/ring-ref = "<ring-ref#1>"
59 * /local/domain/1/device/vbd/0/queue-1/event-channel = "<evtchn#1>"
60 *
61 * It is also possible to use multiple queues/rings together with
62 * feature multi-page ring buffer.
63 * For example, a frontend requests two queues/rings and the size of each ring
64 * buffer is two pages must write the following set of related keys:
65 *
66 * /local/domain/1/device/vbd/0/multi-queue-num-queues = "2"
67 * /local/domain/1/device/vbd/0/ring-page-order = "1"
68 * /local/domain/1/device/vbd/0/queue-0 = ""
69 * /local/domain/1/device/vbd/0/queue-0/ring-ref0 = "<ring-ref#0>"
70 * /local/domain/1/device/vbd/0/queue-0/ring-ref1 = "<ring-ref#1>"
71 * /local/domain/1/device/vbd/0/queue-0/event-channel = "<evtchn#0>"
72 * /local/domain/1/device/vbd/0/queue-1 = ""
73 * /local/domain/1/device/vbd/0/queue-1/ring-ref0 = "<ring-ref#2>"
74 * /local/domain/1/device/vbd/0/queue-1/ring-ref1 = "<ring-ref#3>"
75 * /local/domain/1/device/vbd/0/queue-1/event-channel = "<evtchn#1>"
76 *
77 */
78
79/*
80 * REQUEST CODES.
81 */
82#define BLKIF_OP_READ              0
83#define BLKIF_OP_WRITE             1
84/*
85 * Recognised only if "feature-barrier" is present in backend xenbus info.
86 * The "feature_barrier" node contains a boolean indicating whether barrier
87 * requests are likely to succeed or fail. Either way, a barrier request
88 * may fail at any time with BLKIF_RSP_EOPNOTSUPP if it is unsupported by
89 * the underlying block-device hardware. The boolean simply indicates whether
90 * or not it is worthwhile for the frontend to attempt barrier requests.
91 * If a backend does not recognise BLKIF_OP_WRITE_BARRIER, it should *not*
92 * create the "feature-barrier" node!
93 */
94#define BLKIF_OP_WRITE_BARRIER     2
95
96/*
97 * Recognised if "feature-flush-cache" is present in backend xenbus
98 * info.  A flush will ask the underlying storage hardware to flush its
99 * non-volatile caches as appropriate.  The "feature-flush-cache" node
100 * contains a boolean indicating whether flush requests are likely to
101 * succeed or fail. Either way, a flush request may fail at any time
102 * with BLKIF_RSP_EOPNOTSUPP if it is unsupported by the underlying
103 * block-device hardware. The boolean simply indicates whether or not it
104 * is worthwhile for the frontend to attempt flushes.  If a backend does
105 * not recognise BLKIF_OP_WRITE_FLUSH_CACHE, it should *not* create the
106 * "feature-flush-cache" node!
107 */
108#define BLKIF_OP_FLUSH_DISKCACHE   3
109
110/*
111 * Recognised only if "feature-discard" is present in backend xenbus info.
112 * The "feature-discard" node contains a boolean indicating whether trim
113 * (ATA) or unmap (SCSI) - conviently called discard requests are likely
114 * to succeed or fail. Either way, a discard request
115 * may fail at any time with BLKIF_RSP_EOPNOTSUPP if it is unsupported by
116 * the underlying block-device hardware. The boolean simply indicates whether
117 * or not it is worthwhile for the frontend to attempt discard requests.
118 * If a backend does not recognise BLKIF_OP_DISCARD, it should *not*
119 * create the "feature-discard" node!
120 *
121 * Discard operation is a request for the underlying block device to mark
122 * extents to be erased. However, discard does not guarantee that the blocks
123 * will be erased from the device - it is just a hint to the device
124 * controller that these blocks are no longer in use. What the device
125 * controller does with that information is left to the controller.
126 * Discard operations are passed with sector_number as the
127 * sector index to begin discard operations at and nr_sectors as the number of
128 * sectors to be discarded. The specified sectors should be discarded if the
129 * underlying block device supports trim (ATA) or unmap (SCSI) operations,
130 * or a BLKIF_RSP_EOPNOTSUPP  should be returned.
