1/* SPDX-License-Identifier: GPL-2.0-or-later */
2/*
3 * INET		An implementation of the TCP/IP protocol suite for the LINUX
4 *		operating system.  INET is implemented using the  BSD Socket
5 *		interface as the means of communication with the user level.
6 *
7 *		Definitions for the UDP module.
8 *
9 * Version:	@(#)udp.h	1.0.2	05/07/93
10 *
11 * Authors:	Ross Biro
12 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13 *
14 * Fixes:
15 *		Alan Cox	: Turned on udp checksums. I don't want to
16 *				  chase 'memory corruption' bugs that aren't!
17 */
18#ifndef _UDP_H
19#define _UDP_H
20
21#include <linux/list.h>
22#include <linux/bug.h>
23#include <net/inet_sock.h>
24#include <net/gso.h>
25#include <net/sock.h>
26#include <net/snmp.h>
27#include <net/ip.h>
28#include <linux/ipv6.h>
29#include <linux/seq_file.h>
30#include <linux/poll.h>
31#include <linux/indirect_call_wrapper.h>
32
33/**
34 *	struct udp_skb_cb  -  UDP(-Lite) private variables
35 *
36 *	@header:      private variables used by IPv4/IPv6
37 *	@cscov:       checksum coverage length (UDP-Lite only)
38 *	@partial_cov: if set indicates partial csum coverage
39 */
40struct udp_skb_cb {
41	union {
42		struct inet_skb_parm	h4;
43#if IS_ENABLED(CONFIG_IPV6)
44		struct inet6_skb_parm	h6;
45#endif
46	} header;
47	__u16		cscov;
48	__u8		partial_cov;
49};
50#define UDP_SKB_CB(__skb)	((struct udp_skb_cb *)((__skb)->cb))
51
52/**
53 *	struct udp_hslot - UDP hash slot
54 *
55 *	@head:	head of list of sockets
56 *	@count:	number of sockets in 'head' list
57 *	@lock:	spinlock protecting changes to head/count
58 */
59struct udp_hslot {
60	struct hlist_head	head;
61	int			count;
62	spinlock_t		lock;
63} __attribute__((aligned(2 * sizeof(long))));
64
65/**
66 *	struct udp_table - UDP table
67 *
68 *	@hash:	hash table, sockets are hashed on (local port)
69 *	@hash2:	hash table, sockets are hashed on (local port, local address)
70 *	@mask:	number of slots in hash tables, minus 1
71 *	@log:	log2(number of slots in hash table)
72 */
73struct udp_table {
74	struct udp_hslot	*hash;
75	struct udp_hslot	*hash2;
76	unsigned int		mask;
77	unsigned int		log;
78};
79extern struct udp_table udp_table;
80void udp_table_init(struct udp_table *, const char *);
81static inline struct udp_hslot *udp_hashslot(struct udp_table *table,
82					     struct net *net, unsigned int num)
83{
84	return &table->hash[udp_hashfn(net, num, table->mask)];
85}
86/*
87 * For secondary hash, net_hash_mix() is performed before calling
88 * udp_hashslot2(), this explains difference with udp_hashslot()
89 */
90static inline struct udp_hslot *udp_hashslot2(struct udp_table *table,
91					      unsigned int hash)
92{
93	return &table->hash2[hash & table->mask];
94}
95
96extern struct proto udp_prot;
97
98extern atomic_long_t udp_memory_allocated;
99DECLARE_PER_CPU(int, udp_memory_per_cpu_fw_alloc);
100
101/* sysctl variables for udp */
102extern long sysctl_udp_mem[3];
103extern int sysctl_udp_rmem_min;
104extern int sysctl_udp_wmem_min;
105
106struct sk_buff;
107
108/*
109 *	Generic checksumming routines for UDP(-Lite) v4 and v6
110 */
111static inline __sum16 __udp_lib_checksum_complete(struct sk_buff *skb)
112{
113	return (UDP_SKB_CB(skb)->cscov == skb->len ?
