1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Copyright (C) 2018-2023 Oracle.  All Rights Reserved.
4 * Author: Darrick J. Wong <djwong@kernel.org>
5 */
6#include "xfs.h"
7#include "xfs_fs.h"
8#include "xfs_shared.h"
9#include "xfs_format.h"
10#include "xfs_trans_resv.h"
11#include "xfs_mount.h"
12#include "xfs_defer.h"
13#include "xfs_btree.h"
14#include "xfs_btree_staging.h"
15#include "xfs_bit.h"
16#include "xfs_log_format.h"
17#include "xfs_trans.h"
18#include "xfs_sb.h"
19#include "xfs_inode.h"
20#include "xfs_alloc.h"
21#include "xfs_ialloc.h"
22#include "xfs_ialloc_btree.h"
23#include "xfs_icache.h"
24#include "xfs_rmap.h"
25#include "xfs_rmap_btree.h"
26#include "xfs_log.h"
27#include "xfs_trans_priv.h"
28#include "xfs_error.h"
29#include "xfs_health.h"
30#include "xfs_ag.h"
31#include "scrub/xfs_scrub.h"
32#include "scrub/scrub.h"
33#include "scrub/common.h"
34#include "scrub/btree.h"
35#include "scrub/trace.h"
36#include "scrub/repair.h"
37#include "scrub/bitmap.h"
38#include "scrub/agb_bitmap.h"
39#include "scrub/xfile.h"
40#include "scrub/xfarray.h"
41#include "scrub/newbt.h"
42#include "scrub/reap.h"
43
44/*
45 * Inode Btree Repair
46 * ==================
47 *
48 * A quick refresher of inode btrees on a v5 filesystem:
49 *
50 * - Inode records are read into memory in units of 'inode clusters'.  However
51 *   many inodes fit in a cluster buffer is the smallest number of inodes that
52 *   can be allocated or freed.  Clusters are never smaller than one fs block
53 *   though they can span multiple blocks.  The size (in fs blocks) is
54 *   computed with xfs_icluster_size_fsb().  The fs block alignment of a
55 *   cluster is computed with xfs_ialloc_cluster_alignment().
56 *
57 * - Each inode btree record can describe a single 'inode chunk'.  The chunk
58 *   size is defined to be 64 inodes.  If sparse inodes are enabled, every
59 *   inobt record must be aligned to the chunk size; if not, every record must
60 *   be aligned to the start of a cluster.  It is possible to construct an XFS
61 *   geometry where one inobt record maps to multiple inode clusters; it is
62 *   also possible to construct a geometry where multiple inobt records map to
63 *   different parts of one inode cluster.
64 *
65 * - If sparse inodes are not enabled, the smallest unit of allocation for
66 *   inode records is enough to contain one inode chunk's worth of inodes.
67 *
68 * - If sparse inodes are enabled, the holemask field will be active.  Each
69 *   bit of the holemask represents 4 potential inodes; if set, the
70 *   corresponding space does *not* contain inodes and must be left alone.
71 *   Clusters cannot be smaller than 4 inodes.  The smallest unit of allocation
72 *   of inode records is one inode cluster.
73 *
74 * So what's the rebuild algorithm?
75 *
76 * Iterate the reverse mapping records looking for OWN_INODES and OWN_INOBT
77 * records.  The OWN_INOBT records are the old inode btree blocks and will be
78 * cleared out after we've rebuilt the tree.  Each possible inode cluster
79 * within an OWN_INODES record will be read in; for each possible inobt record
80 * associated with that cluster, compute the freemask calculated from the
81 * i_mode data in the inode chunk.  For sparse inodes the holemask will be
82 * calculated by creating the properly aligned inobt record and punching out
83 * any chunk that's missing.  Inode allocations and frees grab the AGI first,
84 * so repair protects itself from concurrent access by locking the AGI.
85 *
86 * Once we've reconstructed all the inode records, we can create new inode
87 * btree roots and reload the btrees.  We rebuild both inode trees at the same
88 * time because they have the same rmap owner and it would be more complex to
89 * figure out if the other tree isn't in need of a rebuild and which OWN_INOBT
90 * blocks it owns.  We have all the data we need to build both, so dump
91 * everything and start over.
92 *
93 * We use the prefix 'xrep_ibt' because we rebuild both inode btrees at once.
