1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Copyright (C) 2017-2023 Oracle.  All Rights Reserved.
4 * Author: Darrick J. Wong <djwong@kernel.org>
5 */
6#include "xfs.h"
7#include "xfs_fs.h"
8#include "xfs_shared.h"
9#include "xfs_format.h"
10#include "xfs_trans_resv.h"
11#include "xfs_mount.h"
12#include "xfs_btree.h"
13#include "xfs_log_format.h"
14#include "xfs_trans.h"
15#include "xfs_inode.h"
16#include "xfs_icache.h"
17#include "xfs_alloc.h"
18#include "xfs_alloc_btree.h"
19#include "xfs_ialloc.h"
20#include "xfs_ialloc_btree.h"
21#include "xfs_refcount_btree.h"
22#include "xfs_rmap.h"
23#include "xfs_rmap_btree.h"
24#include "xfs_log.h"
25#include "xfs_trans_priv.h"
26#include "xfs_da_format.h"
27#include "xfs_da_btree.h"
28#include "xfs_dir2_priv.h"
29#include "xfs_attr.h"
30#include "xfs_reflink.h"
31#include "xfs_ag.h"
32#include "xfs_error.h"
33#include "xfs_quota.h"
34#include "scrub/scrub.h"
35#include "scrub/common.h"
36#include "scrub/trace.h"
37#include "scrub/repair.h"
38#include "scrub/health.h"
39
40/* Common code for the metadata scrubbers. */
41
42/*
43 * Handling operational errors.
44 *
45 * The *_process_error() family of functions are used to process error return
46 * codes from functions called as part of a scrub operation.
47 *
48 * If there's no error, we return true to tell the caller that it's ok
49 * to move on to the next check in its list.
50 *
51 * For non-verifier errors (e.g. ENOMEM) we return false to tell the
52 * caller that something bad happened, and we preserve *error so that
53 * the caller can return the *error up the stack to userspace.
54 *
55 * Verifier errors (EFSBADCRC/EFSCORRUPTED) are recorded by setting
56 * OFLAG_CORRUPT in sm_flags and the *error is cleared.  In other words,
57 * we track verifier errors (and failed scrub checks) via OFLAG_CORRUPT,
58 * not via return codes.  We return false to tell the caller that
59 * something bad happened.  Since the error has been cleared, the caller
60 * will (presumably) return that zero and scrubbing will move on to
61 * whatever's next.
62 *
63 * ftrace can be used to record the precise metadata location and the
64 * approximate code location of the failed operation.
65 */
66
67/* Check for operational errors. */
68static bool
69__xchk_process_error(
70	struct xfs_scrub	*sc,
71	xfs_agnumber_t		agno,
72	xfs_agblock_t		bno,
73	int			*error,
74	__u32			errflag,
75	void			*ret_ip)
76{
77	switch (*error) {
78	case 0:
79		return true;
80	case -EDEADLOCK:
81	case -ECHRNG:
82		/* Used to restart an op with deadlock avoidance. */
83		trace_xchk_deadlock_retry(
84				sc->ip ? sc->ip : XFS_I(file_inode(sc->file)),
85				sc->sm, *error);
86		break;
87	case -ECANCELED:
88		/*
89		 * ECANCELED here means that the caller set one of the scrub
90		 * outcome flags (corrupt, xfail, xcorrupt) and wants to exit
91		 * quickly.  Set error to zero and do not continue.
92		 */
93		trace_xchk_op_error(sc, agno, bno, *error, ret_ip);
94		*error = 0;
95		break;
96	case -EFSBADCRC:
97	case -EFSCORRUPTED:
98		/* Note the badness but don't abort. */
99		sc->sm->sm_flags |= errflag;
100		*error = 0;
101		fallthrough;
102	default:
103		trace_xchk_op_error(sc, agno, bno, *error, ret_ip);
104		break;
105	}
106	return false;
107}
108
109bool
110xchk_process_error(
111	struct xfs_scrub	*sc,
112	xfs_agnumber_t		agno,
113	xfs_agblock_t		bno,
114	int			*error)
115{
116	return __xchk_process_error(sc, agno, bno, error,
117			XFS_SCRUB_OFLAG_CORRUPT, __return_address);
118}
119
120bool
121xchk_xref_process_error(
122	struct xfs_scrub	*sc,
123	xfs_agnumber_t		agno,
124	xfs_agblock_t		bno,
125	int			*error)
126{
127	return __xchk_process_error(sc, agno, bno, error,
128			XFS_SCRUB_OFLAG_XFAIL, __return_address);
129}
130
131/* Check for operational errors for a file offset. */
132static bool
133__xchk_fblock_process_error(
134	struct xfs_scrub	*sc,
135	int			whichfork,
136	xfs_fileoff_t		offset,
137	int			*error,
138	__u32			errflag,
139	void			*ret_ip)
140{
141	switch (*error) {
142	case 0:
143		return true;
144	case -EDEADLOCK:
145	case -ECHRNG:
146		/* Used to restart an op with deadlock avoidance. */
147		trace_xchk_deadlock_retry(sc->ip, sc->sm, *error);
148		break;
149	case -ECANCELED:
150		/*
151		 * ECANCELED here means that the caller set one of the scrub
152		 * outcome flags (corrupt, xfail, xcorrupt) and wants to exit
153		 * quickly.  Set error to zero and do not continue.
154		 */
155		trace_xchk_file_op_error(sc, whichfork, offset, *error,
156				ret_ip);
157		*error = 0;
158		break;
159	case -EFSBADCRC:
160	case -EFSCORRUPTED:
161		/* Note the badness but don't abort. */
162		sc->sm->sm_flags |= errflag;
163		*error = 0;
164		fallthrough;
165	default:
166		trace_xchk_file_op_error(sc, whichfork, offset, *error,
167				ret_ip);
168		break;
169	}
170	return false;
171}
172
173bool
174xchk_fblock_process_error(
175	struct xfs_scrub	*sc,
176	int			whichfork,
177	xfs_fileoff_t		offset,
178	int			*error)
179{
180	return __xchk_fblock_process_error(sc, whichfork, offset, error,
181			XFS_SCRUB_OFLAG_CORRUPT, __return_address);
182}
183
184bool
185xchk_fblock_xref_process_error(
186	struct xfs_scrub	*sc,
187	int			whichfork,
188	xfs_fileoff_t		offset,
189	int			*error)
190{
191	return __xchk_fblock_process_error(sc, whichfork, offset, error,
192			XFS_SCRUB_OFLAG_XFAIL, __return_address);
193}
194
195/*
196 * Handling scrub corruption/optimization/warning checks.
