1/* SPDX-License-Identifier: GPL-2.0 */
2#undef TRACE_SYSTEM
3#define TRACE_SYSTEM sched
4
5#if !defined(_TRACE_SCHED_H) || defined(TRACE_HEADER_MULTI_READ)
6#define _TRACE_SCHED_H
7
8#include <linux/kthread.h>
9#include <linux/sched/numa_balancing.h>
10#include <linux/tracepoint.h>
11#include <linux/binfmts.h>
12
13/*
14 * Tracepoint for calling kthread_stop, performed to end a kthread:
15 */
16TRACE_EVENT(sched_kthread_stop,
17
18	TP_PROTO(struct task_struct *t),
19
20	TP_ARGS(t),
21
22	TP_STRUCT__entry(
23		__array(	char,	comm,	TASK_COMM_LEN	)
24		__field(	pid_t,	pid			)
25	),
26
27	TP_fast_assign(
28		memcpy(__entry->comm, t->comm, TASK_COMM_LEN);
29		__entry->pid	= t->pid;
30	),
31
32	TP_printk("comm=%s pid=%d", __entry->comm, __entry->pid)
33);
34
35/*
36 * Tracepoint for the return value of the kthread stopping:
37 */
38TRACE_EVENT(sched_kthread_stop_ret,
39
40	TP_PROTO(int ret),
41
42	TP_ARGS(ret),
43
44	TP_STRUCT__entry(
45		__field(	int,	ret	)
46	),
47
48	TP_fast_assign(
49		__entry->ret	= ret;
50	),
51
52	TP_printk("ret=%d", __entry->ret)
53);
54
55/**
56 * sched_kthread_work_queue_work - called when a work gets queued
57 * @worker:	pointer to the kthread_worker
58 * @work:	pointer to struct kthread_work
59 *
60 * This event occurs when a work is queued immediately or once a
61 * delayed work is actually queued (ie: once the delay has been
62 * reached).
63 */
64TRACE_EVENT(sched_kthread_work_queue_work,
65
66	TP_PROTO(struct kthread_worker *worker,
67		 struct kthread_work *work),
68
69	TP_ARGS(worker, work),
70
71	TP_STRUCT__entry(
72		__field( void *,	work	)
73		__field( void *,	function)
74		__field( void *,	worker)
75	),
76
77	TP_fast_assign(
78		__entry->work		= work;
79		__entry->function	= work->func;
80		__entry->worker		= worker;
81	),
82
83	TP_printk("work struct=%p function=%ps worker=%p",
84		  __entry->work, __entry->function, __entry->worker)
85);
86
87/**
88 * sched_kthread_work_execute_start - called immediately before the work callback
89 * @work:	pointer to struct kthread_work
90 *
91 * Allows to track kthread work execution.
92 */
93TRACE_EVENT(sched_kthread_work_execute_start,
94
95	TP_PROTO(struct kthread_work *work),
96
97	TP_ARGS(work),
98
99	TP_STRUCT__entry(
100		__field( void *,	work	)
101		__field( void *,	function)
102	),
103
104	TP_fast_assign(
105		__entry->work		= work;
106		__entry->function	= work->func;
107	),
108
109	TP_printk("work struct %p: function %ps", __entry->work, __entry->function)
110);
111
112/**
113 * sched_kthread_work_execute_end - called immediately after the work callback
114 * @work:	pointer to struct work_struct
115 * @function:   pointer to worker function
116 *
117 * Allows to track workqueue execution.
