1/* SPDX-License-Identifier: GPL-2.0-or-later */
2/*
3 * INET		An implementation of the TCP/IP protocol suite for the LINUX
4 *		operating system.  INET is implemented using the  BSD Socket
5 *		interface as the means of communication with the user level.
6 *
7 *		Definitions for the TCP module.
8 *
9 * Version:	@(#)tcp.h	1.0.5	05/23/93
10 *
11 * Authors:	Ross Biro
12 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13 */
14#ifndef _TCP_H
15#define _TCP_H
16
17#define FASTRETRANS_DEBUG 1
18
19#include <linux/list.h>
20#include <linux/tcp.h>
21#include <linux/bug.h>
22#include <linux/slab.h>
23#include <linux/cache.h>
24#include <linux/percpu.h>
25#include <linux/skbuff.h>
26#include <linux/kref.h>
27#include <linux/ktime.h>
28#include <linux/indirect_call_wrapper.h>
29
30#include <net/inet_connection_sock.h>
31#include <net/inet_timewait_sock.h>
32#include <net/inet_hashtables.h>
33#include <net/checksum.h>
34#include <net/request_sock.h>
35#include <net/sock_reuseport.h>
36#include <net/sock.h>
37#include <net/snmp.h>
38#include <net/ip.h>
39#include <net/tcp_states.h>
40#include <net/tcp_ao.h>
41#include <net/inet_ecn.h>
42#include <net/dst.h>
43#include <net/mptcp.h>
44
45#include <linux/seq_file.h>
46#include <linux/memcontrol.h>
47#include <linux/bpf-cgroup.h>
48#include <linux/siphash.h>
49
50extern struct inet_hashinfo tcp_hashinfo;
51
52DECLARE_PER_CPU(unsigned int, tcp_orphan_count);
53int tcp_orphan_count_sum(void);
54
55void tcp_time_wait(struct sock *sk, int state, int timeo);
56
57#define MAX_TCP_HEADER	L1_CACHE_ALIGN(128 + MAX_HEADER)
58#define MAX_TCP_OPTION_SPACE 40
59#define TCP_MIN_SND_MSS		48
60#define TCP_MIN_GSO_SIZE	(TCP_MIN_SND_MSS - MAX_TCP_OPTION_SPACE)
61
62/*
63 * Never offer a window over 32767 without using window scaling. Some
64 * poor stacks do signed 16bit maths!
65 */
66#define MAX_TCP_WINDOW		32767U
67
68/* Minimal accepted MSS. It is (60+60+8) - (20+20). */
69#define TCP_MIN_MSS		88U
70
71/* The initial MTU to use for probing */
72#define TCP_BASE_MSS		1024
73
74/* probing interval, default to 10 minutes as per RFC4821 */
75#define TCP_PROBE_INTERVAL	600
76
77/* Specify interval when tcp mtu probing will stop */
78#define TCP_PROBE_THRESHOLD	8
79
80/* After receiving this amount of duplicate ACKs fast retransmit starts. */
81#define TCP_FASTRETRANS_THRESH 3
82
83/* Maximal number of ACKs sent quickly to accelerate slow-start. */
84#define TCP_MAX_QUICKACKS	16U
85
86/* Maximal number of window scale according to RFC1323 */
87#define TCP_MAX_WSCALE		14U
88
89/* urg_data states */
90#define TCP_URG_VALID	0x0100
91#define TCP_URG_NOTYET	0x0200
92#define TCP_URG_READ	0x0400
93
94#define TCP_RETR1	3	/*
95				 * This is how many retries it does before it
96				 * tries to figure out if the gateway is
97				 * down. Minimal RFC value is 3; it corresponds
98				 * to ~3sec-8min depending on RTO.
99				 */
100
101#define TCP_RETR2	15	/*
102				 * This should take at least
103				 * 90 minutes to time out.
104				 * RFC1122 says that the limit is 100 sec.
105				 * 15 is ~13-30min depending on RTO.
106				 */
107
108#define TCP_SYN_RETRIES	 6	/* This is how many retries are done
109				 * when active opening a connection.
110				 * RFC1122 says the minimum retry MUST
111				 * be at least 180secs.  Nevertheless
112				 * this value is corresponding to
113				 * 63secs of retransmission with the
114				 * current initial RTO.
115				 */
116
117#define TCP_SYNACK_RETRIES 5	/* This is how may retries are done
118				 * when passive opening a connection.
119				 * This is corresponding to 31secs of
120				 * retransmission with the current
121				 * initial RTO.
122				 */
123
124#define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
125				  * state, about 60 seconds	*/
126#define TCP_FIN_TIMEOUT	TCP_TIMEWAIT_LEN
127                                 /* BSD style FIN_WAIT2 deadlock breaker.
128				  * It used to be 3min, new value is 60sec,
129				  * to combine FIN-WAIT-2 timeout with
130				  * TIME-WAIT timer.
131				  */
132#define TCP_FIN_TIMEOUT_MAX (120 * HZ) /* max TCP_LINGER2 value (two minutes) */
133
134#define TCP_DELACK_MAX	((unsigned)(HZ/5))	/* maximal time to delay before sending an ACK */
135static_assert((1 << ATO_BITS) > TCP_DELACK_MAX);
136
137#if HZ >= 100
138#define TCP_DELACK_MIN	((unsigned)(HZ/25))	/* minimal time to delay before sending an ACK */
139#define TCP_ATO_MIN	((unsigned)(HZ/25))
140#else
141#define TCP_DELACK_MIN	4U
142#define TCP_ATO_MIN	4U
143#endif
144#define TCP_RTO_MAX	((unsigned)(120*HZ))
145#define TCP_RTO_MIN	((unsigned)(HZ/5))
146#define TCP_TIMEOUT_MIN	(2U) /* Min timeout for TCP timers in jiffies */
147
148#define TCP_TIMEOUT_MIN_US (2*USEC_PER_MSEC) /* Min TCP timeout in microsecs */
149
150#define TCP_TIMEOUT_INIT ((unsigned)(1*HZ))	/* RFC6298 2.1 initial RTO value	*/
151#define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ))	/* RFC 1122 initial RTO value, now
152						 * used as a fallback RTO for the
153						 * initial data transmission if no
154						 * valid RTT sample has been acquired,
155						 * most likely due to retrans in 3WHS.
156						 */
157
158#define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
159					                 * for local resources.
160					                 */
161#define TCP_KEEPALIVE_TIME	(120*60*HZ)	/* two hours */
162#define TCP_KEEPALIVE_PROBES	9		/* Max of 9 keepalive probes	*/
163#define TCP_KEEPALIVE_INTVL	(75*HZ)
164
165#define MAX_TCP_KEEPIDLE	32767
166#define MAX_TCP_KEEPINTVL	32767
167#define MAX_TCP_KEEPCNT		127
168#define MAX_TCP_SYNCNT		127
169
170/* Ensure that TCP PAWS checks are relaxed after ~2147 seconds
171 * to avoid overflows. This assumes a clock smaller than 1 Mhz.
172 * Default clock is 1 Khz, tcp_usec_ts uses 1 Mhz.
173 */
174#define TCP_PAWS_WRAP (INT_MAX / USEC_PER_SEC)
175
176#define TCP_PAWS_MSL	60		/* Per-host timestamps are invalidated
177					 * after this time. It should be equal
178					 * (or greater than) TCP_TIMEWAIT_LEN
179					 * to provide reliability equal to one
180					 * provided by timewait state.
181					 */
182#define TCP_PAWS_WINDOW	1		/* Replay window for per-host
183					 * timestamps. It must be less than
184					 * minimal timewait lifetime.
185					 */
186/*
187 *	TCP option
188 */
189
190#define TCPOPT_NOP		1	/* Padding */
191#define TCPOPT_EOL		0	/* End of options */
192#define TCPOPT_MSS		2	/* Segment size negotiating */
193#define TCPOPT_WINDOW		3	/* Window scaling */
194#define TCPOPT_SACK_PERM        4       /* SACK Permitted */
195#define TCPOPT_SACK             5       /* SACK Block */
196#define TCPOPT_TIMESTAMP	8	/* Better RTT estimations/PAWS */
197#define TCPOPT_MD5SIG		19	/* MD5 Signature (RFC2385) */
198#define TCPOPT_AO		29	/* Authentication Option (RFC5925) */
199#define TCPOPT_MPTCP		30	/* Multipath TCP (RFC6824) */
200#define TCPOPT_FASTOPEN		34	/* Fast open (RFC7413) */
201#define TCPOPT_EXP		254	/* Experimental */
202/* Magic number to be after the option value for sharing TCP
203 * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
204 */
205#define TCPOPT_FASTOPEN_MAGIC	0xF989
206#define TCPOPT_SMC_MAGIC	0xE2D4C3D9
207
208/*
209 *     TCP option lengths
210 */
211
212#define TCPOLEN_MSS            4
213#define TCPOLEN_WINDOW         3
214#define TCPOLEN_SACK_PERM      2
215#define TCPOLEN_TIMESTAMP      10
216#define TCPOLEN_MD5SIG         18
217#define TCPOLEN_FASTOPEN_BASE  2
218#define TCPOLEN_EXP_FASTOPEN_BASE  4
219#define TCPOLEN_EXP_SMC_BASE   6
220
221/* But this is what stacks really send out. */
222#define TCPOLEN_TSTAMP_ALIGNED		12
223#define TCPOLEN_WSCALE_ALIGNED		4
224#define TCPOLEN_SACKPERM_ALIGNED	4
225#define TCPOLEN_SACK_BASE		2
226#define TCPOLEN_SACK_BASE_ALIGNED	4
227#define TCPOLEN_SACK_PERBLOCK		8
228#define TCPOLEN_MD5SIG_ALIGNED		20
229#define TCPOLEN_MSS_ALIGNED		4
230#define TCPOLEN_EXP_SMC_BASE_ALIGNED	8
231
232/* Flags in tp->nonagle */
233#define TCP_NAGLE_OFF		1	/* Nagle's algo is disabled */
234#define TCP_NAGLE_CORK		2	/* Socket is corked	    */
235#define TCP_NAGLE_PUSH		4	/* Cork is overridden for already queued data */
236
237/* TCP thin-stream limits */
238#define TCP_THIN_LINEAR_RETRIES 6       /* After 6 linear retries, do exp. backoff */
239
240/* TCP initial congestion window as per rfc6928 */
241#define TCP_INIT_CWND		10
242
243/* Bit Flags for sysctl_tcp_fastopen */
244#define	TFO_CLIENT_ENABLE	1
245#define	TFO_SERVER_ENABLE	2
246#define	TFO_CLIENT_NO_COOKIE	4	/* Data in SYN w/o cookie option */
247
248/* Accept SYN data w/o any cookie option */
249#define	TFO_SERVER_COOKIE_NOT_REQD	0x200
250
251/* Force enable TFO on all listeners, i.e., not requiring the
252 * TCP_FASTOPEN socket option.
253 */
254#define	TFO_SERVER_WO_SOCKOPT1	0x400
255
256
257/* sysctl variables for tcp */
258extern int sysctl_tcp_max_orphans;
259extern long sysctl_tcp_mem[3];
260
261#define TCP_RACK_LOSS_DETECTION  0x1 /* Use RACK to detect losses */
262#define TCP_RACK_STATIC_REO_WND  0x2 /* Use static RACK reo wnd */
263#define TCP_RACK_NO_DUPTHRESH    0x4 /* Do not use DUPACK threshold in RACK */
264
265extern atomic_long_t tcp_memory_allocated;
266DECLARE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc);
267
268extern struct percpu_counter tcp_sockets_allocated;
269extern unsigned long tcp_memory_pressure;
270
271/* optimized version of sk_under_memory_pressure() for TCP sockets */
272static inline bool tcp_under_memory_pressure(const struct sock *sk)
273{
274	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
275	    mem_cgroup_under_socket_pressure(sk->sk_memcg))
276		return true;
277
278	return READ_ONCE(tcp_memory_pressure);
279}
280/*
281 * The next routines deal with comparing 32 bit unsigned ints
282 * and worry about wraparound (automatic with unsigned arithmetic).
