1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2010, 2023 Red Hat, Inc.
4 * All Rights Reserved.
5 */
6#include "xfs.h"
7#include "xfs_shared.h"
8#include "xfs_format.h"
9#include "xfs_log_format.h"
10#include "xfs_trans_resv.h"
11#include "xfs_trans.h"
12#include "xfs_mount.h"
13#include "xfs_btree.h"
14#include "xfs_alloc_btree.h"
15#include "xfs_alloc.h"
16#include "xfs_discard.h"
17#include "xfs_error.h"
18#include "xfs_extent_busy.h"
19#include "xfs_trace.h"
20#include "xfs_log.h"
21#include "xfs_ag.h"
22#include "xfs_health.h"
23
24/*
25 * Notes on an efficient, low latency fstrim algorithm
26 *
27 * We need to walk the filesystem free space and issue discards on the free
28 * space that meet the search criteria (size and location). We cannot issue
29 * discards on extents that might be in use, or are so recently in use they are
30 * still marked as busy. To serialise against extent state changes whilst we are
31 * gathering extents to trim, we must hold the AGF lock to lock out other
32 * allocations and extent free operations that might change extent state.
33 *
34 * However, we cannot just hold the AGF for the entire AG free space walk whilst
35 * we issue discards on each free space that is found. Storage devices can have
36 * extremely slow discard implementations (e.g. ceph RBD) and so walking a
37 * couple of million free extents and issuing synchronous discards on each
38 * extent can take a *long* time. Whilst we are doing this walk, nothing else
39 * can access the AGF, and we can stall transactions and hence the log whilst
40 * modifications wait for the AGF lock to be released. This can lead hung tasks
41 * kicking the hung task timer and rebooting the system. This is bad.
42 *
43 * Hence we need to take a leaf from the bulkstat playbook. It takes the AGI
44 * lock, gathers a range of inode cluster buffers that are allocated, drops the
45 * AGI lock and then reads all the inode cluster buffers and processes them. It
46 * loops doing this, using a cursor to keep track of where it is up to in the AG
47 * for each iteration to restart the INOBT lookup from.
48 *
49 * We can't do this exactly with free space - once we drop the AGF lock, the
50 * state of the free extent is out of our control and we cannot run a discard
51 * safely on it in this situation. Unless, of course, we've marked the free
52 * extent as busy and undergoing a discard operation whilst we held the AGF
53 * locked.
54 *
55 * This is exactly how online discard works - free extents are marked busy when
56 * they are freed, and once the extent free has been committed to the journal,
57 * the busy extent record is marked as "undergoing discard" and the discard is
58 * then issued on the free extent. Once the discard completes, the busy extent
59 * record is removed and the extent is able to be allocated again.
60 *
61 * In the context of fstrim, if we find a free extent we need to discard, we
62 * don't have to discard it immediately. All we need to do it record that free
63 * extent as being busy and under discard, and all the allocation routines will
64 * now avoid trying to allocate it. Hence if we mark the extent as busy under
65 * the AGF lock, we can safely discard it without holding the AGF lock because
66 * nothing will attempt to allocate that free space until the discard completes.
67 *
68 * This also allows us to issue discards asynchronously like we do with online
69 * discard, and so for fast devices fstrim will run much faster as we can have
70 * multiple discard operations in flight at once, as well as pipeline the free
71 * extent search so that it overlaps in flight discard IO.
72 */
73
74struct workqueue_struct *xfs_discard_wq;
75
76static void
77xfs_discard_endio_work(
78	struct work_struct	*work)
79{
80	struct xfs_busy_extents	*extents =
81		container_of(work, struct xfs_busy_extents, endio_work);
82
83	xfs_extent_busy_clear(extents->mount, &extents->extent_list, false);
84	kfree(extents->owner);
85}
86
87/*
88 * Queue up the actual completion to a thread to avoid IRQ-safe locking for
89 * pagb_lock.
