1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * This file is part of UBIFS.
4 *
5 * Copyright (C) 2006-2008 Nokia Corporation.
6 *
7 * Authors: Artem Bityutskiy (���������������� ����������)
8 *          Adrian Hunter
9 */
10
11/*
12 * This file implements UBIFS initialization and VFS superblock operations. Some
13 * initialization stuff which is rather large and complex is placed at
14 * corresponding subsystems, but most of it is here.
15 */
16
17#include <linux/init.h>
18#include <linux/slab.h>
19#include <linux/module.h>
20#include <linux/ctype.h>
21#include <linux/kthread.h>
22#include <linux/parser.h>
23#include <linux/seq_file.h>
24#include <linux/mount.h>
25#include <linux/math64.h>
26#include <linux/writeback.h>
27#include "ubifs.h"
28
29static int ubifs_default_version_set(const char *val, const struct kernel_param *kp)
30{
31	int n = 0, ret;
32
33	ret = kstrtoint(val, 10, &n);
34	if (ret != 0 || n < 4 || n > UBIFS_FORMAT_VERSION)
35		return -EINVAL;
36	return param_set_int(val, kp);
37}
38
39static const struct kernel_param_ops ubifs_default_version_ops = {
40	.set = ubifs_default_version_set,
41	.get = param_get_int,
42};
43
44int ubifs_default_version = UBIFS_FORMAT_VERSION;
45module_param_cb(default_version, &ubifs_default_version_ops, &ubifs_default_version, 0600);
46
47/*
48 * Maximum amount of memory we may 'kmalloc()' without worrying that we are
49 * allocating too much.
50 */
51#define UBIFS_KMALLOC_OK (128*1024)
52
53/* Slab cache for UBIFS inodes */
54static struct kmem_cache *ubifs_inode_slab;
55
56/* UBIFS TNC shrinker description */
57static struct shrinker *ubifs_shrinker_info;
58
59/**
60 * validate_inode - validate inode.
61 * @c: UBIFS file-system description object
62 * @inode: the inode to validate
63 *
64 * This is a helper function for 'ubifs_iget()' which validates various fields
65 * of a newly built inode to make sure they contain sane values and prevent
66 * possible vulnerabilities. Returns zero if the inode is all right and
67 * a non-zero error code if not.
68 */
69static int validate_inode(struct ubifs_info *c, const struct inode *inode)
70{
71	int err;
72	const struct ubifs_inode *ui = ubifs_inode(inode);
73
74	if (inode->i_size > c->max_inode_sz) {
75		ubifs_err(c, "inode is too large (%lld)",
76			  (long long)inode->i_size);
77		return 1;
78	}
79
80	if (ui->compr_type >= UBIFS_COMPR_TYPES_CNT) {
81		ubifs_err(c, "unknown compression type %d", ui->compr_type);
82		return 2;
83	}
84
85	if (ui->xattr_names + ui->xattr_cnt > XATTR_LIST_MAX)
86		return 3;
87
88	if (ui->data_len < 0 || ui->data_len > UBIFS_MAX_INO_DATA)
89		return 4;
90
91	if (ui->xattr && !S_ISREG(inode->i_mode))
92		return 5;
93
94	if (!ubifs_compr_present(c, ui->compr_type)) {
95		ubifs_warn(c, "inode %lu uses '%s' compression, but it was not compiled in",
96			   inode->i_ino, ubifs_compr_name(c, ui->compr_type));
97	}
98
99	err = dbg_check_dir(c, inode);
100	return err;
101}
102
103struct inode *ubifs_iget(struct super_block *sb, unsigned long inum)
104{
105	int err;
106	union ubifs_key key;
107	struct ubifs_ino_node *ino;
108	struct ubifs_info *c = sb->s_fs_info;
109	struct inode *inode;
110	struct ubifs_inode *ui;
111
112	dbg_gen("inode %lu", inum);
113
114	inode = iget_locked(sb, inum);
115	if (!inode)
116		return ERR_PTR(-ENOMEM);
117	if (!(inode->i_state & I_NEW))
118		return inode;
119	ui = ubifs_inode(inode);
120
121	ino = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS);
122	if (!ino) {
123		err = -ENOMEM;
124		goto out;
125	}
126
127	ino_key_init(c, &key, inode->i_ino);
128
129	err = ubifs_tnc_lookup(c, &key, ino);
130	if (err)
131		goto out_ino;
132
133	inode->i_flags |= S_NOCMTIME;
134
135	if (!IS_ENABLED(CONFIG_UBIFS_ATIME_SUPPORT))
136		inode->i_flags |= S_NOATIME;
137
138	set_nlink(inode, le32_to_cpu(ino->nlink));
139	i_uid_write(inode, le32_to_cpu(ino->uid));
140	i_gid_write(inode, le32_to_cpu(ino->gid));
141	inode_set_atime(inode, (int64_t)le64_to_cpu(ino->atime_sec),
142			le32_to_cpu(ino->atime_nsec));
143	inode_set_mtime(inode, (int64_t)le64_to_cpu(ino->mtime_sec),
144			le32_to_cpu(ino->mtime_nsec));
145	inode_set_ctime(inode, (int64_t)le64_to_cpu(ino->ctime_sec),
146			le32_to_cpu(ino->ctime_nsec));
147	inode->i_mode = le32_to_cpu(ino->mode);
148	inode->i_size = le64_to_cpu(ino->size);
149
150	ui->data_len    = le32_to_cpu(ino->data_len);
151	ui->flags       = le32_to_cpu(ino->flags);
152	ui->compr_type  = le16_to_cpu(ino->compr_type);
153	ui->creat_sqnum = le64_to_cpu(ino->creat_sqnum);
154	ui->xattr_cnt   = le32_to_cpu(ino->xattr_cnt);
155	ui->xattr_size  = le32_to_cpu(ino->xattr_size);
156	ui->xattr_names = le32_to_cpu(ino->xattr_names);
157	ui->synced_i_size = ui->ui_size = inode->i_size;
158
159	ui->xattr = (ui->flags & UBIFS_XATTR_FL) ? 1 : 0;
160
161	err = validate_inode(c, inode);
162	if (err)
163		goto out_invalid;
164
165	switch (inode->i_mode & S_IFMT) {
166	case S_IFREG:
167		inode->i_mapping->a_ops = &ubifs_file_address_operations;
168		inode->i_op = &ubifs_file_inode_operations;
169		inode->i_fop = &ubifs_file_operations;
170		if (ui->xattr) {
171			ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
172			if (!ui->data) {
173				err = -ENOMEM;
174				goto out_ino;
175			}
176			memcpy(ui->data, ino->data, ui->data_len);
177			((char *)ui->data)[ui->data_len] = '\0';
178		} else if (ui->data_len != 0) {
179			err = 10;
180			goto out_invalid;
181		}
182		break;
183	case S_IFDIR:
184		inode->i_op  = &ubifs_dir_inode_operations;
185		inode->i_fop = &ubifs_dir_operations;
186		if (ui->data_len != 0) {
187			err = 11;
188			goto out_invalid;
189		}
190		break;
191	case S_IFLNK:
192		inode->i_op = &ubifs_symlink_inode_operations;
193		if (ui->data_len <= 0 || ui->data_len > UBIFS_MAX_INO_DATA) {
194			err = 12;
195			goto out_invalid;
196		}
197		ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
198		if (!ui->data) {
199			err = -ENOMEM;
200			goto out_ino;
201		}
202		memcpy(ui->data, ino->data, ui->data_len);
203		((char *)ui->data)[ui->data_len] = '\0';
204		break;
205	case S_IFBLK:
206	case S_IFCHR:
207	{
208		dev_t rdev;
209		union ubifs_dev_desc *dev;
210
211		ui->data = kmalloc(sizeof(union ubifs_dev_desc), GFP_NOFS);
212		if (!ui->data) {
213			err = -ENOMEM;
214			goto out_ino;
215		}
216
217		dev = (union ubifs_dev_desc *)ino->data;
218		if (ui->data_len == sizeof(dev->new))
219			rdev = new_decode_dev(le32_to_cpu(dev->new));
220		else if (ui->data_len == sizeof(dev->huge))
221			rdev = huge_decode_dev(le64_to_cpu(dev->huge));
222		else {
223			err = 13;
224			goto out_invalid;
225		}
226		memcpy(ui->data, ino->data, ui->data_len);
227		inode->i_op = &ubifs_file_inode_operations;
228		init_special_inode(inode, inode->i_mode, rdev);
229		break;
230	}
231	case S_IFSOCK:
232	case S_IFIFO:
233		inode->i_op = &ubifs_file_inode_operations;
234		init_special_inode(inode, inode->i_mode, 0);
235		if (ui->data_len != 0) {
236			err = 14;
237			goto out_invalid;
238		}
239		break;
240	default:
241		err = 15;
242		goto out_invalid;
243	}
244
245	kfree(ino);
246	ubifs_set_inode_flags(inode);
247	unlock_new_inode(inode);
248	return inode;
249
250out_invalid:
251	ubifs_err(c, "inode %lu validation failed, error %d", inode->i_ino, err);
252	ubifs_dump_node(c, ino, UBIFS_MAX_INO_NODE_SZ);
253	ubifs_dump_inode(c, inode);
254	err = -EINVAL;
255out_ino:
256	kfree(ino);
257out:
258	ubifs_err(c, "failed to read inode %lu, error %d", inode->i_ino, err);
259	iget_failed(inode);
260	return ERR_PTR(err);
261}
262
263static struct inode *ubifs_alloc_inode(struct super_block *sb)
264{
265	struct ubifs_inode *ui;
266
267	ui = alloc_inode_sb(sb, ubifs_inode_slab, GFP_NOFS);
268	if (!ui)
269		return NULL;
270
271	memset((void *)ui + sizeof(struct inode), 0,
272	       sizeof(struct ubifs_inode) - sizeof(struct inode));
273	mutex_init(&ui->ui_mutex);
274	init_rwsem(&ui->xattr_sem);
275	spin_lock_init(&ui->ui_lock);
276	return &ui->vfs_inode;
277};
278
279static void ubifs_free_inode(struct inode *inode)
280{
281	struct ubifs_inode *ui = ubifs_inode(inode);
282
283	kfree(ui->data);
284	fscrypt_free_inode(inode);
285
286	kmem_cache_free(ubifs_inode_slab, ui);
287}
288
289/*
290 * Note, Linux write-back code calls this without 'i_mutex'.