283 */
284
285static inline bool before(__u32 seq1, __u32 seq2)
286{
287        return (__s32)(seq1-seq2) < 0;
288}
289#define after(seq2, seq1) 	before(seq1, seq2)
290
291/* is s2<=s1<=s3 ? */
292static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
293{
294	return seq3 - seq2 >= seq1 - seq2;
295}
296
297static inline bool tcp_out_of_memory(struct sock *sk)
298{
299	if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
300	    sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
301		return true;
302	return false;
303}
304
305static inline void tcp_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
306{
307	sk_wmem_queued_add(sk, -skb->truesize);
308	if (!skb_zcopy_pure(skb))
309		sk_mem_uncharge(sk, skb->truesize);
310	else
311		sk_mem_uncharge(sk, SKB_TRUESIZE(skb_end_offset(skb)));
312	__kfree_skb(skb);
313}
314
315void sk_forced_mem_schedule(struct sock *sk, int size);
316
317bool tcp_check_oom(struct sock *sk, int shift);
318
319
320extern struct proto tcp_prot;
321
322#define TCP_INC_STATS(net, field)	SNMP_INC_STATS((net)->mib.tcp_statistics, field)
323#define __TCP_INC_STATS(net, field)	__SNMP_INC_STATS((net)->mib.tcp_statistics, field)
324#define TCP_DEC_STATS(net, field)	SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
325#define TCP_ADD_STATS(net, field, val)	SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
326
327void tcp_tasklet_init(void);
328
329int tcp_v4_err(struct sk_buff *skb, u32);
330
331void tcp_shutdown(struct sock *sk, int how);
332
333int tcp_v4_early_demux(struct sk_buff *skb);
334int tcp_v4_rcv(struct sk_buff *skb);
335
336void tcp_remove_empty_skb(struct sock *sk);
337int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
338int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size);
339int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied,
340			 size_t size, struct ubuf_info *uarg);
341void tcp_splice_eof(struct socket *sock);
342int tcp_send_mss(struct sock *sk, int *size_goal, int flags);
343int tcp_wmem_schedule(struct sock *sk, int copy);
344void tcp_push(struct sock *sk, int flags, int mss_now, int nonagle,
345	      int size_goal);
346void tcp_release_cb(struct sock *sk);
347void tcp_wfree(struct sk_buff *skb);
348void tcp_write_timer_handler(struct sock *sk);
349void tcp_delack_timer_handler(struct sock *sk);
350int tcp_ioctl(struct sock *sk, int cmd, int *karg);
351enum skb_drop_reason tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb);
352void tcp_rcv_established(struct sock *sk, struct sk_buff *skb);
353void tcp_rcv_space_adjust(struct sock *sk);
354int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
355void tcp_twsk_destructor(struct sock *sk);
356void tcp_twsk_purge(struct list_head *net_exit_list, int family);
357ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
358			struct pipe_inode_info *pipe, size_t len,
359			unsigned int flags);
360struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, gfp_t gfp,
361				     bool force_schedule);
362
363static inline void tcp_dec_quickack_mode(struct sock *sk)
364{
365	struct inet_connection_sock *icsk = inet_csk(sk);
366
367	if (icsk->icsk_ack.quick) {
368		/* How many ACKs S/ACKing new data have we sent? */
369		const unsigned int pkts = inet_csk_ack_scheduled(sk) ? 1 : 0;
370
371		if (pkts >= icsk->icsk_ack.quick) {
372			icsk->icsk_ack.quick = 0;
373			/* Leaving quickack mode we deflate ATO. */
374			icsk->icsk_ack.ato   = TCP_ATO_MIN;
375		} else
376			icsk->icsk_ack.quick -= pkts;
377	}
378}
379
380#define	TCP_ECN_OK		1
381#define	TCP_ECN_QUEUE_CWR	2
382#define	TCP_ECN_DEMAND_CWR	4
383#define	TCP_ECN_SEEN		8
384
385enum tcp_tw_status {
386	TCP_TW_SUCCESS = 0,
387	TCP_TW_RST = 1,
388	TCP_TW_ACK = 2,
389	TCP_TW_SYN = 3
390};
391
392
393enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
394					      struct sk_buff *skb,
395					      const struct tcphdr *th);
396struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
397			   struct request_sock *req, bool fastopen,
398			   bool *lost_race);
399enum skb_drop_reason tcp_child_process(struct sock *parent, struct sock *child,
400				       struct sk_buff *skb);
401void tcp_enter_loss(struct sock *sk);
402void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag);
403void tcp_clear_retrans(struct tcp_sock *tp);
404void tcp_update_metrics(struct sock *sk);
405void tcp_init_metrics(struct sock *sk);
406void tcp_metrics_init(void);
407bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst);
408void __tcp_close(struct sock *sk, long timeout);
409void tcp_close(struct sock *sk, long timeout);
410void tcp_init_sock(struct sock *sk);
411void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb);
412__poll_t tcp_poll(struct file *file, struct socket *sock,
413		      struct poll_table_struct *wait);
414int do_tcp_getsockopt(struct sock *sk, int level,
415		      int optname, sockptr_t optval, sockptr_t optlen);
416int tcp_getsockopt(struct sock *sk, int level, int optname,
417		   char __user *optval, int __user *optlen);
418bool tcp_bpf_bypass_getsockopt(int level, int optname);
419int do_tcp_setsockopt(struct sock *sk, int level, int optname,
420		      sockptr_t optval, unsigned int optlen);
421int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
422		   unsigned int optlen);
423void tcp_set_keepalive(struct sock *sk, int val);
424void tcp_syn_ack_timeout(const struct request_sock *req);
425int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
426		int flags, int *addr_len);
427int tcp_set_rcvlowat(struct sock *sk, int val);
428int tcp_set_window_clamp(struct sock *sk, int val);
429void tcp_update_recv_tstamps(struct sk_buff *skb,
430			     struct scm_timestamping_internal *tss);
431void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
432			struct scm_timestamping_internal *tss);
433void tcp_data_ready(struct sock *sk);
434#ifdef CONFIG_MMU
435int tcp_mmap(struct file *file, struct socket *sock,
436	     struct vm_area_struct *vma);
437#endif
438void tcp_parse_options(const struct net *net, const struct sk_buff *skb,
439		       struct tcp_options_received *opt_rx,
440		       int estab, struct tcp_fastopen_cookie *foc);
441
442/*
443 *	BPF SKB-less helpers
444 */
445u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph,
446			 struct tcphdr *th, u32 *cookie);
447u16 tcp_v6_get_syncookie(struct sock *sk, struct ipv6hdr *iph,
448			 struct tcphdr *th, u32 *cookie);
449u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss);
450u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
451			  const struct tcp_request_sock_ops *af_ops,
452			  struct sock *sk, struct tcphdr *th);
453/*
454 *	TCP v4 functions exported for the inet6 API
455 */
456
457void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
458void tcp_v4_mtu_reduced(struct sock *sk);
459void tcp_req_err(struct sock *sk, u32 seq, bool abort);
460void tcp_ld_RTO_revert(struct sock *sk, u32 seq);
461int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
462struct sock *tcp_create_openreq_child(const struct sock *sk,
463				      struct request_sock *req,
464				      struct sk_buff *skb);
465void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst);
466struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
467				  struct request_sock *req,
468				  struct dst_entry *dst,
469				  struct request_sock *req_unhash,
470				  bool *own_req);
471int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
472int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
473int tcp_connect(struct sock *sk);
474enum tcp_synack_type {
475	TCP_SYNACK_NORMAL,
476	TCP_SYNACK_FASTOPEN,
477	TCP_SYNACK_COOKIE,
478};
479struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
480				struct request_sock *req,
481				struct tcp_fastopen_cookie *foc,
482				enum tcp_synack_type synack_type,
483				struct sk_buff *syn_skb);
484int tcp_disconnect(struct sock *sk, int flags);
485
486void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
487int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
488void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
489
490/* From syncookies.c */
491struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
492				 struct request_sock *req,
493				 struct dst_entry *dst);
494int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th);
495struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb);
496struct request_sock *cookie_tcp_reqsk_alloc(const struct request_sock_ops *ops,
497					    struct sock *sk, struct sk_buff *skb,
498					    struct tcp_options_received *tcp_opt,
499					    int mss, u32 tsoff);
500
501#if IS_ENABLED(CONFIG_BPF)
502struct bpf_tcp_req_attrs {
503	u32 rcv_tsval;
504	u32 rcv_tsecr;
505	u16 mss;
506	u8 rcv_wscale;
507	u8 snd_wscale;
508	u8 ecn_ok;
509	u8 wscale_ok;
510	u8 sack_ok;
511	u8 tstamp_ok;
512	u8 usec_ts_ok;
513	u8 reserved[3];
514};
515#endif
516
517#ifdef CONFIG_SYN_COOKIES
518
519/* Syncookies use a monotonic timer which increments every 60 seconds.
520 * This counter is used both as a hash input and partially encoded into
521 * the cookie value.  A cookie is only validated further if the delta
522 * between the current counter value and the encoded one is less than this,
523 * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if
524 * the counter advances immediately after a cookie is generated).
525 */
526#define MAX_SYNCOOKIE_AGE	2
527#define TCP_SYNCOOKIE_PERIOD	(60 * HZ)
528#define TCP_SYNCOOKIE_VALID	(MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD)
529
530/* syncookies: remember time of last synqueue overflow
531 * But do not dirty this field too often (once per second is enough)
532 * It is racy as we do not hold a lock, but race is very minor.
533 */
534static inline void tcp_synq_overflow(const struct sock *sk)
535{
536	unsigned int last_overflow;
537	unsigned int now = jiffies;
538
539	if (sk->sk_reuseport) {
540		struct sock_reuseport *reuse;
541
542		reuse = rcu_dereference(sk->sk_reuseport_cb);
543		if (likely(reuse)) {
544			last_overflow = READ_ONCE(reuse->synq_overflow_ts);
545			if (!time_between32(now, last_overflow,
546					    last_overflow + HZ))
547				WRITE_ONCE(reuse->synq_overflow_ts, now);
548			return;
549		}
550	}
551
552	last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
553	if (!time_between32(now, last_overflow, last_overflow + HZ))
554		WRITE_ONCE(tcp_sk_rw(sk)->rx_opt.ts_recent_stamp, now);
555}
556
557/* syncookies: no recent synqueue overflow on this listening socket? */
558static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
559{
560	unsigned int last_overflow;
561	unsigned int now = jiffies;
562
563	if (sk->sk_reuseport) {
564		struct sock_reuseport *reuse;
565
566		reuse = rcu_dereference(sk->sk_reuseport_cb);
567		if (likely(reuse)) {
568			last_overflow = READ_ONCE(reuse->synq_overflow_ts);
569			return !time_between32(now, last_overflow - HZ,
570					       last_overflow +
571					       TCP_SYNCOOKIE_VALID);
572		}
573	}
574
575	last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
576
577	/* If last_overflow <= jiffies <= last_overflow + TCP_SYNCOOKIE_VALID,
578	 * then we're under synflood. However, we have to use
579	 * 'last_overflow - HZ' as lower bound. That's because a concurrent
580	 * tcp_synq_overflow() could update .ts_recent_stamp after we read
581	 * jiffies but before we store .ts_recent_stamp into last_overflow,
582	 * which could lead to rejecting a valid syncookie.
583	 */
584	return !time_between32(now, last_overflow - HZ,
585			       last_overflow + TCP_SYNCOOKIE_VALID);
586}
587
588static inline u32 tcp_cookie_time(void)
589{
590	u64 val = get_jiffies_64();
591
592	do_div(val, TCP_SYNCOOKIE_PERIOD);
593	return val;
594}
595
596/* Convert one nsec 64bit timestamp to ts (ms or usec resolution) */
597static inline u64 tcp_ns_to_ts(bool usec_ts, u64 val)
598{
599	if (usec_ts)
600		return div_u64(val, NSEC_PER_USEC);
601
602	return div_u64(val, NSEC_PER_MSEC);
603}
604
605u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
606			      u16 *mssp);
607__u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss);
608u64 cookie_init_timestamp(struct request_sock *req, u64 now);
609bool cookie_timestamp_decode(const struct net *net,
610			     struct tcp_options_received *opt);
611
612static inline bool cookie_ecn_ok(const struct net *net, const struct dst_entry *dst)
613{
614	return READ_ONCE(net->ipv4.sysctl_tcp_ecn) ||
615		dst_feature(dst, RTAX_FEATURE_ECN);
616}
617
618#if IS_ENABLED(CONFIG_BPF)
619static inline bool cookie_bpf_ok(struct sk_buff *skb)
620{
621	return skb->sk;
622}
623
624struct request_sock *cookie_bpf_check(struct sock *sk, struct sk_buff *skb);
625#else
626static inline bool cookie_bpf_ok(struct sk_buff *skb)
627{
628	return false;
629}
630
631static inline struct request_sock *cookie_bpf_check(struct net *net, struct sock *sk,
632						    struct sk_buff *skb)
633{
634	return NULL;
635}
636#endif
637
638/* From net/ipv6/syncookies.c */
639int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th);
640struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
641
642u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
643			      const struct tcphdr *th, u16 *mssp);
644__u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss);
645#endif
646/* tcp_output.c */
647
648void tcp_skb_entail(struct sock *sk, struct sk_buff *skb);
649void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb);
650void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
651			       int nonagle);
652int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
653int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
654void tcp_retransmit_timer(struct sock *sk);
655void tcp_xmit_retransmit_queue(struct sock *);
656void tcp_simple_retransmit(struct sock *);
657void tcp_enter_recovery(struct sock *sk, bool ece_ack);
658int tcp_trim_head(struct sock *, struct sk_buff *, u32);
659enum tcp_queue {
660	TCP_FRAG_IN_WRITE_QUEUE,
661	TCP_FRAG_IN_RTX_QUEUE,
662};
663int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
664		 struct sk_buff *skb, u32 len,
665		 unsigned int mss_now, gfp_t gfp);
666
667void tcp_send_probe0(struct sock *);
668int tcp_write_wakeup(struct sock *, int mib);
669void tcp_send_fin(struct sock *sk);
670void tcp_send_active_reset(struct sock *sk, gfp_t priority);
671int tcp_send_synack(struct sock *);
672void tcp_push_one(struct sock *, unsigned int mss_now);
673void __tcp_send_ack(struct sock *sk, u32 rcv_nxt);
674void tcp_send_ack(struct sock *sk);
675void tcp_send_delayed_ack(struct sock *sk);
676void tcp_send_loss_probe(struct sock *sk);
677bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto);
678void tcp_skb_collapse_tstamp(struct sk_buff *skb,
679			     const struct sk_buff *next_skb);
680
681/* tcp_input.c */
682void tcp_rearm_rto(struct sock *sk);
683void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req);
684void tcp_reset(struct sock *sk, struct sk_buff *skb);
685void tcp_fin(struct sock *sk);
686void tcp_check_space(struct sock *sk);
687void tcp_sack_compress_send_ack(struct sock *sk);
688
689/* tcp_timer.c */
690void tcp_init_xmit_timers(struct sock *);
691static inline void tcp_clear_xmit_timers(struct sock *sk)
692{
693	if (hrtimer_try_to_cancel(&tcp_sk(sk)->pacing_timer) == 1)
694		__sock_put(sk);
695
696	if (hrtimer_try_to_cancel(&tcp_sk(sk)->compressed_ack_timer) == 1)
697		__sock_put(sk);
698
699	inet_csk_clear_xmit_timers(sk);
700}
701
702unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
703unsigned int tcp_current_mss(struct sock *sk);
704u32 tcp_clamp_probe0_to_user_timeout(const struct sock *sk, u32 when);
705
706/* Bound MSS / TSO packet size with the half of the window */
707static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
708{
709	int cutoff;
710
711	/* When peer uses tiny windows, there is no use in packetizing
712	 * to sub-MSS pieces for the sake of SWS or making sure there
713	 * are enough packets in the pipe for fast recovery.
