1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * This file is part of UBIFS.
4 *
5 * Copyright (C) 2006-2008 Nokia Corporation.
6 *
7 * Authors: Adrian Hunter
8 *          Artem Bityutskiy (���������������� ����������)
9 */
10
11/* This file implements TNC functions for committing */
12
13#include <linux/random.h>
14#include "ubifs.h"
15
16/**
17 * make_idx_node - make an index node for fill-the-gaps method of TNC commit.
18 * @c: UBIFS file-system description object
19 * @idx: buffer in which to place new index node
20 * @znode: znode from which to make new index node
21 * @lnum: LEB number where new index node will be written
22 * @offs: offset where new index node will be written
23 * @len: length of new index node
24 */
25static int make_idx_node(struct ubifs_info *c, struct ubifs_idx_node *idx,
26			 struct ubifs_znode *znode, int lnum, int offs, int len)
27{
28	struct ubifs_znode *zp;
29	u8 hash[UBIFS_HASH_ARR_SZ];
30	int i, err;
31
32	/* Make index node */
33	idx->ch.node_type = UBIFS_IDX_NODE;
34	idx->child_cnt = cpu_to_le16(znode->child_cnt);
35	idx->level = cpu_to_le16(znode->level);
36	for (i = 0; i < znode->child_cnt; i++) {
37		struct ubifs_branch *br = ubifs_idx_branch(c, idx, i);
38		struct ubifs_zbranch *zbr = &znode->zbranch[i];
39
40		key_write_idx(c, &zbr->key, &br->key);
41		br->lnum = cpu_to_le32(zbr->lnum);
42		br->offs = cpu_to_le32(zbr->offs);
43		br->len = cpu_to_le32(zbr->len);
44		ubifs_copy_hash(c, zbr->hash, ubifs_branch_hash(c, br));
45		if (!zbr->lnum || !zbr->len) {
46			ubifs_err(c, "bad ref in znode");
47			ubifs_dump_znode(c, znode);
48			if (zbr->znode)
49				ubifs_dump_znode(c, zbr->znode);
50
51			return -EINVAL;
52		}
53	}
54	ubifs_prepare_node(c, idx, len, 0);
55	ubifs_node_calc_hash(c, idx, hash);
56
57	znode->lnum = lnum;
58	znode->offs = offs;
59	znode->len = len;
60
61	err = insert_old_idx_znode(c, znode);
62
63	/* Update the parent */
64	zp = znode->parent;
65	if (zp) {
66		struct ubifs_zbranch *zbr;
67
68		zbr = &zp->zbranch[znode->iip];
69		zbr->lnum = lnum;
70		zbr->offs = offs;
71		zbr->len = len;
72		ubifs_copy_hash(c, hash, zbr->hash);
73	} else {
74		c->zroot.lnum = lnum;
75		c->zroot.offs = offs;
76		c->zroot.len = len;
77		ubifs_copy_hash(c, hash, c->zroot.hash);
78	}
79	c->calc_idx_sz += ALIGN(len, 8);
80
81	atomic_long_dec(&c->dirty_zn_cnt);
82
83	ubifs_assert(c, ubifs_zn_dirty(znode));
84	ubifs_assert(c, ubifs_zn_cow(znode));
85
86	/*
87	 * Note, unlike 'write_index()' we do not add memory barriers here
88	 * because this function is called with @c->tnc_mutex locked.
89	 */
90	__clear_bit(DIRTY_ZNODE, &znode->flags);
91	__clear_bit(COW_ZNODE, &znode->flags);
92
93	return err;
94}
95
96/**
97 * fill_gap - make index nodes in gaps in dirty index LEBs.
98 * @c: UBIFS file-system description object
99 * @lnum: LEB number that gap appears in
100 * @gap_start: offset of start of gap
101 * @gap_end: offset of end of gap
102 * @dirt: adds dirty space to this
103 *
104 * This function returns the number of index nodes written into the gap.
105 */
106static int fill_gap(struct ubifs_info *c, int lnum, int gap_start, int gap_end,
107		    int *dirt)
108{
109	int len, gap_remains, gap_pos, written, pad_len;
110
111	ubifs_assert(c, (gap_start & 7) == 0);
112	ubifs_assert(c, (gap_end & 7) == 0);
113	ubifs_assert(c, gap_end >= gap_start);
114
115	gap_remains = gap_end - gap_start;
116	if (!gap_remains)
117		return 0;
118	gap_pos = gap_start;
119	written = 0;
120	while (c->enext) {
121		len = ubifs_idx_node_sz(c, c->enext->child_cnt);
122		if (len < gap_remains) {
123			struct ubifs_znode *znode = c->enext;
124			const int alen = ALIGN(len, 8);
125			int err;
126
127			ubifs_assert(c, alen <= gap_remains);
128			err = make_idx_node(c, c->ileb_buf + gap_pos, znode,
129					    lnum, gap_pos, len);
130			if (err)
131				return err;
132			gap_remains -= alen;
133			gap_pos += alen;
134			c->enext = znode->cnext;
135			if (c->enext == c->cnext)
136				c->enext = NULL;
137			written += 1;
138		} else
139			break;
140	}
141	if (gap_end == c->leb_size) {
142		c->ileb_len = ALIGN(gap_pos, c->min_io_size);
143		/* Pad to end of min_io_size */
144		pad_len = c->ileb_len - gap_pos;
145	} else
146		/* Pad to end of gap */
147		pad_len = gap_remains;
148	dbg_gc("LEB %d:%d to %d len %d nodes written %d wasted bytes %d",
149	       lnum, gap_start, gap_end, gap_end - gap_start, written, pad_len);
150	ubifs_pad(c, c->ileb_buf + gap_pos, pad_len);
151	*dirt += pad_len;
152	return written;
153}
154
155/**
156 * find_old_idx - find an index node obsoleted since the last commit start.