118 */
119TRACE_EVENT(sched_kthread_work_execute_end,
120
121	TP_PROTO(struct kthread_work *work, kthread_work_func_t function),
122
123	TP_ARGS(work, function),
124
125	TP_STRUCT__entry(
126		__field( void *,	work	)
127		__field( void *,	function)
128	),
129
130	TP_fast_assign(
131		__entry->work		= work;
132		__entry->function	= function;
133	),
134
135	TP_printk("work struct %p: function %ps", __entry->work, __entry->function)
136);
137
138/*
139 * Tracepoint for waking up a task:
140 */
141DECLARE_EVENT_CLASS(sched_wakeup_template,
142
143	TP_PROTO(struct task_struct *p),
144
145	TP_ARGS(__perf_task(p)),
146
147	TP_STRUCT__entry(
148		__array(	char,	comm,	TASK_COMM_LEN	)
149		__field(	pid_t,	pid			)
150		__field(	int,	prio			)
151		__field(	int,	target_cpu		)
152	),
153
154	TP_fast_assign(
155		memcpy(__entry->comm, p->comm, TASK_COMM_LEN);
156		__entry->pid		= p->pid;
157		__entry->prio		= p->prio; /* XXX SCHED_DEADLINE */
158		__entry->target_cpu	= task_cpu(p);
159	),
160
161	TP_printk("comm=%s pid=%d prio=%d target_cpu=%03d",
162		  __entry->comm, __entry->pid, __entry->prio,
163		  __entry->target_cpu)
164);
165
166/*
167 * Tracepoint called when waking a task; this tracepoint is guaranteed to be
168 * called from the waking context.
169 */
170DEFINE_EVENT(sched_wakeup_template, sched_waking,
171	     TP_PROTO(struct task_struct *p),
172	     TP_ARGS(p));
173
174/*
175 * Tracepoint called when the task is actually woken; p->state == TASK_RUNNING.
176 * It is not always called from the waking context.
177 */
178DEFINE_EVENT(sched_wakeup_template, sched_wakeup,
179	     TP_PROTO(struct task_struct *p),
180	     TP_ARGS(p));
181
182/*
183 * Tracepoint for waking up a new task:
184 */
185DEFINE_EVENT(sched_wakeup_template, sched_wakeup_new,
186	     TP_PROTO(struct task_struct *p),
187	     TP_ARGS(p));
188
189#ifdef CREATE_TRACE_POINTS
190static inline long __trace_sched_switch_state(bool preempt,
191					      unsigned int prev_state,
192					      struct task_struct *p)
193{
194	unsigned int state;
195
196#ifdef CONFIG_SCHED_DEBUG
197	BUG_ON(p != current);
198#endif /* CONFIG_SCHED_DEBUG */
199
200	/*
201	 * Preemption ignores task state, therefore preempted tasks are always
202	 * RUNNING (we will not have dequeued if state != RUNNING).
203	 */
204	if (preempt)
205		return TASK_REPORT_MAX;
206
207	/*
208	 * task_state_index() uses fls() and returns a value from 0-8 range.
209	 * Decrement it by 1 (except TASK_RUNNING state i.e 0) before using
210	 * it for left shift operation to get the correct task->state
211	 * mapping.
212	 */
213	state = __task_state_index(prev_state, p->exit_state);
214
215	return state ? (1 << (state - 1)) : state;
216}
217#endif /* CREATE_TRACE_POINTS */
218
219/*
220 * Tracepoint for task switches, performed by the scheduler:
221 */
222TRACE_EVENT(sched_switch,
223
224	TP_PROTO(bool preempt,
225		 struct task_struct *prev,
226		 struct task_struct *next,
227		 unsigned int prev_state),
228
229	TP_ARGS(preempt, prev, next, prev_state),
230
231	TP_STRUCT__entry(
232		__array(	char,	prev_comm,	TASK_COMM_LEN	)
233		__field(	pid_t,	prev_pid			)
234		__field(	int,	prev_prio			)
235		__field(	long,	prev_state			)
236		__array(	char,	next_comm,	TASK_COMM_LEN	)
237		__field(	pid_t,	next_pid			)
238		__field(	int,	next_prio			)
239	),
240
241	TP_fast_assign(
242		memcpy(__entry->next_comm, next->comm, TASK_COMM_LEN);
243		__entry->prev_pid	= prev->pid;
244		__entry->prev_prio	= prev->prio;
245		__entry->prev_state	= __trace_sched_switch_state(preempt, prev_state, prev);
246		memcpy(__entry->prev_comm, prev->comm, TASK_COMM_LEN);
247		__entry->next_pid	= next->pid;
248		__entry->next_prio	= next->prio;
249		/* XXX SCHED_DEADLINE */
250	),
251
252	TP_printk("prev_comm=%s prev_pid=%d prev_prio=%d prev_state=%s%s ==> next_comm=%s next_pid=%d next_prio=%d",
253		__entry->prev_comm, __entry->prev_pid, __entry->prev_prio,
254
255		(__entry->prev_state & (TASK_REPORT_MAX - 1)) ?