197 *
198 * The *_set_{corrupt,preen,warning}() family of functions are used to
199 * record the presence of metadata that is incorrect (corrupt), could be
200 * optimized somehow (preen), or should be flagged for administrative
201 * review but is not incorrect (warn).
202 *
203 * ftrace can be used to record the precise metadata location and
204 * approximate code location of the failed check.
205 */
206
207/* Record a block which could be optimized. */
208void
209xchk_block_set_preen(
210	struct xfs_scrub	*sc,
211	struct xfs_buf		*bp)
212{
213	sc->sm->sm_flags |= XFS_SCRUB_OFLAG_PREEN;
214	trace_xchk_block_preen(sc, xfs_buf_daddr(bp), __return_address);
215}
216
217/*
218 * Record an inode which could be optimized.  The trace data will
219 * include the block given by bp if bp is given; otherwise it will use
220 * the block location of the inode record itself.
221 */
222void
223xchk_ino_set_preen(
224	struct xfs_scrub	*sc,
225	xfs_ino_t		ino)
226{
227	sc->sm->sm_flags |= XFS_SCRUB_OFLAG_PREEN;
228	trace_xchk_ino_preen(sc, ino, __return_address);
229}
230
231/* Record something being wrong with the filesystem primary superblock. */
232void
233xchk_set_corrupt(
234	struct xfs_scrub	*sc)
235{
236	sc->sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT;
237	trace_xchk_fs_error(sc, 0, __return_address);
238}
239
240/* Record a corrupt block. */
241void
242xchk_block_set_corrupt(
243	struct xfs_scrub	*sc,
244	struct xfs_buf		*bp)
245{
246	sc->sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT;
247	trace_xchk_block_error(sc, xfs_buf_daddr(bp), __return_address);
248}
249
250#ifdef CONFIG_XFS_QUOTA
251/* Record a corrupt quota counter. */
252void
253xchk_qcheck_set_corrupt(
254	struct xfs_scrub	*sc,
255	unsigned int		dqtype,
256	xfs_dqid_t		id)
257{
258	sc->sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT;
259	trace_xchk_qcheck_error(sc, dqtype, id, __return_address);
260}
261#endif
262
263/* Record a corruption while cross-referencing. */
264void
265xchk_block_xref_set_corrupt(
266	struct xfs_scrub	*sc,
267	struct xfs_buf		*bp)
268{
269	sc->sm->sm_flags |= XFS_SCRUB_OFLAG_XCORRUPT;
270	trace_xchk_block_error(sc, xfs_buf_daddr(bp), __return_address);
271}
272
273/*
274 * Record a corrupt inode.  The trace data will include the block given
275 * by bp if bp is given; otherwise it will use the block location of the
276 * inode record itself.
277 */
278void
279xchk_ino_set_corrupt(
280	struct xfs_scrub	*sc,
281	xfs_ino_t		ino)
282{
283	sc->sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT;
284	trace_xchk_ino_error(sc, ino, __return_address);
285}
286
287/* Record a corruption while cross-referencing with an inode. */
288void
289xchk_ino_xref_set_corrupt(
290	struct xfs_scrub	*sc,
291	xfs_ino_t		ino)
292{
293	sc->sm->sm_flags |= XFS_SCRUB_OFLAG_XCORRUPT;
294	trace_xchk_ino_error(sc, ino, __return_address);
295}
296
297/* Record corruption in a block indexed by a file fork. */
298void
299xchk_fblock_set_corrupt(
300	struct xfs_scrub	*sc,
301	int			whichfork,
302	xfs_fileoff_t		offset)
303{
304	sc->sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT;
305	trace_xchk_fblock_error(sc, whichfork, offset, __return_address);
306}
307
308/* Record a corruption while cross-referencing a fork block. */
309void
310xchk_fblock_xref_set_corrupt(
311	struct xfs_scrub	*sc,
312	int			whichfork,
313	xfs_fileoff_t		offset)
314{
315	sc->sm->sm_flags |= XFS_SCRUB_OFLAG_XCORRUPT;
316	trace_xchk_fblock_error(sc, whichfork, offset, __return_address);
317}
318
319/*
320 * Warn about inodes that need administrative review but is not
321 * incorrect.
322 */
323void
324xchk_ino_set_warning(
325	struct xfs_scrub	*sc,
326	xfs_ino_t		ino)
327{
328	sc->sm->sm_flags |= XFS_SCRUB_OFLAG_WARNING;
329	trace_xchk_ino_warning(sc, ino, __return_address);
330}
331
332/* Warn about a block indexed by a file fork that needs review. */
333void
334xchk_fblock_set_warning(
335	struct xfs_scrub	*sc,
336	int			whichfork,
337	xfs_fileoff_t		offset)
338{
339	sc->sm->sm_flags |= XFS_SCRUB_OFLAG_WARNING;
340	trace_xchk_fblock_warning(sc, whichfork, offset, __return_address);
341}
342
343/* Signal an incomplete scrub. */
344void
345xchk_set_incomplete(
346	struct xfs_scrub	*sc)
347{
348	sc->sm->sm_flags |= XFS_SCRUB_OFLAG_INCOMPLETE;
349	trace_xchk_incomplete(sc, __return_address);
350}
351
352/*
353 * rmap scrubbing -- compute the number of blocks with a given owner,
354 * at least according to the reverse mapping data.
355 */
356
357struct xchk_rmap_ownedby_info {
358	const struct xfs_owner_info	*oinfo;
359	xfs_filblks_t			*blocks;
360};
361
362STATIC int
363xchk_count_rmap_ownedby_irec(
364	struct xfs_btree_cur		*cur,
365	const struct xfs_rmap_irec	*rec,
366	void				*priv)
367{
368	struct xchk_rmap_ownedby_info	*sroi = priv;
369	bool				irec_attr;
370	bool				oinfo_attr;
371
372	irec_attr = rec->rm_flags & XFS_RMAP_ATTR_FORK;
373	oinfo_attr = sroi->oinfo->oi_flags & XFS_OWNER_INFO_ATTR_FORK;
374
375	if (rec->rm_owner != sroi->oinfo->oi_owner)
376		return 0;
377
378	if (XFS_RMAP_NON_INODE_OWNER(rec->rm_owner) || irec_attr == oinfo_attr)
379		(*sroi->blocks) += rec->rm_blockcount;
380
381	return 0;
382}
383
384/*
385 * Calculate the number of blocks the rmap thinks are owned by something.
386 * The caller should pass us an rmapbt cursor.
