1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef BLK_MQ_H
3#define BLK_MQ_H
4
5#include <linux/blkdev.h>
6#include <linux/sbitmap.h>
7#include <linux/lockdep.h>
8#include <linux/scatterlist.h>
9#include <linux/prefetch.h>
10#include <linux/srcu.h>
11#include <linux/rw_hint.h>
12
13struct blk_mq_tags;
14struct blk_flush_queue;
15
16#define BLKDEV_MIN_RQ	4
17#define BLKDEV_DEFAULT_RQ	128
18
19enum rq_end_io_ret {
20	RQ_END_IO_NONE,
21	RQ_END_IO_FREE,
22};
23
24typedef enum rq_end_io_ret (rq_end_io_fn)(struct request *, blk_status_t);
25
26/*
27 * request flags */
28typedef __u32 __bitwise req_flags_t;
29
30/* drive already may have started this one */
31#define RQF_STARTED		((__force req_flags_t)(1 << 1))
32/* request for flush sequence */
33#define RQF_FLUSH_SEQ		((__force req_flags_t)(1 << 4))
34/* merge of different types, fail separately */
35#define RQF_MIXED_MERGE		((__force req_flags_t)(1 << 5))
36/* don't call prep for this one */
37#define RQF_DONTPREP		((__force req_flags_t)(1 << 7))
38/* use hctx->sched_tags */
39#define RQF_SCHED_TAGS		((__force req_flags_t)(1 << 8))
40/* use an I/O scheduler for this request */
41#define RQF_USE_SCHED		((__force req_flags_t)(1 << 9))
42/* vaguely specified driver internal error.  Ignored by the block layer */
43#define RQF_FAILED		((__force req_flags_t)(1 << 10))
44/* don't warn about errors */
45#define RQF_QUIET		((__force req_flags_t)(1 << 11))
46/* account into disk and partition IO statistics */
47#define RQF_IO_STAT		((__force req_flags_t)(1 << 13))
48/* runtime pm request */
49#define RQF_PM			((__force req_flags_t)(1 << 15))
50/* on IO scheduler merge hash */
51#define RQF_HASHED		((__force req_flags_t)(1 << 16))
52/* track IO completion time */
53#define RQF_STATS		((__force req_flags_t)(1 << 17))
54/* Look at ->special_vec for the actual data payload instead of the
55   bio chain. */
56#define RQF_SPECIAL_PAYLOAD	((__force req_flags_t)(1 << 18))
57/* The per-zone write lock is held for this request */
58#define RQF_ZONE_WRITE_LOCKED	((__force req_flags_t)(1 << 19))
59/* ->timeout has been called, don't expire again */
60#define RQF_TIMED_OUT		((__force req_flags_t)(1 << 21))
61#define RQF_RESV		((__force req_flags_t)(1 << 23))
62
63/* flags that prevent us from merging requests: */
64#define RQF_NOMERGE_FLAGS \
65	(RQF_STARTED | RQF_FLUSH_SEQ | RQF_SPECIAL_PAYLOAD)
66
67enum mq_rq_state {
68	MQ_RQ_IDLE		= 0,
69	MQ_RQ_IN_FLIGHT		= 1,
70	MQ_RQ_COMPLETE		= 2,
71};
72
73/*
74 * Try to put the fields that are referenced together in the same cacheline.
75 *
76 * If you modify this structure, make sure to update blk_rq_init() and
77 * especially blk_mq_rq_ctx_init() to take care of the added fields.
78 */
79struct request {
80	struct request_queue *q;
81	struct blk_mq_ctx *mq_ctx;
82	struct blk_mq_hw_ctx *mq_hctx;
83
84	blk_opf_t cmd_flags;		/* op and common flags */
85	req_flags_t rq_flags;
86
87	int tag;
88	int internal_tag;
89
90	unsigned int timeout;
91
92	/* the following two fields are internal, NEVER access directly */
93	unsigned int __data_len;	/* total data len */
94	sector_t __sector;		/* sector cursor */
95
96	struct bio *bio;
97	struct bio *biotail;
98
99	union {
100		struct list_head queuelist;
101		struct request *rq_next;
102	};
103
104	struct block_device *part;
105#ifdef CONFIG_BLK_RQ_ALLOC_TIME
106	/* Time that the first bio started allocating this request. */
107	u64 alloc_time_ns;
108#endif
109	/* Time that this request was allocated for this IO. */
110	u64 start_time_ns;
111	/* Time that I/O was submitted to the device. */
112	u64 io_start_time_ns;
113
114#ifdef CONFIG_BLK_WBT
115	unsigned short wbt_flags;
116#endif
117	/*
118	 * rq sectors used for blk stats. It has the same value
119	 * with blk_rq_sectors(rq), except that it never be zeroed
120	 * by completion.
121	 */
122	unsigned short stats_sectors;
123
124	/*
125	 * Number of scatter-gather DMA addr+len pairs after
126	 * physical address coalescing is performed.
127	 */
128	unsigned short nr_phys_segments;
129
130#ifdef CONFIG_BLK_DEV_INTEGRITY
131	unsigned short nr_integrity_segments;
132#endif
133
134#ifdef CONFIG_BLK_INLINE_ENCRYPTION
135	struct bio_crypt_ctx *crypt_ctx;
136	struct blk_crypto_keyslot *crypt_keyslot;
137#endif
138
139	enum rw_hint write_hint;
140	unsigned short ioprio;
141
142	enum mq_rq_state state;
143	atomic_t ref;
144
145	unsigned long deadline;
146
147	/*
148	 * The hash is used inside the scheduler, and killed once the
149	 * request reaches the dispatch list. The ipi_list is only used
150	 * to queue the request for softirq completion, which is long
151	 * after the request has been unhashed (and even removed from
152	 * the dispatch list).