157 * @c: UBIFS file-system description object
158 * @lnum: LEB number of obsoleted index node
159 * @offs: offset of obsoleted index node
160 *
161 * Returns %1 if found and %0 otherwise.
162 */
163static int find_old_idx(struct ubifs_info *c, int lnum, int offs)
164{
165	struct ubifs_old_idx *o;
166	struct rb_node *p;
167
168	p = c->old_idx.rb_node;
169	while (p) {
170		o = rb_entry(p, struct ubifs_old_idx, rb);
171		if (lnum < o->lnum)
172			p = p->rb_left;
173		else if (lnum > o->lnum)
174			p = p->rb_right;
175		else if (offs < o->offs)
176			p = p->rb_left;
177		else if (offs > o->offs)
178			p = p->rb_right;
179		else
180			return 1;
181	}
182	return 0;
183}
184
185/**
186 * is_idx_node_in_use - determine if an index node can be overwritten.
187 * @c: UBIFS file-system description object
188 * @key: key of index node
189 * @level: index node level
190 * @lnum: LEB number of index node
191 * @offs: offset of index node
192 *
193 * If @key / @lnum / @offs identify an index node that was not part of the old
194 * index, then this function returns %0 (obsolete).  Else if the index node was
195 * part of the old index but is now dirty %1 is returned, else if it is clean %2
196 * is returned. A negative error code is returned on failure.
197 */
198static int is_idx_node_in_use(struct ubifs_info *c, union ubifs_key *key,
199			      int level, int lnum, int offs)
200{
201	int ret;
202
203	ret = is_idx_node_in_tnc(c, key, level, lnum, offs);
204	if (ret < 0)
205		return ret; /* Error code */
206	if (ret == 0)
207		if (find_old_idx(c, lnum, offs))
208			return 1;
209	return ret;
210}
211
212/**
213 * layout_leb_in_gaps - layout index nodes using in-the-gaps method.
214 * @c: UBIFS file-system description object
215 * @p: return LEB number in @c->gap_lebs[p]
216 *
217 * This function lays out new index nodes for dirty znodes using in-the-gaps
218 * method of TNC commit.
219 * This function merely puts the next znode into the next gap, making no attempt
220 * to try to maximise the number of znodes that fit.
221 * This function returns the number of index nodes written into the gaps, or a
222 * negative error code on failure.
223 */
224static int layout_leb_in_gaps(struct ubifs_info *c, int p)
225{
226	struct ubifs_scan_leb *sleb;
227	struct ubifs_scan_node *snod;
228	int lnum, dirt = 0, gap_start, gap_end, err, written, tot_written;
229
230	tot_written = 0;
231	/* Get an index LEB with lots of obsolete index nodes */
232	lnum = ubifs_find_dirty_idx_leb(c);
233	if (lnum < 0)
234		/*
235		 * There also may be dirt in the index head that could be
236		 * filled, however we do not check there at present.
237		 */
238		return lnum; /* Error code */
239	c->gap_lebs[p] = lnum;
240	dbg_gc("LEB %d", lnum);
241	/*
242	 * Scan the index LEB.  We use the generic scan for this even though
243	 * it is more comprehensive and less efficient than is needed for this
244	 * purpose.