291 */
292static int ubifs_write_inode(struct inode *inode, struct writeback_control *wbc)
293{
294	int err = 0;
295	struct ubifs_info *c = inode->i_sb->s_fs_info;
296	struct ubifs_inode *ui = ubifs_inode(inode);
297
298	ubifs_assert(c, !ui->xattr);
299	if (is_bad_inode(inode))
300		return 0;
301
302	mutex_lock(&ui->ui_mutex);
303	/*
304	 * Due to races between write-back forced by budgeting
305	 * (see 'sync_some_inodes()') and background write-back, the inode may
306	 * have already been synchronized, do not do this again. This might
307	 * also happen if it was synchronized in an VFS operation, e.g.
308	 * 'ubifs_link()'.
309	 */
310	if (!ui->dirty) {
311		mutex_unlock(&ui->ui_mutex);
312		return 0;
313	}
314
315	/*
316	 * As an optimization, do not write orphan inodes to the media just
317	 * because this is not needed.
318	 */
319	dbg_gen("inode %lu, mode %#x, nlink %u",
320		inode->i_ino, (int)inode->i_mode, inode->i_nlink);
321	if (inode->i_nlink) {
322		err = ubifs_jnl_write_inode(c, inode);
323		if (err)
324			ubifs_err(c, "can't write inode %lu, error %d",
325				  inode->i_ino, err);
326		else
327			err = dbg_check_inode_size(c, inode, ui->ui_size);
328	}
329
330	ui->dirty = 0;
331	mutex_unlock(&ui->ui_mutex);
332	ubifs_release_dirty_inode_budget(c, ui);
333	return err;
334}
335
336static int ubifs_drop_inode(struct inode *inode)
337{
338	int drop = generic_drop_inode(inode);
339
340	if (!drop)
341		drop = fscrypt_drop_inode(inode);
342
343	return drop;
344}
345
346static void ubifs_evict_inode(struct inode *inode)
347{
348	int err;
349	struct ubifs_info *c = inode->i_sb->s_fs_info;
350	struct ubifs_inode *ui = ubifs_inode(inode);
351
352	if (ui->xattr)
353		/*
354		 * Extended attribute inode deletions are fully handled in
355		 * 'ubifs_removexattr()'. These inodes are special and have
356		 * limited usage, so there is nothing to do here.
357		 */
358		goto out;
359
360	dbg_gen("inode %lu, mode %#x", inode->i_ino, (int)inode->i_mode);
361	ubifs_assert(c, !atomic_read(&inode->i_count));
362
363	truncate_inode_pages_final(&inode->i_data);
364
365	if (inode->i_nlink)
366		goto done;
367
368	if (is_bad_inode(inode))
369		goto out;
370
371	ui->ui_size = inode->i_size = 0;
372	err = ubifs_jnl_delete_inode(c, inode);
373	if (err)
374		/*
375		 * Worst case we have a lost orphan inode wasting space, so a
376		 * simple error message is OK here.
377		 */
378		ubifs_err(c, "can't delete inode %lu, error %d",
379			  inode->i_ino, err);
380
381out:
382	if (ui->dirty)
383		ubifs_release_dirty_inode_budget(c, ui);
384	else {
385		/* We've deleted something - clean the "no space" flags */
386		c->bi.nospace = c->bi.nospace_rp = 0;
387		smp_wmb();
388	}
389done:
390	clear_inode(inode);
391	fscrypt_put_encryption_info(inode);
392}
393
394static void ubifs_dirty_inode(struct inode *inode, int flags)
395{
396	struct ubifs_info *c = inode->i_sb->s_fs_info;
397	struct ubifs_inode *ui = ubifs_inode(inode);
398
399	ubifs_assert(c, mutex_is_locked(&ui->ui_mutex));
400	if (!ui->dirty) {
401		ui->dirty = 1;
402		dbg_gen("inode %lu",  inode->i_ino);
403	}
404}
405
406static int ubifs_statfs(struct dentry *dentry, struct kstatfs *buf)
407{
408	struct ubifs_info *c = dentry->d_sb->s_fs_info;
409	unsigned long long free;
410	__le32 *uuid = (__le32 *)c->uuid;
411
412	free = ubifs_get_free_space(c);
413	dbg_gen("free space %lld bytes (%lld blocks)",
414		free, free >> UBIFS_BLOCK_SHIFT);
415
416	buf->f_type = UBIFS_SUPER_MAGIC;
417	buf->f_bsize = UBIFS_BLOCK_SIZE;
418	buf->f_blocks = c->block_cnt;
419	buf->f_bfree = free >> UBIFS_BLOCK_SHIFT;
420	if (free > c->report_rp_size)
421		buf->f_bavail = (free - c->report_rp_size) >> UBIFS_BLOCK_SHIFT;
422	else
423		buf->f_bavail = 0;
424	buf->f_files = 0;
425	buf->f_ffree = 0;
426	buf->f_namelen = UBIFS_MAX_NLEN;
427	buf->f_fsid.val[0] = le32_to_cpu(uuid[0]) ^ le32_to_cpu(uuid[2]);
428	buf->f_fsid.val[1] = le32_to_cpu(uuid[1]) ^ le32_to_cpu(uuid[3]);
429	ubifs_assert(c, buf->f_bfree <= c->block_cnt);
430	return 0;
431}
432
433static int ubifs_show_options(struct seq_file *s, struct dentry *root)
434{
435	struct ubifs_info *c = root->d_sb->s_fs_info;
436
437	if (c->mount_opts.unmount_mode == 2)
438		seq_puts(s, ",fast_unmount");
439	else if (c->mount_opts.unmount_mode == 1)
440		seq_puts(s, ",norm_unmount");
441
442	if (c->mount_opts.bulk_read == 2)
443		seq_puts(s, ",bulk_read");
444	else if (c->mount_opts.bulk_read == 1)
445		seq_puts(s, ",no_bulk_read");
446
447	if (c->mount_opts.chk_data_crc == 2)
448		seq_puts(s, ",chk_data_crc");
449	else if (c->mount_opts.chk_data_crc == 1)
450		seq_puts(s, ",no_chk_data_crc");
451
452	if (c->mount_opts.override_compr) {
453		seq_printf(s, ",compr=%s",
454			   ubifs_compr_name(c, c->mount_opts.compr_type));
455	}
456
457	seq_printf(s, ",assert=%s", ubifs_assert_action_name(c));
458	seq_printf(s, ",ubi=%d,vol=%d", c->vi.ubi_num, c->vi.vol_id);
459
460	return 0;
461}
462
463static int ubifs_sync_fs(struct super_block *sb, int wait)
464{
465	int i, err;
466	struct ubifs_info *c = sb->s_fs_info;
467
468	/*
469	 * Zero @wait is just an advisory thing to help the file system shove
470	 * lots of data into the queues, and there will be the second
471	 * '->sync_fs()' call, with non-zero @wait.
472	 */
473	if (!wait)
474		return 0;
475
476	/*
477	 * Synchronize write buffers, because 'ubifs_run_commit()' does not
478	 * do this if it waits for an already running commit.
479	 */
480	for (i = 0; i < c->jhead_cnt; i++) {
481		err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
482		if (err)
483			return err;
484	}
485
486	/*
487	 * Strictly speaking, it is not necessary to commit the journal here,
488	 * synchronizing write-buffers would be enough. But committing makes
489	 * UBIFS free space predictions much more accurate, so we want to let
490	 * the user be able to get more accurate results of 'statfs()' after
491	 * they synchronize the file system.
492	 */
493	err = ubifs_run_commit(c);
494	if (err)
495		return err;
496
497	return ubi_sync(c->vi.ubi_num);
498}
499
500/**
501 * init_constants_early - initialize UBIFS constants.
502 * @c: UBIFS file-system description object
503 *
504 * This function initialize UBIFS constants which do not need the superblock to
505 * be read. It also checks that the UBI volume satisfies basic UBIFS
506 * requirements. Returns zero in case of success and a negative error code in
507 * case of failure.
508 */
509static int init_constants_early(struct ubifs_info *c)
510{
511	if (c->vi.corrupted) {
512		ubifs_warn(c, "UBI volume is corrupted - read-only mode");
513		c->ro_media = 1;
514	}
515
516	if (c->di.ro_mode) {
517		ubifs_msg(c, "read-only UBI device");
518		c->ro_media = 1;
519	}
520
521	if (c->vi.vol_type == UBI_STATIC_VOLUME) {
522		ubifs_msg(c, "static UBI volume - read-only mode");
523		c->ro_media = 1;
524	}
525
526	c->leb_cnt = c->vi.size;
527	c->leb_size = c->vi.usable_leb_size;
528	c->leb_start = c->di.leb_start;
529	c->half_leb_size = c->leb_size / 2;
530	c->min_io_size = c->di.min_io_size;
531	c->min_io_shift = fls(c->min_io_size) - 1;
532	c->max_write_size = c->di.max_write_size;
533	c->max_write_shift = fls(c->max_write_size) - 1;
534
535	if (c->leb_size < UBIFS_MIN_LEB_SZ) {
536		ubifs_errc(c, "too small LEBs (%d bytes), min. is %d bytes",
537			   c->leb_size, UBIFS_MIN_LEB_SZ);
538		return -EINVAL;
539	}
540
541	if (c->leb_cnt < UBIFS_MIN_LEB_CNT) {
542		ubifs_errc(c, "too few LEBs (%d), min. is %d",
543			   c->leb_cnt, UBIFS_MIN_LEB_CNT);
544		return -EINVAL;
545	}
546
547	if (!is_power_of_2(c->min_io_size)) {
548		ubifs_errc(c, "bad min. I/O size %d", c->min_io_size);
549		return -EINVAL;
550	}
551
552	/*
553	 * Maximum write size has to be greater or equivalent to min. I/O
554	 * size, and be multiple of min. I/O size.
