1/* SPDX-License-Identifier: GPL-2.0-only */
2/* include/net/xdp.h
3 *
4 * Copyright (c) 2017 Jesper Dangaard Brouer, Red Hat Inc.
5 */
6#ifndef __LINUX_NET_XDP_H__
7#define __LINUX_NET_XDP_H__
8
9#include <linux/bitfield.h>
10#include <linux/filter.h>
11#include <linux/netdevice.h>
12#include <linux/skbuff.h> /* skb_shared_info */
13
14/**
15 * DOC: XDP RX-queue information
16 *
17 * The XDP RX-queue info (xdp_rxq_info) is associated with the driver
18 * level RX-ring queues.  It is information that is specific to how
19 * the driver has configured a given RX-ring queue.
20 *
21 * Each xdp_buff frame received in the driver carries a (pointer)
22 * reference to this xdp_rxq_info structure.  This provides the XDP
23 * data-path read-access to RX-info for both kernel and bpf-side
24 * (limited subset).
25 *
26 * For now, direct access is only safe while running in NAPI/softirq
27 * context.  Contents are read-mostly and must not be updated during
28 * driver NAPI/softirq poll.
29 *
30 * The driver usage API is a register and unregister API.
31 *
32 * The struct is not directly tied to the XDP prog.  A new XDP prog
33 * can be attached as long as it doesn't change the underlying
34 * RX-ring.  If the RX-ring does change significantly, the NIC driver
35 * naturally needs to stop the RX-ring before purging and reallocating
36 * memory.  In that process the driver MUST call unregister (which
37 * also applies for driver shutdown and unload).  The register API is
38 * also mandatory during RX-ring setup.
39 */
40
41enum xdp_mem_type {
42	MEM_TYPE_PAGE_SHARED = 0, /* Split-page refcnt based model */
43	MEM_TYPE_PAGE_ORDER0,     /* Orig XDP full page model */
44	MEM_TYPE_PAGE_POOL,
45	MEM_TYPE_XSK_BUFF_POOL,
46	MEM_TYPE_MAX,
47};
48
49/* XDP flags for ndo_xdp_xmit */
50#define XDP_XMIT_FLUSH		(1U << 0)	/* doorbell signal consumer */
51#define XDP_XMIT_FLAGS_MASK	XDP_XMIT_FLUSH
52
53struct xdp_mem_info {
54	u32 type; /* enum xdp_mem_type, but known size type */
55	u32 id;
56};
57
58struct page_pool;
59
60struct xdp_rxq_info {
61	struct net_device *dev;
62	u32 queue_index;
63	u32 reg_state;
64	struct xdp_mem_info mem;
65	unsigned int napi_id;
66	u32 frag_size;
67} ____cacheline_aligned; /* perf critical, avoid false-sharing */
68
69struct xdp_txq_info {
70	struct net_device *dev;
71};
72
73enum xdp_buff_flags {
74	XDP_FLAGS_HAS_FRAGS		= BIT(0), /* non-linear xdp buff */
75	XDP_FLAGS_FRAGS_PF_MEMALLOC	= BIT(1), /* xdp paged memory is under
76						   * pressure
77						   */
78};
79
80struct xdp_buff {
81	void *data;
82	void *data_end;
83	void *data_meta;
84	void *data_hard_start;
85	struct xdp_rxq_info *rxq;
86	struct xdp_txq_info *txq;
87	u32 frame_sz; /* frame size to deduce data_hard_end/reserved tailroom*/
88	u32 flags; /* supported values defined in xdp_buff_flags */
89};
90
91static __always_inline bool xdp_buff_has_frags(struct xdp_buff *xdp)
92{