153	 */
154	union {
155		struct hlist_node hash;	/* merge hash */
156		struct llist_node ipi_list;
157	};
158
159	/*
160	 * The rb_node is only used inside the io scheduler, requests
161	 * are pruned when moved to the dispatch queue. special_vec must
162	 * only be used if RQF_SPECIAL_PAYLOAD is set, and those cannot be
163	 * insert into an IO scheduler.
164	 */
165	union {
166		struct rb_node rb_node;	/* sort/lookup */
167		struct bio_vec special_vec;
168	};
169
170	/*
171	 * Three pointers are available for the IO schedulers, if they need
172	 * more they have to dynamically allocate it.
173	 */
174	struct {
175		struct io_cq		*icq;
176		void			*priv[2];
177	} elv;
178
179	struct {
180		unsigned int		seq;
181		rq_end_io_fn		*saved_end_io;
182	} flush;
183
184	u64 fifo_time;
185
186	/*
187	 * completion callback.
188	 */
189	rq_end_io_fn *end_io;
190	void *end_io_data;
191};
192
193static inline enum req_op req_op(const struct request *req)
194{
195	return req->cmd_flags & REQ_OP_MASK;
196}
197
198static inline bool blk_rq_is_passthrough(struct request *rq)
199{
200	return blk_op_is_passthrough(rq->cmd_flags);
201}
202
203static inline unsigned short req_get_ioprio(struct request *req)
204{
205	return req->ioprio;
206}
207
208#define rq_data_dir(rq)		(op_is_write(req_op(rq)) ? WRITE : READ)
209
210#define rq_dma_dir(rq) \
211	(op_is_write(req_op(rq)) ? DMA_TO_DEVICE : DMA_FROM_DEVICE)
212
213#define rq_list_add(listptr, rq)	do {		\
214	(rq)->rq_next = *(listptr);			\
215	*(listptr) = rq;				\
216} while (0)
217
218#define rq_list_add_tail(lastpptr, rq)	do {		\
219	(rq)->rq_next = NULL;				\
220	**(lastpptr) = rq;				\
221	*(lastpptr) = &rq->rq_next;			\
222} while (0)
223
224#define rq_list_pop(listptr)				\
225({							\
226	struct request *__req = NULL;			\
227	if ((listptr) && *(listptr))	{		\
228		__req = *(listptr);			\
229		*(listptr) = __req->rq_next;		\
230	}						\
231	__req;						\
232})
233
234#define rq_list_peek(listptr)				\
235({							\
236	struct request *__req = NULL;			\
237	if ((listptr) && *(listptr))			\
238		__req = *(listptr);			\
239	__req;						\
240})
241
242#define rq_list_for_each(listptr, pos)			\
243	for (pos = rq_list_peek((listptr)); pos; pos = rq_list_next(pos))
244
245#define rq_list_for_each_safe(listptr, pos, nxt)			\
246	for (pos = rq_list_peek((listptr)), nxt = rq_list_next(pos);	\
247		pos; pos = nxt, nxt = pos ? rq_list_next(pos) : NULL)
248
249#define rq_list_next(rq)	(rq)->rq_next
250#define rq_list_empty(list)	((list) == (struct request *) NULL)
251
252/**
253 * rq_list_move() - move a struct request from one list to another
254 * @src: The source list @rq is currently in
255 * @dst: The destination list that @rq will be appended to
256 * @rq: The request to move
257 * @prev: The request preceding @rq in @src (NULL if @rq is the head)
258 */
259static inline void rq_list_move(struct request **src, struct request **dst,
260				struct request *rq, struct request *prev)
261{
262	if (prev)
263		prev->rq_next = rq->rq_next;
264	else
265		*src = rq->rq_next;
266	rq_list_add(dst, rq);
267}
268
269/**
270 * enum blk_eh_timer_return - How the timeout handler should proceed
271 * @BLK_EH_DONE: The block driver completed the command or will complete it at
272 *	a later time.
273 * @BLK_EH_RESET_TIMER: Reset the request timer and continue waiting for the
274 *	request to complete.
275 */
276enum blk_eh_timer_return {
277	BLK_EH_DONE,
278	BLK_EH_RESET_TIMER,
279};
280
281#define BLK_TAG_ALLOC_FIFO 0 /* allocate starting from 0 */
282#define BLK_TAG_ALLOC_RR 1 /* allocate starting from last allocated tag */
283
284/**
285 * struct blk_mq_hw_ctx - State for a hardware queue facing the hardware
286 * block device
287 */
288struct blk_mq_hw_ctx {
289	struct {
290		/** @lock: Protects the dispatch list. */
291		spinlock_t		lock;
292		/**
293		 * @dispatch: Used for requests that are ready to be
294		 * dispatched to the hardware but for some reason (e.g. lack of
295		 * resources) could not be sent to the hardware. As soon as the
296		 * driver can send new requests, requests at this list will
297		 * be sent first for a fairer dispatch.
298		 */
299		struct list_head	dispatch;
300		 /**
301		  * @state: BLK_MQ_S_* flags. Defines the state of the hw
302		  * queue (active, scheduled to restart, stopped).
303		  */
304		unsigned long		state;
305	} ____cacheline_aligned_in_smp;
306
307	/**
308	 * @run_work: Used for scheduling a hardware queue run at a later time.
309	 */
310	struct delayed_work	run_work;
311	/** @cpumask: Map of available CPUs where this hctx can run. */
312	cpumask_var_t		cpumask;
313	/**
314	 * @next_cpu: Used by blk_mq_hctx_next_cpu() for round-robin CPU
315	 * selection from @cpumask.
316	 */
317	int			next_cpu;
318	/**
319	 * @next_cpu_batch: Counter of how many works left in the batch before
320	 * changing to the next CPU.