387 */
388int
389xchk_count_rmap_ownedby_ag(
390	struct xfs_scrub		*sc,
391	struct xfs_btree_cur		*cur,
392	const struct xfs_owner_info	*oinfo,
393	xfs_filblks_t			*blocks)
394{
395	struct xchk_rmap_ownedby_info	sroi = {
396		.oinfo			= oinfo,
397		.blocks			= blocks,
398	};
399
400	*blocks = 0;
401	return xfs_rmap_query_all(cur, xchk_count_rmap_ownedby_irec,
402			&sroi);
403}
404
405/*
406 * AG scrubbing
407 *
408 * These helpers facilitate locking an allocation group's header
409 * buffers, setting up cursors for all btrees that are present, and
410 * cleaning everything up once we're through.
411 */
412
413/* Decide if we want to return an AG header read failure. */
414static inline bool
415want_ag_read_header_failure(
416	struct xfs_scrub	*sc,
417	unsigned int		type)
418{
419	/* Return all AG header read failures when scanning btrees. */
420	if (sc->sm->sm_type != XFS_SCRUB_TYPE_AGF &&
421	    sc->sm->sm_type != XFS_SCRUB_TYPE_AGFL &&
422	    sc->sm->sm_type != XFS_SCRUB_TYPE_AGI)
423		return true;
424	/*
425	 * If we're scanning a given type of AG header, we only want to
426	 * see read failures from that specific header.  We'd like the
427	 * other headers to cross-check them, but this isn't required.
428	 */
429	if (sc->sm->sm_type == type)
430		return true;
431	return false;
432}
433
434/*
435 * Grab the AG header buffers for the attached perag structure.
436 *
437 * The headers should be released by xchk_ag_free, but as a fail safe we attach
438 * all the buffers we grab to the scrub transaction so they'll all be freed
439 * when we cancel it.
440 */
441static inline int
442xchk_perag_read_headers(
443	struct xfs_scrub	*sc,
444	struct xchk_ag		*sa)
445{
446	int			error;
447
448	error = xfs_ialloc_read_agi(sa->pag, sc->tp, &sa->agi_bp);
449	if (error && want_ag_read_header_failure(sc, XFS_SCRUB_TYPE_AGI))
450		return error;
451
452	error = xfs_alloc_read_agf(sa->pag, sc->tp, 0, &sa->agf_bp);
453	if (error && want_ag_read_header_failure(sc, XFS_SCRUB_TYPE_AGF))
454		return error;
455
456	return 0;
457}
458
459/*
460 * Grab the AG headers for the attached perag structure and wait for pending
461 * intents to drain.
462 */
463int
464xchk_perag_drain_and_lock(
465	struct xfs_scrub	*sc)
466{
467	struct xchk_ag		*sa = &sc->sa;
468	int			error = 0;
469
470	ASSERT(sa->pag != NULL);
471	ASSERT(sa->agi_bp == NULL);
472	ASSERT(sa->agf_bp == NULL);
473
474	do {
475		if (xchk_should_terminate(sc, &error))
476			return error;
477
478		error = xchk_perag_read_headers(sc, sa);
479		if (error)
480			return error;
481
482		/*
483		 * If we've grabbed an inode for scrubbing then we assume that
484		 * holding its ILOCK will suffice to coordinate with any intent
485		 * chains involving this inode.
486		 */
487		if (sc->ip)
488			return 0;
489
490		/*
491		 * Decide if this AG is quiet enough for all metadata to be
492		 * consistent with each other.  XFS allows the AG header buffer
493		 * locks to cycle across transaction rolls while processing
494		 * chains of deferred ops, which means that there could be
495		 * other threads in the middle of processing a chain of
496		 * deferred ops.  For regular operations we are careful about
497		 * ordering operations to prevent collisions between threads
498		 * (which is why we don't need a per-AG lock), but scrub and
499		 * repair have to serialize against chained operations.
500		 *
501		 * We just locked all the AG headers buffers; now take a look
502		 * to see if there are any intents in progress.  If there are,
503		 * drop the AG headers and wait for the intents to drain.
504		 * Since we hold all the AG header locks for the duration of
505		 * the scrub, this is the only time we have to sample the
506		 * intents counter; any threads increasing it after this point
507		 * can't possibly be in the middle of a chain of AG metadata
508		 * updates.
509		 *
510		 * Obviously, this should be slanted against scrub and in favor
511		 * of runtime threads.
512		 */
513		if (!xfs_perag_intent_busy(sa->pag))
514			return 0;
515
516		if (sa->agf_bp) {
517			xfs_trans_brelse(sc->tp, sa->agf_bp);
518			sa->agf_bp = NULL;
519		}
520
521		if (sa->agi_bp) {
522			xfs_trans_brelse(sc->tp, sa->agi_bp);
523			sa->agi_bp = NULL;
524		}
525
526		if (!(sc->flags & XCHK_FSGATES_DRAIN))
527			return -ECHRNG;
528		error = xfs_perag_intent_drain(sa->pag);
529		if (error == -ERESTARTSYS)
530			error = -EINTR;
531	} while (!error);
532
533	return error;
534}
535
536/*
537 * Grab the per-AG structure, grab all AG header buffers, and wait until there
538 * aren't any pending intents.  Returns -ENOENT if we can't grab the perag
539 * structure.