256		  __print_flags(__entry->prev_state & (TASK_REPORT_MAX - 1), "|",
257				{ TASK_INTERRUPTIBLE, "S" },
258				{ TASK_UNINTERRUPTIBLE, "D" },
259				{ __TASK_STOPPED, "T" },
260				{ __TASK_TRACED, "t" },
261				{ EXIT_DEAD, "X" },
262				{ EXIT_ZOMBIE, "Z" },
263				{ TASK_PARKED, "P" },
264				{ TASK_DEAD, "I" }) :
265		  "R",
266
267		__entry->prev_state & TASK_REPORT_MAX ? "+" : "",
268		__entry->next_comm, __entry->next_pid, __entry->next_prio)
269);
270
271/*
272 * Tracepoint for a task being migrated:
273 */
274TRACE_EVENT(sched_migrate_task,
275
276	TP_PROTO(struct task_struct *p, int dest_cpu),
277
278	TP_ARGS(p, dest_cpu),
279
280	TP_STRUCT__entry(
281		__array(	char,	comm,	TASK_COMM_LEN	)
282		__field(	pid_t,	pid			)
283		__field(	int,	prio			)
284		__field(	int,	orig_cpu		)
285		__field(	int,	dest_cpu		)
286	),
287
288	TP_fast_assign(
289		memcpy(__entry->comm, p->comm, TASK_COMM_LEN);
290		__entry->pid		= p->pid;
291		__entry->prio		= p->prio; /* XXX SCHED_DEADLINE */
292		__entry->orig_cpu	= task_cpu(p);
293		__entry->dest_cpu	= dest_cpu;
294	),
295
296	TP_printk("comm=%s pid=%d prio=%d orig_cpu=%d dest_cpu=%d",
297		  __entry->comm, __entry->pid, __entry->prio,
298		  __entry->orig_cpu, __entry->dest_cpu)
299);
300
301DECLARE_EVENT_CLASS(sched_process_template,
302
303	TP_PROTO(struct task_struct *p),
304
305	TP_ARGS(p),
306
307	TP_STRUCT__entry(
308		__array(	char,	comm,	TASK_COMM_LEN	)
309		__field(	pid_t,	pid			)
310		__field(	int,	prio			)
311	),
312
313	TP_fast_assign(
314		memcpy(__entry->comm, p->comm, TASK_COMM_LEN);
315		__entry->pid		= p->pid;
316		__entry->prio		= p->prio; /* XXX SCHED_DEADLINE */
317	),
318
319	TP_printk("comm=%s pid=%d prio=%d",
320		  __entry->comm, __entry->pid, __entry->prio)
321);
322
323/*
324 * Tracepoint for freeing a task:
325 */
326DEFINE_EVENT(sched_process_template, sched_process_free,
327	     TP_PROTO(struct task_struct *p),
328	     TP_ARGS(p));
329
330/*
331 * Tracepoint for a task exiting:
332 */
333DEFINE_EVENT(sched_process_template, sched_process_exit,
334	     TP_PROTO(struct task_struct *p),
335	     TP_ARGS(p));
336
337/*
338 * Tracepoint for waiting on task to unschedule:
339 */
340DEFINE_EVENT(sched_process_template, sched_wait_task,
341	TP_PROTO(struct task_struct *p),
342	TP_ARGS(p));
343
344/*
345 * Tracepoint for a waiting task:
346 */
347TRACE_EVENT(sched_process_wait,
348
349	TP_PROTO(struct pid *pid),
350
351	TP_ARGS(pid),
352
353	TP_STRUCT__entry(
354		__array(	char,	comm,	TASK_COMM_LEN	)
355		__field(	pid_t,	pid			)
356		__field(	int,	prio			)
357	),
358
359	TP_fast_assign(
360		memcpy(__entry->comm, current->comm, TASK_COMM_LEN);
361		__entry->pid		= pid_nr(pid);