714	 *
715	 * On the other hand, for extremely large MSS devices, handling
716	 * smaller than MSS windows in this way does make sense.
717	 */
718	if (tp->max_window > TCP_MSS_DEFAULT)
719		cutoff = (tp->max_window >> 1);
720	else
721		cutoff = tp->max_window;
722
723	if (cutoff && pktsize > cutoff)
724		return max_t(int, cutoff, 68U - tp->tcp_header_len);
725	else
726		return pktsize;
727}
728
729/* tcp.c */
730void tcp_get_info(struct sock *, struct tcp_info *);
731
732/* Read 'sendfile()'-style from a TCP socket */
733int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
734		  sk_read_actor_t recv_actor);
735int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor);
736struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off);
737void tcp_read_done(struct sock *sk, size_t len);
738
739void tcp_initialize_rcv_mss(struct sock *sk);
740
741int tcp_mtu_to_mss(struct sock *sk, int pmtu);
742int tcp_mss_to_mtu(struct sock *sk, int mss);
743void tcp_mtup_init(struct sock *sk);
744
745static inline void tcp_bound_rto(const struct sock *sk)
746{
747	if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
748		inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
749}
750
751static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
752{
753	return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us);
754}
755
756static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
757{
758	/* mptcp hooks are only on the slow path */
759	if (sk_is_mptcp((struct sock *)tp))
760		return;
761
762	tp->pred_flags = htonl((tp->tcp_header_len << 26) |
763			       ntohl(TCP_FLAG_ACK) |
764			       snd_wnd);
765}
766
767static inline void tcp_fast_path_on(struct tcp_sock *tp)
768{
769	__tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
770}
771
772static inline void tcp_fast_path_check(struct sock *sk)
773{
774	struct tcp_sock *tp = tcp_sk(sk);
775
776	if (RB_EMPTY_ROOT(&tp->out_of_order_queue) &&
777	    tp->rcv_wnd &&
778	    atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
779	    !tp->urg_data)
780		tcp_fast_path_on(tp);
781}
782
783u32 tcp_delack_max(const struct sock *sk);
784
785/* Compute the actual rto_min value */
786static inline u32 tcp_rto_min(const struct sock *sk)
787{
788	const struct dst_entry *dst = __sk_dst_get(sk);
789	u32 rto_min = inet_csk(sk)->icsk_rto_min;
790
791	if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
792		rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
793	return rto_min;
794}
795
796static inline u32 tcp_rto_min_us(const struct sock *sk)
797{
798	return jiffies_to_usecs(tcp_rto_min(sk));
799}
800
801static inline bool tcp_ca_dst_locked(const struct dst_entry *dst)
802{
803	return dst_metric_locked(dst, RTAX_CC_ALGO);
804}
805
806/* Minimum RTT in usec. ~0 means not available. */
807static inline u32 tcp_min_rtt(const struct tcp_sock *tp)
808{
809	return minmax_get(&tp->rtt_min);
810}
811
812/* Compute the actual receive window we are currently advertising.
813 * Rcv_nxt can be after the window if our peer push more data
814 * than the offered window.
815 */
816static inline u32 tcp_receive_window(const struct tcp_sock *tp)
817{
818	s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
819
820	if (win < 0)
821		win = 0;
822	return (u32) win;
823}
824
825/* Choose a new window, without checks for shrinking, and without
826 * scaling applied to the result.  The caller does these things
827 * if necessary.  This is a "raw" window selection.
828 */
829u32 __tcp_select_window(struct sock *sk);
830
831void tcp_send_window_probe(struct sock *sk);
832
833/* TCP uses 32bit jiffies to save some space.
834 * Note that this is different from tcp_time_stamp, which
835 * historically has been the same until linux-4.13.
836 */
837#define tcp_jiffies32 ((u32)jiffies)
838
839/*
840 * Deliver a 32bit value for TCP timestamp option (RFC 7323)
841 * It is no longer tied to jiffies, but to 1 ms clock.
842 * Note: double check if you want to use tcp_jiffies32 instead of this.
843 */
844#define TCP_TS_HZ	1000
845
846static inline u64 tcp_clock_ns(void)
847{
848	return ktime_get_ns();
849}
850
851static inline u64 tcp_clock_us(void)
852{
853	return div_u64(tcp_clock_ns(), NSEC_PER_USEC);
854}
855
856static inline u64 tcp_clock_ms(void)
857{
858	return div_u64(tcp_clock_ns(), NSEC_PER_MSEC);
859}
860
861/* TCP Timestamp included in TS option (RFC 1323) can either use ms
862 * or usec resolution. Each socket carries a flag to select one or other
863 * resolution, as the route attribute could change anytime.
864 * Each flow must stick to initial resolution.
865 */
866static inline u32 tcp_clock_ts(bool usec_ts)
867{
868	return usec_ts ? tcp_clock_us() : tcp_clock_ms();
869}
870
871static inline u32 tcp_time_stamp_ms(const struct tcp_sock *tp)
872{
873	return div_u64(tp->tcp_mstamp, USEC_PER_MSEC);
874}
875
876static inline u32 tcp_time_stamp_ts(const struct tcp_sock *tp)
877{
878	if (tp->tcp_usec_ts)
879		return tp->tcp_mstamp;
880	return tcp_time_stamp_ms(tp);
881}
882
883void tcp_mstamp_refresh(struct tcp_sock *tp);
884
885static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0)
886{
887	return max_t(s64, t1 - t0, 0);
888}
889
890/* provide the departure time in us unit */
891static inline u64 tcp_skb_timestamp_us(const struct sk_buff *skb)
892{
893	return div_u64(skb->skb_mstamp_ns, NSEC_PER_USEC);
894}
895
896/* Provide skb TSval in usec or ms unit */
897static inline u32 tcp_skb_timestamp_ts(bool usec_ts, const struct sk_buff *skb)
898{
899	if (usec_ts)
900		return tcp_skb_timestamp_us(skb);
901
902	return div_u64(skb->skb_mstamp_ns, NSEC_PER_MSEC);
903}
904
905static inline u32 tcp_tw_tsval(const struct tcp_timewait_sock *tcptw)
906{
907	return tcp_clock_ts(tcptw->tw_sk.tw_usec_ts) + tcptw->tw_ts_offset;
908}
909
910static inline u32 tcp_rsk_tsval(const struct tcp_request_sock *treq)
911{
912	return tcp_clock_ts(treq->req_usec_ts) + treq->ts_off;
913}
914
915#define tcp_flag_byte(th) (((u_int8_t *)th)[13])
916
917#define TCPHDR_FIN 0x01
918#define TCPHDR_SYN 0x02
919#define TCPHDR_RST 0x04
920#define TCPHDR_PSH 0x08
921#define TCPHDR_ACK 0x10
922#define TCPHDR_URG 0x20
923#define TCPHDR_ECE 0x40
924#define TCPHDR_CWR 0x80
925
926#define TCPHDR_SYN_ECN	(TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR)
927
928/* This is what the send packet queuing engine uses to pass
929 * TCP per-packet control information to the transmission code.
930 * We also store the host-order sequence numbers in here too.
931 * This is 44 bytes if IPV6 is enabled.
932 * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
933 */
934struct tcp_skb_cb {
935	__u32		seq;		/* Starting sequence number	*/
936	__u32		end_seq;	/* SEQ + FIN + SYN + datalen	*/
937	union {
938		/* Note : tcp_tw_isn is used in input path only
939		 *	  (isn chosen by tcp_timewait_state_process())
940		 *
941		 * 	  tcp_gso_segs/size are used in write queue only,
942		 *	  cf tcp_skb_pcount()/tcp_skb_mss()
943		 */
944		__u32		tcp_tw_isn;
945		struct {
946			u16	tcp_gso_segs;
947			u16	tcp_gso_size;
948		};
949	};
950	__u8		tcp_flags;	/* TCP header flags. (tcp[13])	*/
951
952	__u8		sacked;		/* State flags for SACK.	*/
953#define TCPCB_SACKED_ACKED	0x01	/* SKB ACK'd by a SACK block	*/
954#define TCPCB_SACKED_RETRANS	0x02	/* SKB retransmitted		*/
955#define TCPCB_LOST		0x04	/* SKB is lost			*/
956#define TCPCB_TAGBITS		0x07	/* All tag bits			*/
957#define TCPCB_REPAIRED		0x10	/* SKB repaired (no skb_mstamp_ns)	*/
958#define TCPCB_EVER_RETRANS	0x80	/* Ever retransmitted frame	*/
959#define TCPCB_RETRANS		(TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS| \
960				TCPCB_REPAIRED)
961
962	__u8		ip_dsfield;	/* IPv4 tos or IPv6 dsfield	*/
963	__u8		txstamp_ack:1,	/* Record TX timestamp for ack? */
964			eor:1,		/* Is skb MSG_EOR marked? */
965			has_rxtstamp:1,	/* SKB has a RX timestamp	*/
966			unused:5;
967	__u32		ack_seq;	/* Sequence number ACK'd	*/
968	union {
969		struct {
970#define TCPCB_DELIVERED_CE_MASK ((1U<<20) - 1)
971			/* There is space for up to 24 bytes */
972			__u32 is_app_limited:1, /* cwnd not fully used? */
973			      delivered_ce:20,
974			      unused:11;
975			/* pkts S/ACKed so far upon tx of skb, incl retrans: */
976			__u32 delivered;
977			/* start of send pipeline phase */
978			u64 first_tx_mstamp;
979			/* when we reached the "delivered" count */
980			u64 delivered_mstamp;
981		} tx;   /* only used for outgoing skbs */
982		union {
983			struct inet_skb_parm	h4;
984#if IS_ENABLED(CONFIG_IPV6)
985			struct inet6_skb_parm	h6;
986#endif
987		} header;	/* For incoming skbs */
988	};
989};
990
991#define TCP_SKB_CB(__skb)	((struct tcp_skb_cb *)&((__skb)->cb[0]))
992
993extern const struct inet_connection_sock_af_ops ipv4_specific;
994
995#if IS_ENABLED(CONFIG_IPV6)
996/* This is the variant of inet6_iif() that must be used by TCP,
997 * as TCP moves IP6CB into a different location in skb->cb[]
998 */
999static inline int tcp_v6_iif(const struct sk_buff *skb)
1000{
1001	return TCP_SKB_CB(skb)->header.h6.iif;
1002}
1003
1004static inline int tcp_v6_iif_l3_slave(const struct sk_buff *skb)
1005{
1006	bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags);
1007
1008	return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif;
1009}
1010
1011/* TCP_SKB_CB reference means this can not be used from early demux */
1012static inline int tcp_v6_sdif(const struct sk_buff *skb)
1013{
1014#if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
1015	if (skb && ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags))
1016		return TCP_SKB_CB(skb)->header.h6.iif;
1017#endif
1018	return 0;
1019}
1020
1021extern const struct inet_connection_sock_af_ops ipv6_specific;
1022
1023INDIRECT_CALLABLE_DECLARE(void tcp_v6_send_check(struct sock *sk, struct sk_buff *skb));
1024INDIRECT_CALLABLE_DECLARE(int tcp_v6_rcv(struct sk_buff *skb));
1025void tcp_v6_early_demux(struct sk_buff *skb);
1026
1027#endif
1028
1029/* TCP_SKB_CB reference means this can not be used from early demux */
1030static inline int tcp_v4_sdif(struct sk_buff *skb)
1031{
1032#if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
1033	if (skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags))
1034		return TCP_SKB_CB(skb)->header.h4.iif;
1035#endif
1036	return 0;
1037}
1038
1039/* Due to TSO, an SKB can be composed of multiple actual
1040 * packets.  To keep these tracked properly, we use this.