94 */
95
96struct xrep_ibt {
97	/* Record under construction. */
98	struct xfs_inobt_rec_incore	rie;
99
100	/* new inobt information */
101	struct xrep_newbt	new_inobt;
102
103	/* new finobt information */
104	struct xrep_newbt	new_finobt;
105
106	/* Old inode btree blocks we found in the rmap. */
107	struct xagb_bitmap	old_iallocbt_blocks;
108
109	/* Reconstructed inode records. */
110	struct xfarray		*inode_records;
111
112	struct xfs_scrub	*sc;
113
114	/* Number of inodes assigned disk space. */
115	unsigned int		icount;
116
117	/* Number of inodes in use. */
118	unsigned int		iused;
119
120	/* Number of finobt records needed. */
121	unsigned int		finobt_recs;
122
123	/* get_records()'s position in the inode record array. */
124	xfarray_idx_t		array_cur;
125};
126
127/*
128 * Is this inode in use?  If the inode is in memory we can tell from i_mode,
129 * otherwise we have to check di_mode in the on-disk buffer.  We only care
130 * that the high (i.e. non-permission) bits of _mode are zero.  This should be
131 * safe because repair keeps all AG headers locked until the end, and process
132 * trying to perform an inode allocation/free must lock the AGI.
133 *
134 * @cluster_ag_base is the inode offset of the cluster within the AG.
135 * @cluster_bp is the cluster buffer.
136 * @cluster_index is the inode offset within the inode cluster.
137 */
138STATIC int
139xrep_ibt_check_ifree(
140	struct xrep_ibt		*ri,
141	xfs_agino_t		cluster_ag_base,
142	struct xfs_buf		*cluster_bp,
143	unsigned int		cluster_index,
144	bool			*inuse)
145{
146	struct xfs_scrub	*sc = ri->sc;
147	struct xfs_mount	*mp = sc->mp;
148	struct xfs_dinode	*dip;
149	xfs_ino_t		fsino;
150	xfs_agino_t		agino;
151	xfs_agnumber_t		agno = ri->sc->sa.pag->pag_agno;
152	unsigned int		cluster_buf_base;
153	unsigned int		offset;
154	int			error;
155
156	agino = cluster_ag_base + cluster_index;
157	fsino = XFS_AGINO_TO_INO(mp, agno, agino);
158
159	/* Inode uncached or half assembled, read disk buffer */
160	cluster_buf_base = XFS_INO_TO_OFFSET(mp, cluster_ag_base);
161	offset = (cluster_buf_base + cluster_index) * mp->m_sb.sb_inodesize;
162	if (offset >= BBTOB(cluster_bp->b_length))
163		return -EFSCORRUPTED;
164	dip = xfs_buf_offset(cluster_bp, offset);
165	if (be16_to_cpu(dip->di_magic) != XFS_DINODE_MAGIC)
166		return -EFSCORRUPTED;
167
168	if (dip->di_version >= 3 && be64_to_cpu(dip->di_ino) != fsino)
169		return -EFSCORRUPTED;
170
171	/* Will the in-core inode tell us if it's in use? */
172	error = xchk_inode_is_allocated(sc, agino, inuse);
173	if (!error)
174		return 0;
175
176	*inuse = dip->di_mode != 0;
177	return 0;
178}
179
180/* Stash the accumulated inobt record for rebuilding. */
181STATIC int
182xrep_ibt_stash(
183	struct xrep_ibt		*ri)
184{
185	int			error = 0;
186
187	if (xchk_should_terminate(ri->sc, &error))
188		return error;
189
190	ri->rie.ir_freecount = xfs_inobt_rec_freecount(&ri->rie);
191	if (xfs_inobt_check_irec(ri->sc->sa.pag, &ri->rie) != NULL)
192		return -EFSCORRUPTED;
193
194	if (ri->rie.ir_freecount > 0)
195		ri->finobt_recs++;
196
197	trace_xrep_ibt_found(ri->sc->mp, ri->sc->sa.pag->pag_agno, &ri->rie);
198
199	error = xfarray_append(ri->inode_records, &ri->rie);
200	if (error)
201		return error;
202
203	ri->rie.ir_startino = NULLAGINO;
204	return 0;
205}
206
207/*
208 * Given an extent of inodes and an inode cluster buffer, calculate the
209 * location of the corresponding inobt record (creating it if necessary),
210 * then update the parts of the holemask and freemask of that record that
211 * correspond to the inode extent we were given.
