1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef __LINUX_UACCESS_H__
3#define __LINUX_UACCESS_H__
4
5#include <linux/fault-inject-usercopy.h>
6#include <linux/instrumented.h>
7#include <linux/minmax.h>
8#include <linux/sched.h>
9#include <linux/thread_info.h>
10
11#include <asm/uaccess.h>
12
13/*
14 * Architectures that support memory tagging (assigning tags to memory regions,
15 * embedding these tags into addresses that point to these memory regions, and
16 * checking that the memory and the pointer tags match on memory accesses)
17 * redefine this macro to strip tags from pointers.
18 *
19 * Passing down mm_struct allows to define untagging rules on per-process
20 * basis.
21 *
22 * It's defined as noop for architectures that don't support memory tagging.
23 */
24#ifndef untagged_addr
25#define untagged_addr(addr) (addr)
26#endif
27
28#ifndef untagged_addr_remote
29#define untagged_addr_remote(mm, addr)	({		\
30	mmap_assert_locked(mm);				\
31	untagged_addr(addr);				\
32})
33#endif
34
35/*
36 * Architectures should provide two primitives (raw_copy_{to,from}_user())
37 * and get rid of their private instances of copy_{to,from}_user() and
38 * __copy_{to,from}_user{,_inatomic}().
39 *
40 * raw_copy_{to,from}_user(to, from, size) should copy up to size bytes and
41 * return the amount left to copy.  They should assume that access_ok() has
42 * already been checked (and succeeded); they should *not* zero-pad anything.
43 * No KASAN or object size checks either - those belong here.
44 *
45 * Both of these functions should attempt to copy size bytes starting at from
46 * into the area starting at to.  They must not fetch or store anything
47 * outside of those areas.  Return value must be between 0 (everything
48 * copied successfully) and size (nothing copied).
49 *
50 * If raw_copy_{to,from}_user(to, from, size) returns N, size - N bytes starting
51 * at to must become equal to the bytes fetched from the corresponding area
52 * starting at from.  All data past to + size - N must be left unmodified.
53 *
54 * If copying succeeds, the return value must be 0.  If some data cannot be
55 * fetched, it is permitted to copy less than had been fetched; the only
56 * hard requirement is that not storing anything at all (i.e. returning size)
57 * should happen only when nothing could be copied.  In other words, you don't
58 * have to squeeze as much as possible - it is allowed, but not necessary.
59 *
60 * For raw_copy_from_user() to always points to kernel memory and no faults
61 * on store should happen.  Interpretation of from is affected by set_fs().
62 * For raw_copy_to_user() it's the other way round.
63 *
64 * Both can be inlined - it's up to architectures whether it wants to bother
65 * with that.  They should not be used directly; they are used to implement
66 * the 6 functions (copy_{to,from}_user(), __copy_{to,from}_user_inatomic())
67 * that are used instead.  Out of those, __... ones are inlined.  Plain
68 * copy_{to,from}_user() might or might not be inlined.  If you want them
69 * inlined, have asm/uaccess.h define INLINE_COPY_{TO,FROM}_USER.
70 *
71 * NOTE: only copy_from_user() zero-pads the destination in case of short copy.
72 * Neither __copy_from_user() nor __copy_from_user_inatomic() zero anything
73 * at all; their callers absolutely must check the return value.
74 *
75 * Biarch ones should also provide raw_copy_in_user() - similar to the above,
76 * but both source and destination are __user pointers (affected by set_fs()
77 * as usual) and both source and destination can trigger faults.
78 */
79
80static __always_inline __must_check unsigned long
81__copy_from_user_inatomic(void *to, const void __user *from, unsigned long n)
82{
83	unsigned long res;
84
85	instrument_copy_from_user_before(to, from, n);
86	check_object_size(to, n, false);
87	res = raw_copy_from_user(to, from, n);
88	instrument_copy_from_user_after(to, from, n, res);
89	return res;
90}
91
92static __always_inline __must_check unsigned long
93__copy_from_user(void *to, const void __user *from, unsigned long n)
94{
95	unsigned long res;
96
97	might_fault();
98	instrument_copy_from_user_before(to, from, n);
99	if (should_fail_usercopy())
100		return n;
101	check_object_size(to, n, false);
102	res = raw_copy_from_user(to, from, n);
103	instrument_copy_from_user_after(to, from, n, res);
104	return res;
105}
106
107/**
108 * __copy_to_user_inatomic: - Copy a block of data into user space, with less checking.