540 */
541int
542xchk_ag_read_headers(
543	struct xfs_scrub	*sc,
544	xfs_agnumber_t		agno,
545	struct xchk_ag		*sa)
546{
547	struct xfs_mount	*mp = sc->mp;
548
549	ASSERT(!sa->pag);
550	sa->pag = xfs_perag_get(mp, agno);
551	if (!sa->pag)
552		return -ENOENT;
553
554	return xchk_perag_drain_and_lock(sc);
555}
556
557/* Release all the AG btree cursors. */
558void
559xchk_ag_btcur_free(
560	struct xchk_ag		*sa)
561{
562	if (sa->refc_cur)
563		xfs_btree_del_cursor(sa->refc_cur, XFS_BTREE_ERROR);
564	if (sa->rmap_cur)
565		xfs_btree_del_cursor(sa->rmap_cur, XFS_BTREE_ERROR);
566	if (sa->fino_cur)
567		xfs_btree_del_cursor(sa->fino_cur, XFS_BTREE_ERROR);
568	if (sa->ino_cur)
569		xfs_btree_del_cursor(sa->ino_cur, XFS_BTREE_ERROR);
570	if (sa->cnt_cur)
571		xfs_btree_del_cursor(sa->cnt_cur, XFS_BTREE_ERROR);
572	if (sa->bno_cur)
573		xfs_btree_del_cursor(sa->bno_cur, XFS_BTREE_ERROR);
574
575	sa->refc_cur = NULL;
576	sa->rmap_cur = NULL;
577	sa->fino_cur = NULL;
578	sa->ino_cur = NULL;
579	sa->bno_cur = NULL;
580	sa->cnt_cur = NULL;
581}
582
583/* Initialize all the btree cursors for an AG. */
584void
585xchk_ag_btcur_init(
586	struct xfs_scrub	*sc,
587	struct xchk_ag		*sa)
588{
589	struct xfs_mount	*mp = sc->mp;
590
591	if (sa->agf_bp) {
592		/* Set up a bnobt cursor for cross-referencing. */
593		sa->bno_cur = xfs_bnobt_init_cursor(mp, sc->tp, sa->agf_bp,
594				sa->pag);
595		xchk_ag_btree_del_cursor_if_sick(sc, &sa->bno_cur,
596				XFS_SCRUB_TYPE_BNOBT);
597
598		/* Set up a cntbt cursor for cross-referencing. */
599		sa->cnt_cur = xfs_cntbt_init_cursor(mp, sc->tp, sa->agf_bp,
600				sa->pag);
601		xchk_ag_btree_del_cursor_if_sick(sc, &sa->cnt_cur,
602				XFS_SCRUB_TYPE_CNTBT);
603
604		/* Set up a rmapbt cursor for cross-referencing. */
605		if (xfs_has_rmapbt(mp)) {
606			sa->rmap_cur = xfs_rmapbt_init_cursor(mp, sc->tp,
607					sa->agf_bp, sa->pag);
608			xchk_ag_btree_del_cursor_if_sick(sc, &sa->rmap_cur,
609					XFS_SCRUB_TYPE_RMAPBT);
610		}
611
612		/* Set up a refcountbt cursor for cross-referencing. */
613		if (xfs_has_reflink(mp)) {
614			sa->refc_cur = xfs_refcountbt_init_cursor(mp, sc->tp,
615					sa->agf_bp, sa->pag);
616			xchk_ag_btree_del_cursor_if_sick(sc, &sa->refc_cur,
617					XFS_SCRUB_TYPE_REFCNTBT);
618		}
619	}
620
621	if (sa->agi_bp) {
622		/* Set up a inobt cursor for cross-referencing. */
623		sa->ino_cur = xfs_inobt_init_cursor(sa->pag, sc->tp,
624				sa->agi_bp);
625		xchk_ag_btree_del_cursor_if_sick(sc, &sa->ino_cur,
626				XFS_SCRUB_TYPE_INOBT);
627
628		/* Set up a finobt cursor for cross-referencing. */
629		if (xfs_has_finobt(mp)) {
630			sa->fino_cur = xfs_finobt_init_cursor(sa->pag, sc->tp,
631					sa->agi_bp);
632			xchk_ag_btree_del_cursor_if_sick(sc, &sa->fino_cur,
633					XFS_SCRUB_TYPE_FINOBT);
634		}
635	}
636}
637
638/* Release the AG header context and btree cursors. */
639void
640xchk_ag_free(
641	struct xfs_scrub	*sc,
642	struct xchk_ag		*sa)
643{
644	xchk_ag_btcur_free(sa);
645	xrep_reset_perag_resv(sc);
646	if (sa->agf_bp) {
647		xfs_trans_brelse(sc->tp, sa->agf_bp);
648		sa->agf_bp = NULL;
649	}
650	if (sa->agi_bp) {
651		xfs_trans_brelse(sc->tp, sa->agi_bp);
652		sa->agi_bp = NULL;
653	}
654	if (sa->pag) {
655		xfs_perag_put(sa->pag);
656		sa->pag = NULL;
657	}
658}
659
660/*
661 * For scrub, grab the perag structure, the AGI, and the AGF headers, in that
662 * order.  Locking order requires us to get the AGI before the AGF.  We use the
663 * transaction to avoid deadlocking on crosslinked metadata buffers; either the
664 * caller passes one in (bmap scrub) or we have to create a transaction
665 * ourselves.  Returns ENOENT if the perag struct cannot be grabbed.
666 */
667int
668xchk_ag_init(
669	struct xfs_scrub	*sc,
670	xfs_agnumber_t		agno,
671	struct xchk_ag		*sa)
672{
673	int			error;
674
675	error = xchk_ag_read_headers(sc, agno, sa);
676	if (error)
677		return error;
678
679	xchk_ag_btcur_init(sc, sa);
680	return 0;
681}
682
683/* Per-scrubber setup functions */
684
685void
686xchk_trans_cancel(
687	struct xfs_scrub	*sc)
688{
689	xfs_trans_cancel(sc->tp);
690	sc->tp = NULL;
691}
692
693int
694xchk_trans_alloc_empty(
695	struct xfs_scrub	*sc)
696{
697	return xfs_trans_alloc_empty(sc->mp, &sc->tp);
698}
699
700/*
701 * Grab an empty transaction so that we can re-grab locked buffers if
702 * one of our btrees turns out to be cyclic.
703 *
704 * If we're going to repair something, we need to ask for the largest possible
705 * log reservation so that we can handle the worst case scenario for metadata
706 * updates while rebuilding a metadata item.  We also need to reserve as many
707 * blocks in the head transaction as we think we're going to need to rebuild
708 * the metadata object.
709 */
710int
711xchk_trans_alloc(
712	struct xfs_scrub	*sc,
713	uint			resblks)
714{
715	if (sc->sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR)
716		return xfs_trans_alloc(sc->mp, &M_RES(sc->mp)->tr_itruncate,
717				resblks, 0, 0, &sc->tp);
718
719	return xchk_trans_alloc_empty(sc);
720}
721
722/* Set us up with a transaction and an empty context. */
723int
724xchk_setup_fs(
725	struct xfs_scrub	*sc)
726{
727	uint			resblks;
728
729	resblks = xrep_calc_ag_resblks(sc);
730	return xchk_trans_alloc(sc, resblks);
731}
732
733/* Set us up with AG headers and btree cursors. */
734int
735xchk_setup_ag_btree(
736	struct xfs_scrub	*sc,
737	bool			force_log)
738{
739	struct xfs_mount	*mp = sc->mp;
740	int			error;
741
742	/*
743	 * If the caller asks us to checkpont the log, do so.  This
744	 * expensive operation should be performed infrequently and only
745	 * as a last resort.  Any caller that sets force_log should
746	 * document why they need to do so.