212 *
213 * @cluster_ir_startino is the AG inode number of an inobt record that we're
214 * proposing to create for this inode cluster.  If sparse inodes are enabled,
215 * we must round down to a chunk boundary to find the actual sparse record.
216 * @cluster_bp is the buffer of the inode cluster.
217 * @nr_inodes is the number of inodes to check from the cluster.
218 */
219STATIC int
220xrep_ibt_cluster_record(
221	struct xrep_ibt		*ri,
222	xfs_agino_t		cluster_ir_startino,
223	struct xfs_buf		*cluster_bp,
224	unsigned int		nr_inodes)
225{
226	struct xfs_scrub	*sc = ri->sc;
227	struct xfs_mount	*mp = sc->mp;
228	xfs_agino_t		ir_startino;
229	unsigned int		cluster_base;
230	unsigned int		cluster_index;
231	int			error = 0;
232
233	ir_startino = cluster_ir_startino;
234	if (xfs_has_sparseinodes(mp))
235		ir_startino = rounddown(ir_startino, XFS_INODES_PER_CHUNK);
236	cluster_base = cluster_ir_startino - ir_startino;
237
238	/*
239	 * If the accumulated inobt record doesn't map this cluster, add it to
240	 * the list and reset it.
241	 */
242	if (ri->rie.ir_startino != NULLAGINO &&
243	    ri->rie.ir_startino + XFS_INODES_PER_CHUNK <= ir_startino) {
244		error = xrep_ibt_stash(ri);
245		if (error)
246			return error;
247	}
248
249	if (ri->rie.ir_startino == NULLAGINO) {
250		ri->rie.ir_startino = ir_startino;
251		ri->rie.ir_free = XFS_INOBT_ALL_FREE;
252		ri->rie.ir_holemask = 0xFFFF;
253		ri->rie.ir_count = 0;
254	}
255
256	/* Record the whole cluster. */
257	ri->icount += nr_inodes;
258	ri->rie.ir_count += nr_inodes;
259	ri->rie.ir_holemask &= ~xfs_inobt_maskn(
260				cluster_base / XFS_INODES_PER_HOLEMASK_BIT,
261				nr_inodes / XFS_INODES_PER_HOLEMASK_BIT);
262
263	/* Which inodes within this cluster are free? */
264	for (cluster_index = 0; cluster_index < nr_inodes; cluster_index++) {
265		bool		inuse = false;
266
267		error = xrep_ibt_check_ifree(ri, cluster_ir_startino,
268				cluster_bp, cluster_index, &inuse);
269		if (error)
270			return error;
271		if (!inuse)
272			continue;
273		ri->iused++;
274		ri->rie.ir_free &= ~XFS_INOBT_MASK(cluster_base +
275						   cluster_index);
276	}
277	return 0;
278}
279
280/*
281 * For each inode cluster covering the physical extent recorded by the rmapbt,
282 * we must calculate the properly aligned startino of that cluster, then
283 * iterate each cluster to fill in used and filled masks appropriately.  We
284 * then use the (startino, used, filled) information to construct the
285 * appropriate inode records.
286 */
287STATIC int
288xrep_ibt_process_cluster(
289	struct xrep_ibt		*ri,
290	xfs_agblock_t		cluster_bno)
291{
292	struct xfs_imap		imap;
293	struct xfs_buf		*cluster_bp;
294	struct xfs_scrub	*sc = ri->sc;
295	struct xfs_mount	*mp = sc->mp;
296	struct xfs_ino_geometry	*igeo = M_IGEO(mp);
297	xfs_agino_t		cluster_ag_base;
298	xfs_agino_t		irec_index;
299	unsigned int		nr_inodes;
300	int			error;
301
302	nr_inodes = min_t(unsigned int, igeo->inodes_per_cluster,
303			XFS_INODES_PER_CHUNK);
304
305	/*
306	 * Grab the inode cluster buffer.  This is safe to do with a broken
307	 * inobt because imap_to_bp directly maps the buffer without touching
308	 * either inode btree.