321	 */
322	int			next_cpu_batch;
323
324	/** @flags: BLK_MQ_F_* flags. Defines the behaviour of the queue. */
325	unsigned long		flags;
326
327	/**
328	 * @sched_data: Pointer owned by the IO scheduler attached to a request
329	 * queue. It's up to the IO scheduler how to use this pointer.
330	 */
331	void			*sched_data;
332	/**
333	 * @queue: Pointer to the request queue that owns this hardware context.
334	 */
335	struct request_queue	*queue;
336	/** @fq: Queue of requests that need to perform a flush operation. */
337	struct blk_flush_queue	*fq;
338
339	/**
340	 * @driver_data: Pointer to data owned by the block driver that created
341	 * this hctx
342	 */
343	void			*driver_data;
344
345	/**
346	 * @ctx_map: Bitmap for each software queue. If bit is on, there is a
347	 * pending request in that software queue.
348	 */
349	struct sbitmap		ctx_map;
350
351	/**
352	 * @dispatch_from: Software queue to be used when no scheduler was
353	 * selected.
354	 */
355	struct blk_mq_ctx	*dispatch_from;
356	/**
357	 * @dispatch_busy: Number used by blk_mq_update_dispatch_busy() to
358	 * decide if the hw_queue is busy using Exponential Weighted Moving
359	 * Average algorithm.
360	 */
361	unsigned int		dispatch_busy;
362
363	/** @type: HCTX_TYPE_* flags. Type of hardware queue. */
364	unsigned short		type;
365	/** @nr_ctx: Number of software queues. */
366	unsigned short		nr_ctx;
367	/** @ctxs: Array of software queues. */
368	struct blk_mq_ctx	**ctxs;
369
370	/** @dispatch_wait_lock: Lock for dispatch_wait queue. */
371	spinlock_t		dispatch_wait_lock;
372	/**
373	 * @dispatch_wait: Waitqueue to put requests when there is no tag
374	 * available at the moment, to wait for another try in the future.
375	 */
376	wait_queue_entry_t	dispatch_wait;
377
378	/**
379	 * @wait_index: Index of next available dispatch_wait queue to insert
380	 * requests.
381	 */
382	atomic_t		wait_index;
383
384	/**
385	 * @tags: Tags owned by the block driver. A tag at this set is only
386	 * assigned when a request is dispatched from a hardware queue.
387	 */
388	struct blk_mq_tags	*tags;
389	/**
390	 * @sched_tags: Tags owned by I/O scheduler. If there is an I/O
391	 * scheduler associated with a request queue, a tag is assigned when
392	 * that request is allocated. Else, this member is not used.
393	 */
394	struct blk_mq_tags	*sched_tags;
395
396	/** @numa_node: NUMA node the storage adapter has been connected to. */
397	unsigned int		numa_node;
398	/** @queue_num: Index of this hardware queue. */
399	unsigned int		queue_num;
400
401	/**
402	 * @nr_active: Number of active requests. Only used when a tag set is
403	 * shared across request queues.
404	 */
405	atomic_t		nr_active;
406
407	/** @cpuhp_online: List to store request if CPU is going to die */
408	struct hlist_node	cpuhp_online;
409	/** @cpuhp_dead: List to store request if some CPU die. */
410	struct hlist_node	cpuhp_dead;
411	/** @kobj: Kernel object for sysfs. */
412	struct kobject		kobj;
413
414#ifdef CONFIG_BLK_DEBUG_FS
415	/**
416	 * @debugfs_dir: debugfs directory for this hardware queue. Named
417	 * as cpu<cpu_number>.
418	 */
419	struct dentry		*debugfs_dir;
420	/** @sched_debugfs_dir:	debugfs directory for the scheduler. */
421	struct dentry		*sched_debugfs_dir;
422#endif
423
424	/**
425	 * @hctx_list: if this hctx is not in use, this is an entry in
426	 * q->unused_hctx_list.
427	 */
428	struct list_head	hctx_list;
429};
430
431/**
432 * struct blk_mq_queue_map - Map software queues to hardware queues
433 * @mq_map:       CPU ID to hardware queue index map. This is an array
434 *	with nr_cpu_ids elements. Each element has a value in the range
435 *	[@queue_offset, @queue_offset + @nr_queues).
436 * @nr_queues:    Number of hardware queues to map CPU IDs onto.
437 * @queue_offset: First hardware queue to map onto. Used by the PCIe NVMe
438 *	driver to map each hardware queue type (enum hctx_type) onto a distinct
439 *	set of hardware queues.
440 */
441struct blk_mq_queue_map {
442	unsigned int *mq_map;
443	unsigned int nr_queues;
444	unsigned int queue_offset;
445};
446
447/**
448 * enum hctx_type - Type of hardware queue
449 * @HCTX_TYPE_DEFAULT:	All I/O not otherwise accounted for.
450 * @HCTX_TYPE_READ:	Just for READ I/O.
451 * @HCTX_TYPE_POLL:	Polled I/O of any kind.
452 * @HCTX_MAX_TYPES:	Number of types of hctx.
453 */
454enum hctx_type {
455	HCTX_TYPE_DEFAULT,
456	HCTX_TYPE_READ,
457	HCTX_TYPE_POLL,
458
459	HCTX_MAX_TYPES,
460};
461
462/**
463 * struct blk_mq_tag_set - tag set that can be shared between request queues
464 * @ops:	   Pointers to functions that implement block driver behavior.
465 * @map:	   One or more ctx -> hctx mappings. One map exists for each
466 *		   hardware queue type (enum hctx_type) that the driver wishes
467 *		   to support. There are no restrictions on maps being of the
468 *		   same size, and it's perfectly legal to share maps between
469 *		   types.
470 * @nr_maps:	   Number of elements in the @map array. A number in the range
471 *		   [1, HCTX_MAX_TYPES].
472 * @nr_hw_queues:  Number of hardware queues supported by the block driver that
473 *		   owns this data structure.