362		__entry->prio		= current->prio; /* XXX SCHED_DEADLINE */
363	),
364
365	TP_printk("comm=%s pid=%d prio=%d",
366		  __entry->comm, __entry->pid, __entry->prio)
367);
368
369/*
370 * Tracepoint for kernel_clone:
371 */
372TRACE_EVENT(sched_process_fork,
373
374	TP_PROTO(struct task_struct *parent, struct task_struct *child),
375
376	TP_ARGS(parent, child),
377
378	TP_STRUCT__entry(
379		__array(	char,	parent_comm,	TASK_COMM_LEN	)
380		__field(	pid_t,	parent_pid			)
381		__array(	char,	child_comm,	TASK_COMM_LEN	)
382		__field(	pid_t,	child_pid			)
383	),
384
385	TP_fast_assign(
386		memcpy(__entry->parent_comm, parent->comm, TASK_COMM_LEN);
387		__entry->parent_pid	= parent->pid;
388		memcpy(__entry->child_comm, child->comm, TASK_COMM_LEN);
389		__entry->child_pid	= child->pid;
390	),
391
392	TP_printk("comm=%s pid=%d child_comm=%s child_pid=%d",
393		__entry->parent_comm, __entry->parent_pid,
394		__entry->child_comm, __entry->child_pid)
395);
396
397/*
398 * Tracepoint for exec:
399 */
400TRACE_EVENT(sched_process_exec,
401
402	TP_PROTO(struct task_struct *p, pid_t old_pid,
403		 struct linux_binprm *bprm),
404
405	TP_ARGS(p, old_pid, bprm),
406
407	TP_STRUCT__entry(
408		__string(	filename,	bprm->filename	)
409		__field(	pid_t,		pid		)
410		__field(	pid_t,		old_pid		)
411	),
412
413	TP_fast_assign(
414		__assign_str(filename, bprm->filename);
415		__entry->pid		= p->pid;
416		__entry->old_pid	= old_pid;
417	),
418
419	TP_printk("filename=%s pid=%d old_pid=%d", __get_str(filename),
420		  __entry->pid, __entry->old_pid)
421);
422
423
424#ifdef CONFIG_SCHEDSTATS
425#define DEFINE_EVENT_SCHEDSTAT DEFINE_EVENT
426#define DECLARE_EVENT_CLASS_SCHEDSTAT DECLARE_EVENT_CLASS
427#else
428#define DEFINE_EVENT_SCHEDSTAT DEFINE_EVENT_NOP
429#define DECLARE_EVENT_CLASS_SCHEDSTAT DECLARE_EVENT_CLASS_NOP
430#endif
431
432/*
433 * XXX the below sched_stat tracepoints only apply to SCHED_OTHER/BATCH/IDLE
434 *     adding sched_stat support to SCHED_FIFO/RR would be welcome.
435 */
436DECLARE_EVENT_CLASS_SCHEDSTAT(sched_stat_template,
437
438	TP_PROTO(struct task_struct *tsk, u64 delay),
439
440	TP_ARGS(__perf_task(tsk), __perf_count(delay)),
441
442	TP_STRUCT__entry(
443		__array( char,	comm,	TASK_COMM_LEN	)
444		__field( pid_t,	pid			)
445		__field( u64,	delay			)
446	),
447
448	TP_fast_assign(
449		memcpy(__entry->comm, tsk->comm, TASK_COMM_LEN);
450		__entry->pid	= tsk->pid;
451		__entry->delay	= delay;
452	),
453
454	TP_printk("comm=%s pid=%d delay=%Lu [ns]",
455			__entry->comm, __entry->pid,
456			(unsigned long long)__entry->delay)
457);
458
459/*
460 * Tracepoint for accounting wait time (time the task is runnable
461 * but not actually running due to scheduler contention).