93	return !!(xdp->flags & XDP_FLAGS_HAS_FRAGS);
94}
95
96static __always_inline void xdp_buff_set_frags_flag(struct xdp_buff *xdp)
97{
98	xdp->flags |= XDP_FLAGS_HAS_FRAGS;
99}
100
101static __always_inline void xdp_buff_clear_frags_flag(struct xdp_buff *xdp)
102{
103	xdp->flags &= ~XDP_FLAGS_HAS_FRAGS;
104}
105
106static __always_inline bool xdp_buff_is_frag_pfmemalloc(struct xdp_buff *xdp)
107{
108	return !!(xdp->flags & XDP_FLAGS_FRAGS_PF_MEMALLOC);
109}
110
111static __always_inline void xdp_buff_set_frag_pfmemalloc(struct xdp_buff *xdp)
112{
113	xdp->flags |= XDP_FLAGS_FRAGS_PF_MEMALLOC;
114}
115
116static __always_inline void
117xdp_init_buff(struct xdp_buff *xdp, u32 frame_sz, struct xdp_rxq_info *rxq)
118{
119	xdp->frame_sz = frame_sz;
120	xdp->rxq = rxq;
121	xdp->flags = 0;
122}
123
124static __always_inline void
125xdp_prepare_buff(struct xdp_buff *xdp, unsigned char *hard_start,
126		 int headroom, int data_len, const bool meta_valid)
127{
128	unsigned char *data = hard_start + headroom;
129
130	xdp->data_hard_start = hard_start;
131	xdp->data = data;
132	xdp->data_end = data + data_len;
133	xdp->data_meta = meta_valid ? data : data + 1;
134}
135
136/* Reserve memory area at end-of data area.
137 *
138 * This macro reserves tailroom in the XDP buffer by limiting the
139 * XDP/BPF data access to data_hard_end.  Notice same area (and size)
140 * is used for XDP_PASS, when constructing the SKB via build_skb().
141 */
142#define xdp_data_hard_end(xdp)				\
143	((xdp)->data_hard_start + (xdp)->frame_sz -	\
144	 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
145
146static inline struct skb_shared_info *
147xdp_get_shared_info_from_buff(struct xdp_buff *xdp)
148{
149	return (struct skb_shared_info *)xdp_data_hard_end(xdp);
150}
151
152static __always_inline unsigned int xdp_get_buff_len(struct xdp_buff *xdp)
153{
154	unsigned int len = xdp->data_end - xdp->data;
155	struct skb_shared_info *sinfo;
156
157	if (likely(!xdp_buff_has_frags(xdp)))
158		goto out;
159
160	sinfo = xdp_get_shared_info_from_buff(xdp);
161	len += sinfo->xdp_frags_size;
162out:
163	return len;
164}
165
166struct xdp_frame {
167	void *data;
168	u16 len;
169	u16 headroom;
170	u32 metasize; /* uses lower 8-bits */
171	/* Lifetime of xdp_rxq_info is limited to NAPI/enqueue time,
172	 * while mem info is valid on remote CPU.
173	 */
174	struct xdp_mem_info mem;
175	struct net_device *dev_rx; /* used by cpumap */
176	u32 frame_sz;
177	u32 flags; /* supported values defined in xdp_buff_flags */
178};
179
180static __always_inline bool xdp_frame_has_frags(struct xdp_frame *frame)
181{
182	return !!(frame->flags & XDP_FLAGS_HAS_FRAGS);
183}
184
185static __always_inline bool xdp_frame_is_frag_pfmemalloc(struct xdp_frame *frame)
186{
187	return !!(frame->flags & XDP_FLAGS_FRAGS_PF_MEMALLOC);
188}
189
190#define XDP_BULK_QUEUE_SIZE	16
191struct xdp_frame_bulk {
192	int count;