474 * @queue_depth:   Number of tags per hardware queue, reserved tags included.
475 * @reserved_tags: Number of tags to set aside for BLK_MQ_REQ_RESERVED tag
476 *		   allocations.
477 * @cmd_size:	   Number of additional bytes to allocate per request. The block
478 *		   driver owns these additional bytes.
479 * @numa_node:	   NUMA node the storage adapter has been connected to.
480 * @timeout:	   Request processing timeout in jiffies.
481 * @flags:	   Zero or more BLK_MQ_F_* flags.
482 * @driver_data:   Pointer to data owned by the block driver that created this
483 *		   tag set.
484 * @tags:	   Tag sets. One tag set per hardware queue. Has @nr_hw_queues
485 *		   elements.
486 * @shared_tags:
487 *		   Shared set of tags. Has @nr_hw_queues elements. If set,
488 *		   shared by all @tags.
489 * @tag_list_lock: Serializes tag_list accesses.
490 * @tag_list:	   List of the request queues that use this tag set. See also
491 *		   request_queue.tag_set_list.
492 * @srcu:	   Use as lock when type of the request queue is blocking
493 *		   (BLK_MQ_F_BLOCKING).
494 */
495struct blk_mq_tag_set {
496	const struct blk_mq_ops	*ops;
497	struct blk_mq_queue_map	map[HCTX_MAX_TYPES];
498	unsigned int		nr_maps;
499	unsigned int		nr_hw_queues;
500	unsigned int		queue_depth;
501	unsigned int		reserved_tags;
502	unsigned int		cmd_size;
503	int			numa_node;
504	unsigned int		timeout;
505	unsigned int		flags;
506	void			*driver_data;
507
508	struct blk_mq_tags	**tags;
509
510	struct blk_mq_tags	*shared_tags;
511
512	struct mutex		tag_list_lock;
513	struct list_head	tag_list;
514	struct srcu_struct	*srcu;
515};
516
517/**
518 * struct blk_mq_queue_data - Data about a request inserted in a queue
519 *
520 * @rq:   Request pointer.
521 * @last: If it is the last request in the queue.
522 */
523struct blk_mq_queue_data {
524	struct request *rq;
525	bool last;
526};
527
528typedef bool (busy_tag_iter_fn)(struct request *, void *);
529
530/**
531 * struct blk_mq_ops - Callback functions that implements block driver
532 * behaviour.
533 */
534struct blk_mq_ops {
535	/**
536	 * @queue_rq: Queue a new request from block IO.
537	 */
538	blk_status_t (*queue_rq)(struct blk_mq_hw_ctx *,
539				 const struct blk_mq_queue_data *);
540
541	/**
542	 * @commit_rqs: If a driver uses bd->last to judge when to submit
543	 * requests to hardware, it must define this function. In case of errors
544	 * that make us stop issuing further requests, this hook serves the
545	 * purpose of kicking the hardware (which the last request otherwise
546	 * would have done).
547	 */
548	void (*commit_rqs)(struct blk_mq_hw_ctx *);
549
550	/**
551	 * @queue_rqs: Queue a list of new requests. Driver is guaranteed
552	 * that each request belongs to the same queue. If the driver doesn't
553	 * empty the @rqlist completely, then the rest will be queued
554	 * individually by the block layer upon return.
555	 */
556	void (*queue_rqs)(struct request **rqlist);
557
558	/**
559	 * @get_budget: Reserve budget before queue request, once .queue_rq is
560	 * run, it is driver's responsibility to release the
561	 * reserved budget. Also we have to handle failure case
562	 * of .get_budget for avoiding I/O deadlock.
563	 */
564	int (*get_budget)(struct request_queue *);
565
566	/**
567	 * @put_budget: Release the reserved budget.
568	 */
569	void (*put_budget)(struct request_queue *, int);
570
571	/**
572	 * @set_rq_budget_token: store rq's budget token
573	 */
574	void (*set_rq_budget_token)(struct request *, int);
575	/**
576	 * @get_rq_budget_token: retrieve rq's budget token
577	 */
578	int (*get_rq_budget_token)(struct request *);
579
580	/**
581	 * @timeout: Called on request timeout.
582	 */
583	enum blk_eh_timer_return (*timeout)(struct request *);
584
585	/**
586	 * @poll: Called to poll for completion of a specific tag.
587	 */
588	int (*poll)(struct blk_mq_hw_ctx *, struct io_comp_batch *);
589
590	/**
591	 * @complete: Mark the request as complete.
592	 */
593	void (*complete)(struct request *);
594
595	/**
596	 * @init_hctx: Called when the block layer side of a hardware queue has
597	 * been set up, allowing the driver to allocate/init matching
598	 * structures.
599	 */
600	int (*init_hctx)(struct blk_mq_hw_ctx *, void *, unsigned int);
601	/**
602	 * @exit_hctx: Ditto for exit/teardown.
603	 */
604	void (*exit_hctx)(struct blk_mq_hw_ctx *, unsigned int);
605
606	/**
607	 * @init_request: Called for every command allocated by the block layer
608	 * to allow the driver to set up driver specific data.
609	 *
610	 * Tag greater than or equal to queue_depth is for setting up
611	 * flush request.
612	 */
613	int (*init_request)(struct blk_mq_tag_set *set, struct request *,
614			    unsigned int, unsigned int);
615	/**
616	 * @exit_request: Ditto for exit/teardown.
617	 */
618	void (*exit_request)(struct blk_mq_tag_set *set, struct request *,
619			     unsigned int);
620
621	/**
622	 * @cleanup_rq: Called before freeing one request which isn't completed
623	 * yet, and usually for freeing the driver private data.
624	 */
625	void (*cleanup_rq)(struct request *);
626
627	/**
628	 * @busy: If set, returns whether or not this queue currently is busy.