462 */
463DEFINE_EVENT_SCHEDSTAT(sched_stat_template, sched_stat_wait,
464	     TP_PROTO(struct task_struct *tsk, u64 delay),
465	     TP_ARGS(tsk, delay));
466
467/*
468 * Tracepoint for accounting sleep time (time the task is not runnable,
469 * including iowait, see below).
470 */
471DEFINE_EVENT_SCHEDSTAT(sched_stat_template, sched_stat_sleep,
472	     TP_PROTO(struct task_struct *tsk, u64 delay),
473	     TP_ARGS(tsk, delay));
474
475/*
476 * Tracepoint for accounting iowait time (time the task is not runnable
477 * due to waiting on IO to complete).
478 */
479DEFINE_EVENT_SCHEDSTAT(sched_stat_template, sched_stat_iowait,
480	     TP_PROTO(struct task_struct *tsk, u64 delay),
481	     TP_ARGS(tsk, delay));
482
483/*
484 * Tracepoint for accounting blocked time (time the task is in uninterruptible).
485 */
486DEFINE_EVENT_SCHEDSTAT(sched_stat_template, sched_stat_blocked,
487	     TP_PROTO(struct task_struct *tsk, u64 delay),
488	     TP_ARGS(tsk, delay));
489
490/*
491 * Tracepoint for accounting runtime (time the task is executing
492 * on a CPU).
493 */
494DECLARE_EVENT_CLASS(sched_stat_runtime,
495
496	TP_PROTO(struct task_struct *tsk, u64 runtime, u64 vruntime),
497
498	TP_ARGS(tsk, __perf_count(runtime), vruntime),
499
500	TP_STRUCT__entry(
501		__array( char,	comm,	TASK_COMM_LEN	)
502		__field( pid_t,	pid			)
503		__field( u64,	runtime			)
504		__field( u64,	vruntime			)
505	),
506
507	TP_fast_assign(
508		memcpy(__entry->comm, tsk->comm, TASK_COMM_LEN);
509		__entry->pid		= tsk->pid;
510		__entry->runtime	= runtime;
511		__entry->vruntime	= vruntime;
512	),
513
514	TP_printk("comm=%s pid=%d runtime=%Lu [ns] vruntime=%Lu [ns]",
515			__entry->comm, __entry->pid,
516			(unsigned long long)__entry->runtime,
517			(unsigned long long)__entry->vruntime)
518);
519
520DEFINE_EVENT(sched_stat_runtime, sched_stat_runtime,
521	     TP_PROTO(struct task_struct *tsk, u64 runtime, u64 vruntime),
522	     TP_ARGS(tsk, runtime, vruntime));
523
524/*
525 * Tracepoint for showing priority inheritance modifying a tasks
526 * priority.
527 */
528TRACE_EVENT(sched_pi_setprio,
529
530	TP_PROTO(struct task_struct *tsk, struct task_struct *pi_task),
531
532	TP_ARGS(tsk, pi_task),
533
534	TP_STRUCT__entry(
535		__array( char,	comm,	TASK_COMM_LEN	)
536		__field( pid_t,	pid			)
537		__field( int,	oldprio			)
538		__field( int,	newprio			)
539	),
540
541	TP_fast_assign(
542		memcpy(__entry->comm, tsk->comm, TASK_COMM_LEN);
543		__entry->pid		= tsk->pid;
544		__entry->oldprio	= tsk->prio;
545		__entry->newprio	= pi_task ?