309	 */
310	imap.im_blkno = XFS_AGB_TO_DADDR(mp, sc->sa.pag->pag_agno, cluster_bno);
311	imap.im_len = XFS_FSB_TO_BB(mp, igeo->blocks_per_cluster);
312	imap.im_boffset = 0;
313	error = xfs_imap_to_bp(mp, sc->tp, &imap, &cluster_bp);
314	if (error)
315		return error;
316
317	/*
318	 * Record the contents of each possible inobt record mapping this
319	 * cluster.
320	 */
321	cluster_ag_base = XFS_AGB_TO_AGINO(mp, cluster_bno);
322	for (irec_index = 0;
323	     irec_index < igeo->inodes_per_cluster;
324	     irec_index += XFS_INODES_PER_CHUNK) {
325		error = xrep_ibt_cluster_record(ri,
326				cluster_ag_base + irec_index, cluster_bp,
327				nr_inodes);
328		if (error)
329			break;
330
331	}
332
333	xfs_trans_brelse(sc->tp, cluster_bp);
334	return error;
335}
336
337/* Check for any obvious conflicts in the inode chunk extent. */
338STATIC int
339xrep_ibt_check_inode_ext(
340	struct xfs_scrub	*sc,
341	xfs_agblock_t		agbno,
342	xfs_extlen_t		len)
343{
344	struct xfs_mount	*mp = sc->mp;
345	struct xfs_ino_geometry	*igeo = M_IGEO(mp);
346	xfs_agino_t		agino;
347	enum xbtree_recpacking	outcome;
348	int			error;
349
350	/* Inode records must be within the AG. */
351	if (!xfs_verify_agbext(sc->sa.pag, agbno, len))
352		return -EFSCORRUPTED;
353
354	/* The entire record must align to the inode cluster size. */
355	if (!IS_ALIGNED(agbno, igeo->blocks_per_cluster) ||
356	    !IS_ALIGNED(agbno + len, igeo->blocks_per_cluster))
357		return -EFSCORRUPTED;
358
359	/*
360	 * The entire record must also adhere to the inode cluster alignment
361	 * size if sparse inodes are not enabled.
362	 */
363	if (!xfs_has_sparseinodes(mp) &&
364	    (!IS_ALIGNED(agbno, igeo->cluster_align) ||
365	     !IS_ALIGNED(agbno + len, igeo->cluster_align)))
366		return -EFSCORRUPTED;
367
368	/*
369	 * On a sparse inode fs, this cluster could be part of a sparse chunk.
370	 * Sparse clusters must be aligned to sparse chunk alignment.
371	 */
372	if (xfs_has_sparseinodes(mp) && mp->m_sb.sb_spino_align &&
373	    (!IS_ALIGNED(agbno, mp->m_sb.sb_spino_align) ||
374	     !IS_ALIGNED(agbno + len, mp->m_sb.sb_spino_align)))
375		return -EFSCORRUPTED;
376
377	/* Make sure the entire range of blocks are valid AG inodes. */
378	agino = XFS_AGB_TO_AGINO(mp, agbno);
379	if (!xfs_verify_agino(sc->sa.pag, agino))
380		return -EFSCORRUPTED;
381
382	agino = XFS_AGB_TO_AGINO(mp, agbno + len) - 1;
383	if (!xfs_verify_agino(sc->sa.pag, agino))
384		return -EFSCORRUPTED;
385
386	/* Make sure this isn't free space. */
387	error = xfs_alloc_has_records(sc->sa.bno_cur, agbno, len, &outcome);
388	if (error)
389		return error;
390	if (outcome != XBTREE_RECPACKING_EMPTY)
391		return -EFSCORRUPTED;
392
393	return 0;
394}
395
396/* Found a fragment of the old inode btrees; dispose of them later. */
397STATIC int
398xrep_ibt_record_old_btree_blocks(
399	struct xrep_ibt			*ri,
400	const struct xfs_rmap_irec	*rec)
401{
402	if (!xfs_verify_agbext(ri->sc->sa.pag, rec->rm_startblock,
403				rec->rm_blockcount))
404		return -EFSCORRUPTED;
405
406	return xagb_bitmap_set(&ri->old_iallocbt_blocks, rec->rm_startblock,
407			rec->rm_blockcount);
408}
409
410/* Record extents that belong to inode cluster blocks. */
411STATIC int
412xrep_ibt_record_inode_blocks(
413	struct xrep_ibt			*ri,
414	const struct xfs_rmap_irec	*rec)
415{
416	struct xfs_mount		*mp = ri->sc->mp;
417	struct xfs_ino_geometry		*igeo = M_IGEO(mp);
418	xfs_agblock_t			cluster_base;
419	int				error;
420
421	error = xrep_ibt_check_inode_ext(ri->sc, rec->rm_startblock,
422			rec->rm_blockcount);
423	if (error)
424		return error;
425
426	trace_xrep_ibt_walk_rmap(mp, ri->sc->sa.pag->pag_agno,
427			rec->rm_startblock, rec->rm_blockcount, rec->rm_owner,
428			rec->rm_offset, rec->rm_flags);
429
430	/*
431	 * Record the free/hole masks for each inode cluster that could be
432	 * mapped by this rmap record.