555	 */
556	if (c->max_write_size < c->min_io_size ||
557	    c->max_write_size % c->min_io_size ||
558	    !is_power_of_2(c->max_write_size)) {
559		ubifs_errc(c, "bad write buffer size %d for %d min. I/O unit",
560			   c->max_write_size, c->min_io_size);
561		return -EINVAL;
562	}
563
564	/*
565	 * UBIFS aligns all node to 8-byte boundary, so to make function in
566	 * io.c simpler, assume minimum I/O unit size to be 8 bytes if it is
567	 * less than 8.
568	 */
569	if (c->min_io_size < 8) {
570		c->min_io_size = 8;
571		c->min_io_shift = 3;
572		if (c->max_write_size < c->min_io_size) {
573			c->max_write_size = c->min_io_size;
574			c->max_write_shift = c->min_io_shift;
575		}
576	}
577
578	c->ref_node_alsz = ALIGN(UBIFS_REF_NODE_SZ, c->min_io_size);
579	c->mst_node_alsz = ALIGN(UBIFS_MST_NODE_SZ, c->min_io_size);
580
581	/*
582	 * Initialize node length ranges which are mostly needed for node
583	 * length validation.
584	 */
585	c->ranges[UBIFS_PAD_NODE].len  = UBIFS_PAD_NODE_SZ;
586	c->ranges[UBIFS_SB_NODE].len   = UBIFS_SB_NODE_SZ;
587	c->ranges[UBIFS_MST_NODE].len  = UBIFS_MST_NODE_SZ;
588	c->ranges[UBIFS_REF_NODE].len  = UBIFS_REF_NODE_SZ;
589	c->ranges[UBIFS_TRUN_NODE].len = UBIFS_TRUN_NODE_SZ;
590	c->ranges[UBIFS_CS_NODE].len   = UBIFS_CS_NODE_SZ;
591	c->ranges[UBIFS_AUTH_NODE].min_len = UBIFS_AUTH_NODE_SZ;
592	c->ranges[UBIFS_AUTH_NODE].max_len = UBIFS_AUTH_NODE_SZ +
593				UBIFS_MAX_HMAC_LEN;
594	c->ranges[UBIFS_SIG_NODE].min_len = UBIFS_SIG_NODE_SZ;
595	c->ranges[UBIFS_SIG_NODE].max_len = c->leb_size - UBIFS_SB_NODE_SZ;
596
597	c->ranges[UBIFS_INO_NODE].min_len  = UBIFS_INO_NODE_SZ;
598	c->ranges[UBIFS_INO_NODE].max_len  = UBIFS_MAX_INO_NODE_SZ;
599	c->ranges[UBIFS_ORPH_NODE].min_len =
600				UBIFS_ORPH_NODE_SZ + sizeof(__le64);
601	c->ranges[UBIFS_ORPH_NODE].max_len = c->leb_size;
602	c->ranges[UBIFS_DENT_NODE].min_len = UBIFS_DENT_NODE_SZ;
603	c->ranges[UBIFS_DENT_NODE].max_len = UBIFS_MAX_DENT_NODE_SZ;
604	c->ranges[UBIFS_XENT_NODE].min_len = UBIFS_XENT_NODE_SZ;
605	c->ranges[UBIFS_XENT_NODE].max_len = UBIFS_MAX_XENT_NODE_SZ;
606	c->ranges[UBIFS_DATA_NODE].min_len = UBIFS_DATA_NODE_SZ;
607	c->ranges[UBIFS_DATA_NODE].max_len = UBIFS_MAX_DATA_NODE_SZ;
608	/*
609	 * Minimum indexing node size is amended later when superblock is
610	 * read and the key length is known.
611	 */
612	c->ranges[UBIFS_IDX_NODE].min_len = UBIFS_IDX_NODE_SZ + UBIFS_BRANCH_SZ;
613	/*
614	 * Maximum indexing node size is amended later when superblock is
615	 * read and the fanout is known.
616	 */
617	c->ranges[UBIFS_IDX_NODE].max_len = INT_MAX;
618
619	/*
620	 * Initialize dead and dark LEB space watermarks. See gc.c for comments
621	 * about these values.
622	 */
623	c->dead_wm = ALIGN(MIN_WRITE_SZ, c->min_io_size);
624	c->dark_wm = ALIGN(UBIFS_MAX_NODE_SZ, c->min_io_size);
625
626	/*
627	 * Calculate how many bytes would be wasted at the end of LEB if it was
628	 * fully filled with data nodes of maximum size. This is used in
629	 * calculations when reporting free space.
630	 */
631	c->leb_overhead = c->leb_size % UBIFS_MAX_DATA_NODE_SZ;
632
633	/* Buffer size for bulk-reads */
634	c->max_bu_buf_len = UBIFS_MAX_BULK_READ * UBIFS_MAX_DATA_NODE_SZ;
635	if (c->max_bu_buf_len > c->leb_size)
636		c->max_bu_buf_len = c->leb_size;
637
638	/* Log is ready, preserve one LEB for commits. */
639	c->min_log_bytes = c->leb_size;
640
641	return 0;
642}
643
644/**
645 * bud_wbuf_callback - bud LEB write-buffer synchronization call-back.
646 * @c: UBIFS file-system description object
647 * @lnum: LEB the write-buffer was synchronized to
648 * @free: how many free bytes left in this LEB
649 * @pad: how many bytes were padded
650 *
651 * This is a callback function which is called by the I/O unit when the
652 * write-buffer is synchronized. We need this to correctly maintain space
653 * accounting in bud logical eraseblocks. This function returns zero in case of
654 * success and a negative error code in case of failure.
655 *
656 * This function actually belongs to the journal, but we keep it here because
657 * we want to keep it static.
658 */
659static int bud_wbuf_callback(struct ubifs_info *c, int lnum, int free, int pad)
660{
661	return ubifs_update_one_lp(c, lnum, free, pad, 0, 0);
662}
663
664/*
665 * init_constants_sb - initialize UBIFS constants.
666 * @c: UBIFS file-system description object
667 *
668 * This is a helper function which initializes various UBIFS constants after
669 * the superblock has been read. It also checks various UBIFS parameters and
670 * makes sure they are all right. Returns zero in case of success and a
671 * negative error code in case of failure.
672 */
673static int init_constants_sb(struct ubifs_info *c)
674{
675	int tmp, err;
676	long long tmp64;
677
678	c->main_bytes = (long long)c->main_lebs * c->leb_size;
679	c->max_znode_sz = sizeof(struct ubifs_znode) +
680				c->fanout * sizeof(struct ubifs_zbranch);
681
682	tmp = ubifs_idx_node_sz(c, 1);
683	c->ranges[UBIFS_IDX_NODE].min_len = tmp;
684	c->min_idx_node_sz = ALIGN(tmp, 8);
685
686	tmp = ubifs_idx_node_sz(c, c->fanout);
687	c->ranges[UBIFS_IDX_NODE].max_len = tmp;
688	c->max_idx_node_sz = ALIGN(tmp, 8);
689
690	/* Make sure LEB size is large enough to fit full commit */
691	tmp = UBIFS_CS_NODE_SZ + UBIFS_REF_NODE_SZ * c->jhead_cnt;
692	tmp = ALIGN(tmp, c->min_io_size);
693	if (tmp > c->leb_size) {
694		ubifs_err(c, "too small LEB size %d, at least %d needed",
695			  c->leb_size, tmp);
696		return -EINVAL;
697	}
698
699	/*
700	 * Make sure that the log is large enough to fit reference nodes for
701	 * all buds plus one reserved LEB.
702	 */
703	tmp64 = c->max_bud_bytes + c->leb_size - 1;
704	c->max_bud_cnt = div_u64(tmp64, c->leb_size);
705	tmp = (c->ref_node_alsz * c->max_bud_cnt + c->leb_size - 1);
706	tmp /= c->leb_size;
707	tmp += 1;
708	if (c->log_lebs < tmp) {
709		ubifs_err(c, "too small log %d LEBs, required min. %d LEBs",
710			  c->log_lebs, tmp);
711		return -EINVAL;
712	}
713
714	/*
715	 * When budgeting we assume worst-case scenarios when the pages are not
716	 * be compressed and direntries are of the maximum size.
717	 *
718	 * Note, data, which may be stored in inodes is budgeted separately, so
719	 * it is not included into 'c->bi.inode_budget'.
720	 */
721	c->bi.page_budget = UBIFS_MAX_DATA_NODE_SZ * UBIFS_BLOCKS_PER_PAGE;
722	c->bi.inode_budget = UBIFS_INO_NODE_SZ;
723	c->bi.dent_budget = UBIFS_MAX_DENT_NODE_SZ;
724
725	/*
726	 * When the amount of flash space used by buds becomes
727	 * 'c->max_bud_bytes', UBIFS just blocks all writers and starts commit.
728	 * The writers are unblocked when the commit is finished. To avoid
729	 * writers to be blocked UBIFS initiates background commit in advance,
730	 * when number of bud bytes becomes above the limit defined below.