546				min(tsk->normal_prio, pi_task->prio) :
547				tsk->normal_prio;
548		/* XXX SCHED_DEADLINE bits missing */
549	),
550
551	TP_printk("comm=%s pid=%d oldprio=%d newprio=%d",
552			__entry->comm, __entry->pid,
553			__entry->oldprio, __entry->newprio)
554);
555
556#ifdef CONFIG_DETECT_HUNG_TASK
557TRACE_EVENT(sched_process_hang,
558	TP_PROTO(struct task_struct *tsk),
559	TP_ARGS(tsk),
560
561	TP_STRUCT__entry(
562		__array( char,	comm,	TASK_COMM_LEN	)
563		__field( pid_t,	pid			)
564	),
565
566	TP_fast_assign(
567		memcpy(__entry->comm, tsk->comm, TASK_COMM_LEN);
568		__entry->pid = tsk->pid;
569	),
570
571	TP_printk("comm=%s pid=%d", __entry->comm, __entry->pid)
572);
573#endif /* CONFIG_DETECT_HUNG_TASK */
574
575/*
576 * Tracks migration of tasks from one runqueue to another. Can be used to
577 * detect if automatic NUMA balancing is bouncing between nodes.
578 */
579TRACE_EVENT(sched_move_numa,
580
581	TP_PROTO(struct task_struct *tsk, int src_cpu, int dst_cpu),
582
583	TP_ARGS(tsk, src_cpu, dst_cpu),
584
585	TP_STRUCT__entry(
586		__field( pid_t,	pid			)
587		__field( pid_t,	tgid			)
588		__field( pid_t,	ngid			)
589		__field( int,	src_cpu			)
590		__field( int,	src_nid			)
591		__field( int,	dst_cpu			)
592		__field( int,	dst_nid			)
593	),
594
595	TP_fast_assign(
596		__entry->pid		= task_pid_nr(tsk);
597		__entry->tgid		= task_tgid_nr(tsk);
598		__entry->ngid		= task_numa_group_id(tsk);
599		__entry->src_cpu	= src_cpu;
600		__entry->src_nid	= cpu_to_node(src_cpu);
601		__entry->dst_cpu	= dst_cpu;
602		__entry->dst_nid	= cpu_to_node(dst_cpu);
603	),
604
605	TP_printk("pid=%d tgid=%d ngid=%d src_cpu=%d src_nid=%d dst_cpu=%d dst_nid=%d",
606			__entry->pid, __entry->tgid, __entry->ngid,
607			__entry->src_cpu, __entry->src_nid,
608			__entry->dst_cpu, __entry->dst_nid)
609);
610
611DECLARE_EVENT_CLASS(sched_numa_pair_template,
612
613	TP_PROTO(struct task_struct *src_tsk, int src_cpu,
614		 struct task_struct *dst_tsk, int dst_cpu),
615
616	TP_ARGS(src_tsk, src_cpu, dst_tsk, dst_cpu),
617
618	TP_STRUCT__entry(
619		__field( pid_t,	src_pid			)
620		__field( pid_t,	src_tgid		)
621		__field( pid_t,	src_ngid		)
622		__field( int,	src_cpu			)
623		__field( int,	src_nid			)
624		__field( pid_t,	dst_pid			)
625		__field( pid_t,	dst_tgid		)
626		__field( pid_t,	dst_ngid		)
627		__field( int,	dst_cpu			)
628		__field( int,	dst_nid			)
629	),
630
631	TP_fast_assign(
632		__entry->src_pid	= task_pid_nr(src_tsk);
633		__entry->src_tgid	= task_tgid_nr(src_tsk);
634		__entry->src_ngid	= task_numa_group_id(src_tsk);
635		__entry->src_cpu	= src_cpu;
636		__entry->src_nid	= cpu_to_node(src_cpu);
637		__entry->dst_pid	= dst_tsk ? task_pid_nr(dst_tsk) : 0;
638		__entry->dst_tgid	= dst_tsk ? task_tgid_nr(dst_tsk) : 0;