433	 */
434	for (cluster_base = 0;
435	     cluster_base < rec->rm_blockcount;
436	     cluster_base += igeo->blocks_per_cluster) {
437		error = xrep_ibt_process_cluster(ri,
438				rec->rm_startblock + cluster_base);
439		if (error)
440			return error;
441	}
442
443	return 0;
444}
445
446STATIC int
447xrep_ibt_walk_rmap(
448	struct xfs_btree_cur		*cur,
449	const struct xfs_rmap_irec	*rec,
450	void				*priv)
451{
452	struct xrep_ibt			*ri = priv;
453	int				error = 0;
454
455	if (xchk_should_terminate(ri->sc, &error))
456		return error;
457
458	switch (rec->rm_owner) {
459	case XFS_RMAP_OWN_INOBT:
460		return xrep_ibt_record_old_btree_blocks(ri, rec);
461	case XFS_RMAP_OWN_INODES:
462		return xrep_ibt_record_inode_blocks(ri, rec);
463	}
464	return 0;
465}
466
467/*
468 * Iterate all reverse mappings to find the inodes (OWN_INODES) and the inode
469 * btrees (OWN_INOBT).  Figure out if we have enough free space to reconstruct
470 * the inode btrees.  The caller must clean up the lists if anything goes
471 * wrong.
472 */
473STATIC int
474xrep_ibt_find_inodes(
475	struct xrep_ibt		*ri)
476{
477	struct xfs_scrub	*sc = ri->sc;
478	int			error;
479
480	ri->rie.ir_startino = NULLAGINO;
481
482	/* Collect all reverse mappings for inode blocks. */
483	xrep_ag_btcur_init(sc, &sc->sa);
484	error = xfs_rmap_query_all(sc->sa.rmap_cur, xrep_ibt_walk_rmap, ri);
485	xchk_ag_btcur_free(&sc->sa);
486	if (error)
487		return error;
488
489	/* If we have a record ready to go, add it to the array. */
490	if (ri->rie.ir_startino != NULLAGINO)
491		return xrep_ibt_stash(ri);
492
493	return 0;
494}
495
496/* Update the AGI counters. */
497STATIC int
498xrep_ibt_reset_counters(
499	struct xrep_ibt		*ri)
500{
501	struct xfs_scrub	*sc = ri->sc;
502	struct xfs_agi		*agi = sc->sa.agi_bp->b_addr;
503	unsigned int		freecount = ri->icount - ri->iused;
504
505	/* Trigger inode count recalculation */
506	xfs_force_summary_recalc(sc->mp);
507
508	/*
509	 * The AGI header contains extra information related to the inode
510	 * btrees, so we must update those fields here.