114		__skb_checksum_complete(skb) :
115		__skb_checksum_complete_head(skb, UDP_SKB_CB(skb)->cscov));
116}
117
118static inline int udp_lib_checksum_complete(struct sk_buff *skb)
119{
120	return !skb_csum_unnecessary(skb) &&
121		__udp_lib_checksum_complete(skb);
122}
123
124/**
125 * 	udp_csum_outgoing  -  compute UDPv4/v6 checksum over fragments
126 * 	@sk: 	socket we are writing to
127 * 	@skb: 	sk_buff containing the filled-in UDP header
128 * 	        (checksum field must be zeroed out)
129 */
130static inline __wsum udp_csum_outgoing(struct sock *sk, struct sk_buff *skb)
131{
132	__wsum csum = csum_partial(skb_transport_header(skb),
133				   sizeof(struct udphdr), 0);
134	skb_queue_walk(&sk->sk_write_queue, skb) {
135		csum = csum_add(csum, skb->csum);
136	}
137	return csum;
138}
139
140static inline __wsum udp_csum(struct sk_buff *skb)
141{
142	__wsum csum = csum_partial(skb_transport_header(skb),
143				   sizeof(struct udphdr), skb->csum);
144
145	for (skb = skb_shinfo(skb)->frag_list; skb; skb = skb->next) {
146		csum = csum_add(csum, skb->csum);
147	}
148	return csum;
149}
150
151static inline __sum16 udp_v4_check(int len, __be32 saddr,
152				   __be32 daddr, __wsum base)
153{
154	return csum_tcpudp_magic(saddr, daddr, len, IPPROTO_UDP, base);
155}
156
157void udp_set_csum(bool nocheck, struct sk_buff *skb,
158		  __be32 saddr, __be32 daddr, int len);
159
160static inline void udp_csum_pull_header(struct sk_buff *skb)
161{
162	if (!skb->csum_valid && skb->ip_summed == CHECKSUM_NONE)
163		skb->csum = csum_partial(skb->data, sizeof(struct udphdr),
164					 skb->csum);
165	skb_pull_rcsum(skb, sizeof(struct udphdr));
166	UDP_SKB_CB(skb)->cscov -= sizeof(struct udphdr);
167}
168
169typedef struct sock *(*udp_lookup_t)(const struct sk_buff *skb, __be16 sport,
170				     __be16 dport);
171
172void udp_v6_early_demux(struct sk_buff *skb);
173INDIRECT_CALLABLE_DECLARE(int udpv6_rcv(struct sk_buff *));
174
175struct sk_buff *__udp_gso_segment(struct sk_buff *gso_skb,
176				  netdev_features_t features, bool is_ipv6);
177
178static inline void udp_lib_init_sock(struct sock *sk)
179{
180	struct udp_sock *up = udp_sk(sk);
181
182	skb_queue_head_init(&up->reader_queue);
183	up->forward_threshold = sk->sk_rcvbuf >> 2;
184	set_bit(SOCK_CUSTOM_SOCKOPT, &sk->sk_socket->flags);
185}
186
187/* hash routines shared between UDPv4/6 and UDP-Litev4/6 */
188static inline int udp_lib_hash(struct sock *sk)
189{
190	BUG();
191	return 0;
192}
193
194void udp_lib_unhash(struct sock *sk);
195void udp_lib_rehash(struct sock *sk, u16 new_hash);
196
197static inline void udp_lib_close(struct sock *sk, long timeout)
198{
199	sk_common_release(sk);
200}
201
202int udp_lib_get_port(struct sock *sk, unsigned short snum,
203		     unsigned int hash2_nulladdr);
204
205u32 udp_flow_hashrnd(void);
206
207static inline __be16 udp_flow_src_port(struct net *net, struct sk_buff *skb,
208				       int min, int max, bool use_eth)
209{
210	u32 hash;
211
212	if (min >= max) {
213		/* Use default range */
214		inet_get_local_port_range(net, &min, &max);
215	}
216
217	hash = skb_get_hash(skb);
218	if (unlikely(!hash)) {
219		if (use_eth) {
220			/* Can't find a normal hash, caller has indicated an
221			 * Ethernet packet so use that to compute a hash.
222			 */
223			hash = jhash(skb->data, 2 * ETH_ALEN,
224				     (__force u32) skb->protocol);
225		} else {
226			/* Can't derive any sort of hash for the packet, set
227			 * to some consistent random value.