731	 */
732	c->bg_bud_bytes = (c->max_bud_bytes * 13) >> 4;
733
734	/*
735	 * Ensure minimum journal size. All the bytes in the journal heads are
736	 * considered to be used, when calculating the current journal usage.
737	 * Consequently, if the journal is too small, UBIFS will treat it as
738	 * always full.
739	 */
740	tmp64 = (long long)(c->jhead_cnt + 1) * c->leb_size + 1;
741	if (c->bg_bud_bytes < tmp64)
742		c->bg_bud_bytes = tmp64;
743	if (c->max_bud_bytes < tmp64 + c->leb_size)
744		c->max_bud_bytes = tmp64 + c->leb_size;
745
746	err = ubifs_calc_lpt_geom(c);
747	if (err)
748		return err;
749
750	/* Initialize effective LEB size used in budgeting calculations */
751	c->idx_leb_size = c->leb_size - c->max_idx_node_sz;
752	return 0;
753}
754
755/*
756 * init_constants_master - initialize UBIFS constants.
757 * @c: UBIFS file-system description object
758 *
759 * This is a helper function which initializes various UBIFS constants after
760 * the master node has been read. It also checks various UBIFS parameters and
761 * makes sure they are all right.
762 */
763static void init_constants_master(struct ubifs_info *c)
764{
765	long long tmp64;
766
767	c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
768	c->report_rp_size = ubifs_reported_space(c, c->rp_size);
769
770	/*
771	 * Calculate total amount of FS blocks. This number is not used
772	 * internally because it does not make much sense for UBIFS, but it is
773	 * necessary to report something for the 'statfs()' call.
774	 *
775	 * Subtract the LEB reserved for GC, the LEB which is reserved for
776	 * deletions, minimum LEBs for the index, and assume only one journal
777	 * head is available.
778	 */
779	tmp64 = c->main_lebs - 1 - 1 - MIN_INDEX_LEBS - c->jhead_cnt + 1;
780	tmp64 *= (long long)c->leb_size - c->leb_overhead;
781	tmp64 = ubifs_reported_space(c, tmp64);
782	c->block_cnt = tmp64 >> UBIFS_BLOCK_SHIFT;
783}
784
785/**
786 * take_gc_lnum - reserve GC LEB.
787 * @c: UBIFS file-system description object
788 *
789 * This function ensures that the LEB reserved for garbage collection is marked
790 * as "taken" in lprops. We also have to set free space to LEB size and dirty
791 * space to zero, because lprops may contain out-of-date information if the
792 * file-system was un-mounted before it has been committed. This function
793 * returns zero in case of success and a negative error code in case of
794 * failure.
795 */
796static int take_gc_lnum(struct ubifs_info *c)
797{
798	int err;
799
800	if (c->gc_lnum == -1) {
801		ubifs_err(c, "no LEB for GC");
802		return -EINVAL;
803	}
804
805	/* And we have to tell lprops that this LEB is taken */
806	err = ubifs_change_one_lp(c, c->gc_lnum, c->leb_size, 0,
807				  LPROPS_TAKEN, 0, 0);
808	return err;
809}
810
811/**
812 * alloc_wbufs - allocate write-buffers.
813 * @c: UBIFS file-system description object
814 *
815 * This helper function allocates and initializes UBIFS write-buffers. Returns
816 * zero in case of success and %-ENOMEM in case of failure.
817 */
818static int alloc_wbufs(struct ubifs_info *c)
819{
820	int i, err;
821
822	c->jheads = kcalloc(c->jhead_cnt, sizeof(struct ubifs_jhead),
823			    GFP_KERNEL);
824	if (!c->jheads)
825		return -ENOMEM;
826
827	/* Initialize journal heads */
828	for (i = 0; i < c->jhead_cnt; i++) {
829		INIT_LIST_HEAD(&c->jheads[i].buds_list);
830		err = ubifs_wbuf_init(c, &c->jheads[i].wbuf);
831		if (err)
832			goto out_wbuf;
833
834		c->jheads[i].wbuf.sync_callback = &bud_wbuf_callback;
835		c->jheads[i].wbuf.jhead = i;
836		c->jheads[i].grouped = 1;
837		c->jheads[i].log_hash = ubifs_hash_get_desc(c);
838		if (IS_ERR(c->jheads[i].log_hash)) {
839			err = PTR_ERR(c->jheads[i].log_hash);
840			goto out_log_hash;
841		}
842	}
843
844	/*
845	 * Garbage Collector head does not need to be synchronized by timer.
846	 * Also GC head nodes are not grouped.
847	 */
848	c->jheads[GCHD].wbuf.no_timer = 1;
849	c->jheads[GCHD].grouped = 0;
850
851	return 0;
852
853out_log_hash:
854	kfree(c->jheads[i].wbuf.buf);
855	kfree(c->jheads[i].wbuf.inodes);
856
857out_wbuf:
858	while (i--) {
859		kfree(c->jheads[i].wbuf.buf);
860		kfree(c->jheads[i].wbuf.inodes);
861		kfree(c->jheads[i].log_hash);
862	}
863	kfree(c->jheads);
864	c->jheads = NULL;
865
866	return err;
867}
868
869/**
870 * free_wbufs - free write-buffers.
871 * @c: UBIFS file-system description object
872 */
873static void free_wbufs(struct ubifs_info *c)
874{
875	int i;
876
877	if (c->jheads) {
878		for (i = 0; i < c->jhead_cnt; i++) {
879			kfree(c->jheads[i].wbuf.buf);
880			kfree(c->jheads[i].wbuf.inodes);
881			kfree(c->jheads[i].log_hash);
882		}
883		kfree(c->jheads);
884		c->jheads = NULL;
885	}
886}
887
888/**
889 * free_orphans - free orphans.
890 * @c: UBIFS file-system description object
891 */
892static void free_orphans(struct ubifs_info *c)
893{
894	struct ubifs_orphan *orph;
895
896	while (c->orph_dnext) {
897		orph = c->orph_dnext;
898		c->orph_dnext = orph->dnext;
899		list_del(&orph->list);
900		kfree(orph);
901	}
902
903	while (!list_empty(&c->orph_list)) {
904		orph = list_entry(c->orph_list.next, struct ubifs_orphan, list);
905		list_del(&orph->list);
906		kfree(orph);
907		ubifs_err(c, "orphan list not empty at unmount");
908	}
909
910	vfree(c->orph_buf);
911	c->orph_buf = NULL;
912}
913
914/**
915 * free_buds - free per-bud objects.
916 * @c: UBIFS file-system description object
917 */
918static void free_buds(struct ubifs_info *c)
919{
920	struct ubifs_bud *bud, *n;
921
922	rbtree_postorder_for_each_entry_safe(bud, n, &c->buds, rb) {
923		kfree(bud->log_hash);
924		kfree(bud);
925	}
926}
927
928/**
929 * check_volume_empty - check if the UBI volume is empty.
930 * @c: UBIFS file-system description object
931 *
932 * This function checks if the UBIFS volume is empty by looking if its LEBs are
933 * mapped or not. The result of checking is stored in the @c->empty variable.
934 * Returns zero in case of success and a negative error code in case of
935 * failure.
936 */
937static int check_volume_empty(struct ubifs_info *c)
938{
939	int lnum, err;
940
941	c->empty = 1;
942	for (lnum = 0; lnum < c->leb_cnt; lnum++) {
943		err = ubifs_is_mapped(c, lnum);
944		if (unlikely(err < 0))
945			return err;
946		if (err == 1) {
947			c->empty = 0;
948			break;
949		}
950
951		cond_resched();
952	}
953
954	return 0;
955}
956
957/*
958 * UBIFS mount options.
959 *
960 * Opt_fast_unmount: do not run a journal commit before un-mounting
961 * Opt_norm_unmount: run a journal commit before un-mounting
962 * Opt_bulk_read: enable bulk-reads
963 * Opt_no_bulk_read: disable bulk-reads
964 * Opt_chk_data_crc: check CRCs when reading data nodes
965 * Opt_no_chk_data_crc: do not check CRCs when reading data nodes
966 * Opt_override_compr: override default compressor
967 * Opt_assert: set ubifs_assert() action
968 * Opt_auth_key: The key name used for authentication
969 * Opt_auth_hash_name: The hash type used for authentication
970 * Opt_err: just end of array marker
971 */
972enum {
973	Opt_fast_unmount,
974	Opt_norm_unmount,
975	Opt_bulk_read,
976	Opt_no_bulk_read,
977	Opt_chk_data_crc,
978	Opt_no_chk_data_crc,
979	Opt_override_compr,
980	Opt_assert,
981	Opt_auth_key,
982	Opt_auth_hash_name,
983	Opt_ignore,
984	Opt_err,
985};
986
987static const match_table_t tokens = {
988	{Opt_fast_unmount, "fast_unmount"},
989	{Opt_norm_unmount, "norm_unmount"},
990	{Opt_bulk_read, "bulk_read"},
991	{Opt_no_bulk_read, "no_bulk_read"},
992	{Opt_chk_data_crc, "chk_data_crc"},
993	{Opt_no_chk_data_crc, "no_chk_data_crc"},
994	{Opt_override_compr, "compr=%s"},
995	{Opt_auth_key, "auth_key=%s"},
996	{Opt_auth_hash_name, "auth_hash_name=%s"},
997	{Opt_ignore, "ubi=%s"},
998	{Opt_ignore, "vol=%s"},
999	{Opt_assert, "assert=%s"},
1000	{Opt_err, NULL},
1001};
1002
1003/**
1004 * parse_standard_option - parse a standard mount option.