511	 */
512	agi->agi_count = cpu_to_be32(ri->icount);
513	agi->agi_freecount = cpu_to_be32(freecount);
514	xfs_ialloc_log_agi(sc->tp, sc->sa.agi_bp,
515			   XFS_AGI_COUNT | XFS_AGI_FREECOUNT);
516
517	/* Reinitialize with the values we just logged. */
518	return xrep_reinit_pagi(sc);
519}
520
521/* Retrieve finobt data for bulk load. */
522STATIC int
523xrep_fibt_get_records(
524	struct xfs_btree_cur		*cur,
525	unsigned int			idx,
526	struct xfs_btree_block		*block,
527	unsigned int			nr_wanted,
528	void				*priv)
529{
530	struct xfs_inobt_rec_incore	*irec = &cur->bc_rec.i;
531	struct xrep_ibt			*ri = priv;
532	union xfs_btree_rec		*block_rec;
533	unsigned int			loaded;
534	int				error;
535
536	for (loaded = 0; loaded < nr_wanted; loaded++, idx++) {
537		do {
538			error = xfarray_load(ri->inode_records,
539					ri->array_cur++, irec);
540		} while (error == 0 && xfs_inobt_rec_freecount(irec) == 0);
541		if (error)
542			return error;
543
544		block_rec = xfs_btree_rec_addr(cur, idx, block);
545		cur->bc_ops->init_rec_from_cur(cur, block_rec);
546	}
547
548	return loaded;
549}
550
551/* Retrieve inobt data for bulk load. */
552STATIC int
553xrep_ibt_get_records(
554	struct xfs_btree_cur		*cur,
555	unsigned int			idx,
556	struct xfs_btree_block		*block,
557	unsigned int			nr_wanted,
558	void				*priv)
559{
560	struct xfs_inobt_rec_incore	*irec = &cur->bc_rec.i;
561	struct xrep_ibt			*ri = priv;
562	union xfs_btree_rec		*block_rec;
563	unsigned int			loaded;
564	int				error;
565
566	for (loaded = 0; loaded < nr_wanted; loaded++, idx++) {
567		error = xfarray_load(ri->inode_records, ri->array_cur++, irec);
568		if (error)
569			return error;
570
571		block_rec = xfs_btree_rec_addr(cur, idx, block);
572		cur->bc_ops->init_rec_from_cur(cur, block_rec);
573	}
574
575	return loaded;
576}
577
578/* Feed one of the new inobt blocks to the bulk loader. */
579STATIC int
580xrep_ibt_claim_block(
581	struct xfs_btree_cur	*cur,
582	union xfs_btree_ptr	*ptr,
583	void			*priv)
584{
585	struct xrep_ibt		*ri = priv;
586
587	return xrep_newbt_claim_block(cur, &ri->new_inobt, ptr);
588}
589
590/* Feed one of the new finobt blocks to the bulk loader. */
591STATIC int
592xrep_fibt_claim_block(
593	struct xfs_btree_cur	*cur,
594	union xfs_btree_ptr	*ptr,
595	void			*priv)
596{
597	struct xrep_ibt		*ri = priv;
598
599	return xrep_newbt_claim_block(cur, &ri->new_finobt, ptr);
600}
601
602/* Make sure the records do not overlap in inumber address space. */
603STATIC int
604xrep_ibt_check_overlap(
605	struct xrep_ibt			*ri)
606{
607	struct xfs_inobt_rec_incore	irec;
608	xfarray_idx_t			cur;
609	xfs_agino_t			next_agino = 0;
610	int				error = 0;
611
612	foreach_xfarray_idx(ri->inode_records, cur) {
613		if (xchk_should_terminate(ri->sc, &error))
614			return error;
615
616		error = xfarray_load(ri->inode_records, cur, &irec);
617		if (error)
618			return error;
619
620		if (irec.ir_startino < next_agino)
621			return -EFSCORRUPTED;
622
623		next_agino = irec.ir_startino + XFS_INODES_PER_CHUNK;
624	}
625
626	return error;
627}
628
629/* Build new inode btrees and dispose of the old one. */
630STATIC int
631xrep_ibt_build_new_trees(
632	struct xrep_ibt		*ri)
633{
634	struct xfs_scrub	*sc = ri->sc;
635	struct xfs_btree_cur	*ino_cur;
636	struct xfs_btree_cur	*fino_cur = NULL;
637	xfs_fsblock_t		fsbno;
638	bool			need_finobt;
639	int			error;
640
641	need_finobt = xfs_has_finobt(sc->mp);
642
643	/*
644	 * Create new btrees for staging all the inobt records we collected
645	 * earlier.  The records were collected in order of increasing agino,
646	 * so we do not have to sort them.  Ensure there are no overlapping
647	 * records.
648	 */
649	error = xrep_ibt_check_overlap(ri);
650	if (error)
651		return error;
652
653	/*
654	 * The new inode btrees will not be rooted in the AGI until we've
655	 * successfully rebuilt the tree.
656	 *
657	 * Start by setting up the inobt staging cursor.