228			 */
229			hash = udp_flow_hashrnd();
230		}
231	}
232
233	/* Since this is being sent on the wire obfuscate hash a bit
234	 * to minimize possbility that any useful information to an
235	 * attacker is leaked. Only upper 16 bits are relevant in the
236	 * computation for 16 bit port value.
237	 */
238	hash ^= hash << 16;
239
240	return htons((((u64) hash * (max - min)) >> 32) + min);
241}
242
243static inline int udp_rqueue_get(struct sock *sk)
244{
245	return sk_rmem_alloc_get(sk) - READ_ONCE(udp_sk(sk)->forward_deficit);
246}
247
248static inline bool udp_sk_bound_dev_eq(struct net *net, int bound_dev_if,
249				       int dif, int sdif)
250{
251#if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
252	return inet_bound_dev_eq(!!READ_ONCE(net->ipv4.sysctl_udp_l3mdev_accept),
253				 bound_dev_if, dif, sdif);
254#else
255	return inet_bound_dev_eq(true, bound_dev_if, dif, sdif);
256#endif
257}
258
259/* net/ipv4/udp.c */
260void udp_destruct_common(struct sock *sk);
261void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len);
262int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb);
263void udp_skb_destructor(struct sock *sk, struct sk_buff *skb);
264struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags, int *off,
265			       int *err);
266static inline struct sk_buff *skb_recv_udp(struct sock *sk, unsigned int flags,
267					   int *err)
268{
269	int off = 0;
270
271	return __skb_recv_udp(sk, flags, &off, err);
272}
273
274int udp_v4_early_demux(struct sk_buff *skb);
275bool udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst);
276int udp_err(struct sk_buff *, u32);
277int udp_abort(struct sock *sk, int err);
278int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len);
279void udp_splice_eof(struct socket *sock);
280int udp_push_pending_frames(struct sock *sk);
281void udp_flush_pending_frames(struct sock *sk);
282int udp_cmsg_send(struct sock *sk, struct msghdr *msg, u16 *gso_size);
283void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst);
284int udp_rcv(struct sk_buff *skb);
285int udp_ioctl(struct sock *sk, int cmd, int *karg);
286int udp_init_sock(struct sock *sk);
287int udp_pre_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
288int __udp_disconnect(struct sock *sk, int flags);
289int udp_disconnect(struct sock *sk, int flags);
290__poll_t udp_poll(struct file *file, struct socket *sock, poll_table *wait);
291struct sk_buff *skb_udp_tunnel_segment(struct sk_buff *skb,
292				       netdev_features_t features,
293				       bool is_ipv6);
294int udp_lib_getsockopt(struct sock *sk, int level, int optname,
295		       char __user *optval, int __user *optlen);
296int udp_lib_setsockopt(struct sock *sk, int level, int optname,
297		       sockptr_t optval, unsigned int optlen,
298		       int (*push_pending_frames)(struct sock *));
299struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
300			     __be32 daddr, __be16 dport, int dif);
301struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
302			       __be32 daddr, __be16 dport, int dif, int sdif,
303			       struct udp_table *tbl, struct sk_buff *skb);
304struct sock *udp4_lib_lookup_skb(const struct sk_buff *skb,
305				 __be16 sport, __be16 dport);
306struct sock *udp6_lib_lookup(struct net *net,
307			     const struct in6_addr *saddr, __be16 sport,
308			     const struct in6_addr *daddr, __be16 dport,
309			     int dif);
310struct sock *__udp6_lib_lookup(struct net *net,
311			       const struct in6_addr *saddr, __be16 sport,
312			       const struct in6_addr *daddr, __be16 dport,
313			       int dif, int sdif, struct udp_table *tbl,
314			       struct sk_buff *skb);
315struct sock *udp6_lib_lookup_skb(const struct sk_buff *skb,
316				 __be16 sport, __be16 dport);
317int udp_read_skb(struct sock *sk, skb_read_actor_t recv_actor);
318
319/* UDP uses skb->dev_scratch to cache as much information as possible and avoid
320 * possibly multiple cache miss on dequeue()
321 */
322struct udp_dev_scratch {
323	/* skb->truesize and the stateless bit are embedded in a single field;
324	 * do not use a bitfield since the compiler emits better/smaller code
325	 * this way
326	 */
327	u32 _tsize_state;
328
329#if BITS_PER_LONG == 64
330	/* len and the bit needed to compute skb_csum_unnecessary
331	 * will be on cold cache lines at recvmsg time.