1041 */
1042static inline int tcp_skb_pcount(const struct sk_buff *skb)
1043{
1044	return TCP_SKB_CB(skb)->tcp_gso_segs;
1045}
1046
1047static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs)
1048{
1049	TCP_SKB_CB(skb)->tcp_gso_segs = segs;
1050}
1051
1052static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs)
1053{
1054	TCP_SKB_CB(skb)->tcp_gso_segs += segs;
1055}
1056
1057/* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */
1058static inline int tcp_skb_mss(const struct sk_buff *skb)
1059{
1060	return TCP_SKB_CB(skb)->tcp_gso_size;
1061}
1062
1063static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb)
1064{
1065	return likely(!TCP_SKB_CB(skb)->eor);
1066}
1067
1068static inline bool tcp_skb_can_collapse(const struct sk_buff *to,
1069					const struct sk_buff *from)
1070{
1071	return likely(tcp_skb_can_collapse_to(to) &&
1072		      mptcp_skb_can_collapse(to, from) &&
1073		      skb_pure_zcopy_same(to, from));
1074}
1075
1076/* Events passed to congestion control interface */
1077enum tcp_ca_event {
1078	CA_EVENT_TX_START,	/* first transmit when no packets in flight */
1079	CA_EVENT_CWND_RESTART,	/* congestion window restart */
1080	CA_EVENT_COMPLETE_CWR,	/* end of congestion recovery */
1081	CA_EVENT_LOSS,		/* loss timeout */
1082	CA_EVENT_ECN_NO_CE,	/* ECT set, but not CE marked */
1083	CA_EVENT_ECN_IS_CE,	/* received CE marked IP packet */
1084};
1085
1086/* Information about inbound ACK, passed to cong_ops->in_ack_event() */
1087enum tcp_ca_ack_event_flags {
1088	CA_ACK_SLOWPATH		= (1 << 0),	/* In slow path processing */
1089	CA_ACK_WIN_UPDATE	= (1 << 1),	/* ACK updated window */
1090	CA_ACK_ECE		= (1 << 2),	/* ECE bit is set on ack */
1091};
1092
1093/*
1094 * Interface for adding new TCP congestion control handlers
1095 */
1096#define TCP_CA_NAME_MAX	16
1097#define TCP_CA_MAX	128
1098#define TCP_CA_BUF_MAX	(TCP_CA_NAME_MAX*TCP_CA_MAX)
1099
1100#define TCP_CA_UNSPEC	0
1101
1102/* Algorithm can be set on socket without CAP_NET_ADMIN privileges */
1103#define TCP_CONG_NON_RESTRICTED 0x1
1104/* Requires ECN/ECT set on all packets */
1105#define TCP_CONG_NEEDS_ECN	0x2
1106#define TCP_CONG_MASK	(TCP_CONG_NON_RESTRICTED | TCP_CONG_NEEDS_ECN)
1107
1108union tcp_cc_info;
1109
1110struct ack_sample {
1111	u32 pkts_acked;
1112	s32 rtt_us;
1113	u32 in_flight;
1114};
1115
1116/* A rate sample measures the number of (original/retransmitted) data
1117 * packets delivered "delivered" over an interval of time "interval_us".
1118 * The tcp_rate.c code fills in the rate sample, and congestion
1119 * control modules that define a cong_control function to run at the end
1120 * of ACK processing can optionally chose to consult this sample when
1121 * setting cwnd and pacing rate.
1122 * A sample is invalid if "delivered" or "interval_us" is negative.
1123 */
1124struct rate_sample {
1125	u64  prior_mstamp; /* starting timestamp for interval */
1126	u32  prior_delivered;	/* tp->delivered at "prior_mstamp" */
1127	u32  prior_delivered_ce;/* tp->delivered_ce at "prior_mstamp" */
1128	s32  delivered;		/* number of packets delivered over interval */
1129	s32  delivered_ce;	/* number of packets delivered w/ CE marks*/
1130	long interval_us;	/* time for tp->delivered to incr "delivered" */
1131	u32 snd_interval_us;	/* snd interval for delivered packets */
1132	u32 rcv_interval_us;	/* rcv interval for delivered packets */
1133	long rtt_us;		/* RTT of last (S)ACKed packet (or -1) */
1134	int  losses;		/* number of packets marked lost upon ACK */
1135	u32  acked_sacked;	/* number of packets newly (S)ACKed upon ACK */
1136	u32  prior_in_flight;	/* in flight before this ACK */
1137	u32  last_end_seq;	/* end_seq of most recently ACKed packet */
1138	bool is_app_limited;	/* is sample from packet with bubble in pipe? */
1139	bool is_retrans;	/* is sample from retransmission? */
1140	bool is_ack_delayed;	/* is this (likely) a delayed ACK? */
1141};
1142
1143struct tcp_congestion_ops {
1144/* fast path fields are put first to fill one cache line */
1145
1146	/* return slow start threshold (required) */
1147	u32 (*ssthresh)(struct sock *sk);
1148
1149	/* do new cwnd calculation (required) */
1150	void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked);
1151
1152	/* call before changing ca_state (optional) */
1153	void (*set_state)(struct sock *sk, u8 new_state);
1154
1155	/* call when cwnd event occurs (optional) */
1156	void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
1157
1158	/* call when ack arrives (optional) */
1159	void (*in_ack_event)(struct sock *sk, u32 flags);
1160
1161	/* hook for packet ack accounting (optional) */
1162	void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample);
1163
1164	/* override sysctl_tcp_min_tso_segs */
1165	u32 (*min_tso_segs)(struct sock *sk);
1166
1167	/* call when packets are delivered to update cwnd and pacing rate,
1168	 * after all the ca_state processing. (optional)
1169	 */
1170	void (*cong_control)(struct sock *sk, const struct rate_sample *rs);
1171
1172
1173	/* new value of cwnd after loss (required) */
1174	u32  (*undo_cwnd)(struct sock *sk);
1175	/* returns the multiplier used in tcp_sndbuf_expand (optional) */
1176	u32 (*sndbuf_expand)(struct sock *sk);
1177
1178/* control/slow paths put last */
1179	/* get info for inet_diag (optional) */
1180	size_t (*get_info)(struct sock *sk, u32 ext, int *attr,
1181			   union tcp_cc_info *info);
1182
1183	char 			name[TCP_CA_NAME_MAX];
1184	struct module		*owner;
1185	struct list_head	list;
1186	u32			key;
1187	u32			flags;
1188
1189	/* initialize private data (optional) */
1190	void (*init)(struct sock *sk);
1191	/* cleanup private data  (optional) */
1192	void (*release)(struct sock *sk);
1193} ____cacheline_aligned_in_smp;
1194
1195int tcp_register_congestion_control(struct tcp_congestion_ops *type);
1196void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
1197int tcp_update_congestion_control(struct tcp_congestion_ops *type,
1198				  struct tcp_congestion_ops *old_type);
1199int tcp_validate_congestion_control(struct tcp_congestion_ops *ca);
1200
1201void tcp_assign_congestion_control(struct sock *sk);
1202void tcp_init_congestion_control(struct sock *sk);
1203void tcp_cleanup_congestion_control(struct sock *sk);
1204int tcp_set_default_congestion_control(struct net *net, const char *name);
1205void tcp_get_default_congestion_control(struct net *net, char *name);
1206void tcp_get_available_congestion_control(char *buf, size_t len);
1207void tcp_get_allowed_congestion_control(char *buf, size_t len);
1208int tcp_set_allowed_congestion_control(char *allowed);
1209int tcp_set_congestion_control(struct sock *sk, const char *name, bool load,
1210			       bool cap_net_admin);
1211u32 tcp_slow_start(struct tcp_sock *tp, u32 acked);
1212void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked);
1213
1214u32 tcp_reno_ssthresh(struct sock *sk);
1215u32 tcp_reno_undo_cwnd(struct sock *sk);
1216void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked);
1217extern struct tcp_congestion_ops tcp_reno;
1218
1219struct tcp_congestion_ops *tcp_ca_find(const char *name);
1220struct tcp_congestion_ops *tcp_ca_find_key(u32 key);
1221u32 tcp_ca_get_key_by_name(struct net *net, const char *name, bool *ecn_ca);
1222#ifdef CONFIG_INET
1223char *tcp_ca_get_name_by_key(u32 key, char *buffer);
1224#else
1225static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer)
1226{
1227	return NULL;
1228}
1229#endif
1230
1231static inline bool tcp_ca_needs_ecn(const struct sock *sk)
1232{
1233	const struct inet_connection_sock *icsk = inet_csk(sk);
1234
1235	return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN;
1236}
1237
1238static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
1239{
1240	const struct inet_connection_sock *icsk = inet_csk(sk);
1241
1242	if (icsk->icsk_ca_ops->cwnd_event)
1243		icsk->icsk_ca_ops->cwnd_event(sk, event);
1244}
1245
1246/* From tcp_cong.c */
1247void tcp_set_ca_state(struct sock *sk, const u8 ca_state);
1248
1249/* From tcp_rate.c */
1250void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb);
1251void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb,
1252			    struct rate_sample *rs);
1253void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost,
1254		  bool is_sack_reneg, struct rate_sample *rs);
1255void tcp_rate_check_app_limited(struct sock *sk);
1256
1257static inline bool tcp_skb_sent_after(u64 t1, u64 t2, u32 seq1, u32 seq2)
1258{
1259	return t1 > t2 || (t1 == t2 && after(seq1, seq2));
1260}
1261
1262/* These functions determine how the current flow behaves in respect of SACK
1263 * handling. SACK is negotiated with the peer, and therefore it can vary
1264 * between different flows.
1265 *
1266 * tcp_is_sack - SACK enabled
1267 * tcp_is_reno - No SACK
1268 */
1269static inline int tcp_is_sack(const struct tcp_sock *tp)
1270{
1271	return likely(tp->rx_opt.sack_ok);
1272}
1273
1274static inline bool tcp_is_reno(const struct tcp_sock *tp)
1275{
1276	return !tcp_is_sack(tp);
1277}
1278
1279static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
1280{
1281	return tp->sacked_out + tp->lost_out;
1282}
1283
1284/* This determines how many packets are "in the network" to the best
1285 * of our knowledge.  In many cases it is conservative, but where
1286 * detailed information is available from the receiver (via SACK
1287 * blocks etc.) we can make more aggressive calculations.
1288 *
1289 * Use this for decisions involving congestion control, use just
1290 * tp->packets_out to determine if the send queue is empty or not.
1291 *
1292 * Read this equation as:
1293 *
1294 *	"Packets sent once on transmission queue" MINUS
1295 *	"Packets left network, but not honestly ACKed yet" PLUS
1296 *	"Packets fast retransmitted"
1297 */
1298static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
1299{
1300	return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
1301}
1302
1303#define TCP_INFINITE_SSTHRESH	0x7fffffff
1304
1305static inline u32 tcp_snd_cwnd(const struct tcp_sock *tp)
1306{
1307	return tp->snd_cwnd;
1308}
1309
1310static inline void tcp_snd_cwnd_set(struct tcp_sock *tp, u32 val)
1311{
1312	WARN_ON_ONCE((int)val <= 0);
1313	tp->snd_cwnd = val;
1314}
1315
1316static inline bool tcp_in_slow_start(const struct tcp_sock *tp)
1317{
1318	return tcp_snd_cwnd(tp) < tp->snd_ssthresh;
1319}
1320
1321static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
1322{
1323	return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
1324}
1325
1326static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
1327{
1328	return (TCPF_CA_CWR | TCPF_CA_Recovery) &
1329	       (1 << inet_csk(sk)->icsk_ca_state);
1330}
1331
1332/* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
1333 * The exception is cwnd reduction phase, when cwnd is decreasing towards
1334 * ssthresh.
1335 */
1336static inline __u32 tcp_current_ssthresh(const struct sock *sk)
1337{
1338	const struct tcp_sock *tp = tcp_sk(sk);
1339
1340	if (tcp_in_cwnd_reduction(sk))
1341		return tp->snd_ssthresh;
1342	else
1343		return max(tp->snd_ssthresh,
1344			   ((tcp_snd_cwnd(tp) >> 1) +
1345			    (tcp_snd_cwnd(tp) >> 2)));
1346}
1347
1348/* Use define here intentionally to get WARN_ON location shown at the caller */
1349#define tcp_verify_left_out(tp)	WARN_ON(tcp_left_out(tp) > tp->packets_out)
1350
1351void tcp_enter_cwr(struct sock *sk);
1352__u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
1353
1354/* The maximum number of MSS of available cwnd for which TSO defers
1355 * sending if not using sysctl_tcp_tso_win_divisor.
1356 */
1357static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
1358{
1359	return 3;
1360}
1361
1362/* Returns end sequence number of the receiver's advertised window */
1363static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
1364{
1365	return tp->snd_una + tp->snd_wnd;
1366}
1367
1368/* We follow the spirit of RFC2861 to validate cwnd but implement a more
1369 * flexible approach. The RFC suggests cwnd should not be raised unless
1370 * it was fully used previously. And that's exactly what we do in
1371 * congestion avoidance mode. But in slow start we allow cwnd to grow
1372 * as long as the application has used half the cwnd.
1373 * Example :
1374 *    cwnd is 10 (IW10), but application sends 9 frames.
1375 *    We allow cwnd to reach 18 when all frames are ACKed.
1376 * This check is safe because it's as aggressive as slow start which already
1377 * risks 100% overshoot. The advantage is that we discourage application to
1378 * either send more filler packets or data to artificially blow up the cwnd
1379 * usage, and allow application-limited process to probe bw more aggressively.
1380 */
1381static inline bool tcp_is_cwnd_limited(const struct sock *sk)
1382{
1383	const struct tcp_sock *tp = tcp_sk(sk);
1384
1385	if (tp->is_cwnd_limited)
1386		return true;
1387
1388	/* If in slow start, ensure cwnd grows to twice what was ACKed. */
1389	if (tcp_in_slow_start(tp))
1390		return tcp_snd_cwnd(tp) < 2 * tp->max_packets_out;
1391
1392	return false;
1393}
1394
1395/* BBR congestion control needs pacing.
1396 * Same remark for SO_MAX_PACING_RATE.
1397 * sch_fq packet scheduler is efficiently handling pacing,
1398 * but is not always installed/used.
1399 * Return true if TCP stack should pace packets itself.