90 */
91static void
92xfs_discard_endio(
93	struct bio		*bio)
94{
95	struct xfs_busy_extents	*extents = bio->bi_private;
96
97	INIT_WORK(&extents->endio_work, xfs_discard_endio_work);
98	queue_work(xfs_discard_wq, &extents->endio_work);
99	bio_put(bio);
100}
101
102/*
103 * Walk the discard list and issue discards on all the busy extents in the
104 * list. We plug and chain the bios so that we only need a single completion
105 * call to clear all the busy extents once the discards are complete.
106 */
107int
108xfs_discard_extents(
109	struct xfs_mount	*mp,
110	struct xfs_busy_extents	*extents)
111{
112	struct xfs_extent_busy	*busyp;
113	struct bio		*bio = NULL;
114	struct blk_plug		plug;
115	int			error = 0;
116
117	blk_start_plug(&plug);
118	list_for_each_entry(busyp, &extents->extent_list, list) {
119		trace_xfs_discard_extent(mp, busyp->agno, busyp->bno,
120					 busyp->length);
121
122		error = __blkdev_issue_discard(mp->m_ddev_targp->bt_bdev,
123				XFS_AGB_TO_DADDR(mp, busyp->agno, busyp->bno),
124				XFS_FSB_TO_BB(mp, busyp->length),
125				GFP_KERNEL, &bio);
126		if (error && error != -EOPNOTSUPP) {
127			xfs_info(mp,
128	 "discard failed for extent [0x%llx,%u], error %d",
129				 (unsigned long long)busyp->bno,
130				 busyp->length,
131				 error);
132			break;
133		}
134	}
135
136	if (bio) {
137		bio->bi_private = extents;
138		bio->bi_end_io = xfs_discard_endio;
139		submit_bio(bio);
140	} else {
141		xfs_discard_endio_work(&extents->endio_work);
142	}
143	blk_finish_plug(&plug);
144
145	return error;
146}
147
148
149static int
150xfs_trim_gather_extents(
151	struct xfs_perag	*pag,
152	xfs_daddr_t		start,
153	xfs_daddr_t		end,
154	xfs_daddr_t		minlen,
155	struct xfs_alloc_rec_incore *tcur,
156	struct xfs_busy_extents	*extents,
157	uint64_t		*blocks_trimmed)
158{
159	struct xfs_mount	*mp = pag->pag_mount;
160	struct xfs_trans	*tp;
161	struct xfs_btree_cur	*cur;
162	struct xfs_buf		*agbp;
163	int			error;
164	int			i;
165	int			batch = 100;
166
167	/*
168	 * Force out the log.  This means any transactions that might have freed
169	 * space before we take the AGF buffer lock are now on disk, and the
170	 * volatile disk cache is flushed.
171	 */
172	xfs_log_force(mp, XFS_LOG_SYNC);
173
174	error = xfs_trans_alloc_empty(mp, &tp);
175	if (error)
176		return error;
177
178	error = xfs_alloc_read_agf(pag, tp, 0, &agbp);
179	if (error)
180		goto out_trans_cancel;
181
182	cur = xfs_cntbt_init_cursor(mp, tp, agbp, pag);
183
184	/*
185	 * Look up the extent length requested in the AGF and start with it.
186	 */
187	if (tcur->ar_startblock == NULLAGBLOCK)
188		error = xfs_alloc_lookup_ge(cur, 0, tcur->ar_blockcount, &i);
189	else
190		error = xfs_alloc_lookup_le(cur, tcur->ar_startblock,
191				tcur->ar_blockcount, &i);
192	if (error)
193		goto out_del_cursor;
194	if (i == 0) {
195		/* nothing of that length left in the AG, we are done */
196		tcur->ar_blockcount = 0;
197		goto out_del_cursor;
198	}
199
200	/*
201	 * Loop until we are done with all extents that are large
202	 * enough to be worth discarding or we hit batch limits.