245	 */
246	sleb = ubifs_scan(c, lnum, 0, c->ileb_buf, 0);
247	c->ileb_len = 0;
248	if (IS_ERR(sleb))
249		return PTR_ERR(sleb);
250	gap_start = 0;
251	list_for_each_entry(snod, &sleb->nodes, list) {
252		struct ubifs_idx_node *idx;
253		int in_use, level;
254
255		ubifs_assert(c, snod->type == UBIFS_IDX_NODE);
256		idx = snod->node;
257		key_read(c, ubifs_idx_key(c, idx), &snod->key);
258		level = le16_to_cpu(idx->level);
259		/* Determine if the index node is in use (not obsolete) */
260		in_use = is_idx_node_in_use(c, &snod->key, level, lnum,
261					    snod->offs);
262		if (in_use < 0) {
263			ubifs_scan_destroy(sleb);
264			return in_use; /* Error code */
265		}
266		if (in_use) {
267			if (in_use == 1)
268				dirt += ALIGN(snod->len, 8);
269			/*
270			 * The obsolete index nodes form gaps that can be
271			 * overwritten.  This gap has ended because we have
272			 * found an index node that is still in use
273			 * i.e. not obsolete
274			 */
275			gap_end = snod->offs;
276			/* Try to fill gap */
277			written = fill_gap(c, lnum, gap_start, gap_end, &dirt);
278			if (written < 0) {
279				ubifs_scan_destroy(sleb);
280				return written; /* Error code */
281			}
282			tot_written += written;
283			gap_start = ALIGN(snod->offs + snod->len, 8);
284		}
285	}
286	ubifs_scan_destroy(sleb);
287	c->ileb_len = c->leb_size;
288	gap_end = c->leb_size;
289	/* Try to fill gap */
290	written = fill_gap(c, lnum, gap_start, gap_end, &dirt);
291	if (written < 0)
292		return written; /* Error code */
293	tot_written += written;
294	if (tot_written == 0) {
295		struct ubifs_lprops lp;
296
297		dbg_gc("LEB %d wrote %d index nodes", lnum, tot_written);
298		err = ubifs_read_one_lp(c, lnum, &lp);
299		if (err)
300			return err;
301		if (lp.free == c->leb_size) {
302			/*
303			 * We must have snatched this LEB from the idx_gc list
304			 * so we need to correct the free and dirty space.
305			 */
306			err = ubifs_change_one_lp(c, lnum,
307						  c->leb_size - c->ileb_len,
308						  dirt, 0, 0, 0);
309			if (err)
310				return err;
311		}
312		return 0;
313	}
314	err = ubifs_change_one_lp(c, lnum, c->leb_size - c->ileb_len, dirt,
315				  0, 0, 0);
316	if (err)
317		return err;
318	err = ubifs_leb_change(c, lnum, c->ileb_buf, c->ileb_len);
319	if (err)
320		return err;
321	dbg_gc("LEB %d wrote %d index nodes", lnum, tot_written);
322	return tot_written;
323}
324
325/**
326 * get_leb_cnt - calculate the number of empty LEBs needed to commit.
327 * @c: UBIFS file-system description object
328 * @cnt: number of znodes to commit
329 *
330 * This function returns the number of empty LEBs needed to commit @cnt znodes
331 * to the current index head.  The number is not exact and may be more than
332 * needed.
333 */
334static int get_leb_cnt(struct ubifs_info *c, int cnt)
335{
336	int d;
337
338	/* Assume maximum index node size (i.e. overestimate space needed) */
339	cnt -= (c->leb_size - c->ihead_offs) / c->max_idx_node_sz;
340	if (cnt < 0)
341		cnt = 0;
342	d = c->leb_size / c->max_idx_node_sz;
343	return DIV_ROUND_UP(cnt, d);
344}
345
346/**
347 * layout_in_gaps - in-the-gaps method of committing TNC.
348 * @c: UBIFS file-system description object
349 * @cnt: number of dirty znodes to commit.
350 *
351 * This function lays out new index nodes for dirty znodes using in-the-gaps
352 * method of TNC commit.
353 *
354 * This function returns %0 on success and a negative error code on failure.
355 */
356static int layout_in_gaps(struct ubifs_info *c, int cnt)
357{
358	int err, leb_needed_cnt, written, p = 0, old_idx_lebs, *gap_lebs;
359
360	dbg_gc("%d znodes to write", cnt);
361
362	c->gap_lebs = kmalloc_array(c->lst.idx_lebs + 1, sizeof(int),
363				    GFP_NOFS);
364	if (!c->gap_lebs)
365		return -ENOMEM;
366
367	old_idx_lebs = c->lst.idx_lebs;
368	do {
369		ubifs_assert(c, p < c->lst.idx_lebs);
370		written = layout_leb_in_gaps(c, p);
371		if (written < 0) {
372			err = written;
373			if (err != -ENOSPC) {
374				kfree(c->gap_lebs);
375				c->gap_lebs = NULL;
376				return err;
377			}
378			if (!dbg_is_chk_index(c)) {
379				/*
380				 * Do not print scary warnings if the debugging
381				 * option which forces in-the-gaps is enabled.
382				 */
383				ubifs_warn(c, "out of space");
384				ubifs_dump_budg(c, &c->bi);
385				ubifs_dump_lprops(c);
386			}
387			/* Try to commit anyway */
388			break;
389		}
390		p++;
391		cnt -= written;
392		leb_needed_cnt = get_leb_cnt(c, cnt);
393		dbg_gc("%d znodes remaining, need %d LEBs, have %d", cnt,
394		       leb_needed_cnt, c->ileb_cnt);
395		/*
396		 * Dynamically change the size of @c->gap_lebs to prevent
397		 * oob, because @c->lst.idx_lebs could be increased by
398		 * function @get_idx_gc_leb (called by layout_leb_in_gaps->
399		 * ubifs_find_dirty_idx_leb) during loop. Only enlarge
400		 * @c->gap_lebs when needed.