1005 * @option: the option to parse
1006 *
1007 * Normally, standard mount options like "sync" are passed to file-systems as
1008 * flags. However, when a "rootflags=" kernel boot parameter is used, they may
1009 * be present in the options string. This function tries to deal with this
1010 * situation and parse standard options. Returns 0 if the option was not
1011 * recognized, and the corresponding integer flag if it was.
1012 *
1013 * UBIFS is only interested in the "sync" option, so do not check for anything
1014 * else.
1015 */
1016static int parse_standard_option(const char *option)
1017{
1018
1019	pr_notice("UBIFS: parse %s\n", option);
1020	if (!strcmp(option, "sync"))
1021		return SB_SYNCHRONOUS;
1022	return 0;
1023}
1024
1025/**
1026 * ubifs_parse_options - parse mount parameters.
1027 * @c: UBIFS file-system description object
1028 * @options: parameters to parse
1029 * @is_remount: non-zero if this is FS re-mount
1030 *
1031 * This function parses UBIFS mount options and returns zero in case success
1032 * and a negative error code in case of failure.
1033 */
1034static int ubifs_parse_options(struct ubifs_info *c, char *options,
1035			       int is_remount)
1036{
1037	char *p;
1038	substring_t args[MAX_OPT_ARGS];
1039
1040	if (!options)
1041		return 0;
1042
1043	while ((p = strsep(&options, ","))) {
1044		int token;
1045
1046		if (!*p)
1047			continue;
1048
1049		token = match_token(p, tokens, args);
1050		switch (token) {
1051		/*
1052		 * %Opt_fast_unmount and %Opt_norm_unmount options are ignored.
1053		 * We accept them in order to be backward-compatible. But this
1054		 * should be removed at some point.
1055		 */
1056		case Opt_fast_unmount:
1057			c->mount_opts.unmount_mode = 2;
1058			break;
1059		case Opt_norm_unmount:
1060			c->mount_opts.unmount_mode = 1;
1061			break;
1062		case Opt_bulk_read:
1063			c->mount_opts.bulk_read = 2;
1064			c->bulk_read = 1;
1065			break;
1066		case Opt_no_bulk_read:
1067			c->mount_opts.bulk_read = 1;
1068			c->bulk_read = 0;
1069			break;
1070		case Opt_chk_data_crc:
1071			c->mount_opts.chk_data_crc = 2;
1072			c->no_chk_data_crc = 0;
1073			break;
1074		case Opt_no_chk_data_crc:
1075			c->mount_opts.chk_data_crc = 1;
1076			c->no_chk_data_crc = 1;
1077			break;
1078		case Opt_override_compr:
1079		{
1080			char *name = match_strdup(&args[0]);
1081
1082			if (!name)
1083				return -ENOMEM;
1084			if (!strcmp(name, "none"))
1085				c->mount_opts.compr_type = UBIFS_COMPR_NONE;
1086			else if (!strcmp(name, "lzo"))
1087				c->mount_opts.compr_type = UBIFS_COMPR_LZO;
1088			else if (!strcmp(name, "zlib"))
1089				c->mount_opts.compr_type = UBIFS_COMPR_ZLIB;
1090			else if (!strcmp(name, "zstd"))
1091				c->mount_opts.compr_type = UBIFS_COMPR_ZSTD;
1092			else {
1093				ubifs_err(c, "unknown compressor \"%s\"", name); //FIXME: is c ready?
1094				kfree(name);
1095				return -EINVAL;
1096			}
1097			kfree(name);
1098			c->mount_opts.override_compr = 1;
1099			c->default_compr = c->mount_opts.compr_type;
1100			break;
1101		}
1102		case Opt_assert:
1103		{
1104			char *act = match_strdup(&args[0]);
1105
1106			if (!act)
1107				return -ENOMEM;
1108			if (!strcmp(act, "report"))
1109				c->assert_action = ASSACT_REPORT;
1110			else if (!strcmp(act, "read-only"))
1111				c->assert_action = ASSACT_RO;
1112			else if (!strcmp(act, "panic"))
1113				c->assert_action = ASSACT_PANIC;
1114			else {
1115				ubifs_err(c, "unknown assert action \"%s\"", act);
1116				kfree(act);
1117				return -EINVAL;
1118			}
1119			kfree(act);
1120			break;
1121		}
1122		case Opt_auth_key:
1123			if (!is_remount) {
1124				c->auth_key_name = kstrdup(args[0].from,
1125								GFP_KERNEL);
1126				if (!c->auth_key_name)
1127					return -ENOMEM;
1128			}
1129			break;
1130		case Opt_auth_hash_name:
1131			if (!is_remount) {
1132				c->auth_hash_name = kstrdup(args[0].from,
1133								GFP_KERNEL);
1134				if (!c->auth_hash_name)
1135					return -ENOMEM;
1136			}
1137			break;
1138		case Opt_ignore:
1139			break;
1140		default:
1141		{
1142			unsigned long flag;
1143			struct super_block *sb = c->vfs_sb;
1144
1145			flag = parse_standard_option(p);
1146			if (!flag) {
1147				ubifs_err(c, "unrecognized mount option \"%s\" or missing value",
1148					  p);
1149				return -EINVAL;
1150			}
1151			sb->s_flags |= flag;
1152			break;
1153		}
1154		}
1155	}
1156
1157	return 0;
1158}
1159
1160/*
1161 * ubifs_release_options - release mount parameters which have been dumped.
1162 * @c: UBIFS file-system description object
1163 */
1164static void ubifs_release_options(struct ubifs_info *c)
1165{
1166	kfree(c->auth_key_name);
1167	c->auth_key_name = NULL;
1168	kfree(c->auth_hash_name);
1169	c->auth_hash_name = NULL;
1170}
1171
1172/**
1173 * destroy_journal - destroy journal data structures.
1174 * @c: UBIFS file-system description object
1175 *
1176 * This function destroys journal data structures including those that may have
1177 * been created by recovery functions.
1178 */
1179static void destroy_journal(struct ubifs_info *c)
1180{
1181	while (!list_empty(&c->unclean_leb_list)) {
1182		struct ubifs_unclean_leb *ucleb;
1183
1184		ucleb = list_entry(c->unclean_leb_list.next,
1185				   struct ubifs_unclean_leb, list);
1186		list_del(&ucleb->list);
1187		kfree(ucleb);
1188	}
1189	while (!list_empty(&c->old_buds)) {
1190		struct ubifs_bud *bud;
1191
1192		bud = list_entry(c->old_buds.next, struct ubifs_bud, list);
1193		list_del(&bud->list);
1194		kfree(bud->log_hash);
1195		kfree(bud);
1196	}
1197	ubifs_destroy_idx_gc(c);
1198	ubifs_destroy_size_tree(c);
1199	ubifs_tnc_close(c);
1200	free_buds(c);
1201}
1202
1203/**
1204 * bu_init - initialize bulk-read information.
1205 * @c: UBIFS file-system description object
1206 */
1207static void bu_init(struct ubifs_info *c)
1208{
1209	ubifs_assert(c, c->bulk_read == 1);
1210
1211	if (c->bu.buf)
1212		return; /* Already initialized */
1213
1214again:
1215	c->bu.buf = kmalloc(c->max_bu_buf_len, GFP_KERNEL | __GFP_NOWARN);
1216	if (!c->bu.buf) {
1217		if (c->max_bu_buf_len > UBIFS_KMALLOC_OK) {
1218			c->max_bu_buf_len = UBIFS_KMALLOC_OK;
1219			goto again;
1220		}
1221
1222		/* Just disable bulk-read */
1223		ubifs_warn(c, "cannot allocate %d bytes of memory for bulk-read, disabling it",
1224			   c->max_bu_buf_len);
1225		c->mount_opts.bulk_read = 1;
1226		c->bulk_read = 0;
1227		return;
1228	}
1229}
1230
1231/**
1232 * check_free_space - check if there is enough free space to mount.
1233 * @c: UBIFS file-system description object
1234 *
1235 * This function makes sure UBIFS has enough free space to be mounted in
1236 * read/write mode. UBIFS must always have some free space to allow deletions.
1237 */
1238static int check_free_space(struct ubifs_info *c)
1239{
1240	ubifs_assert(c, c->dark_wm > 0);
1241	if (c->lst.total_free + c->lst.total_dirty < c->dark_wm) {
1242		ubifs_err(c, "insufficient free space to mount in R/W mode");
1243		ubifs_dump_budg(c, &c->bi);
1244		ubifs_dump_lprops(c);
1245		return -ENOSPC;
1246	}
1247	return 0;
1248}
1249
1250/**
1251 * mount_ubifs - mount UBIFS file-system.
1252 * @c: UBIFS file-system description object
1253 *
1254 * This function mounts UBIFS file system. Returns zero in case of success and
1255 * a negative error code in case of failure.
1256 */
1257static int mount_ubifs(struct ubifs_info *c)
1258{
1259	int err;
1260	long long x, y;
1261	size_t sz;
1262
1263	c->ro_mount = !!sb_rdonly(c->vfs_sb);
1264	/* Suppress error messages while probing if SB_SILENT is set */
1265	c->probing = !!(c->vfs_sb->s_flags & SB_SILENT);
1266
1267	err = init_constants_early(c);
1268	if (err)
1269		return err;
1270
1271	err = ubifs_debugging_init(c);
1272	if (err)
1273		return err;
1274
1275	err = ubifs_sysfs_register(c);
1276	if (err)
1277		goto out_debugging;
1278
1279	err = check_volume_empty(c);
1280	if (err)
1281		goto out_free;
1282
1283	if (c->empty && (c->ro_mount || c->ro_media)) {
1284		/*
1285		 * This UBI volume is empty, and read-only, or the file system
1286		 * is mounted read-only - we cannot format it.