193	void *xa;
194	void *q[XDP_BULK_QUEUE_SIZE];
195};
196
197static __always_inline void xdp_frame_bulk_init(struct xdp_frame_bulk *bq)
198{
199	/* bq->count will be zero'ed when bq->xa gets updated */
200	bq->xa = NULL;
201}
202
203static inline struct skb_shared_info *
204xdp_get_shared_info_from_frame(struct xdp_frame *frame)
205{
206	void *data_hard_start = frame->data - frame->headroom - sizeof(*frame);
207
208	return (struct skb_shared_info *)(data_hard_start + frame->frame_sz -
209				SKB_DATA_ALIGN(sizeof(struct skb_shared_info)));
210}
211
212struct xdp_cpumap_stats {
213	unsigned int redirect;
214	unsigned int pass;
215	unsigned int drop;
216};
217
218/* Clear kernel pointers in xdp_frame */
219static inline void xdp_scrub_frame(struct xdp_frame *frame)
220{
221	frame->data = NULL;
222	frame->dev_rx = NULL;
223}
224
225static inline void
226xdp_update_skb_shared_info(struct sk_buff *skb, u8 nr_frags,
227			   unsigned int size, unsigned int truesize,
228			   bool pfmemalloc)
229{
230	skb_shinfo(skb)->nr_frags = nr_frags;
231
232	skb->len += size;
233	skb->data_len += size;
234	skb->truesize += truesize;
235	skb->pfmemalloc |= pfmemalloc;
236}
237
238/* Avoids inlining WARN macro in fast-path */
239void xdp_warn(const char *msg, const char *func, const int line);
240#define XDP_WARN(msg) xdp_warn(msg, __func__, __LINE__)
241
242struct xdp_frame *xdp_convert_zc_to_xdp_frame(struct xdp_buff *xdp);
243struct sk_buff *__xdp_build_skb_from_frame(struct xdp_frame *xdpf,
244					   struct sk_buff *skb,
245					   struct net_device *dev);
246struct sk_buff *xdp_build_skb_from_frame(struct xdp_frame *xdpf,
247					 struct net_device *dev);
248int xdp_alloc_skb_bulk(void **skbs, int n_skb, gfp_t gfp);
249struct xdp_frame *xdpf_clone(struct xdp_frame *xdpf);
250
251static inline
252void xdp_convert_frame_to_buff(struct xdp_frame *frame, struct xdp_buff *xdp)
253{
254	xdp->data_hard_start = frame->data - frame->headroom - sizeof(*frame);
255	xdp->data = frame->data;
256	xdp->data_end = frame->data + frame->len;
257	xdp->data_meta = frame->data - frame->metasize;
258	xdp->frame_sz = frame->frame_sz;
259	xdp->flags = frame->flags;
260}
261
262static inline
263int xdp_update_frame_from_buff(struct xdp_buff *xdp,
264			       struct xdp_frame *xdp_frame)
265{
266	int metasize, headroom;
267
268	/* Assure headroom is available for storing info */
269	headroom = xdp->data - xdp->data_hard_start;
270	metasize = xdp->data - xdp->data_meta;
271	metasize = metasize > 0 ? metasize : 0;
272	if (unlikely((headroom - metasize) < sizeof(*xdp_frame)))
273		return -ENOSPC;
274
275	/* Catch if driver didn't reserve tailroom for skb_shared_info */
276	if (unlikely(xdp->data_end > xdp_data_hard_end(xdp))) {
277		XDP_WARN("Driver BUG: missing reserved tailroom");
278		return -ENOSPC;
279	}
280
281	xdp_frame->data = xdp->data;
282	xdp_frame->len  = xdp->data_end - xdp->data;