401		 *
402		 */
403		if (leb_needed_cnt > c->ileb_cnt && p >= old_idx_lebs &&
404		    old_idx_lebs < c->lst.idx_lebs) {
405			old_idx_lebs = c->lst.idx_lebs;
406			gap_lebs = krealloc(c->gap_lebs, sizeof(int) *
407					       (old_idx_lebs + 1), GFP_NOFS);
408			if (!gap_lebs) {
409				kfree(c->gap_lebs);
410				c->gap_lebs = NULL;
411				return -ENOMEM;
412			}
413			c->gap_lebs = gap_lebs;
414		}
415	} while (leb_needed_cnt > c->ileb_cnt);
416
417	c->gap_lebs[p] = -1;
418	return 0;
419}
420
421/**
422 * layout_in_empty_space - layout index nodes in empty space.
423 * @c: UBIFS file-system description object
424 *
425 * This function lays out new index nodes for dirty znodes using empty LEBs.
426 *
427 * This function returns %0 on success and a negative error code on failure.
428 */
429static int layout_in_empty_space(struct ubifs_info *c)
430{
431	struct ubifs_znode *znode, *cnext, *zp;
432	int lnum, offs, len, next_len, buf_len, buf_offs, used, avail;
433	int wlen, blen, err;
434
435	cnext = c->enext;
436	if (!cnext)
437		return 0;
438
439	lnum = c->ihead_lnum;
440	buf_offs = c->ihead_offs;
441
442	buf_len = ubifs_idx_node_sz(c, c->fanout);
443	buf_len = ALIGN(buf_len, c->min_io_size);
444	used = 0;
445	avail = buf_len;
446
447	/* Ensure there is enough room for first write */
448	next_len = ubifs_idx_node_sz(c, cnext->child_cnt);
449	if (buf_offs + next_len > c->leb_size)
450		lnum = -1;
451
452	while (1) {
453		znode = cnext;
454
455		len = ubifs_idx_node_sz(c, znode->child_cnt);
456
457		/* Determine the index node position */
458		if (lnum == -1) {
459			if (c->ileb_nxt >= c->ileb_cnt) {
460				ubifs_err(c, "out of space");
461				return -ENOSPC;
462			}
463			lnum = c->ilebs[c->ileb_nxt++];
464			buf_offs = 0;
465			used = 0;
466			avail = buf_len;
467		}
468
469		offs = buf_offs + used;
470
471		znode->lnum = lnum;
472		znode->offs = offs;
473		znode->len = len;
474
475		/* Update the parent */
476		zp = znode->parent;
477		if (zp) {
478			struct ubifs_zbranch *zbr;
479			int i;
480
481			i = znode->iip;
482			zbr = &zp->zbranch[i];
483			zbr->lnum = lnum;
484			zbr->offs = offs;
485			zbr->len = len;
486		} else {
487			c->zroot.lnum = lnum;
488			c->zroot.offs = offs;
489			c->zroot.len = len;
490		}
491		c->calc_idx_sz += ALIGN(len, 8);
492
493		/*
494		 * Once lprops is updated, we can decrease the dirty znode count
495		 * but it is easier to just do it here.
496		 */
497		atomic_long_dec(&c->dirty_zn_cnt);
498
499		/*
500		 * Calculate the next index node length to see if there is
501		 * enough room for it
502		 */
503		cnext = znode->cnext;
504		if (cnext == c->cnext)
505			next_len = 0;
506		else
507			next_len = ubifs_idx_node_sz(c, cnext->child_cnt);
508
509		/* Update buffer positions */
510		wlen = used + len;
511		used += ALIGN(len, 8);
512		avail -= ALIGN(len, 8);
513
514		if (next_len != 0 &&
515		    buf_offs + used + next_len <= c->leb_size &&
516		    avail > 0)
517			continue;
518
519		if (avail <= 0 && next_len &&
520		    buf_offs + used + next_len <= c->leb_size)
521			blen = buf_len;
522		else
523			blen = ALIGN(wlen, c->min_io_size);
524
525		/* The buffer is full or there are no more znodes to do */
526		buf_offs += blen;
527		if (next_len) {
528			if (buf_offs + next_len > c->leb_size) {
529				err = ubifs_update_one_lp(c, lnum,
530					c->leb_size - buf_offs, blen - used,
531					0, 0);
532				if (err)
533					return err;
534				lnum = -1;
535			}
536			used -= blen;
537			if (used < 0)
538				used = 0;
539			avail = buf_len - used;
540			continue;
541		}
542		err = ubifs_update_one_lp(c, lnum, c->leb_size - buf_offs,
543					  blen - used, 0, 0);
544		if (err)
545			return err;
546		break;
547	}
548
549	c->dbg->new_ihead_lnum = lnum;
550	c->dbg->new_ihead_offs = buf_offs;
551
552	return 0;
553}
554
555/**
556 * layout_commit - determine positions of index nodes to commit.