1287		 */
1288		ubifs_err(c, "can't format empty UBI volume: read-only %s",
1289			  c->ro_media ? "UBI volume" : "mount");
1290		err = -EROFS;
1291		goto out_free;
1292	}
1293
1294	if (c->ro_media && !c->ro_mount) {
1295		ubifs_err(c, "cannot mount read-write - read-only media");
1296		err = -EROFS;
1297		goto out_free;
1298	}
1299
1300	/*
1301	 * The requirement for the buffer is that it should fit indexing B-tree
1302	 * height amount of integers. We assume the height if the TNC tree will
1303	 * never exceed 64.
1304	 */
1305	err = -ENOMEM;
1306	c->bottom_up_buf = kmalloc_array(BOTTOM_UP_HEIGHT, sizeof(int),
1307					 GFP_KERNEL);
1308	if (!c->bottom_up_buf)
1309		goto out_free;
1310
1311	c->sbuf = vmalloc(c->leb_size);
1312	if (!c->sbuf)
1313		goto out_free;
1314
1315	if (!c->ro_mount) {
1316		c->ileb_buf = vmalloc(c->leb_size);
1317		if (!c->ileb_buf)
1318			goto out_free;
1319	}
1320
1321	if (c->bulk_read == 1)
1322		bu_init(c);
1323
1324	if (!c->ro_mount) {
1325		c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ + \
1326					       UBIFS_CIPHER_BLOCK_SIZE,
1327					       GFP_KERNEL);
1328		if (!c->write_reserve_buf)
1329			goto out_free;
1330	}
1331
1332	c->mounting = 1;
1333
1334	if (c->auth_key_name) {
1335		if (IS_ENABLED(CONFIG_UBIFS_FS_AUTHENTICATION)) {
1336			err = ubifs_init_authentication(c);
1337			if (err)
1338				goto out_free;
1339		} else {
1340			ubifs_err(c, "auth_key_name, but UBIFS is built without"
1341				  " authentication support");
1342			err = -EINVAL;
1343			goto out_free;
1344		}
1345	}
1346
1347	err = ubifs_read_superblock(c);
1348	if (err)
1349		goto out_auth;
1350
1351	c->probing = 0;
1352
1353	/*
1354	 * Make sure the compressor which is set as default in the superblock
1355	 * or overridden by mount options is actually compiled in.
1356	 */
1357	if (!ubifs_compr_present(c, c->default_compr)) {
1358		ubifs_err(c, "'compressor \"%s\" is not compiled in",
1359			  ubifs_compr_name(c, c->default_compr));
1360		err = -ENOTSUPP;
1361		goto out_auth;
1362	}
1363
1364	err = init_constants_sb(c);
1365	if (err)
1366		goto out_auth;
1367
1368	sz = ALIGN(c->max_idx_node_sz, c->min_io_size) * 2;
1369	c->cbuf = kmalloc(sz, GFP_NOFS);
1370	if (!c->cbuf) {
1371		err = -ENOMEM;
1372		goto out_auth;
1373	}
1374
1375	err = alloc_wbufs(c);
1376	if (err)
1377		goto out_cbuf;
1378
1379	sprintf(c->bgt_name, BGT_NAME_PATTERN, c->vi.ubi_num, c->vi.vol_id);
1380	if (!c->ro_mount) {
1381		/* Create background thread */
1382		c->bgt = kthread_run(ubifs_bg_thread, c, "%s", c->bgt_name);
1383		if (IS_ERR(c->bgt)) {
1384			err = PTR_ERR(c->bgt);
1385			c->bgt = NULL;
1386			ubifs_err(c, "cannot spawn \"%s\", error %d",
1387				  c->bgt_name, err);
1388			goto out_wbufs;
1389		}
1390	}
1391
1392	err = ubifs_read_master(c);
1393	if (err)
1394		goto out_master;
1395
1396	init_constants_master(c);
1397
1398	if ((c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY)) != 0) {
1399		ubifs_msg(c, "recovery needed");
1400		c->need_recovery = 1;
1401	}
1402
1403	if (c->need_recovery && !c->ro_mount) {
1404		err = ubifs_recover_inl_heads(c, c->sbuf);
1405		if (err)
1406			goto out_master;
1407	}
1408
1409	err = ubifs_lpt_init(c, 1, !c->ro_mount);
1410	if (err)
1411		goto out_master;
1412
1413	if (!c->ro_mount && c->space_fixup) {
1414		err = ubifs_fixup_free_space(c);
1415		if (err)
1416			goto out_lpt;
1417	}
1418
1419	if (!c->ro_mount && !c->need_recovery) {
1420		/*
1421		 * Set the "dirty" flag so that if we reboot uncleanly we
1422		 * will notice this immediately on the next mount.
1423		 */
1424		c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1425		err = ubifs_write_master(c);
1426		if (err)
1427			goto out_lpt;
1428	}
1429
1430	/*
1431	 * Handle offline signed images: Now that the master node is
1432	 * written and its validation no longer depends on the hash
1433	 * in the superblock, we can update the offline signed
1434	 * superblock with a HMAC version,
1435	 */
1436	if (ubifs_authenticated(c) && ubifs_hmac_zero(c, c->sup_node->hmac)) {
1437		err = ubifs_hmac_wkm(c, c->sup_node->hmac_wkm);
1438		if (err)
1439			goto out_lpt;
1440		c->superblock_need_write = 1;
1441	}
1442
1443	if (!c->ro_mount && c->superblock_need_write) {
1444		err = ubifs_write_sb_node(c, c->sup_node);
1445		if (err)
1446			goto out_lpt;
1447		c->superblock_need_write = 0;
1448	}
1449
1450	err = dbg_check_idx_size(c, c->bi.old_idx_sz);
1451	if (err)
1452		goto out_lpt;
1453
1454	err = ubifs_replay_journal(c);
1455	if (err)
1456		goto out_journal;
1457
1458	/* Calculate 'min_idx_lebs' after journal replay */
1459	c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
1460
1461	err = ubifs_mount_orphans(c, c->need_recovery, c->ro_mount);
1462	if (err)
1463		goto out_orphans;
1464
1465	if (!c->ro_mount) {
1466		int lnum;
1467
1468		err = check_free_space(c);
1469		if (err)
1470			goto out_orphans;
1471
1472		/* Check for enough log space */
1473		lnum = c->lhead_lnum + 1;
1474		if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1475			lnum = UBIFS_LOG_LNUM;
1476		if (lnum == c->ltail_lnum) {
1477			err = ubifs_consolidate_log(c);
1478			if (err)
1479				goto out_orphans;
1480		}
1481
1482		if (c->need_recovery) {
1483			if (!ubifs_authenticated(c)) {
1484				err = ubifs_recover_size(c, true);
1485				if (err)
1486					goto out_orphans;
1487			}
1488
1489			err = ubifs_rcvry_gc_commit(c);
1490			if (err)
1491				goto out_orphans;
1492
1493			if (ubifs_authenticated(c)) {
1494				err = ubifs_recover_size(c, false);
1495				if (err)
1496					goto out_orphans;
1497			}
1498		} else {
1499			err = take_gc_lnum(c);
1500			if (err)
1501				goto out_orphans;
1502
1503			/*
1504			 * GC LEB may contain garbage if there was an unclean
1505			 * reboot, and it should be un-mapped.
1506			 */
1507			err = ubifs_leb_unmap(c, c->gc_lnum);
1508			if (err)
1509				goto out_orphans;
1510		}
1511
1512		err = dbg_check_lprops(c);
1513		if (err)
1514			goto out_orphans;
1515	} else if (c->need_recovery) {
1516		err = ubifs_recover_size(c, false);
1517		if (err)
1518			goto out_orphans;
1519	} else {
1520		/*
1521		 * Even if we mount read-only, we have to set space in GC LEB
1522		 * to proper value because this affects UBIFS free space
1523		 * reporting. We do not want to have a situation when
1524		 * re-mounting from R/O to R/W changes amount of free space.
1525		 */
1526		err = take_gc_lnum(c);
1527		if (err)
1528			goto out_orphans;
1529	}
1530
1531	spin_lock(&ubifs_infos_lock);
1532	list_add_tail(&c->infos_list, &ubifs_infos);
1533	spin_unlock(&ubifs_infos_lock);
1534
1535	if (c->need_recovery) {
1536		if (c->ro_mount)
1537			ubifs_msg(c, "recovery deferred");
1538		else {
1539			c->need_recovery = 0;
1540			ubifs_msg(c, "recovery completed");
1541			/*
1542			 * GC LEB has to be empty and taken at this point. But
1543			 * the journal head LEBs may also be accounted as
1544			 * "empty taken" if they are empty.