1400 */
1401static inline bool tcp_needs_internal_pacing(const struct sock *sk)
1402{
1403	return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED;
1404}
1405
1406/* Estimates in how many jiffies next packet for this flow can be sent.
1407 * Scheduling a retransmit timer too early would be silly.
1408 */
1409static inline unsigned long tcp_pacing_delay(const struct sock *sk)
1410{
1411	s64 delay = tcp_sk(sk)->tcp_wstamp_ns - tcp_sk(sk)->tcp_clock_cache;
1412
1413	return delay > 0 ? nsecs_to_jiffies(delay) : 0;
1414}
1415
1416static inline void tcp_reset_xmit_timer(struct sock *sk,
1417					const int what,
1418					unsigned long when,
1419					const unsigned long max_when)
1420{
1421	inet_csk_reset_xmit_timer(sk, what, when + tcp_pacing_delay(sk),
1422				  max_when);
1423}
1424
1425/* Something is really bad, we could not queue an additional packet,
1426 * because qdisc is full or receiver sent a 0 window, or we are paced.
1427 * We do not want to add fuel to the fire, or abort too early,
1428 * so make sure the timer we arm now is at least 200ms in the future,
1429 * regardless of current icsk_rto value (as it could be ~2ms)
1430 */
1431static inline unsigned long tcp_probe0_base(const struct sock *sk)
1432{
1433	return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN);
1434}
1435
1436/* Variant of inet_csk_rto_backoff() used for zero window probes */
1437static inline unsigned long tcp_probe0_when(const struct sock *sk,
1438					    unsigned long max_when)
1439{
1440	u8 backoff = min_t(u8, ilog2(TCP_RTO_MAX / TCP_RTO_MIN) + 1,
1441			   inet_csk(sk)->icsk_backoff);
1442	u64 when = (u64)tcp_probe0_base(sk) << backoff;
1443
1444	return (unsigned long)min_t(u64, when, max_when);
1445}
1446
1447static inline void tcp_check_probe_timer(struct sock *sk)
1448{
1449	if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending)
1450		tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
1451				     tcp_probe0_base(sk), TCP_RTO_MAX);
1452}
1453
1454static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
1455{
1456	tp->snd_wl1 = seq;
1457}
1458
1459static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
1460{
1461	tp->snd_wl1 = seq;
1462}
1463
1464/*
1465 * Calculate(/check) TCP checksum
1466 */
1467static inline __sum16 tcp_v4_check(int len, __be32 saddr,
1468				   __be32 daddr, __wsum base)
1469{
1470	return csum_tcpudp_magic(saddr, daddr, len, IPPROTO_TCP, base);
1471}
1472
1473static inline bool tcp_checksum_complete(struct sk_buff *skb)
1474{
1475	return !skb_csum_unnecessary(skb) &&
1476		__skb_checksum_complete(skb);
1477}
1478
1479bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb,
1480		     enum skb_drop_reason *reason);
1481
1482
1483int tcp_filter(struct sock *sk, struct sk_buff *skb);
1484void tcp_set_state(struct sock *sk, int state);
1485void tcp_done(struct sock *sk);
1486int tcp_abort(struct sock *sk, int err);
1487
1488static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1489{
1490	rx_opt->dsack = 0;
1491	rx_opt->num_sacks = 0;
1492}
1493
1494void tcp_cwnd_restart(struct sock *sk, s32 delta);
1495
1496static inline void tcp_slow_start_after_idle_check(struct sock *sk)
1497{
1498	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1499	struct tcp_sock *tp = tcp_sk(sk);
1500	s32 delta;
1501
1502	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle) ||
1503	    tp->packets_out || ca_ops->cong_control)
1504		return;
1505	delta = tcp_jiffies32 - tp->lsndtime;
1506	if (delta > inet_csk(sk)->icsk_rto)
1507		tcp_cwnd_restart(sk, delta);
1508}
1509
1510/* Determine a window scaling and initial window to offer. */
1511void tcp_select_initial_window(const struct sock *sk, int __space,
1512			       __u32 mss, __u32 *rcv_wnd,
1513			       __u32 *window_clamp, int wscale_ok,
1514			       __u8 *rcv_wscale, __u32 init_rcv_wnd);
1515
1516static inline int __tcp_win_from_space(u8 scaling_ratio, int space)
1517{
1518	s64 scaled_space = (s64)space * scaling_ratio;
1519
1520	return scaled_space >> TCP_RMEM_TO_WIN_SCALE;
1521}
1522
1523static inline int tcp_win_from_space(const struct sock *sk, int space)
1524{
1525	return __tcp_win_from_space(tcp_sk(sk)->scaling_ratio, space);
1526}
1527
1528/* inverse of __tcp_win_from_space() */
1529static inline int __tcp_space_from_win(u8 scaling_ratio, int win)
1530{
1531	u64 val = (u64)win << TCP_RMEM_TO_WIN_SCALE;
1532
1533	do_div(val, scaling_ratio);
1534	return val;
1535}
1536
1537static inline int tcp_space_from_win(const struct sock *sk, int win)
1538{
1539	return __tcp_space_from_win(tcp_sk(sk)->scaling_ratio, win);
1540}
1541
1542/* Assume a conservative default of 1200 bytes of payload per 4K page.
1543 * This may be adjusted later in tcp_measure_rcv_mss().
1544 */
1545#define TCP_DEFAULT_SCALING_RATIO ((1200 << TCP_RMEM_TO_WIN_SCALE) / \
1546				   SKB_TRUESIZE(4096))
1547
1548static inline void tcp_scaling_ratio_init(struct sock *sk)
1549{
1550	tcp_sk(sk)->scaling_ratio = TCP_DEFAULT_SCALING_RATIO;
1551}
1552
1553/* Note: caller must be prepared to deal with negative returns */
1554static inline int tcp_space(const struct sock *sk)
1555{
1556	return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf) -
1557				  READ_ONCE(sk->sk_backlog.len) -
1558				  atomic_read(&sk->sk_rmem_alloc));
1559}
1560
1561static inline int tcp_full_space(const struct sock *sk)
1562{
1563	return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf));
1564}
1565
1566static inline void __tcp_adjust_rcv_ssthresh(struct sock *sk, u32 new_ssthresh)
1567{
1568	int unused_mem = sk_unused_reserved_mem(sk);
1569	struct tcp_sock *tp = tcp_sk(sk);
1570
1571	tp->rcv_ssthresh = min(tp->rcv_ssthresh, new_ssthresh);
1572	if (unused_mem)
1573		tp->rcv_ssthresh = max_t(u32, tp->rcv_ssthresh,
1574					 tcp_win_from_space(sk, unused_mem));
1575}
1576
1577static inline void tcp_adjust_rcv_ssthresh(struct sock *sk)
1578{
1579	__tcp_adjust_rcv_ssthresh(sk, 4U * tcp_sk(sk)->advmss);
1580}
1581
1582void tcp_cleanup_rbuf(struct sock *sk, int copied);
1583void __tcp_cleanup_rbuf(struct sock *sk, int copied);
1584
1585
1586/* We provision sk_rcvbuf around 200% of sk_rcvlowat.
1587 * If 87.5 % (7/8) of the space has been consumed, we want to override
1588 * SO_RCVLOWAT constraint, since we are receiving skbs with too small
1589 * len/truesize ratio.
1590 */
1591static inline bool tcp_rmem_pressure(const struct sock *sk)
1592{
1593	int rcvbuf, threshold;
1594
1595	if (tcp_under_memory_pressure(sk))
1596		return true;
1597
1598	rcvbuf = READ_ONCE(sk->sk_rcvbuf);
1599	threshold = rcvbuf - (rcvbuf >> 3);
1600
1601	return atomic_read(&sk->sk_rmem_alloc) > threshold;
1602}
1603
1604static inline bool tcp_epollin_ready(const struct sock *sk, int target)
1605{
1606	const struct tcp_sock *tp = tcp_sk(sk);
1607	int avail = READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->copied_seq);
1608
1609	if (avail <= 0)
1610		return false;
1611
1612	return (avail >= target) || tcp_rmem_pressure(sk) ||
1613	       (tcp_receive_window(tp) <= inet_csk(sk)->icsk_ack.rcv_mss);
1614}
1615
1616extern void tcp_openreq_init_rwin(struct request_sock *req,
1617				  const struct sock *sk_listener,
1618				  const struct dst_entry *dst);
1619
1620void tcp_enter_memory_pressure(struct sock *sk);
1621void tcp_leave_memory_pressure(struct sock *sk);
1622
1623static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1624{
1625	struct net *net = sock_net((struct sock *)tp);
1626	int val;
1627
1628	/* Paired with WRITE_ONCE() in tcp_sock_set_keepintvl()
1629	 * and do_tcp_setsockopt().
1630	 */
1631	val = READ_ONCE(tp->keepalive_intvl);
1632
1633	return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_intvl);
1634}
1635
1636static inline int keepalive_time_when(const struct tcp_sock *tp)
1637{
1638	struct net *net = sock_net((struct sock *)tp);
1639	int val;
1640
1641	/* Paired with WRITE_ONCE() in tcp_sock_set_keepidle_locked() */
1642	val = READ_ONCE(tp->keepalive_time);
1643
1644	return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_time);
1645}
1646
1647static inline int keepalive_probes(const struct tcp_sock *tp)
1648{
1649	struct net *net = sock_net((struct sock *)tp);
1650	int val;
1651
1652	/* Paired with WRITE_ONCE() in tcp_sock_set_keepcnt()
1653	 * and do_tcp_setsockopt().
1654	 */
1655	val = READ_ONCE(tp->keepalive_probes);
1656
1657	return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_probes);
1658}
1659
1660static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1661{
1662	const struct inet_connection_sock *icsk = &tp->inet_conn;
1663
1664	return min_t(u32, tcp_jiffies32 - icsk->icsk_ack.lrcvtime,
1665			  tcp_jiffies32 - tp->rcv_tstamp);
1666}
1667
1668static inline int tcp_fin_time(const struct sock *sk)
1669{
1670	int fin_timeout = tcp_sk(sk)->linger2 ? :
1671		READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fin_timeout);
1672	const int rto = inet_csk(sk)->icsk_rto;
1673
1674	if (fin_timeout < (rto << 2) - (rto >> 1))
1675		fin_timeout = (rto << 2) - (rto >> 1);
1676
1677	return fin_timeout;
1678}
1679
1680static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1681				  int paws_win)
1682{
1683	if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1684		return true;
1685	if (unlikely(!time_before32(ktime_get_seconds(),
1686				    rx_opt->ts_recent_stamp + TCP_PAWS_WRAP)))
1687		return true;
1688	/*
1689	 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1690	 * then following tcp messages have valid values. Ignore 0 value,
1691	 * or else 'negative' tsval might forbid us to accept their packets.
1692	 */
1693	if (!rx_opt->ts_recent)
1694		return true;
1695	return false;
1696}
1697
1698static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1699				   int rst)
1700{
1701	if (tcp_paws_check(rx_opt, 0))
1702		return false;
1703
1704	/* RST segments are not recommended to carry timestamp,
1705	   and, if they do, it is recommended to ignore PAWS because
1706	   "their cleanup function should take precedence over timestamps."
1707	   Certainly, it is mistake. It is necessary to understand the reasons
1708	   of this constraint to relax it: if peer reboots, clock may go
1709	   out-of-sync and half-open connections will not be reset.
1710	   Actually, the problem would be not existing if all
1711	   the implementations followed draft about maintaining clock
1712	   via reboots. Linux-2.2 DOES NOT!
1713
1714	   However, we can relax time bounds for RST segments to MSL.
1715	 */
1716	if (rst && !time_before32(ktime_get_seconds(),
1717				  rx_opt->ts_recent_stamp + TCP_PAWS_MSL))
1718		return false;
1719	return true;
1720}
1721
1722bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
1723			  int mib_idx, u32 *last_oow_ack_time);
1724
1725static inline void tcp_mib_init(struct net *net)
1726{
1727	/* See RFC 2012 */
1728	TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1);
1729	TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1730	TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1731	TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1);
1732}
1733
1734/* from STCP */
1735static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1736{
1737	tp->lost_skb_hint = NULL;
1738}
1739
1740static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1741{
1742	tcp_clear_retrans_hints_partial(tp);
1743	tp->retransmit_skb_hint = NULL;
1744}
1745
1746#define tcp_md5_addr tcp_ao_addr
1747
1748/* - key database */
1749struct tcp_md5sig_key {
1750	struct hlist_node	node;
1751	u8			keylen;
1752	u8			family; /* AF_INET or AF_INET6 */
1753	u8			prefixlen;
1754	u8			flags;
1755	union tcp_md5_addr	addr;
1756	int			l3index; /* set if key added with L3 scope */
1757	u8			key[TCP_MD5SIG_MAXKEYLEN];
1758	struct rcu_head		rcu;
1759};
1760
1761/* - sock block */
1762struct tcp_md5sig_info {
1763	struct hlist_head	head;
1764	struct rcu_head		rcu;
1765};
1766
1767/* - pseudo header */
1768struct tcp4_pseudohdr {
1769	__be32		saddr;
1770	__be32		daddr;
1771	__u8		pad;
1772	__u8		protocol;
1773	__be16		len;
1774};
1775
1776struct tcp6_pseudohdr {
1777	struct in6_addr	saddr;
1778	struct in6_addr daddr;
1779	__be32		len;
1780	__be32		protocol;	/* including padding */
1781};
1782
1783union tcp_md5sum_block {
1784	struct tcp4_pseudohdr ip4;
1785#if IS_ENABLED(CONFIG_IPV6)
1786	struct tcp6_pseudohdr ip6;
1787#endif
1788};
1789
1790/*
1791 * struct tcp_sigpool - per-CPU pool of ahash_requests
1792 * @scratch: per-CPU temporary area, that can be used between
1793 *	     tcp_sigpool_start() and tcp_sigpool_end() to perform
1794 *	     crypto request
1795 * @req: pre-allocated ahash request
1796 */
1797struct tcp_sigpool {
1798	void *scratch;
1799	struct ahash_request *req;
1800};
1801
1802int tcp_sigpool_alloc_ahash(const char *alg, size_t scratch_size);
1803void tcp_sigpool_get(unsigned int id);
1804void tcp_sigpool_release(unsigned int id);
1805int tcp_sigpool_hash_skb_data(struct tcp_sigpool *hp,
1806			      const struct sk_buff *skb,
1807			      unsigned int header_len);
1808
1809/**
1810 * tcp_sigpool_start - disable bh and start using tcp_sigpool_ahash
1811 * @id: tcp_sigpool that was previously allocated by tcp_sigpool_alloc_ahash()
1812 * @c: returned tcp_sigpool for usage (uninitialized on failure)
1813 *
1814 * Returns 0 on success, error otherwise.