131 * More information about trim/unmap operations at:
132 * http://t13.org/Documents/UploadedDocuments/docs2008/
133 *     e07154r6-Data_Set_Management_Proposal_for_ATA-ACS2.doc
134 * http://www.seagate.com/staticfiles/support/disc/manuals/
135 *     Interface%20manuals/100293068c.pdf
136 * The backend can optionally provide three extra XenBus attributes to
137 * further optimize the discard functionality:
138 * 'discard-alignment' - Devices that support discard functionality may
139 * internally allocate space in units that are bigger than the exported
140 * logical block size. The discard-alignment parameter indicates how many bytes
141 * the beginning of the partition is offset from the internal allocation unit's
142 * natural alignment.
143 * 'discard-granularity'  - Devices that support discard functionality may
144 * internally allocate space using units that are bigger than the logical block
145 * size. The discard-granularity parameter indicates the size of the internal
146 * allocation unit in bytes if reported by the device. Otherwise the
147 * discard-granularity will be set to match the device's physical block size.
148 * 'discard-secure' - All copies of the discarded sectors (potentially created
149 * by garbage collection) must also be erased.  To use this feature, the flag
150 * BLKIF_DISCARD_SECURE must be set in the blkif_request_trim.
151 */
152#define BLKIF_OP_DISCARD           5
153
154/*
155 * Recognized if "feature-max-indirect-segments" in present in the backend
156 * xenbus info. The "feature-max-indirect-segments" node contains the maximum
157 * number of segments allowed by the backend per request. If the node is
158 * present, the frontend might use blkif_request_indirect structs in order to
159 * issue requests with more than BLKIF_MAX_SEGMENTS_PER_REQUEST (11). The
160 * maximum number of indirect segments is fixed by the backend, but the
161 * frontend can issue requests with any number of indirect segments as long as
162 * it's less than the number provided by the backend. The indirect_grefs field
163 * in blkif_request_indirect should be filled by the frontend with the
164 * grant references of the pages that are holding the indirect segments.
165 * These pages are filled with an array of blkif_request_segment that hold the
166 * information about the segments. The number of indirect pages to use is
167 * determined by the number of segments an indirect request contains. Every
168 * indirect page can contain a maximum of
169 * (PAGE_SIZE / sizeof(struct blkif_request_segment)) segments, so to
170 * calculate the number of indirect pages to use we have to do
171 * ceil(indirect_segments / (PAGE_SIZE / sizeof(struct blkif_request_segment))).
172 *
173 * If a backend does not recognize BLKIF_OP_INDIRECT, it should *not*
174 * create the "feature-max-indirect-segments" node!
175 */
176#define BLKIF_OP_INDIRECT          6
177
178/*
179 * Maximum scatter/gather segments per request.
180 * This is carefully chosen so that sizeof(struct blkif_ring) <= PAGE_SIZE.
181 * NB. This could be 12 if the ring indexes weren't stored in the same page.
182 */
183#define BLKIF_MAX_SEGMENTS_PER_REQUEST 11
184
185#define BLKIF_MAX_INDIRECT_PAGES_PER_REQUEST 8
186
187struct blkif_request_segment {
188		grant_ref_t gref;        /* reference to I/O buffer frame        */
189		/* @first_sect: first sector in frame to transfer (inclusive).   */
190		/* @last_sect: last sector in frame to transfer (inclusive).     */
191		uint8_t     first_sect, last_sect;
192};
193
194struct blkif_request_rw {
195	uint8_t        nr_segments;  /* number of segments                   */
196	blkif_vdev_t   handle;       /* only for read/write requests         */
197#ifndef CONFIG_X86_32