203	 */
204	while (i) {
205		xfs_agblock_t	fbno;
206		xfs_extlen_t	flen;
207		xfs_daddr_t	dbno;
208		xfs_extlen_t	dlen;
209
210		error = xfs_alloc_get_rec(cur, &fbno, &flen, &i);
211		if (error)
212			break;
213		if (XFS_IS_CORRUPT(mp, i != 1)) {
214			xfs_btree_mark_sick(cur);
215			error = -EFSCORRUPTED;
216			break;
217		}
218
219		if (--batch <= 0) {
220			/*
221			 * Update the cursor to point at this extent so we
222			 * restart the next batch from this extent.
223			 */
224			tcur->ar_startblock = fbno;
225			tcur->ar_blockcount = flen;
226			break;
227		}
228
229		/*
230		 * use daddr format for all range/len calculations as that is
231		 * the format the range/len variables are supplied in by
232		 * userspace.
233		 */
234		dbno = XFS_AGB_TO_DADDR(mp, pag->pag_agno, fbno);
235		dlen = XFS_FSB_TO_BB(mp, flen);
236
237		/*
238		 * Too small?  Give up.
239		 */
240		if (dlen < minlen) {
241			trace_xfs_discard_toosmall(mp, pag->pag_agno, fbno, flen);
242			tcur->ar_blockcount = 0;
243			break;
244		}
245
246		/*
247		 * If the extent is entirely outside of the range we are
248		 * supposed to discard skip it.  Do not bother to trim
249		 * down partially overlapping ranges for now.
250		 */
251		if (dbno + dlen < start || dbno > end) {
252			trace_xfs_discard_exclude(mp, pag->pag_agno, fbno, flen);
253			goto next_extent;
254		}
255
256		/*
257		 * If any blocks in the range are still busy, skip the
258		 * discard and try again the next time.
259		 */
260		if (xfs_extent_busy_search(mp, pag, fbno, flen)) {
261			trace_xfs_discard_busy(mp, pag->pag_agno, fbno, flen);
262			goto next_extent;
263		}
264
265		xfs_extent_busy_insert_discard(pag, fbno, flen,
266				&extents->extent_list);
267		*blocks_trimmed += flen;
268next_extent:
269		error = xfs_btree_decrement(cur, 0, &i);
270		if (error)
271			break;
272
273		/*
274		 * If there's no more records in the tree, we are done. Set the
275		 * cursor block count to 0 to indicate to the caller that there
276		 * is no more extents to search.
277		 */
278		if (i == 0)
279			tcur->ar_blockcount = 0;
280	}
281
282	/*
283	 * If there was an error, release all the gathered busy extents because
284	 * we aren't going to issue a discard on them any more.
285	 */
286	if (error)
287		xfs_extent_busy_clear(mp, &extents->extent_list, false);
288out_del_cursor:
289	xfs_btree_del_cursor(cur, error);
290out_trans_cancel:
291	xfs_trans_cancel(tp);
292	return error;
293}
294
295static bool
296xfs_trim_should_stop(void)
297{
298	return fatal_signal_pending(current) || freezing(current);
299}
300
301/*
302 * Iterate the free list gathering extents and discarding them. We need a cursor
303 * for the repeated iteration of gather/discard loop, so use the longest extent
304 * we found in the last batch as the key to start the next.
305 */
306static int
307xfs_trim_extents(
308	struct xfs_perag	*pag,
309	xfs_daddr_t		start,
310	xfs_daddr_t		end,
311	xfs_daddr_t		minlen,
312	uint64_t		*blocks_trimmed)
313{
314	struct xfs_alloc_rec_incore tcur = {
315		.ar_blockcount = pag->pagf_longest,
316		.ar_startblock = NULLAGBLOCK,
317	};
318	int			error = 0;
319
320	do {
321		struct xfs_busy_extents	*extents;
322
323		extents = kzalloc(sizeof(*extents), GFP_KERNEL);
324		if (!extents) {
325			error = -ENOMEM;
326			break;
327		}
328
329		extents->mount = pag->pag_mount;
330		extents->owner = extents;
331		INIT_LIST_HEAD(&extents->extent_list);
332
333		error = xfs_trim_gather_extents(pag, start, end, minlen,
334				&tcur, extents, blocks_trimmed);
335		if (error) {
336			kfree(extents);
337			break;
338		}
339
340		/*
341		 * We hand the extent list to the discard function here so the
342		 * discarded extents can be removed from the busy extent list.