557 * @c: UBIFS file-system description object
558 * @no_space: indicates that insufficient empty LEBs were allocated
559 * @cnt: number of znodes to commit
560 *
561 * Calculate and update the positions of index nodes to commit.  If there were
562 * an insufficient number of empty LEBs allocated, then index nodes are placed
563 * into the gaps created by obsolete index nodes in non-empty index LEBs.  For
564 * this purpose, an obsolete index node is one that was not in the index as at
565 * the end of the last commit.  To write "in-the-gaps" requires that those index
566 * LEBs are updated atomically in-place.
567 */
568static int layout_commit(struct ubifs_info *c, int no_space, int cnt)
569{
570	int err;
571
572	if (no_space) {
573		err = layout_in_gaps(c, cnt);
574		if (err)
575			return err;
576	}
577	err = layout_in_empty_space(c);
578	return err;
579}
580
581/**
582 * find_first_dirty - find first dirty znode.
583 * @znode: znode to begin searching from
584 */
585static struct ubifs_znode *find_first_dirty(struct ubifs_znode *znode)
586{
587	int i, cont;
588
589	if (!znode)
590		return NULL;
591
592	while (1) {
593		if (znode->level == 0) {
594			if (ubifs_zn_dirty(znode))
595				return znode;
596			return NULL;
597		}
598		cont = 0;
599		for (i = 0; i < znode->child_cnt; i++) {
600			struct ubifs_zbranch *zbr = &znode->zbranch[i];
601
602			if (zbr->znode && ubifs_zn_dirty(zbr->znode)) {
603				znode = zbr->znode;
604				cont = 1;
605				break;
606			}
607		}
608		if (!cont) {
609			if (ubifs_zn_dirty(znode))
610				return znode;
611			return NULL;
612		}
613	}
614}
615
616/**
617 * find_next_dirty - find next dirty znode.
618 * @znode: znode to begin searching from
619 */
620static struct ubifs_znode *find_next_dirty(struct ubifs_znode *znode)
621{
622	int n = znode->iip + 1;
623
624	znode = znode->parent;
625	if (!znode)
626		return NULL;
627	for (; n < znode->child_cnt; n++) {
628		struct ubifs_zbranch *zbr = &znode->zbranch[n];
629
630		if (zbr->znode && ubifs_zn_dirty(zbr->znode))
631			return find_first_dirty(zbr->znode);
632	}
633	return znode;
634}
635
636/**
637 * get_znodes_to_commit - create list of dirty znodes to commit.
638 * @c: UBIFS file-system description object
639 *
640 * This function returns the number of znodes to commit.
641 */
642static int get_znodes_to_commit(struct ubifs_info *c)
643{
644	struct ubifs_znode *znode, *cnext;
645	int cnt = 0;
646
647	c->cnext = find_first_dirty(c->zroot.znode);
648	znode = c->enext = c->cnext;
649	if (!znode) {
650		dbg_cmt("no znodes to commit");
651		return 0;
652	}
653	cnt += 1;
654	while (1) {
655		ubifs_assert(c, !ubifs_zn_cow(znode));
656		__set_bit(COW_ZNODE, &znode->flags);
657		znode->alt = 0;
658		cnext = find_next_dirty(znode);
659		if (!cnext) {
660			znode->cnext = c->cnext;
661			break;
662		}
663		znode->cparent = znode->parent;
664		znode->ciip = znode->iip;
665		znode->cnext = cnext;
666		znode = cnext;
667		cnt += 1;
668	}
669	dbg_cmt("committing %d znodes", cnt);
670	ubifs_assert(c, cnt == atomic_long_read(&c->dirty_zn_cnt));
671	return cnt;
672}
673
674/**
675 * alloc_idx_lebs - allocate empty LEBs to be used to commit.
676 * @c: UBIFS file-system description object
677 * @cnt: number of znodes to commit
678 *
679 * This function returns %-ENOSPC if it cannot allocate a sufficient number of
680 * empty LEBs.  %0 is returned on success, otherwise a negative error code
681 * is returned.