198	uint32_t       _pad1;	     /* offsetof(blkif_request,u.rw.id) == 8 */
199#endif
200	uint64_t       id;           /* private guest value, echoed in resp  */
201	blkif_sector_t sector_number;/* start sector idx on disk (r/w only)  */
202	struct blkif_request_segment seg[BLKIF_MAX_SEGMENTS_PER_REQUEST];
203} __attribute__((__packed__));
204
205struct blkif_request_discard {
206	uint8_t        flag;         /* BLKIF_DISCARD_SECURE or zero.        */
207#define BLKIF_DISCARD_SECURE (1<<0)  /* ignored if discard-secure=0          */
208	blkif_vdev_t   _pad1;        /* only for read/write requests         */
209#ifndef CONFIG_X86_32
210	uint32_t       _pad2;        /* offsetof(blkif_req..,u.discard.id)==8*/
211#endif
212	uint64_t       id;           /* private guest value, echoed in resp  */
213	blkif_sector_t sector_number;
214	uint64_t       nr_sectors;
215	uint8_t        _pad3;
216} __attribute__((__packed__));
217
218struct blkif_request_other {
219	uint8_t      _pad1;
220	blkif_vdev_t _pad2;        /* only for read/write requests         */
221#ifndef CONFIG_X86_32
222	uint32_t     _pad3;        /* offsetof(blkif_req..,u.other.id)==8*/
223#endif
224	uint64_t     id;           /* private guest value, echoed in resp  */
225} __attribute__((__packed__));
226
227struct blkif_request_indirect {
228	uint8_t        indirect_op;
229	uint16_t       nr_segments;
230#ifndef CONFIG_X86_32
231	uint32_t       _pad1;        /* offsetof(blkif_...,u.indirect.id) == 8 */
232#endif
233	uint64_t       id;
234	blkif_sector_t sector_number;
235	blkif_vdev_t   handle;
236	uint16_t       _pad2;
237	grant_ref_t    indirect_grefs[BLKIF_MAX_INDIRECT_PAGES_PER_REQUEST];
238#ifndef CONFIG_X86_32
239	uint32_t      _pad3;         /* make it 64 byte aligned */
240#else
241	uint64_t      _pad3;         /* make it 64 byte aligned */
242#endif
243} __attribute__((__packed__));
244
245struct blkif_request {
246	uint8_t        operation;    /* BLKIF_OP_???                         */
247	union {
248		struct blkif_request_rw rw;
249		struct blkif_request_discard discard;
250		struct blkif_request_other other;
251		struct blkif_request_indirect indirect;
252	} u;
253} __attribute__((__packed__));
254
255struct blkif_response {
256	uint64_t        id;              /* copied from request */
257	uint8_t         operation;       /* copied from request */
258	int16_t         status;          /* BLKIF_RSP_???       */
259};
260
261/*
262 * STATUS RETURN CODES.
263 */
264 /* Operation not supported (only happens on barrier writes). */
265#define BLKIF_RSP_EOPNOTSUPP  -2
266 /* Operation failed for some unspecified reason (-EIO). */
267#define BLKIF_RSP_ERROR       -1
268 /* Operation completed successfully. */
269#define BLKIF_RSP_OKAY         0
270
271/*
272 * Generate blkif ring structures and types.
273 */
274
275DEFINE_RING_TYPES(blkif, struct blkif_request, struct blkif_response);
276
277#define VDISK_CDROM        0x1
278#define VDISK_REMOVABLE    0x2
279#define VDISK_READONLY     0x4
280
281/* Xen-defined major numbers for virtual disks, they look strangely
282 * familiar */
283#define XEN_IDE0_MAJOR	3
284#define XEN_IDE1_MAJOR	22
285#define XEN_SCSI_DISK0_MAJOR	8
286#define XEN_SCSI_DISK1_MAJOR	65
287#define XEN_SCSI_DISK2_MAJOR	66
288#define XEN_SCSI_DISK3_MAJOR	67
289#define XEN_SCSI_DISK4_MAJOR	68
290#define XEN_SCSI_DISK5_MAJOR	69
291#define XEN_SCSI_DISK6_MAJOR	70
292#define XEN_SCSI_DISK7_MAJOR	71
293#define XEN_SCSI_DISK8_MAJOR	128
294#define XEN_SCSI_DISK9_MAJOR	129
295#define XEN_SCSI_DISK10_MAJOR	130
296#define XEN_SCSI_DISK11_MAJOR	131
297#define XEN_SCSI_DISK12_MAJOR	132
298#define XEN_SCSI_DISK13_MAJOR	133
299#define XEN_SCSI_DISK14_MAJOR	134
300#define XEN_SCSI_DISK15_MAJOR	135
301
302#endif /* __XEN_PUBLIC_IO_BLKIF_H__ */
303