109 * @to:   Destination address, in user space.
110 * @from: Source address, in kernel space.
111 * @n:    Number of bytes to copy.
112 *
113 * Context: User context only.
114 *
115 * Copy data from kernel space to user space.  Caller must check
116 * the specified block with access_ok() before calling this function.
117 * The caller should also make sure he pins the user space address
118 * so that we don't result in page fault and sleep.
119 */
120static __always_inline __must_check unsigned long
121__copy_to_user_inatomic(void __user *to, const void *from, unsigned long n)
122{
123	if (should_fail_usercopy())
124		return n;
125	instrument_copy_to_user(to, from, n);
126	check_object_size(from, n, true);
127	return raw_copy_to_user(to, from, n);
128}
129
130static __always_inline __must_check unsigned long
131__copy_to_user(void __user *to, const void *from, unsigned long n)
132{
133	might_fault();
134	if (should_fail_usercopy())
135		return n;
136	instrument_copy_to_user(to, from, n);
137	check_object_size(from, n, true);
138	return raw_copy_to_user(to, from, n);
139}
140
141#ifdef INLINE_COPY_FROM_USER
142static inline __must_check unsigned long
143_copy_from_user(void *to, const void __user *from, unsigned long n)
144{
145	unsigned long res = n;
146	might_fault();
147	if (!should_fail_usercopy() && likely(access_ok(from, n))) {
148		instrument_copy_from_user_before(to, from, n);
149		res = raw_copy_from_user(to, from, n);
150		instrument_copy_from_user_after(to, from, n, res);
151	}
152	if (unlikely(res))
153		memset(to + (n - res), 0, res);
154	return res;
155}
156#else
157extern __must_check unsigned long
158_copy_from_user(void *, const void __user *, unsigned long);
159#endif
160
161#ifdef INLINE_COPY_TO_USER
162static inline __must_check unsigned long
163_copy_to_user(void __user *to, const void *from, unsigned long n)
164{
165	might_fault();
166	if (should_fail_usercopy())
167		return n;
168	if (access_ok(to, n)) {
169		instrument_copy_to_user(to, from, n);
170		n = raw_copy_to_user(to, from, n);
171	}
172	return n;
173}
174#else
175extern __must_check unsigned long
176_copy_to_user(void __user *, const void *, unsigned long);
177#endif
178
179static __always_inline unsigned long __must_check
180copy_from_user(void *to, const void __user *from, unsigned long n)
181{
182	if (check_copy_size(to, n, false))
183		n = _copy_from_user(to, from, n);
184	return n;
185}
186
187static __always_inline unsigned long __must_check
188copy_to_user(void __user *to, const void *from, unsigned long n)
189{
190	if (check_copy_size(from, n, true))
191		n = _copy_to_user(to, from, n);
192	return n;
193}
194
195#ifndef copy_mc_to_kernel
196/*
197 * Without arch opt-in this generic copy_mc_to_kernel() will not handle
198 * #MC (or arch equivalent) during source read.
199 */
200static inline unsigned long __must_check
201copy_mc_to_kernel(void *dst, const void *src, size_t cnt)
202{
203	memcpy(dst, src, cnt);
204	return 0;
205}
206#endif
207
208static __always_inline void pagefault_disabled_inc(void)
209{
210	current->pagefault_disabled++;
211}
212
213static __always_inline void pagefault_disabled_dec(void)
214{
215	current->pagefault_disabled--;
216}
217
218/*
219 * These routines enable/disable the pagefault handler. If disabled, it will
220 * not take any locks and go straight to the fixup table.
221 *
222 * User access methods will not sleep when called from a pagefault_disabled()
223 * environment.
224 */
225static inline void pagefault_disable(void)
226{
227	pagefault_disabled_inc();
228	/*
229	 * make sure to have issued the store before a pagefault
230	 * can hit.