682 */
683static int alloc_idx_lebs(struct ubifs_info *c, int cnt)
684{
685	int i, leb_cnt, lnum;
686
687	c->ileb_cnt = 0;
688	c->ileb_nxt = 0;
689	leb_cnt = get_leb_cnt(c, cnt);
690	dbg_cmt("need about %d empty LEBS for TNC commit", leb_cnt);
691	if (!leb_cnt)
692		return 0;
693	c->ilebs = kmalloc_array(leb_cnt, sizeof(int), GFP_NOFS);
694	if (!c->ilebs)
695		return -ENOMEM;
696	for (i = 0; i < leb_cnt; i++) {
697		lnum = ubifs_find_free_leb_for_idx(c);
698		if (lnum < 0)
699			return lnum;
700		c->ilebs[c->ileb_cnt++] = lnum;
701		dbg_cmt("LEB %d", lnum);
702	}
703	if (dbg_is_chk_index(c) && !get_random_u32_below(8))
704		return -ENOSPC;
705	return 0;
706}
707
708/**
709 * free_unused_idx_lebs - free unused LEBs that were allocated for the commit.
710 * @c: UBIFS file-system description object
711 *
712 * It is possible that we allocate more empty LEBs for the commit than we need.
713 * This functions frees the surplus.
714 *
715 * This function returns %0 on success and a negative error code on failure.
716 */
717static int free_unused_idx_lebs(struct ubifs_info *c)
718{
719	int i, err = 0, lnum, er;
720
721	for (i = c->ileb_nxt; i < c->ileb_cnt; i++) {
722		lnum = c->ilebs[i];
723		dbg_cmt("LEB %d", lnum);
724		er = ubifs_change_one_lp(c, lnum, LPROPS_NC, LPROPS_NC, 0,
725					 LPROPS_INDEX | LPROPS_TAKEN, 0);
726		if (!err)
727			err = er;
728	}
729	return err;
730}
731
732/**
733 * free_idx_lebs - free unused LEBs after commit end.
734 * @c: UBIFS file-system description object
735 *
736 * This function returns %0 on success and a negative error code on failure.
737 */
738static int free_idx_lebs(struct ubifs_info *c)
739{
740	int err;
741
742	err = free_unused_idx_lebs(c);
743	kfree(c->ilebs);
744	c->ilebs = NULL;
745	return err;
746}
747
748/**
749 * ubifs_tnc_start_commit - start TNC commit.
750 * @c: UBIFS file-system description object
751 * @zroot: new index root position is returned here
752 *
753 * This function prepares the list of indexing nodes to commit and lays out
754 * their positions on flash. If there is not enough free space it uses the
755 * in-gap commit method. Returns zero in case of success and a negative error
756 * code in case of failure.
757 */
758int ubifs_tnc_start_commit(struct ubifs_info *c, struct ubifs_zbranch *zroot)
759{
760	int err = 0, cnt;
761
762	mutex_lock(&c->tnc_mutex);
763	err = dbg_check_tnc(c, 1);
764	if (err)
765		goto out;
766	cnt = get_znodes_to_commit(c);
767	if (cnt != 0) {
768		int no_space = 0;
769
770		err = alloc_idx_lebs(c, cnt);
771		if (err == -ENOSPC)
772			no_space = 1;
773		else if (err)
774			goto out_free;
775		err = layout_commit(c, no_space, cnt);
776		if (err)
777			goto out_free;
778		ubifs_assert(c, atomic_long_read(&c->dirty_zn_cnt) == 0);
779		err = free_unused_idx_lebs(c);
780		if (err)
781			goto out;
782	}
783	destroy_old_idx(c);
784	memcpy(zroot, &c->zroot, sizeof(struct ubifs_zbranch));
785
786	err = ubifs_save_dirty_idx_lnums(c);
787	if (err)
788		goto out;
789
790	spin_lock(&c->space_lock);
791	/*
792	 * Although we have not finished committing yet, update size of the
793	 * committed index ('c->bi.old_idx_sz') and zero out the index growth
794	 * budget. It is OK to do this now, because we've reserved all the
795	 * space which is needed to commit the index, and it is save for the
796	 * budgeting subsystem to assume the index is already committed,
797	 * even though it is not.
798	 */
799	ubifs_assert(c, c->bi.min_idx_lebs == ubifs_calc_min_idx_lebs(c));
800	c->bi.old_idx_sz = c->calc_idx_sz;
801	c->bi.uncommitted_idx = 0;
802	c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
803	spin_unlock(&c->space_lock);
804	mutex_unlock(&c->tnc_mutex);
805
806	dbg_cmt("number of index LEBs %d", c->lst.idx_lebs);
807	dbg_cmt("size of index %llu", c->calc_idx_sz);
808	return err;
809
810out_free:
811	free_idx_lebs(c);
812out:
813	mutex_unlock(&c->tnc_mutex);
814	return err;
815}
816
817/**
818 * write_index - write index nodes.
819 * @c: UBIFS file-system description object
820 *
821 * This function writes the index nodes whose positions were laid out in the
822 * layout_in_empty_space function.
823 */
824static int write_index(struct ubifs_info *c)
825{
826	struct ubifs_idx_node *idx;
827	struct ubifs_znode *znode, *cnext;
828	int i, lnum, offs, len, next_len, buf_len, buf_offs, used;
829	int avail, wlen, err, lnum_pos = 0, blen, nxt_offs;
830
831	cnext = c->enext;
832	if (!cnext)
833		return 0;
834
835	/*
836	 * Always write index nodes to the index head so that index nodes and
837	 * other types of nodes are never mixed in the same erase block.