747	 */
748	if (force_log) {
749		error = xchk_checkpoint_log(mp);
750		if (error)
751			return error;
752	}
753
754	error = xchk_setup_fs(sc);
755	if (error)
756		return error;
757
758	return xchk_ag_init(sc, sc->sm->sm_agno, &sc->sa);
759}
760
761/* Push everything out of the log onto disk. */
762int
763xchk_checkpoint_log(
764	struct xfs_mount	*mp)
765{
766	int			error;
767
768	error = xfs_log_force(mp, XFS_LOG_SYNC);
769	if (error)
770		return error;
771	xfs_ail_push_all_sync(mp->m_ail);
772	return 0;
773}
774
775/* Verify that an inode is allocated ondisk, then return its cached inode. */
776int
777xchk_iget(
778	struct xfs_scrub	*sc,
779	xfs_ino_t		inum,
780	struct xfs_inode	**ipp)
781{
782	ASSERT(sc->tp != NULL);
783
784	return xfs_iget(sc->mp, sc->tp, inum, XFS_IGET_UNTRUSTED, 0, ipp);
785}
786
787/*
788 * Try to grab an inode in a manner that avoids races with physical inode
789 * allocation.  If we can't, return the locked AGI buffer so that the caller
790 * can single-step the loading process to see where things went wrong.
791 * Callers must have a valid scrub transaction.
792 *
793 * If the iget succeeds, return 0, a NULL AGI, and the inode.
794 *
795 * If the iget fails, return the error, the locked AGI, and a NULL inode.  This
796 * can include -EINVAL and -ENOENT for invalid inode numbers or inodes that are
797 * no longer allocated; or any other corruption or runtime error.
798 *
799 * If the AGI read fails, return the error, a NULL AGI, and NULL inode.
800 *
801 * If a fatal signal is pending, return -EINTR, a NULL AGI, and a NULL inode.
802 */
803int
804xchk_iget_agi(
805	struct xfs_scrub	*sc,
806	xfs_ino_t		inum,
807	struct xfs_buf		**agi_bpp,
808	struct xfs_inode	**ipp)
809{
810	struct xfs_mount	*mp = sc->mp;
811	struct xfs_trans	*tp = sc->tp;
812	struct xfs_perag	*pag;
813	int			error;
814
815	ASSERT(sc->tp != NULL);
816
817again:
818	*agi_bpp = NULL;
819	*ipp = NULL;
820	error = 0;
821
822	if (xchk_should_terminate(sc, &error))
823		return error;
824
825	/*
826	 * Attach the AGI buffer to the scrub transaction to avoid deadlocks
827	 * in the iget cache miss path.
828	 */
829	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
830	error = xfs_ialloc_read_agi(pag, tp, agi_bpp);
831	xfs_perag_put(pag);
832	if (error)
833		return error;
834
835	error = xfs_iget(mp, tp, inum,
836			XFS_IGET_NORETRY | XFS_IGET_UNTRUSTED, 0, ipp);
837	if (error == -EAGAIN) {
838		/*
839		 * The inode may be in core but temporarily unavailable and may
840		 * require the AGI buffer before it can be returned.  Drop the
841		 * AGI buffer and retry the lookup.
842		 *
843		 * Incore lookup will fail with EAGAIN on a cache hit if the
844		 * inode is queued to the inactivation list.  The inactivation
845		 * worker may remove the inode from the unlinked list and hence
846		 * needs the AGI.
847		 *
848		 * Hence xchk_iget_agi() needs to drop the AGI lock on EAGAIN
849		 * to allow inodegc to make progress and move the inode to
850		 * IRECLAIMABLE state where xfs_iget will be able to return it
851		 * again if it can lock the inode.
852		 */
853		xfs_trans_brelse(tp, *agi_bpp);
854		delay(1);
855		goto again;
856	}
857	if (error)
858		return error;
859
860	/* We got the inode, so we can release the AGI. */
861	ASSERT(*ipp != NULL);
862	xfs_trans_brelse(tp, *agi_bpp);
863	*agi_bpp = NULL;
864	return 0;
865}
866
867#ifdef CONFIG_XFS_QUOTA
868/*
869 * Try to attach dquots to this inode if we think we might want to repair it.
870 * Callers must not hold any ILOCKs.  If the dquots are broken and cannot be
871 * attached, a quotacheck will be scheduled.
872 */
873int
874xchk_ino_dqattach(
875	struct xfs_scrub	*sc)
876{
877	ASSERT(sc->tp != NULL);
878	ASSERT(sc->ip != NULL);
879
880	if (!xchk_could_repair(sc))
881		return 0;
882
883	return xrep_ino_dqattach(sc);
884}
885#endif
886
887/* Install an inode that we opened by handle for scrubbing. */
888int
889xchk_install_handle_inode(
890	struct xfs_scrub	*sc,
891	struct xfs_inode	*ip)
892{
893	if (VFS_I(ip)->i_generation != sc->sm->sm_gen) {
894		xchk_irele(sc, ip);
895		return -ENOENT;
896	}
897
898	sc->ip = ip;
899	return 0;
900}
901
902/*
903 * Install an already-referenced inode for scrubbing.  Get our own reference to
904 * the inode to make disposal simpler.  The inode must not be in I_FREEING or
905 * I_WILL_FREE state!
906 */
907int
908xchk_install_live_inode(
909	struct xfs_scrub	*sc,
910	struct xfs_inode	*ip)
911{
912	if (!igrab(VFS_I(ip))) {
913		xchk_ino_set_corrupt(sc, ip->i_ino);
914		return -EFSCORRUPTED;
915	}
916
917	sc->ip = ip;
918	return 0;
919}
920
921/*
922 * In preparation to scrub metadata structures that hang off of an inode,
923 * grab either the inode referenced in the scrub control structure or the
924 * inode passed in.  If the inumber does not reference an allocated inode
925 * record, the function returns ENOENT to end the scrub early.  The inode
926 * is not locked.