1815 */
1816int tcp_sigpool_start(unsigned int id, struct tcp_sigpool *c);
1817/**
1818 * tcp_sigpool_end - enable bh and stop using tcp_sigpool
1819 * @c: tcp_sigpool context that was returned by tcp_sigpool_start()
1820 */
1821void tcp_sigpool_end(struct tcp_sigpool *c);
1822size_t tcp_sigpool_algo(unsigned int id, char *buf, size_t buf_len);
1823/* - functions */
1824int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1825			const struct sock *sk, const struct sk_buff *skb);
1826int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1827		   int family, u8 prefixlen, int l3index, u8 flags,
1828		   const u8 *newkey, u8 newkeylen);
1829int tcp_md5_key_copy(struct sock *sk, const union tcp_md5_addr *addr,
1830		     int family, u8 prefixlen, int l3index,
1831		     struct tcp_md5sig_key *key);
1832
1833int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1834		   int family, u8 prefixlen, int l3index, u8 flags);
1835void tcp_clear_md5_list(struct sock *sk);
1836struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1837					 const struct sock *addr_sk);
1838
1839#ifdef CONFIG_TCP_MD5SIG
1840struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk, int l3index,
1841					   const union tcp_md5_addr *addr,
1842					   int family, bool any_l3index);
1843static inline struct tcp_md5sig_key *
1844tcp_md5_do_lookup(const struct sock *sk, int l3index,
1845		  const union tcp_md5_addr *addr, int family)
1846{
1847	if (!static_branch_unlikely(&tcp_md5_needed.key))
1848		return NULL;
1849	return __tcp_md5_do_lookup(sk, l3index, addr, family, false);
1850}
1851
1852static inline struct tcp_md5sig_key *
1853tcp_md5_do_lookup_any_l3index(const struct sock *sk,
1854			      const union tcp_md5_addr *addr, int family)
1855{
1856	if (!static_branch_unlikely(&tcp_md5_needed.key))
1857		return NULL;
1858	return __tcp_md5_do_lookup(sk, 0, addr, family, true);
1859}
1860
1861enum skb_drop_reason
1862tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
1863		     const void *saddr, const void *daddr,
1864		     int family, int l3index, const __u8 *hash_location);
1865
1866
1867#define tcp_twsk_md5_key(twsk)	((twsk)->tw_md5_key)
1868#else
1869static inline struct tcp_md5sig_key *
1870tcp_md5_do_lookup(const struct sock *sk, int l3index,
1871		  const union tcp_md5_addr *addr, int family)
1872{
1873	return NULL;
1874}
1875
1876static inline struct tcp_md5sig_key *
1877tcp_md5_do_lookup_any_l3index(const struct sock *sk,
1878			      const union tcp_md5_addr *addr, int family)
1879{
1880	return NULL;
1881}
1882
1883static inline enum skb_drop_reason
1884tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
1885		     const void *saddr, const void *daddr,
1886		     int family, int l3index, const __u8 *hash_location)
1887{
1888	return SKB_NOT_DROPPED_YET;
1889}
1890#define tcp_twsk_md5_key(twsk)	NULL
1891#endif
1892
1893int tcp_md5_alloc_sigpool(void);
1894void tcp_md5_release_sigpool(void);
1895void tcp_md5_add_sigpool(void);
1896extern int tcp_md5_sigpool_id;
1897
1898int tcp_md5_hash_key(struct tcp_sigpool *hp,
1899		     const struct tcp_md5sig_key *key);
1900
1901/* From tcp_fastopen.c */
1902void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
1903			    struct tcp_fastopen_cookie *cookie);
1904void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
1905			    struct tcp_fastopen_cookie *cookie, bool syn_lost,
1906			    u16 try_exp);
1907struct tcp_fastopen_request {
1908	/* Fast Open cookie. Size 0 means a cookie request */
1909	struct tcp_fastopen_cookie	cookie;
1910	struct msghdr			*data;  /* data in MSG_FASTOPEN */
1911	size_t				size;
1912	int				copied;	/* queued in tcp_connect() */
1913	struct ubuf_info		*uarg;
1914};
1915void tcp_free_fastopen_req(struct tcp_sock *tp);
1916void tcp_fastopen_destroy_cipher(struct sock *sk);
1917void tcp_fastopen_ctx_destroy(struct net *net);
1918int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk,
1919			      void *primary_key, void *backup_key);
1920int tcp_fastopen_get_cipher(struct net *net, struct inet_connection_sock *icsk,
1921			    u64 *key);
1922void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb);
1923struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
1924			      struct request_sock *req,
1925			      struct tcp_fastopen_cookie *foc,
1926			      const struct dst_entry *dst);
1927void tcp_fastopen_init_key_once(struct net *net);
1928bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
1929			     struct tcp_fastopen_cookie *cookie);
1930bool tcp_fastopen_defer_connect(struct sock *sk, int *err);
1931#define TCP_FASTOPEN_KEY_LENGTH sizeof(siphash_key_t)
1932#define TCP_FASTOPEN_KEY_MAX 2
1933#define TCP_FASTOPEN_KEY_BUF_LENGTH \
1934	(TCP_FASTOPEN_KEY_LENGTH * TCP_FASTOPEN_KEY_MAX)
1935
1936/* Fastopen key context */
1937struct tcp_fastopen_context {
1938	siphash_key_t	key[TCP_FASTOPEN_KEY_MAX];
1939	int		num;
1940	struct rcu_head	rcu;
1941};
1942
1943void tcp_fastopen_active_disable(struct sock *sk);
1944bool tcp_fastopen_active_should_disable(struct sock *sk);
1945void tcp_fastopen_active_disable_ofo_check(struct sock *sk);
1946void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired);
1947
1948/* Caller needs to wrap with rcu_read_(un)lock() */
1949static inline
1950struct tcp_fastopen_context *tcp_fastopen_get_ctx(const struct sock *sk)
1951{
1952	struct tcp_fastopen_context *ctx;
1953
1954	ctx = rcu_dereference(inet_csk(sk)->icsk_accept_queue.fastopenq.ctx);
1955	if (!ctx)
1956		ctx = rcu_dereference(sock_net(sk)->ipv4.tcp_fastopen_ctx);
1957	return ctx;
1958}
1959
1960static inline
1961bool tcp_fastopen_cookie_match(const struct tcp_fastopen_cookie *foc,
1962			       const struct tcp_fastopen_cookie *orig)
1963{
1964	if (orig->len == TCP_FASTOPEN_COOKIE_SIZE &&
1965	    orig->len == foc->len &&
1966	    !memcmp(orig->val, foc->val, foc->len))
1967		return true;
1968	return false;
1969}
1970
1971static inline
1972int tcp_fastopen_context_len(const struct tcp_fastopen_context *ctx)
1973{
1974	return ctx->num;
1975}
1976
1977/* Latencies incurred by various limits for a sender. They are
1978 * chronograph-like stats that are mutually exclusive.
1979 */
1980enum tcp_chrono {
1981	TCP_CHRONO_UNSPEC,
1982	TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */
1983	TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */
1984	TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */
1985	__TCP_CHRONO_MAX,
1986};
1987
1988void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type);
1989void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type);
1990
1991/* This helper is needed, because skb->tcp_tsorted_anchor uses
1992 * the same memory storage than skb->destructor/_skb_refdst
1993 */
1994static inline void tcp_skb_tsorted_anchor_cleanup(struct sk_buff *skb)
1995{
1996	skb->destructor = NULL;
1997	skb->_skb_refdst = 0UL;
1998}
1999
2000#define tcp_skb_tsorted_save(skb) {		\
2001	unsigned long _save = skb->_skb_refdst;	\
2002	skb->_skb_refdst = 0UL;
2003
2004#define tcp_skb_tsorted_restore(skb)		\
2005	skb->_skb_refdst = _save;		\
2006}
2007
2008void tcp_write_queue_purge(struct sock *sk);
2009
2010static inline struct sk_buff *tcp_rtx_queue_head(const struct sock *sk)
2011{
2012	return skb_rb_first(&sk->tcp_rtx_queue);
2013}
2014
2015static inline struct sk_buff *tcp_rtx_queue_tail(const struct sock *sk)
2016{
2017	return skb_rb_last(&sk->tcp_rtx_queue);
2018}
2019
2020static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
2021{
2022	return skb_peek_tail(&sk->sk_write_queue);
2023}
2024
2025#define tcp_for_write_queue_from_safe(skb, tmp, sk)			\
2026	skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
2027
2028static inline struct sk_buff *tcp_send_head(const struct sock *sk)
2029{
2030	return skb_peek(&sk->sk_write_queue);
2031}
2032
2033static inline bool tcp_skb_is_last(const struct sock *sk,
2034				   const struct sk_buff *skb)
2035{
2036	return skb_queue_is_last(&sk->sk_write_queue, skb);
2037}
2038
2039/**
2040 * tcp_write_queue_empty - test if any payload (or FIN) is available in write queue
2041 * @sk: socket
2042 *
2043 * Since the write queue can have a temporary empty skb in it,
2044 * we must not use "return skb_queue_empty(&sk->sk_write_queue)"
2045 */
2046static inline bool tcp_write_queue_empty(const struct sock *sk)
2047{
2048	const struct tcp_sock *tp = tcp_sk(sk);
2049
2050	return tp->write_seq == tp->snd_nxt;
2051}
2052
2053static inline bool tcp_rtx_queue_empty(const struct sock *sk)
2054{
2055	return RB_EMPTY_ROOT(&sk->tcp_rtx_queue);
2056}
2057
2058static inline bool tcp_rtx_and_write_queues_empty(const struct sock *sk)
2059{
2060	return tcp_rtx_queue_empty(sk) && tcp_write_queue_empty(sk);
2061}
2062
2063static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
2064{
2065	__skb_queue_tail(&sk->sk_write_queue, skb);
2066
2067	/* Queue it, remembering where we must start sending. */
2068	if (sk->sk_write_queue.next == skb)
2069		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
2070}
2071
2072/* Insert new before skb on the write queue of sk.  */
2073static inline void tcp_insert_write_queue_before(struct sk_buff *new,
2074						  struct sk_buff *skb,
2075						  struct sock *sk)
2076{
2077	__skb_queue_before(&sk->sk_write_queue, skb, new);
2078}
2079
2080static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
2081{
2082	tcp_skb_tsorted_anchor_cleanup(skb);
2083	__skb_unlink(skb, &sk->sk_write_queue);
2084}
2085
2086void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb);
2087
2088static inline void tcp_rtx_queue_unlink(struct sk_buff *skb, struct sock *sk)
2089{
2090	tcp_skb_tsorted_anchor_cleanup(skb);
2091	rb_erase(&skb->rbnode, &sk->tcp_rtx_queue);
2092}
2093
2094static inline void tcp_rtx_queue_unlink_and_free(struct sk_buff *skb, struct sock *sk)
2095{
2096	list_del(&skb->tcp_tsorted_anchor);
2097	tcp_rtx_queue_unlink(skb, sk);
2098	tcp_wmem_free_skb(sk, skb);
2099}
2100
2101static inline void tcp_push_pending_frames(struct sock *sk)
2102{
2103	if (tcp_send_head(sk)) {
2104		struct tcp_sock *tp = tcp_sk(sk);
2105
2106		__tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
2107	}
2108}
2109
2110/* Start sequence of the skb just after the highest skb with SACKed
2111 * bit, valid only if sacked_out > 0 or when the caller has ensured
2112 * validity by itself.
2113 */
2114static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
2115{
2116	if (!tp->sacked_out)
2117		return tp->snd_una;
2118
2119	if (tp->highest_sack == NULL)
2120		return tp->snd_nxt;
2121
2122	return TCP_SKB_CB(tp->highest_sack)->seq;
2123}
2124
2125static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
2126{
2127	tcp_sk(sk)->highest_sack = skb_rb_next(skb);
2128}
2129
2130static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
2131{
2132	return tcp_sk(sk)->highest_sack;
2133}
2134
2135static inline void tcp_highest_sack_reset(struct sock *sk)
2136{
2137	tcp_sk(sk)->highest_sack = tcp_rtx_queue_head(sk);
2138}
2139
2140/* Called when old skb is about to be deleted and replaced by new skb */
2141static inline void tcp_highest_sack_replace(struct sock *sk,
2142					    struct sk_buff *old,
2143					    struct sk_buff *new)
2144{
2145	if (old == tcp_highest_sack(sk))
2146		tcp_sk(sk)->highest_sack = new;
2147}
2148
2149/* This helper checks if socket has IP_TRANSPARENT set */
2150static inline bool inet_sk_transparent(const struct sock *sk)
2151{
2152	switch (sk->sk_state) {
2153	case TCP_TIME_WAIT:
2154		return inet_twsk(sk)->tw_transparent;
2155	case TCP_NEW_SYN_RECV:
2156		return inet_rsk(inet_reqsk(sk))->no_srccheck;
2157	}
2158	return inet_test_bit(TRANSPARENT, sk);
2159}
2160
2161/* Determines whether this is a thin stream (which may suffer from
2162 * increased latency). Used to trigger latency-reducing mechanisms.