1545			 */
1546			ubifs_assert(c, c->lst.taken_empty_lebs > 0);
1547		}
1548	} else
1549		ubifs_assert(c, c->lst.taken_empty_lebs > 0);
1550
1551	err = dbg_check_filesystem(c);
1552	if (err)
1553		goto out_infos;
1554
1555	dbg_debugfs_init_fs(c);
1556
1557	c->mounting = 0;
1558
1559	ubifs_msg(c, "UBIFS: mounted UBI device %d, volume %d, name \"%s\"%s",
1560		  c->vi.ubi_num, c->vi.vol_id, c->vi.name,
1561		  c->ro_mount ? ", R/O mode" : "");
1562	x = (long long)c->main_lebs * c->leb_size;
1563	y = (long long)c->log_lebs * c->leb_size + c->max_bud_bytes;
1564	ubifs_msg(c, "LEB size: %d bytes (%d KiB), min./max. I/O unit sizes: %d bytes/%d bytes",
1565		  c->leb_size, c->leb_size >> 10, c->min_io_size,
1566		  c->max_write_size);
1567	ubifs_msg(c, "FS size: %lld bytes (%lld MiB, %d LEBs), max %d LEBs, journal size %lld bytes (%lld MiB, %d LEBs)",
1568		  x, x >> 20, c->main_lebs, c->max_leb_cnt,
1569		  y, y >> 20, c->log_lebs + c->max_bud_cnt);
1570	ubifs_msg(c, "reserved for root: %llu bytes (%llu KiB)",
1571		  c->report_rp_size, c->report_rp_size >> 10);
1572	ubifs_msg(c, "media format: w%d/r%d (latest is w%d/r%d), UUID %pUB%s",
1573		  c->fmt_version, c->ro_compat_version,
1574		  UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION, c->uuid,
1575		  c->big_lpt ? ", big LPT model" : ", small LPT model");
1576
1577	dbg_gen("default compressor:  %s", ubifs_compr_name(c, c->default_compr));
1578	dbg_gen("data journal heads:  %d",
1579		c->jhead_cnt - NONDATA_JHEADS_CNT);
1580	dbg_gen("log LEBs:            %d (%d - %d)",
1581		c->log_lebs, UBIFS_LOG_LNUM, c->log_last);
1582	dbg_gen("LPT area LEBs:       %d (%d - %d)",
1583		c->lpt_lebs, c->lpt_first, c->lpt_last);
1584	dbg_gen("orphan area LEBs:    %d (%d - %d)",
1585		c->orph_lebs, c->orph_first, c->orph_last);
1586	dbg_gen("main area LEBs:      %d (%d - %d)",
1587		c->main_lebs, c->main_first, c->leb_cnt - 1);
1588	dbg_gen("index LEBs:          %d", c->lst.idx_lebs);
1589	dbg_gen("total index bytes:   %llu (%llu KiB, %llu MiB)",
1590		c->bi.old_idx_sz, c->bi.old_idx_sz >> 10,
1591		c->bi.old_idx_sz >> 20);
1592	dbg_gen("key hash type:       %d", c->key_hash_type);
1593	dbg_gen("tree fanout:         %d", c->fanout);
1594	dbg_gen("reserved GC LEB:     %d", c->gc_lnum);
1595	dbg_gen("max. znode size      %d", c->max_znode_sz);
1596	dbg_gen("max. index node size %d", c->max_idx_node_sz);
1597	dbg_gen("node sizes:          data %zu, inode %zu, dentry %zu",
1598		UBIFS_DATA_NODE_SZ, UBIFS_INO_NODE_SZ, UBIFS_DENT_NODE_SZ);
1599	dbg_gen("node sizes:          trun %zu, sb %zu, master %zu",
1600		UBIFS_TRUN_NODE_SZ, UBIFS_SB_NODE_SZ, UBIFS_MST_NODE_SZ);
1601	dbg_gen("node sizes:          ref %zu, cmt. start %zu, orph %zu",
1602		UBIFS_REF_NODE_SZ, UBIFS_CS_NODE_SZ, UBIFS_ORPH_NODE_SZ);
1603	dbg_gen("max. node sizes:     data %zu, inode %zu dentry %zu, idx %d",
1604		UBIFS_MAX_DATA_NODE_SZ, UBIFS_MAX_INO_NODE_SZ,
1605		UBIFS_MAX_DENT_NODE_SZ, ubifs_idx_node_sz(c, c->fanout));
1606	dbg_gen("dead watermark:      %d", c->dead_wm);
1607	dbg_gen("dark watermark:      %d", c->dark_wm);
1608	dbg_gen("LEB overhead:        %d", c->leb_overhead);
1609	x = (long long)c->main_lebs * c->dark_wm;
1610	dbg_gen("max. dark space:     %lld (%lld KiB, %lld MiB)",
1611		x, x >> 10, x >> 20);
1612	dbg_gen("maximum bud bytes:   %lld (%lld KiB, %lld MiB)",
1613		c->max_bud_bytes, c->max_bud_bytes >> 10,
1614		c->max_bud_bytes >> 20);
1615	dbg_gen("BG commit bud bytes: %lld (%lld KiB, %lld MiB)",
1616		c->bg_bud_bytes, c->bg_bud_bytes >> 10,
1617		c->bg_bud_bytes >> 20);
1618	dbg_gen("current bud bytes    %lld (%lld KiB, %lld MiB)",
1619		c->bud_bytes, c->bud_bytes >> 10, c->bud_bytes >> 20);
1620	dbg_gen("max. seq. number:    %llu", c->max_sqnum);
1621	dbg_gen("commit number:       %llu", c->cmt_no);
1622	dbg_gen("max. xattrs per inode: %d", ubifs_xattr_max_cnt(c));
1623	dbg_gen("max orphans:           %d", c->max_orphans);
1624
1625	return 0;
1626
1627out_infos:
1628	spin_lock(&ubifs_infos_lock);
1629	list_del(&c->infos_list);
1630	spin_unlock(&ubifs_infos_lock);
1631out_orphans:
1632	free_orphans(c);
1633out_journal:
1634	destroy_journal(c);
1635out_lpt:
1636	ubifs_lpt_free(c, 0);
1637out_master:
1638	kfree(c->mst_node);
1639	kfree(c->rcvrd_mst_node);
1640	if (c->bgt)
1641		kthread_stop(c->bgt);
1642out_wbufs:
1643	free_wbufs(c);
1644out_cbuf:
1645	kfree(c->cbuf);
1646out_auth:
1647	ubifs_exit_authentication(c);
1648out_free:
1649	kfree(c->write_reserve_buf);
1650	kfree(c->bu.buf);
1651	vfree(c->ileb_buf);
1652	vfree(c->sbuf);
1653	kfree(c->bottom_up_buf);
1654	kfree(c->sup_node);
1655	ubifs_sysfs_unregister(c);
1656out_debugging:
1657	ubifs_debugging_exit(c);
1658	return err;
1659}
1660
1661/**
1662 * ubifs_umount - un-mount UBIFS file-system.
1663 * @c: UBIFS file-system description object
1664 *
1665 * Note, this function is called to free allocated resourced when un-mounting,
1666 * as well as free resources when an error occurred while we were half way
1667 * through mounting (error path cleanup function). So it has to make sure the
1668 * resource was actually allocated before freeing it.
1669 */
1670static void ubifs_umount(struct ubifs_info *c)
1671{
1672	dbg_gen("un-mounting UBI device %d, volume %d", c->vi.ubi_num,
1673		c->vi.vol_id);
1674
1675	dbg_debugfs_exit_fs(c);
1676	spin_lock(&ubifs_infos_lock);
1677	list_del(&c->infos_list);
1678	spin_unlock(&ubifs_infos_lock);
1679
1680	if (c->bgt)
1681		kthread_stop(c->bgt);
1682
1683	destroy_journal(c);
1684	free_wbufs(c);
1685	free_orphans(c);
1686	ubifs_lpt_free(c, 0);
1687	ubifs_exit_authentication(c);
1688
1689	ubifs_release_options(c);
1690	kfree(c->cbuf);
1691	kfree(c->rcvrd_mst_node);
1692	kfree(c->mst_node);
1693	kfree(c->write_reserve_buf);
1694	kfree(c->bu.buf);
1695	vfree(c->ileb_buf);
1696	vfree(c->sbuf);
1697	kfree(c->bottom_up_buf);
1698	kfree(c->sup_node);
1699	ubifs_debugging_exit(c);
1700	ubifs_sysfs_unregister(c);
1701}
1702
1703/**
1704 * ubifs_remount_rw - re-mount in read-write mode.
1705 * @c: UBIFS file-system description object
1706 *
1707 * UBIFS avoids allocating many unnecessary resources when mounted in read-only
1708 * mode. This function allocates the needed resources and re-mounts UBIFS in
1709 * read-write mode.