332	 * skb->len can be stored on 16 bits since the udp header has been
333	 * already validated and pulled.
334	 */
335	u16 len;
336	bool is_linear;
337	bool csum_unnecessary;
338#endif
339};
340
341static inline struct udp_dev_scratch *udp_skb_scratch(struct sk_buff *skb)
342{
343	return (struct udp_dev_scratch *)&skb->dev_scratch;
344}
345
346#if BITS_PER_LONG == 64
347static inline unsigned int udp_skb_len(struct sk_buff *skb)
348{
349	return udp_skb_scratch(skb)->len;
350}
351
352static inline bool udp_skb_csum_unnecessary(struct sk_buff *skb)
353{
354	return udp_skb_scratch(skb)->csum_unnecessary;
355}
356
357static inline bool udp_skb_is_linear(struct sk_buff *skb)
358{
359	return udp_skb_scratch(skb)->is_linear;
360}
361
362#else
363static inline unsigned int udp_skb_len(struct sk_buff *skb)
364{
365	return skb->len;
366}
367
368static inline bool udp_skb_csum_unnecessary(struct sk_buff *skb)
369{
370	return skb_csum_unnecessary(skb);
371}
372
373static inline bool udp_skb_is_linear(struct sk_buff *skb)
374{
375	return !skb_is_nonlinear(skb);
376}
377#endif
378
379static inline int copy_linear_skb(struct sk_buff *skb, int len, int off,
380				  struct iov_iter *to)
381{
382	int n;
383
384	n = copy_to_iter(skb->data + off, len, to);
385	if (n == len)
386		return 0;
387
388	iov_iter_revert(to, n);
389	return -EFAULT;
390}
391
392/*
393 * 	SNMP statistics for UDP and UDP-Lite
394 */
395#define UDP_INC_STATS(net, field, is_udplite)		      do { \
396	if (is_udplite) SNMP_INC_STATS((net)->mib.udplite_statistics, field);       \
397	else		SNMP_INC_STATS((net)->mib.udp_statistics, field);  }  while(0)
398#define __UDP_INC_STATS(net, field, is_udplite) 	      do { \
399	if (is_udplite) __SNMP_INC_STATS((net)->mib.udplite_statistics, field);         \
400	else		__SNMP_INC_STATS((net)->mib.udp_statistics, field);    }  while(0)
401
402#define __UDP6_INC_STATS(net, field, is_udplite)	    do { \
403	if (is_udplite) __SNMP_INC_STATS((net)->mib.udplite_stats_in6, field);\
404	else		__SNMP_INC_STATS((net)->mib.udp_stats_in6, field);  \
405} while(0)
406#define UDP6_INC_STATS(net, field, __lite)		    do { \
407	if (__lite) SNMP_INC_STATS((net)->mib.udplite_stats_in6, field);  \
408	else	    SNMP_INC_STATS((net)->mib.udp_stats_in6, field);      \
409} while(0)
410
411#if IS_ENABLED(CONFIG_IPV6)
412#define __UDPX_MIB(sk, ipv4)						\
413({									\
414	ipv4 ? (IS_UDPLITE(sk) ? sock_net(sk)->mib.udplite_statistics :	\
415				 sock_net(sk)->mib.udp_statistics) :	\
416		(IS_UDPLITE(sk) ? sock_net(sk)->mib.udplite_stats_in6 :	\
417				 sock_net(sk)->mib.udp_stats_in6);	\
418})
419#else
420#define __UDPX_MIB(sk, ipv4)						\
421({									\
422	IS_UDPLITE(sk) ? sock_net(sk)->mib.udplite_statistics :		\
423			 sock_net(sk)->mib.udp_statistics;		\
424})
425#endif
426
427#define __UDPX_INC_STATS(sk, field) \
428	__SNMP_INC_STATS(__UDPX_MIB(sk, (sk)->sk_family == AF_INET), field)
429
430#ifdef CONFIG_PROC_FS
431struct udp_seq_afinfo {
432	sa_family_t			family;
433	struct udp_table		*udp_table;
434};
435
436struct udp_iter_state {
437	struct seq_net_private  p;
438	int			bucket;
439};
440
441void *udp_seq_start(struct seq_file *seq, loff_t *pos);