629	 */
630	bool (*busy)(struct request_queue *);
631
632	/**
633	 * @map_queues: This allows drivers specify their own queue mapping by
634	 * overriding the setup-time function that builds the mq_map.
635	 */
636	void (*map_queues)(struct blk_mq_tag_set *set);
637
638#ifdef CONFIG_BLK_DEBUG_FS
639	/**
640	 * @show_rq: Used by the debugfs implementation to show driver-specific
641	 * information about a request.
642	 */
643	void (*show_rq)(struct seq_file *m, struct request *rq);
644#endif
645};
646
647enum {
648	BLK_MQ_F_SHOULD_MERGE	= 1 << 0,
649	BLK_MQ_F_TAG_QUEUE_SHARED = 1 << 1,
650	/*
651	 * Set when this device requires underlying blk-mq device for
652	 * completing IO:
653	 */
654	BLK_MQ_F_STACKING	= 1 << 2,
655	BLK_MQ_F_TAG_HCTX_SHARED = 1 << 3,
656	BLK_MQ_F_BLOCKING	= 1 << 5,
657	/* Do not allow an I/O scheduler to be configured. */
658	BLK_MQ_F_NO_SCHED	= 1 << 6,
659	/*
660	 * Select 'none' during queue registration in case of a single hwq
661	 * or shared hwqs instead of 'mq-deadline'.
662	 */
663	BLK_MQ_F_NO_SCHED_BY_DEFAULT	= 1 << 7,
664	BLK_MQ_F_ALLOC_POLICY_START_BIT = 8,
665	BLK_MQ_F_ALLOC_POLICY_BITS = 1,
666
667	BLK_MQ_S_STOPPED	= 0,
668	BLK_MQ_S_TAG_ACTIVE	= 1,
669	BLK_MQ_S_SCHED_RESTART	= 2,
670
671	/* hw queue is inactive after all its CPUs become offline */
672	BLK_MQ_S_INACTIVE	= 3,
673
674	BLK_MQ_MAX_DEPTH	= 10240,
675
676	BLK_MQ_CPU_WORK_BATCH	= 8,
677};
678#define BLK_MQ_FLAG_TO_ALLOC_POLICY(flags) \
679	((flags >> BLK_MQ_F_ALLOC_POLICY_START_BIT) & \
680		((1 << BLK_MQ_F_ALLOC_POLICY_BITS) - 1))
681#define BLK_ALLOC_POLICY_TO_MQ_FLAG(policy) \
682	((policy & ((1 << BLK_MQ_F_ALLOC_POLICY_BITS) - 1)) \
683		<< BLK_MQ_F_ALLOC_POLICY_START_BIT)
684
685#define BLK_MQ_NO_HCTX_IDX	(-1U)
686
687struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set,
688		struct queue_limits *lim, void *queuedata,
689		struct lock_class_key *lkclass);
690#define blk_mq_alloc_disk(set, lim, queuedata)				\
691({									\
692	static struct lock_class_key __key;				\
693									\
694	__blk_mq_alloc_disk(set, lim, queuedata, &__key);		\
695})
696struct gendisk *blk_mq_alloc_disk_for_queue(struct request_queue *q,
697		struct lock_class_key *lkclass);
698struct request_queue *blk_mq_alloc_queue(struct blk_mq_tag_set *set,
699		struct queue_limits *lim, void *queuedata);
700int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
701		struct request_queue *q);
702void blk_mq_destroy_queue(struct request_queue *);
703
704int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set);
705int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
706		const struct blk_mq_ops *ops, unsigned int queue_depth,
707		unsigned int set_flags);
708void blk_mq_free_tag_set(struct blk_mq_tag_set *set);
709
710void blk_mq_free_request(struct request *rq);
711int blk_rq_poll(struct request *rq, struct io_comp_batch *iob,
712		unsigned int poll_flags);
713
714bool blk_mq_queue_inflight(struct request_queue *q);
715
716enum {
717	/* return when out of requests */
718	BLK_MQ_REQ_NOWAIT	= (__force blk_mq_req_flags_t)(1 << 0),
719	/* allocate from reserved pool */
720	BLK_MQ_REQ_RESERVED	= (__force blk_mq_req_flags_t)(1 << 1),
721	/* set RQF_PM */
722	BLK_MQ_REQ_PM		= (__force blk_mq_req_flags_t)(1 << 2),
723};
724
725struct request *blk_mq_alloc_request(struct request_queue *q, blk_opf_t opf,
726		blk_mq_req_flags_t flags);
727struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
728		blk_opf_t opf, blk_mq_req_flags_t flags,
729		unsigned int hctx_idx);
730
731/*
732 * Tag address space map.
733 */
734struct blk_mq_tags {
735	unsigned int nr_tags;
736	unsigned int nr_reserved_tags;
737	unsigned int active_queues;
738
739	struct sbitmap_queue bitmap_tags;
740	struct sbitmap_queue breserved_tags;
741
742	struct request **rqs;
743	struct request **static_rqs;
744	struct list_head page_list;
745
746	/*
747	 * used to clear request reference in rqs[] before freeing one
748	 * request pool
749	 */
750	spinlock_t lock;
751};
752
753static inline struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags,
754					       unsigned int tag)
755{
756	if (tag < tags->nr_tags) {
757		prefetch(tags->rqs[tag]);
758		return tags->rqs[tag];
759	}
760
761	return NULL;
762}
763
764enum {
765	BLK_MQ_UNIQUE_TAG_BITS = 16,
766	BLK_MQ_UNIQUE_TAG_MASK = (1 << BLK_MQ_UNIQUE_TAG_BITS) - 1,
767};
768
769u32 blk_mq_unique_tag(struct request *rq);
770
771static inline u16 blk_mq_unique_tag_to_hwq(u32 unique_tag)
772{
773	return unique_tag >> BLK_MQ_UNIQUE_TAG_BITS;
774}
775
776static inline u16 blk_mq_unique_tag_to_tag(u32 unique_tag)
777{
778	return unique_tag & BLK_MQ_UNIQUE_TAG_MASK;
779}
780
781/**
782 * blk_mq_rq_state() - read the current MQ_RQ_* state of a request
783 * @rq: target request.