283	xdp_frame->headroom = headroom - sizeof(*xdp_frame);
284	xdp_frame->metasize = metasize;
285	xdp_frame->frame_sz = xdp->frame_sz;
286	xdp_frame->flags = xdp->flags;
287
288	return 0;
289}
290
291/* Convert xdp_buff to xdp_frame */
292static inline
293struct xdp_frame *xdp_convert_buff_to_frame(struct xdp_buff *xdp)
294{
295	struct xdp_frame *xdp_frame;
296
297	if (xdp->rxq->mem.type == MEM_TYPE_XSK_BUFF_POOL)
298		return xdp_convert_zc_to_xdp_frame(xdp);
299
300	/* Store info in top of packet */
301	xdp_frame = xdp->data_hard_start;
302	if (unlikely(xdp_update_frame_from_buff(xdp, xdp_frame) < 0))
303		return NULL;
304
305	/* rxq only valid until napi_schedule ends, convert to xdp_mem_info */
306	xdp_frame->mem = xdp->rxq->mem;
307
308	return xdp_frame;
309}
310
311void __xdp_return(void *data, struct xdp_mem_info *mem, bool napi_direct,
312		  struct xdp_buff *xdp);
313void xdp_return_frame(struct xdp_frame *xdpf);
314void xdp_return_frame_rx_napi(struct xdp_frame *xdpf);
315void xdp_return_buff(struct xdp_buff *xdp);
316void xdp_flush_frame_bulk(struct xdp_frame_bulk *bq);
317void xdp_return_frame_bulk(struct xdp_frame *xdpf,
318			   struct xdp_frame_bulk *bq);
319
320static __always_inline unsigned int xdp_get_frame_len(struct xdp_frame *xdpf)
321{
322	struct skb_shared_info *sinfo;
323	unsigned int len = xdpf->len;
324
325	if (likely(!xdp_frame_has_frags(xdpf)))
326		goto out;
327
328	sinfo = xdp_get_shared_info_from_frame(xdpf);
329	len += sinfo->xdp_frags_size;
330out:
331	return len;
332}
333
334int __xdp_rxq_info_reg(struct xdp_rxq_info *xdp_rxq,
335		       struct net_device *dev, u32 queue_index,
336		       unsigned int napi_id, u32 frag_size);
337static inline int
338xdp_rxq_info_reg(struct xdp_rxq_info *xdp_rxq,
339		 struct net_device *dev, u32 queue_index,
340		 unsigned int napi_id)
341{
342	return __xdp_rxq_info_reg(xdp_rxq, dev, queue_index, napi_id, 0);
343}
344
345void xdp_rxq_info_unreg(struct xdp_rxq_info *xdp_rxq);
346void xdp_rxq_info_unused(struct xdp_rxq_info *xdp_rxq);
347bool xdp_rxq_info_is_reg(struct xdp_rxq_info *xdp_rxq);
348int xdp_rxq_info_reg_mem_model(struct xdp_rxq_info *xdp_rxq,
349			       enum xdp_mem_type type, void *allocator);
350void xdp_rxq_info_unreg_mem_model(struct xdp_rxq_info *xdp_rxq);
351int xdp_reg_mem_model(struct xdp_mem_info *mem,
352		      enum xdp_mem_type type, void *allocator);
353void xdp_unreg_mem_model(struct xdp_mem_info *mem);
354
355/* Drivers not supporting XDP metadata can use this helper, which
356 * rejects any room expansion for metadata as a result.
357 */
358static __always_inline void
359xdp_set_data_meta_invalid(struct xdp_buff *xdp)
360{
361	xdp->data_meta = xdp->data + 1;
362}
363
364static __always_inline bool
365xdp_data_meta_unsupported(const struct xdp_buff *xdp)
366{
367	return unlikely(xdp->data_meta > xdp->data);
368}
369
370static inline bool xdp_metalen_invalid(unsigned long metalen)