2163 */
2164static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
2165{
2166	return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
2167}
2168
2169/* /proc */
2170enum tcp_seq_states {
2171	TCP_SEQ_STATE_LISTENING,
2172	TCP_SEQ_STATE_ESTABLISHED,
2173};
2174
2175void *tcp_seq_start(struct seq_file *seq, loff_t *pos);
2176void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos);
2177void tcp_seq_stop(struct seq_file *seq, void *v);
2178
2179struct tcp_seq_afinfo {
2180	sa_family_t			family;
2181};
2182
2183struct tcp_iter_state {
2184	struct seq_net_private	p;
2185	enum tcp_seq_states	state;
2186	struct sock		*syn_wait_sk;
2187	int			bucket, offset, sbucket, num;
2188	loff_t			last_pos;
2189};
2190
2191extern struct request_sock_ops tcp_request_sock_ops;
2192extern struct request_sock_ops tcp6_request_sock_ops;
2193
2194void tcp_v4_destroy_sock(struct sock *sk);
2195
2196struct sk_buff *tcp_gso_segment(struct sk_buff *skb,
2197				netdev_features_t features);
2198struct sk_buff *tcp_gro_receive(struct list_head *head, struct sk_buff *skb);
2199INDIRECT_CALLABLE_DECLARE(int tcp4_gro_complete(struct sk_buff *skb, int thoff));
2200INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp4_gro_receive(struct list_head *head, struct sk_buff *skb));
2201INDIRECT_CALLABLE_DECLARE(int tcp6_gro_complete(struct sk_buff *skb, int thoff));
2202INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp6_gro_receive(struct list_head *head, struct sk_buff *skb));
2203#ifdef CONFIG_INET
2204void tcp_gro_complete(struct sk_buff *skb);
2205#else
2206static inline void tcp_gro_complete(struct sk_buff *skb) { }
2207#endif
2208
2209void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr);
2210
2211static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp)
2212{
2213	struct net *net = sock_net((struct sock *)tp);
2214	u32 val;
2215
2216	val = READ_ONCE(tp->notsent_lowat);
2217
2218	return val ?: READ_ONCE(net->ipv4.sysctl_tcp_notsent_lowat);
2219}
2220
2221bool tcp_stream_memory_free(const struct sock *sk, int wake);
2222
2223#ifdef CONFIG_PROC_FS
2224int tcp4_proc_init(void);
2225void tcp4_proc_exit(void);
2226#endif
2227
2228int tcp_rtx_synack(const struct sock *sk, struct request_sock *req);
2229int tcp_conn_request(struct request_sock_ops *rsk_ops,
2230		     const struct tcp_request_sock_ops *af_ops,
2231		     struct sock *sk, struct sk_buff *skb);
2232
2233/* TCP af-specific functions */
2234struct tcp_sock_af_ops {
2235#ifdef CONFIG_TCP_MD5SIG
2236	struct tcp_md5sig_key	*(*md5_lookup) (const struct sock *sk,
2237						const struct sock *addr_sk);
2238	int		(*calc_md5_hash)(char *location,
2239					 const struct tcp_md5sig_key *md5,
2240					 const struct sock *sk,
2241					 const struct sk_buff *skb);
2242	int		(*md5_parse)(struct sock *sk,
2243				     int optname,
2244				     sockptr_t optval,
2245				     int optlen);
2246#endif
2247#ifdef CONFIG_TCP_AO
2248	int (*ao_parse)(struct sock *sk, int optname, sockptr_t optval, int optlen);
2249	struct tcp_ao_key *(*ao_lookup)(const struct sock *sk,
2250					struct sock *addr_sk,
2251					int sndid, int rcvid);
2252	int (*ao_calc_key_sk)(struct tcp_ao_key *mkt, u8 *key,
2253			      const struct sock *sk,
2254			      __be32 sisn, __be32 disn, bool send);
2255	int (*calc_ao_hash)(char *location, struct tcp_ao_key *ao,
2256			    const struct sock *sk, const struct sk_buff *skb,
2257			    const u8 *tkey, int hash_offset, u32 sne);
2258#endif
2259};
2260
2261struct tcp_request_sock_ops {
2262	u16 mss_clamp;
2263#ifdef CONFIG_TCP_MD5SIG
2264	struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk,
2265						 const struct sock *addr_sk);
2266	int		(*calc_md5_hash) (char *location,
2267					  const struct tcp_md5sig_key *md5,
2268					  const struct sock *sk,
2269					  const struct sk_buff *skb);
2270#endif
2271#ifdef CONFIG_TCP_AO
2272	struct tcp_ao_key *(*ao_lookup)(const struct sock *sk,
2273					struct request_sock *req,
2274					int sndid, int rcvid);
2275	int (*ao_calc_key)(struct tcp_ao_key *mkt, u8 *key, struct request_sock *sk);
2276	int (*ao_synack_hash)(char *ao_hash, struct tcp_ao_key *mkt,
2277			      struct request_sock *req, const struct sk_buff *skb,
2278			      int hash_offset, u32 sne);
2279#endif
2280#ifdef CONFIG_SYN_COOKIES
2281	__u32 (*cookie_init_seq)(const struct sk_buff *skb,
2282				 __u16 *mss);
2283#endif
2284	struct dst_entry *(*route_req)(const struct sock *sk,
2285				       struct sk_buff *skb,
2286				       struct flowi *fl,
2287				       struct request_sock *req);
2288	u32 (*init_seq)(const struct sk_buff *skb);
2289	u32 (*init_ts_off)(const struct net *net, const struct sk_buff *skb);
2290	int (*send_synack)(const struct sock *sk, struct dst_entry *dst,
2291			   struct flowi *fl, struct request_sock *req,
2292			   struct tcp_fastopen_cookie *foc,
2293			   enum tcp_synack_type synack_type,
2294			   struct sk_buff *syn_skb);
2295};
2296
2297extern const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops;
2298#if IS_ENABLED(CONFIG_IPV6)
2299extern const struct tcp_request_sock_ops tcp_request_sock_ipv6_ops;
2300#endif
2301
2302#ifdef CONFIG_SYN_COOKIES
2303static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2304					 const struct sock *sk, struct sk_buff *skb,
2305					 __u16 *mss)
2306{
2307	tcp_synq_overflow(sk);
2308	__NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT);
2309	return ops->cookie_init_seq(skb, mss);
2310}
2311#else
2312static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2313					 const struct sock *sk, struct sk_buff *skb,
2314					 __u16 *mss)
2315{
2316	return 0;
2317}
2318#endif
2319
2320struct tcp_key {
2321	union {
2322		struct {
2323			struct tcp_ao_key *ao_key;
2324			char *traffic_key;
2325			u32 sne;
2326			u8 rcv_next;
2327		};
2328		struct tcp_md5sig_key *md5_key;
2329	};
2330	enum {
2331		TCP_KEY_NONE = 0,
2332		TCP_KEY_MD5,
2333		TCP_KEY_AO,
2334	} type;
2335};
2336
2337static inline void tcp_get_current_key(const struct sock *sk,
2338				       struct tcp_key *out)
2339{
2340#if defined(CONFIG_TCP_AO) || defined(CONFIG_TCP_MD5SIG)
2341	const struct tcp_sock *tp = tcp_sk(sk);
2342#endif
2343
2344#ifdef CONFIG_TCP_AO
2345	if (static_branch_unlikely(&tcp_ao_needed.key)) {
2346		struct tcp_ao_info *ao;
2347
2348		ao = rcu_dereference_protected(tp->ao_info,
2349					       lockdep_sock_is_held(sk));
2350		if (ao) {
2351			out->ao_key = READ_ONCE(ao->current_key);
2352			out->type = TCP_KEY_AO;
2353			return;
2354		}
2355	}
2356#endif
2357#ifdef CONFIG_TCP_MD5SIG
2358	if (static_branch_unlikely(&tcp_md5_needed.key) &&
2359	    rcu_access_pointer(tp->md5sig_info)) {
2360		out->md5_key = tp->af_specific->md5_lookup(sk, sk);
2361		if (out->md5_key) {
2362			out->type = TCP_KEY_MD5;
2363			return;
2364		}
2365	}
2366#endif
2367	out->type = TCP_KEY_NONE;
2368}
2369
2370static inline bool tcp_key_is_md5(const struct tcp_key *key)
2371{
2372#ifdef CONFIG_TCP_MD5SIG
2373	if (static_branch_unlikely(&tcp_md5_needed.key) &&
2374	    key->type == TCP_KEY_MD5)
2375		return true;
2376#endif
2377	return false;
2378}
2379
2380static inline bool tcp_key_is_ao(const struct tcp_key *key)
2381{
2382#ifdef CONFIG_TCP_AO
2383	if (static_branch_unlikely(&tcp_ao_needed.key) &&
2384	    key->type == TCP_KEY_AO)
2385		return true;
2386#endif
2387	return false;
2388}
2389
2390int tcpv4_offload_init(void);
2391
2392void tcp_v4_init(void);
2393void tcp_init(void);
2394
2395/* tcp_recovery.c */
2396void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb);
2397void tcp_newreno_mark_lost(struct sock *sk, bool snd_una_advanced);
2398extern s32 tcp_rack_skb_timeout(struct tcp_sock *tp, struct sk_buff *skb,
2399				u32 reo_wnd);
2400extern bool tcp_rack_mark_lost(struct sock *sk);
2401extern void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq,
2402			     u64 xmit_time);
2403extern void tcp_rack_reo_timeout(struct sock *sk);
2404extern void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs);
2405
2406/* tcp_plb.c */
2407
2408/*
2409 * Scaling factor for fractions in PLB. For example, tcp_plb_update_state
2410 * expects cong_ratio which represents fraction of traffic that experienced
2411 * congestion over a single RTT. In order to avoid floating point operations,
2412 * this fraction should be mapped to (1 << TCP_PLB_SCALE) and passed in.
2413 */
2414#define TCP_PLB_SCALE 8
2415
2416/* State for PLB (Protective Load Balancing) for a single TCP connection. */
2417struct tcp_plb_state {
2418	u8	consec_cong_rounds:5, /* consecutive congested rounds */
2419		unused:3;
2420	u32	pause_until; /* jiffies32 when PLB can resume rerouting */
2421};
2422
2423static inline void tcp_plb_init(const struct sock *sk,
2424				struct tcp_plb_state *plb)
2425{
2426	plb->consec_cong_rounds = 0;
2427	plb->pause_until = 0;
2428}
2429void tcp_plb_update_state(const struct sock *sk, struct tcp_plb_state *plb,
2430			  const int cong_ratio);
2431void tcp_plb_check_rehash(struct sock *sk, struct tcp_plb_state *plb);
2432void tcp_plb_update_state_upon_rto(struct sock *sk, struct tcp_plb_state *plb);
2433
2434/* At how many usecs into the future should the RTO fire? */
2435static inline s64 tcp_rto_delta_us(const struct sock *sk)
2436{
2437	const struct sk_buff *skb = tcp_rtx_queue_head(sk);
2438	u32 rto = inet_csk(sk)->icsk_rto;
2439	u64 rto_time_stamp_us = tcp_skb_timestamp_us(skb) + jiffies_to_usecs(rto);
2440
2441	return rto_time_stamp_us - tcp_sk(sk)->tcp_mstamp;
2442}
2443
2444/*
2445 * Save and compile IPv4 options, return a pointer to it
2446 */
2447static inline struct ip_options_rcu *tcp_v4_save_options(struct net *net,
2448							 struct sk_buff *skb)
2449{
2450	const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
2451	struct ip_options_rcu *dopt = NULL;
2452
2453	if (opt->optlen) {
2454		int opt_size = sizeof(*dopt) + opt->optlen;
2455
2456		dopt = kmalloc(opt_size, GFP_ATOMIC);
2457		if (dopt && __ip_options_echo(net, &dopt->opt, skb, opt)) {
2458			kfree(dopt);
2459			dopt = NULL;
2460		}
2461	}
2462	return dopt;
2463}
2464
2465/* locally generated TCP pure ACKs have skb->truesize == 2
2466 * (check tcp_send_ack() in net/ipv4/tcp_output.c )
2467 * This is much faster than dissecting the packet to find out.
2468 * (Think of GRE encapsulations, IPv4, IPv6, ...)