442void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos);
443void udp_seq_stop(struct seq_file *seq, void *v);
444
445extern const struct seq_operations udp_seq_ops;
446extern const struct seq_operations udp6_seq_ops;
447
448int udp4_proc_init(void);
449void udp4_proc_exit(void);
450#endif /* CONFIG_PROC_FS */
451
452int udpv4_offload_init(void);
453
454void udp_init(void);
455
456DECLARE_STATIC_KEY_FALSE(udp_encap_needed_key);
457void udp_encap_enable(void);
458void udp_encap_disable(void);
459#if IS_ENABLED(CONFIG_IPV6)
460DECLARE_STATIC_KEY_FALSE(udpv6_encap_needed_key);
461void udpv6_encap_enable(void);
462#endif
463
464static inline struct sk_buff *udp_rcv_segment(struct sock *sk,
465					      struct sk_buff *skb, bool ipv4)
466{
467	netdev_features_t features = NETIF_F_SG;
468	struct sk_buff *segs;
469
470	/* Avoid csum recalculation by skb_segment unless userspace explicitly
471	 * asks for the final checksum values
472	 */
473	if (!inet_get_convert_csum(sk))
474		features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
475
476	/* UDP segmentation expects packets of type CHECKSUM_PARTIAL or
477	 * CHECKSUM_NONE in __udp_gso_segment. UDP GRO indeed builds partial
478	 * packets in udp_gro_complete_segment. As does UDP GSO, verified by
479	 * udp_send_skb. But when those packets are looped in dev_loopback_xmit
480	 * their ip_summed CHECKSUM_NONE is changed to CHECKSUM_UNNECESSARY.
481	 * Reset in this specific case, where PARTIAL is both correct and
482	 * required.
483	 */
484	if (skb->pkt_type == PACKET_LOOPBACK)
485		skb->ip_summed = CHECKSUM_PARTIAL;
486
487	/* the GSO CB lays after the UDP one, no need to save and restore any
488	 * CB fragment
489	 */
490	segs = __skb_gso_segment(skb, features, false);
491	if (IS_ERR_OR_NULL(segs)) {
492		int segs_nr = skb_shinfo(skb)->gso_segs;
493
494		atomic_add(segs_nr, &sk->sk_drops);
495		SNMP_ADD_STATS(__UDPX_MIB(sk, ipv4), UDP_MIB_INERRORS, segs_nr);
496		kfree_skb(skb);
497		return NULL;
498	}
499
500	consume_skb(skb);
501	return segs;
502}
503
504static inline void udp_post_segment_fix_csum(struct sk_buff *skb)
505{
506	/* UDP-lite can't land here - no GRO */
507	WARN_ON_ONCE(UDP_SKB_CB(skb)->partial_cov);
508
509	/* UDP packets generated with UDP_SEGMENT and traversing:
510	 *
511	 * UDP tunnel(xmit) -> veth (segmentation) -> veth (gro) -> UDP tunnel (rx)
512	 *
513	 * can reach an UDP socket with CHECKSUM_NONE, because
514	 * __iptunnel_pull_header() converts CHECKSUM_PARTIAL into NONE.
515	 * SKB_GSO_UDP_L4 or SKB_GSO_FRAGLIST packets with no UDP tunnel will
516	 * have a valid checksum, as the GRO engine validates the UDP csum
517	 * before the aggregation and nobody strips such info in between.
518	 * Instead of adding another check in the tunnel fastpath, we can force
519	 * a valid csum after the segmentation.
520	 * Additionally fixup the UDP CB.
521	 */
522	UDP_SKB_CB(skb)->cscov = skb->len;
523	if (skb->ip_summed == CHECKSUM_NONE && !skb->csum_valid)
524		skb->csum_valid = 1;
525}
526
527#ifdef CONFIG_BPF_SYSCALL
528struct sk_psock;
529int udp_bpf_update_proto(struct sock *sk, struct sk_psock *psock, bool restore);
530#endif
531
532#endif	/* _UDP_H */
533