838	 */
839	lnum = c->ihead_lnum;
840	buf_offs = c->ihead_offs;
841
842	/* Allocate commit buffer */
843	buf_len = ALIGN(c->max_idx_node_sz, c->min_io_size);
844	used = 0;
845	avail = buf_len;
846
847	/* Ensure there is enough room for first write */
848	next_len = ubifs_idx_node_sz(c, cnext->child_cnt);
849	if (buf_offs + next_len > c->leb_size) {
850		err = ubifs_update_one_lp(c, lnum, LPROPS_NC, 0, 0,
851					  LPROPS_TAKEN);
852		if (err)
853			return err;
854		lnum = -1;
855	}
856
857	while (1) {
858		u8 hash[UBIFS_HASH_ARR_SZ];
859
860		cond_resched();
861
862		znode = cnext;
863		idx = c->cbuf + used;
864
865		/* Make index node */
866		idx->ch.node_type = UBIFS_IDX_NODE;
867		idx->child_cnt = cpu_to_le16(znode->child_cnt);
868		idx->level = cpu_to_le16(znode->level);
869		for (i = 0; i < znode->child_cnt; i++) {
870			struct ubifs_branch *br = ubifs_idx_branch(c, idx, i);
871			struct ubifs_zbranch *zbr = &znode->zbranch[i];
872
873			key_write_idx(c, &zbr->key, &br->key);
874			br->lnum = cpu_to_le32(zbr->lnum);
875			br->offs = cpu_to_le32(zbr->offs);
876			br->len = cpu_to_le32(zbr->len);
877			ubifs_copy_hash(c, zbr->hash, ubifs_branch_hash(c, br));
878			if (!zbr->lnum || !zbr->len) {
879				ubifs_err(c, "bad ref in znode");
880				ubifs_dump_znode(c, znode);
881				if (zbr->znode)
882					ubifs_dump_znode(c, zbr->znode);
883
884				return -EINVAL;
885			}
886		}
887		len = ubifs_idx_node_sz(c, znode->child_cnt);
888		ubifs_prepare_node(c, idx, len, 0);
889		ubifs_node_calc_hash(c, idx, hash);
890
891		mutex_lock(&c->tnc_mutex);
892
893		if (znode->cparent)
894			ubifs_copy_hash(c, hash,
895					znode->cparent->zbranch[znode->ciip].hash);
896
897		if (znode->parent) {
898			if (!ubifs_zn_obsolete(znode))
899				ubifs_copy_hash(c, hash,
900					znode->parent->zbranch[znode->iip].hash);
901		} else {
902			ubifs_copy_hash(c, hash, c->zroot.hash);
903		}
904
905		mutex_unlock(&c->tnc_mutex);
906
907		/* Determine the index node position */
908		if (lnum == -1) {
909			lnum = c->ilebs[lnum_pos++];
910			buf_offs = 0;
911			used = 0;
912			avail = buf_len;
913		}
914		offs = buf_offs + used;
915
916		if (lnum != znode->lnum || offs != znode->offs ||
917		    len != znode->len) {
918			ubifs_err(c, "inconsistent znode posn");
919			return -EINVAL;
920		}
921
922		/* Grab some stuff from znode while we still can */
923		cnext = znode->cnext;
924
925		ubifs_assert(c, ubifs_zn_dirty(znode));
926		ubifs_assert(c, ubifs_zn_cow(znode));
927
928		/*
929		 * It is important that other threads should see %DIRTY_ZNODE
930		 * flag cleared before %COW_ZNODE. Specifically, it matters in
931		 * the 'dirty_cow_znode()' function. This is the reason for the
932		 * first barrier. Also, we want the bit changes to be seen to
933		 * other threads ASAP, to avoid unnecessary copying, which is
934		 * the reason for the second barrier.
935		 */
936		clear_bit(DIRTY_ZNODE, &znode->flags);
937		smp_mb__before_atomic();
938		clear_bit(COW_ZNODE, &znode->flags);
939		smp_mb__after_atomic();
940
941		/*
942		 * We have marked the znode as clean but have not updated the
943		 * @c->clean_zn_cnt counter. If this znode becomes dirty again
944		 * before 'free_obsolete_znodes()' is called, then
945		 * @c->clean_zn_cnt will be decremented before it gets
946		 * incremented (resulting in 2 decrements for the same znode).
947		 * This means that @c->clean_zn_cnt may become negative for a
948		 * while.
949		 *
950		 * Q: why we cannot increment @c->clean_zn_cnt?