927 */
928int
929xchk_iget_for_scrubbing(
930	struct xfs_scrub	*sc)
931{
932	struct xfs_imap		imap;
933	struct xfs_mount	*mp = sc->mp;
934	struct xfs_perag	*pag;
935	struct xfs_buf		*agi_bp;
936	struct xfs_inode	*ip_in = XFS_I(file_inode(sc->file));
937	struct xfs_inode	*ip = NULL;
938	xfs_agnumber_t		agno = XFS_INO_TO_AGNO(mp, sc->sm->sm_ino);
939	int			error;
940
941	ASSERT(sc->tp == NULL);
942
943	/* We want to scan the inode we already had opened. */
944	if (sc->sm->sm_ino == 0 || sc->sm->sm_ino == ip_in->i_ino)
945		return xchk_install_live_inode(sc, ip_in);
946
947	/* Reject internal metadata files and obviously bad inode numbers. */
948	if (xfs_internal_inum(mp, sc->sm->sm_ino))
949		return -ENOENT;
950	if (!xfs_verify_ino(sc->mp, sc->sm->sm_ino))
951		return -ENOENT;
952
953	/* Try a safe untrusted iget. */
954	error = xchk_iget_safe(sc, sc->sm->sm_ino, &ip);
955	if (!error)
956		return xchk_install_handle_inode(sc, ip);
957	if (error == -ENOENT)
958		return error;
959	if (error != -EINVAL)
960		goto out_error;
961
962	/*
963	 * EINVAL with IGET_UNTRUSTED probably means one of several things:
964	 * userspace gave us an inode number that doesn't correspond to fs
965	 * space; the inode btree lacks a record for this inode; or there is a
966	 * record, and it says this inode is free.
967	 *
968	 * We want to look up this inode in the inobt to distinguish two
969	 * scenarios: (1) the inobt says the inode is free, in which case
970	 * there's nothing to do; and (2) the inobt says the inode is
971	 * allocated, but loading it failed due to corruption.
972	 *
973	 * Allocate a transaction and grab the AGI to prevent inobt activity
974	 * in this AG.  Retry the iget in case someone allocated a new inode
975	 * after the first iget failed.
976	 */
977	error = xchk_trans_alloc(sc, 0);
978	if (error)
979		goto out_error;
980
981	error = xchk_iget_agi(sc, sc->sm->sm_ino, &agi_bp, &ip);
982	if (error == 0) {
983		/* Actually got the inode, so install it. */
984		xchk_trans_cancel(sc);
985		return xchk_install_handle_inode(sc, ip);
986	}
987	if (error == -ENOENT)
988		goto out_gone;
989	if (error != -EINVAL)
990		goto out_cancel;
991
992	/* Ensure that we have protected against inode allocation/freeing. */
993	if (agi_bp == NULL) {
994		ASSERT(agi_bp != NULL);
995		error = -ECANCELED;
996		goto out_cancel;
997	}
998
999	/*
1000	 * Untrusted iget failed a second time.  Let's try an inobt lookup.
1001	 * If the inobt thinks this the inode neither can exist inside the
1002	 * filesystem nor is allocated, return ENOENT to signal that the check
1003	 * can be skipped.
1004	 *
1005	 * If the lookup returns corruption, we'll mark this inode corrupt and
1006	 * exit to userspace.  There's little chance of fixing anything until
1007	 * the inobt is straightened out, but there's nothing we can do here.
1008	 *
1009	 * If the lookup encounters any other error, exit to userspace.
1010	 *
1011	 * If the lookup succeeds, something else must be very wrong in the fs
1012	 * such that setting up the incore inode failed in some strange way.
1013	 * Treat those as corruptions.
1014	 */
1015	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, sc->sm->sm_ino));
1016	if (!pag) {
1017		error = -EFSCORRUPTED;
1018		goto out_cancel;
1019	}
1020
1021	error = xfs_imap(pag, sc->tp, sc->sm->sm_ino, &imap,
1022			XFS_IGET_UNTRUSTED);
1023	xfs_perag_put(pag);
1024	if (error == -EINVAL || error == -ENOENT)
1025		goto out_gone;
1026	if (!error)
1027		error = -EFSCORRUPTED;
1028
1029out_cancel:
1030	xchk_trans_cancel(sc);
1031out_error:
1032	trace_xchk_op_error(sc, agno, XFS_INO_TO_AGBNO(mp, sc->sm->sm_ino),
1033			error, __return_address);
1034	return error;
1035out_gone:
1036	/* The file is gone, so there's nothing to check. */
1037	xchk_trans_cancel(sc);
1038	return -ENOENT;
1039}
1040
1041/* Release an inode, possibly dropping it in the process. */
1042void
1043xchk_irele(
1044	struct xfs_scrub	*sc,
1045	struct xfs_inode	*ip)
1046{
1047	if (sc->tp) {
1048		/*
1049		 * If we are in a transaction, we /cannot/ drop the inode
1050		 * ourselves, because the VFS will trigger writeback, which
1051		 * can require a transaction.  Clear DONTCACHE to force the
1052		 * inode to the LRU, where someone else can take care of
1053		 * dropping it.
1054		 *
1055		 * Note that when we grabbed our reference to the inode, it
1056		 * could have had an active ref and DONTCACHE set if a sysadmin
1057		 * is trying to coerce a change in file access mode.  icache
1058		 * hits do not clear DONTCACHE, so we must do it here.
1059		 */
1060		spin_lock(&VFS_I(ip)->i_lock);
1061		VFS_I(ip)->i_state &= ~I_DONTCACHE;
1062		spin_unlock(&VFS_I(ip)->i_lock);
1063	} else if (atomic_read(&VFS_I(ip)->i_count) == 1) {
1064		/*
1065		 * If this is the last reference to the inode and the caller
1066		 * permits it, set DONTCACHE to avoid thrashing.
1067		 */
1068		d_mark_dontcache(VFS_I(ip));
1069	}
1070
1071	xfs_irele(ip);
1072}
1073
1074/*
1075 * Set us up to scrub metadata mapped by a file's fork.  Callers must not use
1076 * this to operate on user-accessible regular file data because the MMAPLOCK is
1077 * not taken.
1078 */
1079int
1080xchk_setup_inode_contents(
1081	struct xfs_scrub	*sc,
1082	unsigned int		resblks)
1083{
1084	int			error;
1085
1086	error = xchk_iget_for_scrubbing(sc);
1087	if (error)
1088		return error;
1089
1090	/* Lock the inode so the VFS cannot touch this file. */
1091	xchk_ilock(sc, XFS_IOLOCK_EXCL);
1092
1093	error = xchk_trans_alloc(sc, resblks);
1094	if (error)
1095		goto out;
1096
1097	error = xchk_ino_dqattach(sc);
1098	if (error)
1099		goto out;
1100
1101	xchk_ilock(sc, XFS_ILOCK_EXCL);
1102out:
1103	/* scrub teardown will unlock and release the inode for us */
1104	return error;
1105}
1106
1107void
1108xchk_ilock(
1109	struct xfs_scrub	*sc,
1110	unsigned int		ilock_flags)
1111{
1112	xfs_ilock(sc->ip, ilock_flags);
1113	sc->ilock_flags |= ilock_flags;
1114}
1115
1116bool
1117xchk_ilock_nowait(
1118	struct xfs_scrub	*sc,
1119	unsigned int		ilock_flags)
1120{
1121	if (xfs_ilock_nowait(sc->ip, ilock_flags)) {
1122		sc->ilock_flags |= ilock_flags;
1123		return true;
1124	}
1125
1126	return false;
1127}
1128
1129void
1130xchk_iunlock(
1131	struct xfs_scrub	*sc,
1132	unsigned int		ilock_flags)
1133{
1134	sc->ilock_flags &= ~ilock_flags;
1135	xfs_iunlock(sc->ip, ilock_flags);
1136}
1137
1138/*
1139 * Predicate that decides if we need to evaluate the cross-reference check.