784 */
785static inline enum mq_rq_state blk_mq_rq_state(struct request *rq)
786{
787	return READ_ONCE(rq->state);
788}
789
790static inline int blk_mq_request_started(struct request *rq)
791{
792	return blk_mq_rq_state(rq) != MQ_RQ_IDLE;
793}
794
795static inline int blk_mq_request_completed(struct request *rq)
796{
797	return blk_mq_rq_state(rq) == MQ_RQ_COMPLETE;
798}
799
800/*
801 *
802 * Set the state to complete when completing a request from inside ->queue_rq.
803 * This is used by drivers that want to ensure special complete actions that
804 * need access to the request are called on failure, e.g. by nvme for
805 * multipathing.
806 */
807static inline void blk_mq_set_request_complete(struct request *rq)
808{
809	WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
810}
811
812/*
813 * Complete the request directly instead of deferring it to softirq or
814 * completing it another CPU. Useful in preemptible instead of an interrupt.
815 */
816static inline void blk_mq_complete_request_direct(struct request *rq,
817		   void (*complete)(struct request *rq))
818{
819	WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
820	complete(rq);
821}
822
823void blk_mq_start_request(struct request *rq);
824void blk_mq_end_request(struct request *rq, blk_status_t error);
825void __blk_mq_end_request(struct request *rq, blk_status_t error);
826void blk_mq_end_request_batch(struct io_comp_batch *ib);
827
828/*
829 * Only need start/end time stamping if we have iostat or
830 * blk stats enabled, or using an IO scheduler.
831 */
832static inline bool blk_mq_need_time_stamp(struct request *rq)
833{
834	/*
835	 * passthrough io doesn't use iostat accounting, cgroup stats
836	 * and io scheduler functionalities.
837	 */
838	if (blk_rq_is_passthrough(rq))
839		return false;
840	return (rq->rq_flags & (RQF_IO_STAT | RQF_STATS | RQF_USE_SCHED));
841}
842
843static inline bool blk_mq_is_reserved_rq(struct request *rq)
844{
845	return rq->rq_flags & RQF_RESV;
846}
847
848/*
849 * Batched completions only work when there is no I/O error and no special
850 * ->end_io handler.
851 */
852static inline bool blk_mq_add_to_batch(struct request *req,
853				       struct io_comp_batch *iob, int ioerror,
854				       void (*complete)(struct io_comp_batch *))
855{
856	/*
857	 * blk_mq_end_request_batch() can't end request allocated from
858	 * sched tags
859	 */
860	if (!iob || (req->rq_flags & RQF_SCHED_TAGS) || ioerror ||
861			(req->end_io && !blk_rq_is_passthrough(req)))
862		return false;
863
864	if (!iob->complete)
865		iob->complete = complete;
866	else if (iob->complete != complete)
867		return false;
868	iob->need_ts |= blk_mq_need_time_stamp(req);
869	rq_list_add(&iob->req_list, req);
870	return true;
871}
872
873void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list);
874void blk_mq_kick_requeue_list(struct request_queue *q);
875void blk_mq_delay_kick_requeue_list(struct request_queue *q, unsigned long msecs);
876void blk_mq_complete_request(struct request *rq);
877bool blk_mq_complete_request_remote(struct request *rq);
878void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx);
879void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx);
880void blk_mq_stop_hw_queues(struct request_queue *q);
881void blk_mq_start_hw_queues(struct request_queue *q);
882void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async);
883void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async);
884void blk_mq_quiesce_queue(struct request_queue *q);
885void blk_mq_wait_quiesce_done(struct blk_mq_tag_set *set);
886void blk_mq_quiesce_tagset(struct blk_mq_tag_set *set);
887void blk_mq_unquiesce_tagset(struct blk_mq_tag_set *set);
888void blk_mq_unquiesce_queue(struct request_queue *q);
889void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs);
890void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async);
891void blk_mq_run_hw_queues(struct request_queue *q, bool async);
892void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs);
893void blk_mq_tagset_busy_iter(struct blk_mq_tag_set *tagset,
894		busy_tag_iter_fn *fn, void *priv);
895void blk_mq_tagset_wait_completed_request(struct blk_mq_tag_set *tagset);
896void blk_mq_freeze_queue(struct request_queue *q);
897void blk_mq_unfreeze_queue(struct request_queue *q);
898void blk_freeze_queue_start(struct request_queue *q);
899void blk_mq_freeze_queue_wait(struct request_queue *q);
900int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
901				     unsigned long timeout);
902
903void blk_mq_map_queues(struct blk_mq_queue_map *qmap);
904void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues);
905
906void blk_mq_quiesce_queue_nowait(struct request_queue *q);
907
908unsigned int blk_mq_rq_cpu(struct request *rq);
909
910bool __blk_should_fake_timeout(struct request_queue *q);
911static inline bool blk_should_fake_timeout(struct request_queue *q)
912{
913	if (IS_ENABLED(CONFIG_FAIL_IO_TIMEOUT) &&
914	    test_bit(QUEUE_FLAG_FAIL_IO, &q->queue_flags))
915		return __blk_should_fake_timeout(q);
916	return false;
917}
918
919/**
920 * blk_mq_rq_from_pdu - cast a PDU to a request
921 * @pdu: the PDU (Protocol Data Unit) to be casted
922 *
923 * Return: request
924 *
925 * Driver command data is immediately after the request. So subtract request
926 * size to get back to the original request.