951		 * A: because we do not have the @c->tnc_mutex locked, and the
952		 *    following code would be racy and buggy:
953		 *
954		 *    if (!ubifs_zn_obsolete(znode)) {
955		 *            atomic_long_inc(&c->clean_zn_cnt);
956		 *            atomic_long_inc(&ubifs_clean_zn_cnt);
957		 *    }
958		 *
959		 *    Thus, we just delay the @c->clean_zn_cnt update until we
960		 *    have the mutex locked.
961		 */
962
963		/* Do not access znode from this point on */
964
965		/* Update buffer positions */
966		wlen = used + len;
967		used += ALIGN(len, 8);
968		avail -= ALIGN(len, 8);
969
970		/*
971		 * Calculate the next index node length to see if there is
972		 * enough room for it
973		 */
974		if (cnext == c->cnext)
975			next_len = 0;
976		else
977			next_len = ubifs_idx_node_sz(c, cnext->child_cnt);
978
979		nxt_offs = buf_offs + used + next_len;
980		if (next_len && nxt_offs <= c->leb_size) {
981			if (avail > 0)
982				continue;
983			else
984				blen = buf_len;
985		} else {
986			wlen = ALIGN(wlen, 8);
987			blen = ALIGN(wlen, c->min_io_size);
988			ubifs_pad(c, c->cbuf + wlen, blen - wlen);
989		}
990
991		/* The buffer is full or there are no more znodes to do */
992		err = ubifs_leb_write(c, lnum, c->cbuf, buf_offs, blen);
993		if (err)
994			return err;
995		buf_offs += blen;
996		if (next_len) {
997			if (nxt_offs > c->leb_size) {
998				err = ubifs_update_one_lp(c, lnum, LPROPS_NC, 0,
999							  0, LPROPS_TAKEN);
1000				if (err)
1001					return err;
1002				lnum = -1;
1003			}
1004			used -= blen;
1005			if (used < 0)
1006				used = 0;
1007			avail = buf_len - used;
1008			memmove(c->cbuf, c->cbuf + blen, used);
1009			continue;
1010		}
1011		break;
1012	}
1013
1014	if (lnum != c->dbg->new_ihead_lnum ||
1015	    buf_offs != c->dbg->new_ihead_offs) {
1016		ubifs_err(c, "inconsistent ihead");
1017		return -EINVAL;
1018	}
1019
1020	c->ihead_lnum = lnum;
1021	c->ihead_offs = buf_offs;
1022
1023	return 0;
1024}
1025
1026/**
1027 * free_obsolete_znodes - free obsolete znodes.
1028 * @c: UBIFS file-system description object
1029 *
1030 * At the end of commit end, obsolete znodes are freed.
1031 */
1032static void free_obsolete_znodes(struct ubifs_info *c)
1033{
1034	struct ubifs_znode *znode, *cnext;
1035
1036	cnext = c->cnext;
1037	do {
1038		znode = cnext;
1039		cnext = znode->cnext;
1040		if (ubifs_zn_obsolete(znode))
1041			kfree(znode);
1042		else {
1043			znode->cnext = NULL;
1044			atomic_long_inc(&c->clean_zn_cnt);
1045			atomic_long_inc(&ubifs_clean_zn_cnt);
1046		}
1047	} while (cnext != c->cnext);
1048}
1049
1050/**
1051 * return_gap_lebs - return LEBs used by the in-gap commit method.
1052 * @c: UBIFS file-system description object
1053 *
1054 * This function clears the "taken" flag for the LEBs which were used by the
1055 * "commit in-the-gaps" method.
1056 */
1057static int return_gap_lebs(struct ubifs_info *c)
1058{
1059	int *p, err;
1060
1061	if (!c->gap_lebs)
1062		return 0;
1063
1064	dbg_cmt("");
1065	for (p = c->gap_lebs; *p != -1; p++) {
1066		err = ubifs_change_one_lp(c, *p, LPROPS_NC, LPROPS_NC, 0,
1067					  LPROPS_TAKEN, 0);
1068		if (err)
1069			return err;
1070	}
1071
1072	kfree(c->gap_lebs);
1073	c->gap_lebs = NULL;
1074	return 0;
1075}
1076
1077/**
1078 * ubifs_tnc_end_commit - update the TNC for commit end.
1079 * @c: UBIFS file-system description object
1080 *
1081 * Write the dirty znodes.
1082 */
1083int ubifs_tnc_end_commit(struct ubifs_info *c)
1084{
1085	int err;
1086
1087	if (!c->cnext)
1088		return 0;
1089
1090	err = return_gap_lebs(c);
1091	if (err)
1092		return err;
1093
1094	err = write_index(c);
1095	if (err)
1096		return err;
1097
1098	mutex_lock(&c->tnc_mutex);
1099
1100	dbg_cmt("TNC height is %d", c->zroot.znode->level + 1);
1101
1102	free_obsolete_znodes(c);
1103
1104	c->cnext = NULL;
1105	kfree(c->ilebs);
1106	c->ilebs = NULL;
1107
1108	mutex_unlock(&c->tnc_mutex);
1109
1110	return 0;
1111}
1112