2469 */
2470static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb)
2471{
2472	return skb->truesize == 2;
2473}
2474
2475static inline void skb_set_tcp_pure_ack(struct sk_buff *skb)
2476{
2477	skb->truesize = 2;
2478}
2479
2480static inline int tcp_inq(struct sock *sk)
2481{
2482	struct tcp_sock *tp = tcp_sk(sk);
2483	int answ;
2484
2485	if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
2486		answ = 0;
2487	} else if (sock_flag(sk, SOCK_URGINLINE) ||
2488		   !tp->urg_data ||
2489		   before(tp->urg_seq, tp->copied_seq) ||
2490		   !before(tp->urg_seq, tp->rcv_nxt)) {
2491
2492		answ = tp->rcv_nxt - tp->copied_seq;
2493
2494		/* Subtract 1, if FIN was received */
2495		if (answ && sock_flag(sk, SOCK_DONE))
2496			answ--;
2497	} else {
2498		answ = tp->urg_seq - tp->copied_seq;
2499	}
2500
2501	return answ;
2502}
2503
2504int tcp_peek_len(struct socket *sock);
2505
2506static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb)
2507{
2508	u16 segs_in;
2509
2510	segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2511
2512	/* We update these fields while other threads might
2513	 * read them from tcp_get_info()
2514	 */
2515	WRITE_ONCE(tp->segs_in, tp->segs_in + segs_in);
2516	if (skb->len > tcp_hdrlen(skb))
2517		WRITE_ONCE(tp->data_segs_in, tp->data_segs_in + segs_in);
2518}
2519
2520/*
2521 * TCP listen path runs lockless.
2522 * We forced "struct sock" to be const qualified to make sure
2523 * we don't modify one of its field by mistake.
2524 * Here, we increment sk_drops which is an atomic_t, so we can safely
2525 * make sock writable again.
2526 */
2527static inline void tcp_listendrop(const struct sock *sk)
2528{
2529	atomic_inc(&((struct sock *)sk)->sk_drops);
2530	__NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS);
2531}
2532
2533enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer);
2534
2535/*
2536 * Interface for adding Upper Level Protocols over TCP
2537 */
2538
2539#define TCP_ULP_NAME_MAX	16
2540#define TCP_ULP_MAX		128
2541#define TCP_ULP_BUF_MAX		(TCP_ULP_NAME_MAX*TCP_ULP_MAX)
2542
2543struct tcp_ulp_ops {
2544	struct list_head	list;
2545
2546	/* initialize ulp */
2547	int (*init)(struct sock *sk);
2548	/* update ulp */
2549	void (*update)(struct sock *sk, struct proto *p,
2550		       void (*write_space)(struct sock *sk));
2551	/* cleanup ulp */
2552	void (*release)(struct sock *sk);
2553	/* diagnostic */
2554	int (*get_info)(struct sock *sk, struct sk_buff *skb);
2555	size_t (*get_info_size)(const struct sock *sk);
2556	/* clone ulp */
2557	void (*clone)(const struct request_sock *req, struct sock *newsk,
2558		      const gfp_t priority);
2559
2560	char		name[TCP_ULP_NAME_MAX];
2561	struct module	*owner;
2562};
2563int tcp_register_ulp(struct tcp_ulp_ops *type);
2564void tcp_unregister_ulp(struct tcp_ulp_ops *type);
2565int tcp_set_ulp(struct sock *sk, const char *name);
2566void tcp_get_available_ulp(char *buf, size_t len);
2567void tcp_cleanup_ulp(struct sock *sk);
2568void tcp_update_ulp(struct sock *sk, struct proto *p,
2569		    void (*write_space)(struct sock *sk));
2570
2571#define MODULE_ALIAS_TCP_ULP(name)				\
2572	__MODULE_INFO(alias, alias_userspace, name);		\
2573	__MODULE_INFO(alias, alias_tcp_ulp, "tcp-ulp-" name)
2574
2575#ifdef CONFIG_NET_SOCK_MSG
2576struct sk_msg;
2577struct sk_psock;
2578
2579#ifdef CONFIG_BPF_SYSCALL
2580int tcp_bpf_update_proto(struct sock *sk, struct sk_psock *psock, bool restore);
2581void tcp_bpf_clone(const struct sock *sk, struct sock *newsk);
2582#endif /* CONFIG_BPF_SYSCALL */
2583
2584#ifdef CONFIG_INET
2585void tcp_eat_skb(struct sock *sk, struct sk_buff *skb);
2586#else
2587static inline void tcp_eat_skb(struct sock *sk, struct sk_buff *skb)
2588{
2589}
2590#endif
2591
2592int tcp_bpf_sendmsg_redir(struct sock *sk, bool ingress,
2593			  struct sk_msg *msg, u32 bytes, int flags);
2594#endif /* CONFIG_NET_SOCK_MSG */
2595
2596#if !defined(CONFIG_BPF_SYSCALL) || !defined(CONFIG_NET_SOCK_MSG)
2597static inline void tcp_bpf_clone(const struct sock *sk, struct sock *newsk)
2598{
2599}
2600#endif
2601
2602#ifdef CONFIG_CGROUP_BPF
2603static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
2604				      struct sk_buff *skb,
2605				      unsigned int end_offset)
2606{
2607	skops->skb = skb;
2608	skops->skb_data_end = skb->data + end_offset;
2609}
2610#else
2611static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
2612				      struct sk_buff *skb,
2613				      unsigned int end_offset)
2614{
2615}
2616#endif
2617
2618/* Call BPF_SOCK_OPS program that returns an int. If the return value
2619 * is < 0, then the BPF op failed (for example if the loaded BPF
2620 * program does not support the chosen operation or there is no BPF
2621 * program loaded).
2622 */
2623#ifdef CONFIG_BPF
2624static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2625{
2626	struct bpf_sock_ops_kern sock_ops;
2627	int ret;
2628
2629	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
2630	if (sk_fullsock(sk)) {
2631		sock_ops.is_fullsock = 1;
2632		sock_owned_by_me(sk);
2633	}
2634
2635	sock_ops.sk = sk;
2636	sock_ops.op = op;
2637	if (nargs > 0)
2638		memcpy(sock_ops.args, args, nargs * sizeof(*args));
2639
2640	ret = BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
2641	if (ret == 0)
2642		ret = sock_ops.reply;
2643	else
2644		ret = -1;
2645	return ret;
2646}
2647
2648static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2649{
2650	u32 args[2] = {arg1, arg2};
2651
2652	return tcp_call_bpf(sk, op, 2, args);
2653}
2654
2655static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2656				    u32 arg3)
2657{
2658	u32 args[3] = {arg1, arg2, arg3};
2659
2660	return tcp_call_bpf(sk, op, 3, args);
2661}
2662
2663#else
2664static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2665{
2666	return -EPERM;
2667}
2668
2669static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2670{
2671	return -EPERM;
2672}
2673
2674static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2675				    u32 arg3)
2676{
2677	return -EPERM;
2678}
2679
2680#endif
2681
2682static inline u32 tcp_timeout_init(struct sock *sk)
2683{
2684	int timeout;
2685
2686	timeout = tcp_call_bpf(sk, BPF_SOCK_OPS_TIMEOUT_INIT, 0, NULL);
2687
2688	if (timeout <= 0)
2689		timeout = TCP_TIMEOUT_INIT;
2690	return min_t(int, timeout, TCP_RTO_MAX);
2691}
2692
2693static inline u32 tcp_rwnd_init_bpf(struct sock *sk)
2694{
2695	int rwnd;
2696
2697	rwnd = tcp_call_bpf(sk, BPF_SOCK_OPS_RWND_INIT, 0, NULL);
2698
2699	if (rwnd < 0)
2700		rwnd = 0;
2701	return rwnd;
2702}
2703
2704static inline bool tcp_bpf_ca_needs_ecn(struct sock *sk)
2705{
2706	return (tcp_call_bpf(sk, BPF_SOCK_OPS_NEEDS_ECN, 0, NULL) == 1);
2707}
2708
2709static inline void tcp_bpf_rtt(struct sock *sk)
2710{
2711	if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_RTT_CB_FLAG))
2712		tcp_call_bpf(sk, BPF_SOCK_OPS_RTT_CB, 0, NULL);
2713}
2714
2715#if IS_ENABLED(CONFIG_SMC)
2716extern struct static_key_false tcp_have_smc;
2717#endif
2718
2719#if IS_ENABLED(CONFIG_TLS_DEVICE)
2720void clean_acked_data_enable(struct inet_connection_sock *icsk,
2721			     void (*cad)(struct sock *sk, u32 ack_seq));
2722void clean_acked_data_disable(struct inet_connection_sock *icsk);
2723void clean_acked_data_flush(void);
2724#endif
2725
2726DECLARE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
2727static inline void tcp_add_tx_delay(struct sk_buff *skb,
2728				    const struct tcp_sock *tp)
2729{
2730	if (static_branch_unlikely(&tcp_tx_delay_enabled))
2731		skb->skb_mstamp_ns += (u64)tp->tcp_tx_delay * NSEC_PER_USEC;
2732}
2733
2734/* Compute Earliest Departure Time for some control packets
2735 * like ACK or RST for TIME_WAIT or non ESTABLISHED sockets.
2736 */
2737static inline u64 tcp_transmit_time(const struct sock *sk)
2738{
2739	if (static_branch_unlikely(&tcp_tx_delay_enabled)) {
2740		u32 delay = (sk->sk_state == TCP_TIME_WAIT) ?
2741			tcp_twsk(sk)->tw_tx_delay : tcp_sk(sk)->tcp_tx_delay;
2742
2743		return tcp_clock_ns() + (u64)delay * NSEC_PER_USEC;
2744	}
2745	return 0;
2746}
2747
2748static inline int tcp_parse_auth_options(const struct tcphdr *th,
2749		const u8 **md5_hash, const struct tcp_ao_hdr **aoh)
2750{
2751	const u8 *md5_tmp, *ao_tmp;
2752	int ret;
2753
2754	ret = tcp_do_parse_auth_options(th, &md5_tmp, &ao_tmp);
2755	if (ret)
2756		return ret;
2757
2758	if (md5_hash)
2759		*md5_hash = md5_tmp;
2760
2761	if (aoh) {
2762		if (!ao_tmp)
2763			*aoh = NULL;
2764		else
2765			*aoh = (struct tcp_ao_hdr *)(ao_tmp - 2);
2766	}
2767
2768	return 0;
2769}
2770
2771static inline bool tcp_ao_required(struct sock *sk, const void *saddr,
2772				   int family, int l3index, bool stat_inc)
2773{
2774#ifdef CONFIG_TCP_AO
2775	struct tcp_ao_info *ao_info;
2776	struct tcp_ao_key *ao_key;
2777
2778	if (!static_branch_unlikely(&tcp_ao_needed.key))
2779		return false;
2780
2781	ao_info = rcu_dereference_check(tcp_sk(sk)->ao_info,
2782					lockdep_sock_is_held(sk));
2783	if (!ao_info)
2784		return false;
2785
2786	ao_key = tcp_ao_do_lookup(sk, l3index, saddr, family, -1, -1);
2787	if (ao_info->ao_required || ao_key) {
2788		if (stat_inc) {
2789			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAOREQUIRED);
2790			atomic64_inc(&ao_info->counters.ao_required);
2791		}
2792		return true;
2793	}
2794#endif
2795	return false;
2796}
2797
2798/* Called with rcu_read_lock() */
2799static inline enum skb_drop_reason
2800tcp_inbound_hash(struct sock *sk, const struct request_sock *req,
2801		 const struct sk_buff *skb,
2802		 const void *saddr, const void *daddr,
2803		 int family, int dif, int sdif)
2804{
2805	const struct tcphdr *th = tcp_hdr(skb);
2806	const struct tcp_ao_hdr *aoh;
2807	const __u8 *md5_location;
2808	int l3index;
2809
2810	/* Invalid option or two times meet any of auth options */
2811	if (tcp_parse_auth_options(th, &md5_location, &aoh)) {
2812		tcp_hash_fail("TCP segment has incorrect auth options set",
2813			      family, skb, "");
2814		return SKB_DROP_REASON_TCP_AUTH_HDR;
2815	}
2816
2817	if (req) {
2818		if (tcp_rsk_used_ao(req) != !!aoh) {
2819			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAOBAD);
2820			tcp_hash_fail("TCP connection can't start/end using TCP-AO",
2821				      family, skb, "%s",
2822				      !aoh ? "missing AO" : "AO signed");
2823			return SKB_DROP_REASON_TCP_AOFAILURE;
2824		}
2825	}
2826
2827	/* sdif set, means packet ingressed via a device
2828	 * in an L3 domain and dif is set to the l3mdev
2829	 */
2830	l3index = sdif ? dif : 0;
2831
2832	/* Fast path: unsigned segments */
2833	if (likely(!md5_location && !aoh)) {
2834		/* Drop if there's TCP-MD5 or TCP-AO key with any rcvid/sndid
2835		 * for the remote peer. On TCP-AO established connection
2836		 * the last key is impossible to remove, so there's
2837		 * always at least one current_key.
2838		 */
2839		if (tcp_ao_required(sk, saddr, family, l3index, true)) {
2840			tcp_hash_fail("AO hash is required, but not found",
2841					family, skb, "L3 index %d", l3index);
2842			return SKB_DROP_REASON_TCP_AONOTFOUND;
2843		}
2844		if (unlikely(tcp_md5_do_lookup(sk, l3index, saddr, family))) {
2845			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
2846			tcp_hash_fail("MD5 Hash not found",
2847				      family, skb, "L3 index %d", l3index);
2848			return SKB_DROP_REASON_TCP_MD5NOTFOUND;
2849		}
2850		return SKB_NOT_DROPPED_YET;
2851	}
2852
2853	if (aoh)
2854		return tcp_inbound_ao_hash(sk, skb, family, req, l3index, aoh);
2855
2856	return tcp_inbound_md5_hash(sk, skb, saddr, daddr, family,
2857				    l3index, md5_location);
2858}
2859
2860#endif	/* _TCP_H */
2861