231	 */
232	barrier();
233}
234
235static inline void pagefault_enable(void)
236{
237	/*
238	 * make sure to issue those last loads/stores before enabling
239	 * the pagefault handler again.
240	 */
241	barrier();
242	pagefault_disabled_dec();
243}
244
245/*
246 * Is the pagefault handler disabled? If so, user access methods will not sleep.
247 */
248static inline bool pagefault_disabled(void)
249{
250	return current->pagefault_disabled != 0;
251}
252
253/*
254 * The pagefault handler is in general disabled by pagefault_disable() or
255 * when in irq context (via in_atomic()).
256 *
257 * This function should only be used by the fault handlers. Other users should
258 * stick to pagefault_disabled().
259 * Please NEVER use preempt_disable() to disable the fault handler. With
260 * !CONFIG_PREEMPT_COUNT, this is like a NOP. So the handler won't be disabled.
261 * in_atomic() will report different values based on !CONFIG_PREEMPT_COUNT.
262 */
263#define faulthandler_disabled() (pagefault_disabled() || in_atomic())
264
265#ifndef CONFIG_ARCH_HAS_SUBPAGE_FAULTS
266
267/**
268 * probe_subpage_writeable: probe the user range for write faults at sub-page
269 *			    granularity (e.g. arm64 MTE)
270 * @uaddr: start of address range
271 * @size: size of address range
272 *
273 * Returns 0 on success, the number of bytes not probed on fault.
274 *
275 * It is expected that the caller checked for the write permission of each
276 * page in the range either by put_user() or GUP. The architecture port can
277 * implement a more efficient get_user() probing if the same sub-page faults
278 * are triggered by either a read or a write.
279 */
280static inline size_t probe_subpage_writeable(char __user *uaddr, size_t size)
281{
282	return 0;
283}
284
285#endif /* CONFIG_ARCH_HAS_SUBPAGE_FAULTS */
286
287#ifndef ARCH_HAS_NOCACHE_UACCESS
288
289static inline __must_check unsigned long
290__copy_from_user_inatomic_nocache(void *to, const void __user *from,
291				  unsigned long n)
292{
293	return __copy_from_user_inatomic(to, from, n);
294}
295
296#endif		/* ARCH_HAS_NOCACHE_UACCESS */
297
298extern __must_check int check_zeroed_user(const void __user *from, size_t size);
299
300/**
301 * copy_struct_from_user: copy a struct from userspace
302 * @dst:   Destination address, in kernel space. This buffer must be @ksize
303 *         bytes long.
304 * @ksize: Size of @dst struct.
305 * @src:   Source address, in userspace.
306 * @usize: (Alleged) size of @src struct.
307 *
308 * Copies a struct from userspace to kernel space, in a way that guarantees
309 * backwards-compatibility for struct syscall arguments (as long as future
310 * struct extensions are made such that all new fields are *appended* to the
311 * old struct, and zeroed-out new fields have the same meaning as the old
312 * struct).
313 *
314 * @ksize is just sizeof(*dst), and @usize should've been passed by userspace.
315 * The recommended usage is something like the following:
316 *
317 *   SYSCALL_DEFINE2(foobar, const struct foo __user *, uarg, size_t, usize)
318 *   {
319 *      int err;
320 *      struct foo karg = {};
321 *
322 *      if (usize > PAGE_SIZE)
323 *        return -E2BIG;
324 *      if (usize < FOO_SIZE_VER0)
325 *        return -EINVAL;
326 *
327 *      err = copy_struct_from_user(&karg, sizeof(karg), uarg, usize);
328 *      if (err)
329 *        return err;
330 *
331 *      // ...
332 *   }
333 *
334 * There are three cases to consider:
335 *  * If @usize == @ksize, then it's copied verbatim.
336 *  * If @usize < @ksize, then the userspace has passed an old struct to a
337 *    newer kernel. The rest of the trailing bytes in @dst (@ksize - @usize)
338 *    are to be zero-filled.
339 *  * If @usize > @ksize, then the userspace has passed a new struct to an
340 *    older kernel. The trailing bytes unknown to the kernel (@usize - @ksize)
341 *    are checked to ensure they are zeroed, otherwise -E2BIG is returned.
342 *
343 * Returns (in all cases, some data may have been copied):
344 *  * -E2BIG:  (@usize > @ksize) and there are non-zero trailing bytes in @src.