1140 * If there was an error accessing the cross-reference btree, just delete
1141 * the cursor and skip the check.
1142 */
1143bool
1144xchk_should_check_xref(
1145	struct xfs_scrub	*sc,
1146	int			*error,
1147	struct xfs_btree_cur	**curpp)
1148{
1149	/* No point in xref if we already know we're corrupt. */
1150	if (xchk_skip_xref(sc->sm))
1151		return false;
1152
1153	if (*error == 0)
1154		return true;
1155
1156	if (curpp) {
1157		/* If we've already given up on xref, just bail out. */
1158		if (!*curpp)
1159			return false;
1160
1161		/* xref error, delete cursor and bail out. */
1162		xfs_btree_del_cursor(*curpp, XFS_BTREE_ERROR);
1163		*curpp = NULL;
1164	}
1165
1166	sc->sm->sm_flags |= XFS_SCRUB_OFLAG_XFAIL;
1167	trace_xchk_xref_error(sc, *error, __return_address);
1168
1169	/*
1170	 * Errors encountered during cross-referencing with another
1171	 * data structure should not cause this scrubber to abort.
1172	 */
1173	*error = 0;
1174	return false;
1175}
1176
1177/* Run the structure verifiers on in-memory buffers to detect bad memory. */
1178void
1179xchk_buffer_recheck(
1180	struct xfs_scrub	*sc,
1181	struct xfs_buf		*bp)
1182{
1183	xfs_failaddr_t		fa;
1184
1185	if (bp->b_ops == NULL) {
1186		xchk_block_set_corrupt(sc, bp);
1187		return;
1188	}
1189	if (bp->b_ops->verify_struct == NULL) {
1190		xchk_set_incomplete(sc);
1191		return;
1192	}
1193	fa = bp->b_ops->verify_struct(bp);
1194	if (!fa)
1195		return;
1196	sc->sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT;
1197	trace_xchk_block_error(sc, xfs_buf_daddr(bp), fa);
1198}
1199
1200static inline int
1201xchk_metadata_inode_subtype(
1202	struct xfs_scrub	*sc,
1203	unsigned int		scrub_type)
1204{
1205	__u32			smtype = sc->sm->sm_type;
1206	unsigned int		sick_mask = sc->sick_mask;
1207	int			error;
1208
1209	sc->sm->sm_type = scrub_type;
1210
1211	switch (scrub_type) {
1212	case XFS_SCRUB_TYPE_INODE:
1213		error = xchk_inode(sc);
1214		break;
1215	case XFS_SCRUB_TYPE_BMBTD:
1216		error = xchk_bmap_data(sc);
1217		break;
1218	default:
1219		ASSERT(0);
1220		error = -EFSCORRUPTED;
1221		break;
1222	}
1223
1224	sc->sick_mask = sick_mask;
1225	sc->sm->sm_type = smtype;
1226	return error;
1227}
1228
1229/*
1230 * Scrub the attr/data forks of a metadata inode.  The metadata inode must be
1231 * pointed to by sc->ip and the ILOCK must be held.
1232 */
1233int
1234xchk_metadata_inode_forks(
1235	struct xfs_scrub	*sc)
1236{
1237	bool			shared;
1238	int			error;
1239
1240	if (sc->sm->sm_flags & XFS_SCRUB_OFLAG_CORRUPT)
1241		return 0;
1242
1243	/* Check the inode record. */
1244	error = xchk_metadata_inode_subtype(sc, XFS_SCRUB_TYPE_INODE);
1245	if (error || (sc->sm->sm_flags & XFS_SCRUB_OFLAG_CORRUPT))
1246		return error;
1247
1248	/* Metadata inodes don't live on the rt device. */
1249	if (sc->ip->i_diflags & XFS_DIFLAG_REALTIME) {
1250		xchk_ino_set_corrupt(sc, sc->ip->i_ino);
1251		return 0;
1252	}
1253
1254	/* They should never participate in reflink. */
1255	if (xfs_is_reflink_inode(sc->ip)) {
1256		xchk_ino_set_corrupt(sc, sc->ip->i_ino);
1257		return 0;
1258	}
1259
1260	/* They also should never have extended attributes. */
1261	if (xfs_inode_hasattr(sc->ip)) {
1262		xchk_ino_set_corrupt(sc, sc->ip->i_ino);
1263		return 0;
1264	}
1265
1266	/* Invoke the data fork scrubber. */
1267	error = xchk_metadata_inode_subtype(sc, XFS_SCRUB_TYPE_BMBTD);
1268	if (error || (sc->sm->sm_flags & XFS_SCRUB_OFLAG_CORRUPT))
1269		return error;
1270
1271	/* Look for incorrect shared blocks. */
1272	if (xfs_has_reflink(sc->mp)) {
1273		error = xfs_reflink_inode_has_shared_extents(sc->tp, sc->ip,
1274				&shared);
1275		if (!xchk_fblock_process_error(sc, XFS_DATA_FORK, 0,
1276				&error))
1277			return error;
1278		if (shared)
1279			xchk_ino_set_corrupt(sc, sc->ip->i_ino);
1280	}
1281
1282	return 0;
1283}
1284
1285/*
1286 * Enable filesystem hooks (i.e. runtime code patching) before starting a scrub
1287 * operation.  Callers must not hold any locks that intersect with the CPU
1288 * hotplug lock (e.g. writeback locks) because code patching must halt the CPUs
1289 * to change kernel code.
