1/*
2 * Copyright (c) 2013, Kenneth MacKay
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met:
8 *  * Redistributions of source code must retain the above copyright
9 *   notice, this list of conditions and the following disclaimer.
10 *  * Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
15 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
16 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
17 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
18 * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
19 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
20 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
24 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 */
26#ifndef _CRYPTO_ECC_H
27#define _CRYPTO_ECC_H
28
29#include <crypto/ecc_curve.h>
30#include <asm/unaligned.h>
31
32/* One digit is u64 qword. */
33#define ECC_CURVE_NIST_P192_DIGITS  3
34#define ECC_CURVE_NIST_P256_DIGITS  4
35#define ECC_CURVE_NIST_P384_DIGITS  6
36#define ECC_MAX_DIGITS              (512 / 64) /* due to ecrdsa */
37
38#define ECC_DIGITS_TO_BYTES_SHIFT 3
39
40#define ECC_MAX_BYTES (ECC_MAX_DIGITS << ECC_DIGITS_TO_BYTES_SHIFT)
41
42#define ECC_POINT_INIT(x, y, ndigits)	(struct ecc_point) { x, y, ndigits }
43
44/**
45 * ecc_swap_digits() - Copy ndigits from big endian array to native array
46 * @in:       Input array
47 * @out:      Output array
48 * @ndigits:  Number of digits to copy
49 */
50static inline void ecc_swap_digits(const void *in, u64 *out, unsigned int ndigits)
51{
52	const __be64 *src = (__force __be64 *)in;
53	int i;
54
55	for (i = 0; i < ndigits; i++)
56		out[i] = get_unaligned_be64(&src[ndigits - 1 - i]);
57}
58
59/**
60 * ecc_is_key_valid() - Validate a given ECDH private key
61 *
62 * @curve_id:		id representing the curve to use
63 * @ndigits:		curve's number of digits
64 * @private_key:	private key to be used for the given curve
65 * @private_key_len:	private key length
66 *
67 * Returns 0 if the key is acceptable, a negative value otherwise
68 */
69int ecc_is_key_valid(unsigned int curve_id, unsigned int ndigits,
70		     const u64 *private_key, unsigned int private_key_len);
71
72/**
73 * ecc_gen_privkey() -  Generates an ECC private key.
74 * The private key is a random integer in the range 0 < random < n, where n is a
75 * prime that is the order of the cyclic subgroup generated by the distinguished
76 * point G.
77 * @curve_id:		id representing the curve to use
78 * @ndigits:		curve number of digits
79 * @private_key:	buffer for storing the generated private key
80 *
81 * Returns 0 if the private key was generated successfully, a negative value
82 * if an error occurred.
83 */
84int ecc_gen_privkey(unsigned int curve_id, unsigned int ndigits, u64 *privkey);
85
86/**
87 * ecc_make_pub_key() - Compute an ECC public key
88 *
89 * @curve_id:		id representing the curve to use
90 * @ndigits:		curve's number of digits
91 * @private_key:	pregenerated private key for the given curve
92 * @public_key:		buffer for storing the generated public key
93 *
94 * Returns 0 if the public key was generated successfully, a negative value
95 * if an error occurred.
96 */
97int ecc_make_pub_key(const unsigned int curve_id, unsigned int ndigits,
98		     const u64 *private_key, u64 *public_key);
99
100/**
101 * crypto_ecdh_shared_secret() - Compute a shared secret
102 *
103 * @curve_id:		id representing the curve to use
104 * @ndigits:		curve's number of digits
105 * @private_key:	private key of part A
106 * @public_key:		public key of counterpart B
107 * @secret:		buffer for storing the calculated shared secret
108 *
109 * Note: It is recommended that you hash the result of crypto_ecdh_shared_secret
110 * before using it for symmetric encryption or HMAC.
111 *
112 * Returns 0 if the shared secret was generated successfully, a negative value
113 * if an error occurred.
114 */
115int crypto_ecdh_shared_secret(unsigned int curve_id, unsigned int ndigits,
116			      const u64 *private_key, const u64 *public_key,
117			      u64 *secret);
118
119/**
120 * ecc_is_pubkey_valid_partial() - Partial public key validation
121 *
122 * @curve:		elliptic curve domain parameters
123 * @pk:			public key as a point
124 *
125 * Valdiate public key according to SP800-56A section 5.6.2.3.4 ECC Partial
126 * Public-Key Validation Routine.
127 *
128 * Note: There is no check that the public key is in the correct elliptic curve
129 * subgroup.
130 *
131 * Return: 0 if validation is successful, -EINVAL if validation is failed.