639		__entry->dst_ngid	= dst_tsk ? task_numa_group_id(dst_tsk) : 0;
640		__entry->dst_cpu	= dst_cpu;
641		__entry->dst_nid	= dst_cpu >= 0 ? cpu_to_node(dst_cpu) : -1;
642	),
643
644	TP_printk("src_pid=%d src_tgid=%d src_ngid=%d src_cpu=%d src_nid=%d dst_pid=%d dst_tgid=%d dst_ngid=%d dst_cpu=%d dst_nid=%d",
645			__entry->src_pid, __entry->src_tgid, __entry->src_ngid,
646			__entry->src_cpu, __entry->src_nid,
647			__entry->dst_pid, __entry->dst_tgid, __entry->dst_ngid,
648			__entry->dst_cpu, __entry->dst_nid)
649);
650
651DEFINE_EVENT(sched_numa_pair_template, sched_stick_numa,
652
653	TP_PROTO(struct task_struct *src_tsk, int src_cpu,
654		 struct task_struct *dst_tsk, int dst_cpu),
655
656	TP_ARGS(src_tsk, src_cpu, dst_tsk, dst_cpu)
657);
658
659DEFINE_EVENT(sched_numa_pair_template, sched_swap_numa,
660
661	TP_PROTO(struct task_struct *src_tsk, int src_cpu,
662		 struct task_struct *dst_tsk, int dst_cpu),
663
664	TP_ARGS(src_tsk, src_cpu, dst_tsk, dst_cpu)
665);
666
667
668/*
669 * Tracepoint for waking a polling cpu without an IPI.
670 */
671TRACE_EVENT(sched_wake_idle_without_ipi,
672
673	TP_PROTO(int cpu),
674
675	TP_ARGS(cpu),
676
677	TP_STRUCT__entry(
678		__field(	int,	cpu	)
679	),
680
681	TP_fast_assign(
682		__entry->cpu	= cpu;
683	),
684
685	TP_printk("cpu=%d", __entry->cpu)
686);
687
688/*
689 * Following tracepoints are not exported in tracefs and provide hooking
690 * mechanisms only for testing and debugging purposes.
691 *
692 * Postfixed with _tp to make them easily identifiable in the code.
693 */
694DECLARE_TRACE(pelt_cfs_tp,
695	TP_PROTO(struct cfs_rq *cfs_rq),
696	TP_ARGS(cfs_rq));
697
698DECLARE_TRACE(pelt_rt_tp,
699	TP_PROTO(struct rq *rq),
700	TP_ARGS(rq));
701
702DECLARE_TRACE(pelt_dl_tp,
703	TP_PROTO(struct rq *rq),
704	TP_ARGS(rq));
705
706DECLARE_TRACE(pelt_thermal_tp,
707	TP_PROTO(struct rq *rq),
708	TP_ARGS(rq));
709
710DECLARE_TRACE(pelt_irq_tp,
711	TP_PROTO(struct rq *rq),
712	TP_ARGS(rq));
713
714DECLARE_TRACE(pelt_se_tp,
715	TP_PROTO(struct sched_entity *se),
716	TP_ARGS(se));
717
718DECLARE_TRACE(sched_cpu_capacity_tp,
719	TP_PROTO(struct rq *rq),
720	TP_ARGS(rq));
721
722DECLARE_TRACE(sched_overutilized_tp,
723	TP_PROTO(struct root_domain *rd, bool overutilized),
724	TP_ARGS(rd, overutilized));
725
726DECLARE_TRACE(sched_util_est_cfs_tp,
727	TP_PROTO(struct cfs_rq *cfs_rq),
728	TP_ARGS(cfs_rq));
729
730DECLARE_TRACE(sched_util_est_se_tp,
731	TP_PROTO(struct sched_entity *se),
732	TP_ARGS(se));
733
734DECLARE_TRACE(sched_update_nr_running_tp,
735	TP_PROTO(struct rq *rq, int change),
736	TP_ARGS(rq, change));
737
738#endif /* _TRACE_SCHED_H */
739
740/* This part must be outside protection */
741#include <trace/define_trace.h>
742