658	 */
659	fsbno = XFS_AGB_TO_FSB(sc->mp, sc->sa.pag->pag_agno,
660			XFS_IBT_BLOCK(sc->mp)),
661	xrep_newbt_init_ag(&ri->new_inobt, sc, &XFS_RMAP_OINFO_INOBT, fsbno,
662			XFS_AG_RESV_NONE);
663	ri->new_inobt.bload.claim_block = xrep_ibt_claim_block;
664	ri->new_inobt.bload.get_records = xrep_ibt_get_records;
665
666	ino_cur = xfs_inobt_init_cursor(sc->sa.pag, NULL, NULL);
667	xfs_btree_stage_afakeroot(ino_cur, &ri->new_inobt.afake);
668	error = xfs_btree_bload_compute_geometry(ino_cur, &ri->new_inobt.bload,
669			xfarray_length(ri->inode_records));
670	if (error)
671		goto err_inocur;
672
673	/* Set up finobt staging cursor. */
674	if (need_finobt) {
675		enum xfs_ag_resv_type	resv = XFS_AG_RESV_METADATA;
676
677		if (sc->mp->m_finobt_nores)
678			resv = XFS_AG_RESV_NONE;
679
680		fsbno = XFS_AGB_TO_FSB(sc->mp, sc->sa.pag->pag_agno,
681				XFS_FIBT_BLOCK(sc->mp)),
682		xrep_newbt_init_ag(&ri->new_finobt, sc, &XFS_RMAP_OINFO_INOBT,
683				fsbno, resv);
684		ri->new_finobt.bload.claim_block = xrep_fibt_claim_block;
685		ri->new_finobt.bload.get_records = xrep_fibt_get_records;
686
687		fino_cur = xfs_finobt_init_cursor(sc->sa.pag, NULL, NULL);
688		xfs_btree_stage_afakeroot(fino_cur, &ri->new_finobt.afake);
689		error = xfs_btree_bload_compute_geometry(fino_cur,
690				&ri->new_finobt.bload, ri->finobt_recs);
691		if (error)
692			goto err_finocur;
693	}
694
695	/* Last chance to abort before we start committing fixes. */
696	if (xchk_should_terminate(sc, &error))
697		goto err_finocur;
698
699	/* Reserve all the space we need to build the new btrees. */
700	error = xrep_newbt_alloc_blocks(&ri->new_inobt,
701			ri->new_inobt.bload.nr_blocks);
702	if (error)
703		goto err_finocur;
704
705	if (need_finobt) {
706		error = xrep_newbt_alloc_blocks(&ri->new_finobt,
707				ri->new_finobt.bload.nr_blocks);
708		if (error)
709			goto err_finocur;
710	}
711
712	/* Add all inobt records. */
713	ri->array_cur = XFARRAY_CURSOR_INIT;
714	error = xfs_btree_bload(ino_cur, &ri->new_inobt.bload, ri);
715	if (error)
716		goto err_finocur;
717
718	/* Add all finobt records. */
719	if (need_finobt) {
720		ri->array_cur = XFARRAY_CURSOR_INIT;
721		error = xfs_btree_bload(fino_cur, &ri->new_finobt.bload, ri);
722		if (error)
723			goto err_finocur;
724	}
725
726	/*
727	 * Install the new btrees in the AG header.  After this point the old
728	 * btrees are no longer accessible and the new trees are live.
729	 */
730	xfs_inobt_commit_staged_btree(ino_cur, sc->tp, sc->sa.agi_bp);
731	xfs_btree_del_cursor(ino_cur, 0);
732
733	if (fino_cur) {
734		xfs_inobt_commit_staged_btree(fino_cur, sc->tp, sc->sa.agi_bp);
735		xfs_btree_del_cursor(fino_cur, 0);
736	}
737
738	/* Reset the AGI counters now that we've changed the inode roots. */
739	error = xrep_ibt_reset_counters(ri);
740	if (error)
741		goto err_finobt;
742
743	/* Free unused blocks and bitmap. */
744	if (need_finobt) {
745		error = xrep_newbt_commit(&ri->new_finobt);
746		if (error)
747			goto err_inobt;
748	}
749	error = xrep_newbt_commit(&ri->new_inobt);
750	if (error)
751		return error;
752
753	return xrep_roll_ag_trans(sc);
754
755err_finocur:
756	if (need_finobt)
757		xfs_btree_del_cursor(fino_cur, error);
758err_inocur:
759	xfs_btree_del_cursor(ino_cur, error);
760err_finobt:
761	if (need_finobt)
762		xrep_newbt_cancel(&ri->new_finobt);
763err_inobt:
764	xrep_newbt_cancel(&ri->new_inobt);
765	return error;
766}
767
768/*
769 * Now that we've logged the roots of the new btrees, invalidate all of the
770 * old blocks and free them.