132 */
133int ecc_is_pubkey_valid_partial(const struct ecc_curve *curve,
134				struct ecc_point *pk);
135
136/**
137 * ecc_is_pubkey_valid_full() - Full public key validation
138 *
139 * @curve:		elliptic curve domain parameters
140 * @pk:			public key as a point
141 *
142 * Valdiate public key according to SP800-56A section 5.6.2.3.3 ECC Full
143 * Public-Key Validation Routine.
144 *
145 * Return: 0 if validation is successful, -EINVAL if validation is failed.
146 */
147int ecc_is_pubkey_valid_full(const struct ecc_curve *curve,
148			     struct ecc_point *pk);
149
150/**
151 * vli_is_zero() - Determine is vli is zero
152 *
153 * @vli:		vli to check.
154 * @ndigits:		length of the @vli
155 */
156bool vli_is_zero(const u64 *vli, unsigned int ndigits);
157
158/**
159 * vli_cmp() - compare left and right vlis
160 *
161 * @left:		vli
162 * @right:		vli
163 * @ndigits:		length of both vlis
164 *
165 * Returns sign of @left - @right, i.e. -1 if @left < @right,
166 * 0 if @left == @right, 1 if @left > @right.
167 */
168int vli_cmp(const u64 *left, const u64 *right, unsigned int ndigits);
169
170/**
171 * vli_sub() - Subtracts right from left
172 *
173 * @result:		where to write result
174 * @left:		vli
175 * @right		vli
176 * @ndigits:		length of all vlis
177 *
178 * Note: can modify in-place.
179 *
180 * Return: carry bit.
181 */
182u64 vli_sub(u64 *result, const u64 *left, const u64 *right,
183	    unsigned int ndigits);
184
185/**
186 * vli_from_be64() - Load vli from big-endian u64 array
187 *
188 * @dest:		destination vli
189 * @src:		source array of u64 BE values
190 * @ndigits:		length of both vli and array
191 */
192void vli_from_be64(u64 *dest, const void *src, unsigned int ndigits);
193
194/**
195 * vli_from_le64() - Load vli from little-endian u64 array
196 *
197 * @dest:		destination vli
198 * @src:		source array of u64 LE values
199 * @ndigits:		length of both vli and array
200 */
201void vli_from_le64(u64 *dest, const void *src, unsigned int ndigits);
202
203/**
204 * vli_mod_inv() - Modular inversion
205 *
206 * @result:		where to write vli number
207 * @input:		vli value to operate on
208 * @mod:		modulus
209 * @ndigits:		length of all vlis
210 */
211void vli_mod_inv(u64 *result, const u64 *input, const u64 *mod,
212		 unsigned int ndigits);
213
214/**
215 * vli_mod_mult_slow() - Modular multiplication
216 *
217 * @result:		where to write result value
218 * @left:		vli number to multiply with @right
219 * @right:		vli number to multiply with @left
220 * @mod:		modulus
221 * @ndigits:		length of all vlis
222 *
223 * Note: Assumes that mod is big enough curve order.
224 */
225void vli_mod_mult_slow(u64 *result, const u64 *left, const u64 *right,
226		       const u64 *mod, unsigned int ndigits);
227
228/**
229 * vli_num_bits() - Counts the number of bits required for vli.
230 *
231 * @vli:		vli to check.
232 * @ndigits:		Length of the @vli
233 *
234 * Return: The number of bits required to represent @vli.
235 */
236unsigned int vli_num_bits(const u64 *vli, unsigned int ndigits);
237
238/**
239 * ecc_aloc_point() - Allocate ECC point.
240 *
241 * @ndigits:		Length of vlis in u64 qwords.
242 *
243 * Return: Pointer to the allocated point or NULL if allocation failed.
244 */
245struct ecc_point *ecc_alloc_point(unsigned int ndigits);
246
247/**
248 * ecc_free_point() - Free ECC point.
249 *
250 * @p:			The point to free.
251 */
252void ecc_free_point(struct ecc_point *p);
253
254/**
255 * ecc_point_is_zero() - Check if point is zero.
256 *
257 * @p:			Point to check for zero.
258 *
259 * Return: true if point is the point at infinity, false otherwise.
260 */
261bool ecc_point_is_zero(const struct ecc_point *point);
262
263/**
264 * ecc_point_mult_shamir() - Add two points multiplied by scalars
265 *
266 * @result:		resulting point
267 * @x:			scalar to multiply with @p
268 * @p:			point to multiply with @x
269 * @y:			scalar to multiply with @q
270 * @q:			point to multiply with @y
271 * @curve:		curve
272 *
273 * Returns result = x * p + x * q over the curve.
274 * This works faster than two multiplications and addition.
275 */
276void ecc_point_mult_shamir(const struct ecc_point *result,
277			   const u64 *x, const struct ecc_point *p,
278			   const u64 *y, const struct ecc_point *q,
279			   const struct ecc_curve *curve);
280
281#endif
282