927 */
928static inline struct request *blk_mq_rq_from_pdu(void *pdu)
929{
930	return pdu - sizeof(struct request);
931}
932
933/**
934 * blk_mq_rq_to_pdu - cast a request to a PDU
935 * @rq: the request to be casted
936 *
937 * Return: pointer to the PDU
938 *
939 * Driver command data is immediately after the request. So add request to get
940 * the PDU.
941 */
942static inline void *blk_mq_rq_to_pdu(struct request *rq)
943{
944	return rq + 1;
945}
946
947#define queue_for_each_hw_ctx(q, hctx, i)				\
948	xa_for_each(&(q)->hctx_table, (i), (hctx))
949
950#define hctx_for_each_ctx(hctx, ctx, i)					\
951	for ((i) = 0; (i) < (hctx)->nr_ctx &&				\
952	     ({ ctx = (hctx)->ctxs[(i)]; 1; }); (i)++)
953
954static inline void blk_mq_cleanup_rq(struct request *rq)
955{
956	if (rq->q->mq_ops->cleanup_rq)
957		rq->q->mq_ops->cleanup_rq(rq);
958}
959
960static inline void blk_rq_bio_prep(struct request *rq, struct bio *bio,
961		unsigned int nr_segs)
962{
963	rq->nr_phys_segments = nr_segs;
964	rq->__data_len = bio->bi_iter.bi_size;
965	rq->bio = rq->biotail = bio;
966	rq->ioprio = bio_prio(bio);
967}
968
969void blk_mq_hctx_set_fq_lock_class(struct blk_mq_hw_ctx *hctx,
970		struct lock_class_key *key);
971
972static inline bool rq_is_sync(struct request *rq)
973{
974	return op_is_sync(rq->cmd_flags);
975}
976
977void blk_rq_init(struct request_queue *q, struct request *rq);
978int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
979		struct bio_set *bs, gfp_t gfp_mask,
980		int (*bio_ctr)(struct bio *, struct bio *, void *), void *data);
981void blk_rq_unprep_clone(struct request *rq);
982blk_status_t blk_insert_cloned_request(struct request *rq);
983
984struct rq_map_data {
985	struct page **pages;
986	unsigned long offset;
987	unsigned short page_order;
988	unsigned short nr_entries;
989	bool null_mapped;
990	bool from_user;
991};
992
993int blk_rq_map_user(struct request_queue *, struct request *,
994		struct rq_map_data *, void __user *, unsigned long, gfp_t);
995int blk_rq_map_user_io(struct request *, struct rq_map_data *,
996		void __user *, unsigned long, gfp_t, bool, int, bool, int);
997int blk_rq_map_user_iov(struct request_queue *, struct request *,
998		struct rq_map_data *, const struct iov_iter *, gfp_t);
999int blk_rq_unmap_user(struct bio *);
1000int blk_rq_map_kern(struct request_queue *, struct request *, void *,
1001		unsigned int, gfp_t);
1002int blk_rq_append_bio(struct request *rq, struct bio *bio);
1003void blk_execute_rq_nowait(struct request *rq, bool at_head);
1004blk_status_t blk_execute_rq(struct request *rq, bool at_head);
1005bool blk_rq_is_poll(struct request *rq);
1006
1007struct req_iterator {
1008	struct bvec_iter iter;
1009	struct bio *bio;
1010};
1011
1012#define __rq_for_each_bio(_bio, rq)	\
1013	if ((rq->bio))			\
1014		for (_bio = (rq)->bio; _bio; _bio = _bio->bi_next)
1015
1016#define rq_for_each_segment(bvl, _rq, _iter)			\
1017	__rq_for_each_bio(_iter.bio, _rq)			\
1018		bio_for_each_segment(bvl, _iter.bio, _iter.iter)
1019
1020#define rq_for_each_bvec(bvl, _rq, _iter)			\
1021	__rq_for_each_bio(_iter.bio, _rq)			\
1022		bio_for_each_bvec(bvl, _iter.bio, _iter.iter)
1023
1024#define rq_iter_last(bvec, _iter)				\
1025		(_iter.bio->bi_next == NULL &&			\
1026		 bio_iter_last(bvec, _iter.iter))
1027
1028/*
1029 * blk_rq_pos()			: the current sector
1030 * blk_rq_bytes()		: bytes left in the entire request
1031 * blk_rq_cur_bytes()		: bytes left in the current segment
1032 * blk_rq_sectors()		: sectors left in the entire request
1033 * blk_rq_cur_sectors()		: sectors left in the current segment
1034 * blk_rq_stats_sectors()	: sectors of the entire request used for stats
1035 */
1036static inline sector_t blk_rq_pos(const struct request *rq)
1037{
1038	return rq->__sector;
1039}
1040
1041static inline unsigned int blk_rq_bytes(const struct request *rq)
1042{
1043	return rq->__data_len;
1044}
1045
1046static inline int blk_rq_cur_bytes(const struct request *rq)
1047{
1048	if (!rq->bio)
1049		return 0;
1050	if (!bio_has_data(rq->bio))	/* dataless requests such as discard */
1051		return rq->bio->bi_iter.bi_size;
1052	return bio_iovec(rq->bio).bv_len;
1053}
1054
1055static inline unsigned int blk_rq_sectors(const struct request *rq)
1056{
1057	return blk_rq_bytes(rq) >> SECTOR_SHIFT;
1058}
1059
1060static inline unsigned int blk_rq_cur_sectors(const struct request *rq)
1061{
1062	return blk_rq_cur_bytes(rq) >> SECTOR_SHIFT;
1063}
1064
1065static inline unsigned int blk_rq_stats_sectors(const struct request *rq)
1066{
1067	return rq->stats_sectors;
1068}
1069
1070/*
1071 * Some commands like WRITE SAME have a payload or data transfer size which
1072 * is different from the size of the request.  Any driver that supports such
1073 * commands using the RQF_SPECIAL_PAYLOAD flag needs to use this helper to
1074 * calculate the data transfer size.