345 *  * -EFAULT: access to userspace failed.
346 */
347static __always_inline __must_check int
348copy_struct_from_user(void *dst, size_t ksize, const void __user *src,
349		      size_t usize)
350{
351	size_t size = min(ksize, usize);
352	size_t rest = max(ksize, usize) - size;
353
354	/* Double check if ksize is larger than a known object size. */
355	if (WARN_ON_ONCE(ksize > __builtin_object_size(dst, 1)))
356		return -E2BIG;
357
358	/* Deal with trailing bytes. */
359	if (usize < ksize) {
360		memset(dst + size, 0, rest);
361	} else if (usize > ksize) {
362		int ret = check_zeroed_user(src + size, rest);
363		if (ret <= 0)
364			return ret ?: -E2BIG;
365	}
366	/* Copy the interoperable parts of the struct. */
367	if (copy_from_user(dst, src, size))
368		return -EFAULT;
369	return 0;
370}
371
372bool copy_from_kernel_nofault_allowed(const void *unsafe_src, size_t size);
373
374long copy_from_kernel_nofault(void *dst, const void *src, size_t size);
375long notrace copy_to_kernel_nofault(void *dst, const void *src, size_t size);
376
377long copy_from_user_nofault(void *dst, const void __user *src, size_t size);
378long notrace copy_to_user_nofault(void __user *dst, const void *src,
379		size_t size);
380
381long strncpy_from_kernel_nofault(char *dst, const void *unsafe_addr,
382		long count);
383
384long strncpy_from_user_nofault(char *dst, const void __user *unsafe_addr,
385		long count);
386long strnlen_user_nofault(const void __user *unsafe_addr, long count);
387
388#ifndef __get_kernel_nofault
389#define __get_kernel_nofault(dst, src, type, label)	\
390do {							\
391	type __user *p = (type __force __user *)(src);	\
392	type data;					\
393	if (__get_user(data, p))			\
394		goto label;				\
395	*(type *)dst = data;				\
396} while (0)
397
398#define __put_kernel_nofault(dst, src, type, label)	\
399do {							\
400	type __user *p = (type __force __user *)(dst);	\
401	type data = *(type *)src;			\
402	if (__put_user(data, p))			\
403		goto label;				\
404} while (0)
405#endif
406
407/**
408 * get_kernel_nofault(): safely attempt to read from a location
409 * @val: read into this variable
410 * @ptr: address to read from
411 *
412 * Returns 0 on success, or -EFAULT.
413 */
414#define get_kernel_nofault(val, ptr) ({				\
415	const typeof(val) *__gk_ptr = (ptr);			\
416	copy_from_kernel_nofault(&(val), __gk_ptr, sizeof(val));\
417})
418
419#ifndef user_access_begin
420#define user_access_begin(ptr,len) access_ok(ptr, len)
421#define user_access_end() do { } while (0)
422#define unsafe_op_wrap(op, err) do { if (unlikely(op)) goto err; } while (0)
423#define unsafe_get_user(x,p,e) unsafe_op_wrap(__get_user(x,p),e)
424#define unsafe_put_user(x,p,e) unsafe_op_wrap(__put_user(x,p),e)
425#define unsafe_copy_to_user(d,s,l,e) unsafe_op_wrap(__copy_to_user(d,s,l),e)
426#define unsafe_copy_from_user(d,s,l,e) unsafe_op_wrap(__copy_from_user(d,s,l),e)
427static inline unsigned long user_access_save(void) { return 0UL; }
428static inline void user_access_restore(unsigned long flags) { }
429#endif
430#ifndef user_write_access_begin
431#define user_write_access_begin user_access_begin
432#define user_write_access_end user_access_end
433#endif
434#ifndef user_read_access_begin
435#define user_read_access_begin user_access_begin
436#define user_read_access_end user_access_end
437#endif
438
439#ifdef CONFIG_HARDENED_USERCOPY
440void __noreturn usercopy_abort(const char *name, const char *detail,
441			       bool to_user, unsigned long offset,
442			       unsigned long len);
443#endif
444
445#endif		/* __LINUX_UACCESS_H__ */
446