371{
372	unsigned long meta_max;
373
374	meta_max = type_max(typeof_member(struct skb_shared_info, meta_len));
375	BUILD_BUG_ON(!__builtin_constant_p(meta_max));
376
377	return !IS_ALIGNED(metalen, sizeof(u32)) || metalen > meta_max;
378}
379
380struct xdp_attachment_info {
381	struct bpf_prog *prog;
382	u32 flags;
383};
384
385struct netdev_bpf;
386void xdp_attachment_setup(struct xdp_attachment_info *info,
387			  struct netdev_bpf *bpf);
388
389#define DEV_MAP_BULK_SIZE XDP_BULK_QUEUE_SIZE
390
391/* Define the relationship between xdp-rx-metadata kfunc and
392 * various other entities:
393 * - xdp_rx_metadata enum
394 * - netdev netlink enum (Documentation/netlink/specs/netdev.yaml)
395 * - kfunc name
396 * - xdp_metadata_ops field
397 */
398#define XDP_METADATA_KFUNC_xxx	\
399	XDP_METADATA_KFUNC(XDP_METADATA_KFUNC_RX_TIMESTAMP, \
400			   NETDEV_XDP_RX_METADATA_TIMESTAMP, \
401			   bpf_xdp_metadata_rx_timestamp, \
402			   xmo_rx_timestamp) \
403	XDP_METADATA_KFUNC(XDP_METADATA_KFUNC_RX_HASH, \
404			   NETDEV_XDP_RX_METADATA_HASH, \
405			   bpf_xdp_metadata_rx_hash, \
406			   xmo_rx_hash) \
407	XDP_METADATA_KFUNC(XDP_METADATA_KFUNC_RX_VLAN_TAG, \
408			   NETDEV_XDP_RX_METADATA_VLAN_TAG, \
409			   bpf_xdp_metadata_rx_vlan_tag, \
410			   xmo_rx_vlan_tag) \
411
412enum xdp_rx_metadata {
413#define XDP_METADATA_KFUNC(name, _, __, ___) name,
414XDP_METADATA_KFUNC_xxx
415#undef XDP_METADATA_KFUNC
416MAX_XDP_METADATA_KFUNC,
417};
418
419enum xdp_rss_hash_type {
420	/* First part: Individual bits for L3/L4 types */
421	XDP_RSS_L3_IPV4		= BIT(0),
422	XDP_RSS_L3_IPV6		= BIT(1),
423
424	/* The fixed (L3) IPv4 and IPv6 headers can both be followed by
425	 * variable/dynamic headers, IPv4 called Options and IPv6 called
426	 * Extension Headers. HW RSS type can contain this info.
427	 */
428	XDP_RSS_L3_DYNHDR	= BIT(2),
429
430	/* When RSS hash covers L4 then drivers MUST set XDP_RSS_L4 bit in
431	 * addition to the protocol specific bit.  This ease interaction with
432	 * SKBs and avoids reserving a fixed mask for future L4 protocol bits.
433	 */
434	XDP_RSS_L4		= BIT(3), /* L4 based hash, proto can be unknown */
435	XDP_RSS_L4_TCP		= BIT(4),
436	XDP_RSS_L4_UDP		= BIT(5),
437	XDP_RSS_L4_SCTP		= BIT(6),
438	XDP_RSS_L4_IPSEC	= BIT(7), /* L4 based hash include IPSEC SPI */
439	XDP_RSS_L4_ICMP		= BIT(8),
440
441	/* Second part: RSS hash type combinations used for driver HW mapping */
442	XDP_RSS_TYPE_NONE            = 0,
443	XDP_RSS_TYPE_L2              = XDP_RSS_TYPE_NONE,
444
445	XDP_RSS_TYPE_L3_IPV4         = XDP_RSS_L3_IPV4,
446	XDP_RSS_TYPE_L3_IPV6         = XDP_RSS_L3_IPV6,
447	XDP_RSS_TYPE_L3_IPV4_OPT     = XDP_RSS_L3_IPV4 | XDP_RSS_L3_DYNHDR,
448	XDP_RSS_TYPE_L3_IPV6_EX      = XDP_RSS_L3_IPV6 | XDP_RSS_L3_DYNHDR,
449
450	XDP_RSS_TYPE_L4_ANY          = XDP_RSS_L4,
451	XDP_RSS_TYPE_L4_IPV4_TCP     = XDP_RSS_L3_IPV4 | XDP_RSS_L4 | XDP_RSS_L4_TCP,