1290 */
1291void
1292xchk_fsgates_enable(
1293	struct xfs_scrub	*sc,
1294	unsigned int		scrub_fsgates)
1295{
1296	ASSERT(!(scrub_fsgates & ~XCHK_FSGATES_ALL));
1297	ASSERT(!(sc->flags & scrub_fsgates));
1298
1299	trace_xchk_fsgates_enable(sc, scrub_fsgates);
1300
1301	if (scrub_fsgates & XCHK_FSGATES_DRAIN)
1302		xfs_drain_wait_enable();
1303
1304	if (scrub_fsgates & XCHK_FSGATES_QUOTA)
1305		xfs_dqtrx_hook_enable();
1306
1307	if (scrub_fsgates & XCHK_FSGATES_DIRENTS)
1308		xfs_dir_hook_enable();
1309
1310	if (scrub_fsgates & XCHK_FSGATES_RMAP)
1311		xfs_rmap_hook_enable();
1312
1313	sc->flags |= scrub_fsgates;
1314}
1315
1316/*
1317 * Decide if this is this a cached inode that's also allocated.  The caller
1318 * must hold a reference to an AG and the AGI buffer lock to prevent inodes
1319 * from being allocated or freed.
1320 *
1321 * Look up an inode by number in the given file system.  If the inode number
1322 * is invalid, return -EINVAL.  If the inode is not in cache, return -ENODATA.
1323 * If the inode is being reclaimed, return -ENODATA because we know the inode
1324 * cache cannot be updating the ondisk metadata.
1325 *
1326 * Otherwise, the incore inode is the one we want, and it is either live,
1327 * somewhere in the inactivation machinery, or reclaimable.  The inode is
1328 * allocated if i_mode is nonzero.  In all three cases, the cached inode will
1329 * be more up to date than the ondisk inode buffer, so we must use the incore
1330 * i_mode.
1331 */
1332int
1333xchk_inode_is_allocated(
1334	struct xfs_scrub	*sc,
1335	xfs_agino_t		agino,
1336	bool			*inuse)
1337{
1338	struct xfs_mount	*mp = sc->mp;
1339	struct xfs_perag	*pag = sc->sa.pag;
1340	xfs_ino_t		ino;
1341	struct xfs_inode	*ip;
1342	int			error;
1343
1344	/* caller must hold perag reference */
1345	if (pag == NULL) {
1346		ASSERT(pag != NULL);
1347		return -EINVAL;
1348	}
1349
1350	/* caller must have AGI buffer */
1351	if (sc->sa.agi_bp == NULL) {
1352		ASSERT(sc->sa.agi_bp != NULL);
1353		return -EINVAL;
1354	}
1355
1356	/* reject inode numbers outside existing AGs */
1357	ino = XFS_AGINO_TO_INO(sc->mp, pag->pag_agno, agino);
1358	if (!xfs_verify_ino(mp, ino))
1359		return -EINVAL;
1360
1361	error = -ENODATA;
1362	rcu_read_lock();
1363	ip = radix_tree_lookup(&pag->pag_ici_root, agino);
1364	if (!ip) {
1365		/* cache miss */
1366		goto out_rcu;
1367	}
1368
1369	/*
1370	 * If the inode number doesn't match, the incore inode got reused
1371	 * during an RCU grace period and the radix tree hasn't been updated.
1372	 * This isn't the inode we want.
1373	 */
1374	spin_lock(&ip->i_flags_lock);
1375	if (ip->i_ino != ino)
1376		goto out_skip;
1377
1378	trace_xchk_inode_is_allocated(ip);
1379
1380	/*
1381	 * We have an incore inode that matches the inode we want, and the
1382	 * caller holds the perag structure and the AGI buffer.  Let's check
1383	 * our assumptions below:
1384	 */
1385
1386#ifdef DEBUG
1387	/*
1388	 * (1) If the incore inode is live (i.e. referenced from the dcache),
1389	 * it will not be INEW, nor will it be in the inactivation or reclaim
1390	 * machinery.  The ondisk inode had better be allocated.  This is the
1391	 * most trivial case.
1392	 */
1393	if (!(ip->i_flags & (XFS_NEED_INACTIVE | XFS_INEW | XFS_IRECLAIMABLE |
1394			     XFS_INACTIVATING))) {
1395		/* live inode */
1396		ASSERT(VFS_I(ip)->i_mode != 0);
1397	}
1398
1399	/*
1400	 * If the incore inode is INEW, there are several possibilities:
1401	 *
1402	 * (2) For a file that is being created, note that we allocate the
1403	 * ondisk inode before allocating, initializing, and adding the incore
1404	 * inode to the radix tree.
1405	 *
1406	 * (3) If the incore inode is being recycled, the inode has to be
1407	 * allocated because we don't allow freed inodes to be recycled.
1408	 * Recycling doesn't touch i_mode.
1409	 */
1410	if (ip->i_flags & XFS_INEW) {
1411		/* created on disk already or recycling */
1412		ASSERT(VFS_I(ip)->i_mode != 0);
1413	}
1414
1415	/*
1416	 * (4) If the inode is queued for inactivation (NEED_INACTIVE) but
1417	 * inactivation has not started (!INACTIVATING), it is still allocated.
1418	 */
1419	if ((ip->i_flags & XFS_NEED_INACTIVE) &&
1420	    !(ip->i_flags & XFS_INACTIVATING)) {
1421		/* definitely before difree */
1422		ASSERT(VFS_I(ip)->i_mode != 0);
1423	}
1424#endif
1425
1426	/*
1427	 * If the incore inode is undergoing inactivation (INACTIVATING), there
1428	 * are two possibilities:
1429	 *
1430	 * (5) It is before the point where it would get freed ondisk, in which
1431	 * case i_mode is still nonzero.
1432	 *
1433	 * (6) It has already been freed, in which case i_mode is zero.
1434	 *
1435	 * We don't take the ILOCK here, but difree and dialloc update the AGI,
1436	 * and we've taken the AGI buffer lock, which prevents that from
1437	 * happening.
1438	 */
1439
1440	/*
1441	 * (7) Inodes undergoing inactivation (INACTIVATING) or queued for
1442	 * reclaim (IRECLAIMABLE) could be allocated or free.  i_mode still
1443	 * reflects the ondisk state.
1444	 */
1445
1446	/*
1447	 * (8) If the inode is in IFLUSHING, it's safe to query i_mode because
1448	 * the flush code uses i_mode to format the ondisk inode.
1449	 */
1450
1451	/*
1452	 * (9) If the inode is in IRECLAIM and was reachable via the radix
1453	 * tree, it still has the same i_mode as it did before it entered
1454	 * reclaim.  The inode object is still alive because we hold the RCU
1455	 * read lock.
1456	 */
1457
1458	*inuse = VFS_I(ip)->i_mode != 0;
1459	error = 0;
1460
1461out_skip:
1462	spin_unlock(&ip->i_flags_lock);
1463out_rcu:
1464	rcu_read_unlock();
1465	return error;
1466}
1467