771 */
772STATIC int
773xrep_ibt_remove_old_trees(
774	struct xrep_ibt		*ri)
775{
776	struct xfs_scrub	*sc = ri->sc;
777	int			error;
778
779	/*
780	 * Free the old inode btree blocks if they're not in use.  It's ok to
781	 * reap with XFS_AG_RESV_NONE even if the finobt had a per-AG
782	 * reservation because we reset the reservation before releasing the
783	 * AGI and AGF header buffer locks.
784	 */
785	error = xrep_reap_agblocks(sc, &ri->old_iallocbt_blocks,
786			&XFS_RMAP_OINFO_INOBT, XFS_AG_RESV_NONE);
787	if (error)
788		return error;
789
790	/*
791	 * If the finobt is enabled and has a per-AG reservation, make sure we
792	 * reinitialize the per-AG reservations.
793	 */
794	if (xfs_has_finobt(sc->mp) && !sc->mp->m_finobt_nores)
795		sc->flags |= XREP_RESET_PERAG_RESV;
796
797	return 0;
798}
799
800/* Repair both inode btrees. */
801int
802xrep_iallocbt(
803	struct xfs_scrub	*sc)
804{
805	struct xrep_ibt		*ri;
806	struct xfs_mount	*mp = sc->mp;
807	char			*descr;
808	xfs_agino_t		first_agino, last_agino;
809	int			error = 0;
810
811	/* We require the rmapbt to rebuild anything. */
812	if (!xfs_has_rmapbt(mp))
813		return -EOPNOTSUPP;
814
815	ri = kzalloc(sizeof(struct xrep_ibt), XCHK_GFP_FLAGS);
816	if (!ri)
817		return -ENOMEM;
818	ri->sc = sc;
819
820	/* We rebuild both inode btrees. */
821	sc->sick_mask = XFS_SICK_AG_INOBT | XFS_SICK_AG_FINOBT;
822
823	/* Set up enough storage to handle an AG with nothing but inodes. */
824	xfs_agino_range(mp, sc->sa.pag->pag_agno, &first_agino, &last_agino);
825	last_agino /= XFS_INODES_PER_CHUNK;
826	descr = xchk_xfile_ag_descr(sc, "inode index records");
827	error = xfarray_create(descr, last_agino,
828			sizeof(struct xfs_inobt_rec_incore),
829			&ri->inode_records);
830	kfree(descr);
831	if (error)
832		goto out_ri;
833
834	/* Collect the inode data and find the old btree blocks. */
835	xagb_bitmap_init(&ri->old_iallocbt_blocks);
836	error = xrep_ibt_find_inodes(ri);
837	if (error)
838		goto out_bitmap;
839
840	/* Rebuild the inode indexes. */
841	error = xrep_ibt_build_new_trees(ri);
842	if (error)
843		goto out_bitmap;
844
845	/* Kill the old tree. */
846	error = xrep_ibt_remove_old_trees(ri);
847	if (error)
848		goto out_bitmap;
849
850out_bitmap:
851	xagb_bitmap_destroy(&ri->old_iallocbt_blocks);
852	xfarray_destroy(ri->inode_records);
853out_ri:
854	kfree(ri);
855	return error;
856}
857
858/* Make sure both btrees are ok after we've rebuilt them. */
859int
860xrep_revalidate_iallocbt(
861	struct xfs_scrub	*sc)
862{
863	__u32			old_type = sc->sm->sm_type;
864	int			error;
865
866	/*
867	 * We must update sm_type temporarily so that the tree-to-tree cross
868	 * reference checks will work in the correct direction, and also so
869	 * that tracing will report correctly if there are more errors.
870	 */
871	sc->sm->sm_type = XFS_SCRUB_TYPE_INOBT;
872	error = xchk_iallocbt(sc);
873	if (error)
874		goto out;
875
876	if (xfs_has_finobt(sc->mp)) {
877		sc->sm->sm_type = XFS_SCRUB_TYPE_FINOBT;
878		error = xchk_iallocbt(sc);
879	}
880
881out:
882	sc->sm->sm_type = old_type;
883	return error;
884}
885