343		 * This allows the discards to run asynchronously with gathering
344		 * the next round of extents to discard.
345		 *
346		 * However, we must ensure that we do not reference the extent
347		 * list  after this function call, as it may have been freed by
348		 * the time control returns to us.
349		 */
350		error = xfs_discard_extents(pag->pag_mount, extents);
351		if (error)
352			break;
353
354		if (xfs_trim_should_stop())
355			break;
356
357	} while (tcur.ar_blockcount != 0);
358
359	return error;
360
361}
362
363/*
364 * trim a range of the filesystem.
365 *
366 * Note: the parameters passed from userspace are byte ranges into the
367 * filesystem which does not match to the format we use for filesystem block
368 * addressing. FSB addressing is sparse (AGNO|AGBNO), while the incoming format
369 * is a linear address range. Hence we need to use DADDR based conversions and
370 * comparisons for determining the correct offset and regions to trim.
371 */
372int
373xfs_ioc_trim(
374	struct xfs_mount		*mp,
375	struct fstrim_range __user	*urange)
376{
377	struct xfs_perag	*pag;
378	unsigned int		granularity =
379		bdev_discard_granularity(mp->m_ddev_targp->bt_bdev);
380	struct fstrim_range	range;
381	xfs_daddr_t		start, end, minlen;
382	xfs_agnumber_t		agno;
383	uint64_t		blocks_trimmed = 0;
384	int			error, last_error = 0;
385
386	if (!capable(CAP_SYS_ADMIN))
387		return -EPERM;
388	if (!bdev_max_discard_sectors(mp->m_ddev_targp->bt_bdev))
389		return -EOPNOTSUPP;
390
391	/*
392	 * We haven't recovered the log, so we cannot use our bnobt-guided
393	 * storage zapping commands.
394	 */
395	if (xfs_has_norecovery(mp))
396		return -EROFS;
397
398	if (copy_from_user(&range, urange, sizeof(range)))
399		return -EFAULT;
400
401	range.minlen = max_t(u64, granularity, range.minlen);
402	minlen = BTOBB(range.minlen);
403	/*
404	 * Truncating down the len isn't actually quite correct, but using
405	 * BBTOB would mean we trivially get overflows for values
406	 * of ULLONG_MAX or slightly lower.  And ULLONG_MAX is the default
407	 * used by the fstrim application.  In the end it really doesn't
408	 * matter as trimming blocks is an advisory interface.
409	 */
410	if (range.start >= XFS_FSB_TO_B(mp, mp->m_sb.sb_dblocks) ||
411	    range.minlen > XFS_FSB_TO_B(mp, mp->m_ag_max_usable) ||
412	    range.len < mp->m_sb.sb_blocksize)
413		return -EINVAL;
414
415	start = BTOBB(range.start);
416	end = start + BTOBBT(range.len) - 1;
417
418	if (end > XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks) - 1)
419		end = XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks) - 1;
420
421	agno = xfs_daddr_to_agno(mp, start);
422	for_each_perag_range(mp, agno, xfs_daddr_to_agno(mp, end), pag) {
423		error = xfs_trim_extents(pag, start, end, minlen,
424					  &blocks_trimmed);
425		if (error)
426			last_error = error;
427
428		if (xfs_trim_should_stop()) {
429			xfs_perag_rele(pag);
430			break;
431		}
432	}
433
434	if (last_error)
435		return last_error;
436
437	range.len = XFS_FSB_TO_B(mp, blocks_trimmed);
438	if (copy_to_user(urange, &range, sizeof(range)))
439		return -EFAULT;
440	return 0;
441}
442