452	XDP_RSS_TYPE_L4_IPV4_UDP     = XDP_RSS_L3_IPV4 | XDP_RSS_L4 | XDP_RSS_L4_UDP,
453	XDP_RSS_TYPE_L4_IPV4_SCTP    = XDP_RSS_L3_IPV4 | XDP_RSS_L4 | XDP_RSS_L4_SCTP,
454	XDP_RSS_TYPE_L4_IPV4_IPSEC   = XDP_RSS_L3_IPV4 | XDP_RSS_L4 | XDP_RSS_L4_IPSEC,
455	XDP_RSS_TYPE_L4_IPV4_ICMP    = XDP_RSS_L3_IPV4 | XDP_RSS_L4 | XDP_RSS_L4_ICMP,
456
457	XDP_RSS_TYPE_L4_IPV6_TCP     = XDP_RSS_L3_IPV6 | XDP_RSS_L4 | XDP_RSS_L4_TCP,
458	XDP_RSS_TYPE_L4_IPV6_UDP     = XDP_RSS_L3_IPV6 | XDP_RSS_L4 | XDP_RSS_L4_UDP,
459	XDP_RSS_TYPE_L4_IPV6_SCTP    = XDP_RSS_L3_IPV6 | XDP_RSS_L4 | XDP_RSS_L4_SCTP,
460	XDP_RSS_TYPE_L4_IPV6_IPSEC   = XDP_RSS_L3_IPV6 | XDP_RSS_L4 | XDP_RSS_L4_IPSEC,
461	XDP_RSS_TYPE_L4_IPV6_ICMP    = XDP_RSS_L3_IPV6 | XDP_RSS_L4 | XDP_RSS_L4_ICMP,
462
463	XDP_RSS_TYPE_L4_IPV6_TCP_EX  = XDP_RSS_TYPE_L4_IPV6_TCP  | XDP_RSS_L3_DYNHDR,
464	XDP_RSS_TYPE_L4_IPV6_UDP_EX  = XDP_RSS_TYPE_L4_IPV6_UDP  | XDP_RSS_L3_DYNHDR,
465	XDP_RSS_TYPE_L4_IPV6_SCTP_EX = XDP_RSS_TYPE_L4_IPV6_SCTP | XDP_RSS_L3_DYNHDR,
466};
467
468struct xdp_metadata_ops {
469	int	(*xmo_rx_timestamp)(const struct xdp_md *ctx, u64 *timestamp);
470	int	(*xmo_rx_hash)(const struct xdp_md *ctx, u32 *hash,
471			       enum xdp_rss_hash_type *rss_type);
472	int	(*xmo_rx_vlan_tag)(const struct xdp_md *ctx, __be16 *vlan_proto,
473				   u16 *vlan_tci);
474};
475
476#ifdef CONFIG_NET
477u32 bpf_xdp_metadata_kfunc_id(int id);
478bool bpf_dev_bound_kfunc_id(u32 btf_id);
479void xdp_set_features_flag(struct net_device *dev, xdp_features_t val);
480void xdp_features_set_redirect_target(struct net_device *dev, bool support_sg);
481void xdp_features_clear_redirect_target(struct net_device *dev);
482#else
483static inline u32 bpf_xdp_metadata_kfunc_id(int id) { return 0; }
484static inline bool bpf_dev_bound_kfunc_id(u32 btf_id) { return false; }
485
486static inline void
487xdp_set_features_flag(struct net_device *dev, xdp_features_t val)
488{
489}
490
491static inline void
492xdp_features_set_redirect_target(struct net_device *dev, bool support_sg)
493{
494}
495
496static inline void
497xdp_features_clear_redirect_target(struct net_device *dev)
498{
499}
500#endif
501
502static inline void xdp_clear_features_flag(struct net_device *dev)
503{
504	xdp_set_features_flag(dev, 0);
505}
506
507static __always_inline u32 bpf_prog_run_xdp(const struct bpf_prog *prog,
508					    struct xdp_buff *xdp)
509{
510	/* Driver XDP hooks are invoked within a single NAPI poll cycle and thus
511	 * under local_bh_disable(), which provides the needed RCU protection
512	 * for accessing map entries.
513	 */
514	u32 act = __bpf_prog_run(prog, xdp, BPF_DISPATCHER_FUNC(xdp));
515
516	if (static_branch_unlikely(&bpf_master_redirect_enabled_key)) {
517		if (act == XDP_TX && netif_is_bond_slave(xdp->rxq->dev))
518			act = xdp_master_redirect(xdp);
519	}
520
521	return act;
522}
523#endif /* __LINUX_NET_XDP_H__ */
524