1075 */
1076static inline unsigned int blk_rq_payload_bytes(struct request *rq)
1077{
1078	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1079		return rq->special_vec.bv_len;
1080	return blk_rq_bytes(rq);
1081}
1082
1083/*
1084 * Return the first full biovec in the request.  The caller needs to check that
1085 * there are any bvecs before calling this helper.
1086 */
1087static inline struct bio_vec req_bvec(struct request *rq)
1088{
1089	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1090		return rq->special_vec;
1091	return mp_bvec_iter_bvec(rq->bio->bi_io_vec, rq->bio->bi_iter);
1092}
1093
1094static inline unsigned int blk_rq_count_bios(struct request *rq)
1095{
1096	unsigned int nr_bios = 0;
1097	struct bio *bio;
1098
1099	__rq_for_each_bio(bio, rq)
1100		nr_bios++;
1101
1102	return nr_bios;
1103}
1104
1105void blk_steal_bios(struct bio_list *list, struct request *rq);
1106
1107/*
1108 * Request completion related functions.
1109 *
1110 * blk_update_request() completes given number of bytes and updates
1111 * the request without completing it.
1112 */
1113bool blk_update_request(struct request *rq, blk_status_t error,
1114			       unsigned int nr_bytes);
1115void blk_abort_request(struct request *);
1116
1117/*
1118 * Number of physical segments as sent to the device.
1119 *
1120 * Normally this is the number of discontiguous data segments sent by the
1121 * submitter.  But for data-less command like discard we might have no
1122 * actual data segments submitted, but the driver might have to add it's
1123 * own special payload.  In that case we still return 1 here so that this
1124 * special payload will be mapped.
1125 */
1126static inline unsigned short blk_rq_nr_phys_segments(struct request *rq)
1127{
1128	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1129		return 1;
1130	return rq->nr_phys_segments;
1131}
1132
1133/*
1134 * Number of discard segments (or ranges) the driver needs to fill in.
1135 * Each discard bio merged into a request is counted as one segment.
1136 */
1137static inline unsigned short blk_rq_nr_discard_segments(struct request *rq)
1138{
1139	return max_t(unsigned short, rq->nr_phys_segments, 1);
1140}
1141
1142int __blk_rq_map_sg(struct request_queue *q, struct request *rq,
1143		struct scatterlist *sglist, struct scatterlist **last_sg);
1144static inline int blk_rq_map_sg(struct request_queue *q, struct request *rq,
1145		struct scatterlist *sglist)
1146{
1147	struct scatterlist *last_sg = NULL;
1148
1149	return __blk_rq_map_sg(q, rq, sglist, &last_sg);
1150}
1151void blk_dump_rq_flags(struct request *, char *);
1152
1153#ifdef CONFIG_BLK_DEV_ZONED
1154static inline unsigned int blk_rq_zone_no(struct request *rq)
1155{
1156	return disk_zone_no(rq->q->disk, blk_rq_pos(rq));
1157}
1158
1159static inline unsigned int blk_rq_zone_is_seq(struct request *rq)
1160{
1161	return disk_zone_is_seq(rq->q->disk, blk_rq_pos(rq));
1162}
1163
1164/**
1165 * blk_rq_is_seq_zoned_write() - Check if @rq requires write serialization.
1166 * @rq: Request to examine.
1167 *
1168 * Note: REQ_OP_ZONE_APPEND requests do not require serialization.
1169 */
1170static inline bool blk_rq_is_seq_zoned_write(struct request *rq)
1171{
1172	return op_needs_zoned_write_locking(req_op(rq)) &&
1173		blk_rq_zone_is_seq(rq);
1174}
1175
1176bool blk_req_needs_zone_write_lock(struct request *rq);
1177bool blk_req_zone_write_trylock(struct request *rq);
1178void __blk_req_zone_write_lock(struct request *rq);
1179void __blk_req_zone_write_unlock(struct request *rq);
1180
1181static inline void blk_req_zone_write_lock(struct request *rq)
1182{
1183	if (blk_req_needs_zone_write_lock(rq))
1184		__blk_req_zone_write_lock(rq);
1185}
1186
1187static inline void blk_req_zone_write_unlock(struct request *rq)
1188{
1189	if (rq->rq_flags & RQF_ZONE_WRITE_LOCKED)
1190		__blk_req_zone_write_unlock(rq);
1191}
1192
1193static inline bool blk_req_zone_is_write_locked(struct request *rq)
1194{
1195	return rq->q->disk->seq_zones_wlock &&
1196		test_bit(blk_rq_zone_no(rq), rq->q->disk->seq_zones_wlock);
1197}
1198
1199static inline bool blk_req_can_dispatch_to_zone(struct request *rq)
1200{
1201	if (!blk_req_needs_zone_write_lock(rq))
1202		return true;
1203	return !blk_req_zone_is_write_locked(rq);
1204}
1205#else /* CONFIG_BLK_DEV_ZONED */
1206static inline bool blk_rq_is_seq_zoned_write(struct request *rq)
1207{
1208	return false;
1209}
1210
1211static inline bool blk_req_needs_zone_write_lock(struct request *rq)
1212{
1213	return false;
1214}
1215
1216static inline void blk_req_zone_write_lock(struct request *rq)
1217{
1218}
1219
1220static inline void blk_req_zone_write_unlock(struct request *rq)
1221{
1222}
1223static inline bool blk_req_zone_is_write_locked(struct request *rq)
1224{
1225	return false;
1226}
1227
1228static inline bool blk_req_can_dispatch_to_zone(struct request *rq)
1229{
1230	return true;
1231}
1232#endif /* CONFIG_BLK_DEV_ZONED */
1233
1234#endif /* BLK_MQ_H */
1235