1710 */
1711static int ubifs_remount_rw(struct ubifs_info *c)
1712{
1713	int err, lnum;
1714
1715	if (c->rw_incompat) {
1716		ubifs_err(c, "the file-system is not R/W-compatible");
1717		ubifs_msg(c, "on-flash format version is w%d/r%d, but software only supports up to version w%d/r%d",
1718			  c->fmt_version, c->ro_compat_version,
1719			  UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION);
1720		return -EROFS;
1721	}
1722
1723	mutex_lock(&c->umount_mutex);
1724	dbg_save_space_info(c);
1725	c->remounting_rw = 1;
1726	c->ro_mount = 0;
1727
1728	if (c->space_fixup) {
1729		err = ubifs_fixup_free_space(c);
1730		if (err)
1731			goto out;
1732	}
1733
1734	err = check_free_space(c);
1735	if (err)
1736		goto out;
1737
1738	if (c->need_recovery) {
1739		ubifs_msg(c, "completing deferred recovery");
1740		err = ubifs_write_rcvrd_mst_node(c);
1741		if (err)
1742			goto out;
1743		if (!ubifs_authenticated(c)) {
1744			err = ubifs_recover_size(c, true);
1745			if (err)
1746				goto out;
1747		}
1748		err = ubifs_clean_lebs(c, c->sbuf);
1749		if (err)
1750			goto out;
1751		err = ubifs_recover_inl_heads(c, c->sbuf);
1752		if (err)
1753			goto out;
1754	} else {
1755		/* A readonly mount is not allowed to have orphans */
1756		ubifs_assert(c, c->tot_orphans == 0);
1757		err = ubifs_clear_orphans(c);
1758		if (err)
1759			goto out;
1760	}
1761
1762	if (!(c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY))) {
1763		c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1764		err = ubifs_write_master(c);
1765		if (err)
1766			goto out;
1767	}
1768
1769	if (c->superblock_need_write) {
1770		struct ubifs_sb_node *sup = c->sup_node;
1771
1772		err = ubifs_write_sb_node(c, sup);
1773		if (err)
1774			goto out;
1775
1776		c->superblock_need_write = 0;
1777	}
1778
1779	c->ileb_buf = vmalloc(c->leb_size);
1780	if (!c->ileb_buf) {
1781		err = -ENOMEM;
1782		goto out;
1783	}
1784
1785	c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ + \
1786				       UBIFS_CIPHER_BLOCK_SIZE, GFP_KERNEL);
1787	if (!c->write_reserve_buf) {
1788		err = -ENOMEM;
1789		goto out;
1790	}
1791
1792	err = ubifs_lpt_init(c, 0, 1);
1793	if (err)
1794		goto out;
1795
1796	/* Create background thread */
1797	c->bgt = kthread_run(ubifs_bg_thread, c, "%s", c->bgt_name);
1798	if (IS_ERR(c->bgt)) {
1799		err = PTR_ERR(c->bgt);
1800		c->bgt = NULL;
1801		ubifs_err(c, "cannot spawn \"%s\", error %d",
1802			  c->bgt_name, err);
1803		goto out;
1804	}
1805
1806	c->orph_buf = vmalloc(c->leb_size);
1807	if (!c->orph_buf) {
1808		err = -ENOMEM;
1809		goto out;
1810	}
1811
1812	/* Check for enough log space */
1813	lnum = c->lhead_lnum + 1;
1814	if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1815		lnum = UBIFS_LOG_LNUM;
1816	if (lnum == c->ltail_lnum) {
1817		err = ubifs_consolidate_log(c);
1818		if (err)
1819			goto out;
1820	}
1821
1822	if (c->need_recovery) {
1823		err = ubifs_rcvry_gc_commit(c);
1824		if (err)
1825			goto out;
1826
1827		if (ubifs_authenticated(c)) {
1828			err = ubifs_recover_size(c, false);
1829			if (err)
1830				goto out;
1831		}
1832	} else {
1833		err = ubifs_leb_unmap(c, c->gc_lnum);
1834	}
1835	if (err)
1836		goto out;
1837
1838	dbg_gen("re-mounted read-write");
1839	c->remounting_rw = 0;
1840
1841	if (c->need_recovery) {
1842		c->need_recovery = 0;
1843		ubifs_msg(c, "deferred recovery completed");
1844	} else {
1845		/*
1846		 * Do not run the debugging space check if the were doing
1847		 * recovery, because when we saved the information we had the
1848		 * file-system in a state where the TNC and lprops has been
1849		 * modified in memory, but all the I/O operations (including a
1850		 * commit) were deferred. So the file-system was in
1851		 * "non-committed" state. Now the file-system is in committed
1852		 * state, and of course the amount of free space will change
1853		 * because, for example, the old index size was imprecise.
1854		 */
1855		err = dbg_check_space_info(c);
1856	}
1857
1858	mutex_unlock(&c->umount_mutex);
1859	return err;
1860
1861out:
1862	c->ro_mount = 1;
1863	vfree(c->orph_buf);
1864	c->orph_buf = NULL;
1865	if (c->bgt) {
1866		kthread_stop(c->bgt);
1867		c->bgt = NULL;
1868	}
1869	kfree(c->write_reserve_buf);
1870	c->write_reserve_buf = NULL;
1871	vfree(c->ileb_buf);
1872	c->ileb_buf = NULL;
1873	ubifs_lpt_free(c, 1);
1874	c->remounting_rw = 0;
1875	mutex_unlock(&c->umount_mutex);
1876	return err;
1877}
1878
1879/**
1880 * ubifs_remount_ro - re-mount in read-only mode.
1881 * @c: UBIFS file-system description object
1882 *
1883 * We assume VFS has stopped writing. Possibly the background thread could be
1884 * running a commit, however kthread_stop will wait in that case.
1885 */
1886static void ubifs_remount_ro(struct ubifs_info *c)
1887{
1888	int i, err;
1889
1890	ubifs_assert(c, !c->need_recovery);
1891	ubifs_assert(c, !c->ro_mount);
1892
1893	mutex_lock(&c->umount_mutex);
1894	if (c->bgt) {
1895		kthread_stop(c->bgt);
1896		c->bgt = NULL;
1897	}
1898
1899	dbg_save_space_info(c);
1900
1901	for (i = 0; i < c->jhead_cnt; i++) {
1902		err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
1903		if (err)
1904			ubifs_ro_mode(c, err);
1905	}
1906
1907	c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1908	c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1909	c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1910	err = ubifs_write_master(c);
1911	if (err)
1912		ubifs_ro_mode(c, err);
1913
1914	vfree(c->orph_buf);
1915	c->orph_buf = NULL;
1916	kfree(c->write_reserve_buf);
1917	c->write_reserve_buf = NULL;
1918	vfree(c->ileb_buf);
1919	c->ileb_buf = NULL;
1920	ubifs_lpt_free(c, 1);
1921	c->ro_mount = 1;
1922	err = dbg_check_space_info(c);
1923	if (err)
1924		ubifs_ro_mode(c, err);
1925	mutex_unlock(&c->umount_mutex);
1926}
1927
1928static void ubifs_put_super(struct super_block *sb)
1929{
1930	int i;
1931	struct ubifs_info *c = sb->s_fs_info;
1932
1933	ubifs_msg(c, "un-mount UBI device %d", c->vi.ubi_num);
1934
1935	/*
1936	 * The following asserts are only valid if there has not been a failure
1937	 * of the media. For example, there will be dirty inodes if we failed
1938	 * to write them back because of I/O errors.
1939	 */
1940	if (!c->ro_error) {
1941		ubifs_assert(c, c->bi.idx_growth == 0);
1942		ubifs_assert(c, c->bi.dd_growth == 0);
1943		ubifs_assert(c, c->bi.data_growth == 0);
1944	}
1945
1946	/*
1947	 * The 'c->umount_lock' prevents races between UBIFS memory shrinker
1948	 * and file system un-mount. Namely, it prevents the shrinker from
1949	 * picking this superblock for shrinking - it will be just skipped if
1950	 * the mutex is locked.
1951	 */
1952	mutex_lock(&c->umount_mutex);
1953	if (!c->ro_mount) {
1954		/*
1955		 * First of all kill the background thread to make sure it does
1956		 * not interfere with un-mounting and freeing resources.
1957		 */
1958		if (c->bgt) {
1959			kthread_stop(c->bgt);
1960			c->bgt = NULL;
1961		}
1962
1963		/*
1964		 * On fatal errors c->ro_error is set to 1, in which case we do
1965		 * not write the master node.
1966		 */
1967		if (!c->ro_error) {
1968			int err;
1969
1970			/* Synchronize write-buffers */
1971			for (i = 0; i < c->jhead_cnt; i++) {
1972				err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
1973				if (err)
1974					ubifs_ro_mode(c, err);
1975			}
1976
1977			/*
1978			 * We are being cleanly unmounted which means the
1979			 * orphans were killed - indicate this in the master
1980			 * node. Also save the reserved GC LEB number.
1981			 */
1982			c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1983			c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1984			c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1985			err = ubifs_write_master(c);
1986			if (err)
1987				/*
1988				 * Recovery will attempt to fix the master area
1989				 * next mount, so we just print a message and
1990				 * continue to unmount normally.
1991				 */
1992				ubifs_err(c, "failed to write master node, error %d",
1993					  err);
1994		} else {
1995			for (i = 0; i < c->jhead_cnt; i++)
1996				/* Make sure write-buffer timers are canceled */
1997				hrtimer_cancel(&c->jheads[i].wbuf.timer);
1998		}
1999	}
2000
2001	ubifs_umount(c);
2002	ubi_close_volume(c->ubi);
2003	mutex_unlock(&c->umount_mutex);
2004}
2005
2006static int ubifs_remount_fs(struct super_block *sb, int *flags, char *data)
2007{
2008	int err;
2009	struct ubifs_info *c = sb->s_fs_info;
2010
2011	sync_filesystem(sb);
2012	dbg_gen("old flags %#lx, new flags %#x", sb->s_flags, *flags);
2013
2014	err = ubifs_parse_options(c, data, 1);
2015	if (err) {
2016		ubifs_err(c, "invalid or unknown remount parameter");
2017		return err;
2018	}
2019
2020	if (c->ro_mount && !(*flags & SB_RDONLY)) {
2021		if (c->ro_error) {
2022			ubifs_msg(c, "cannot re-mount R/W due to prior errors");
2023			return -EROFS;
2024		}
2025		if (c->ro_media) {
2026			ubifs_msg(c, "cannot re-mount R/W - UBI volume is R/O");
2027			return -EROFS;
2028		}
2029		err = ubifs_remount_rw(c);
2030		if (err)
2031			return err;
2032	} else if (!c->ro_mount && (*flags & SB_RDONLY)) {
2033		if (c->ro_error) {
2034			ubifs_msg(c, "cannot re-mount R/O due to prior errors");
2035			return -EROFS;
2036		}
2037		ubifs_remount_ro(c);
2038	}
2039
2040	if (c->bulk_read == 1)
2041		bu_init(c);
2042	else {
2043		dbg_gen("disable bulk-read");
2044		mutex_lock(&c->bu_mutex);
2045		kfree(c->bu.buf);
2046		c->bu.buf = NULL;
2047		mutex_unlock(&c->bu_mutex);
2048	}
2049
2050	if (!c->need_recovery)
2051		ubifs_assert(c, c->lst.taken_empty_lebs > 0);
2052
2053	return 0;
2054}
2055
2056const struct super_operations ubifs_super_operations = {
2057	.alloc_inode   = ubifs_alloc_inode,
2058	.free_inode    = ubifs_free_inode,
2059	.put_super     = ubifs_put_super,
2060	.write_inode   = ubifs_write_inode,
2061	.drop_inode    = ubifs_drop_inode,
2062	.evict_inode   = ubifs_evict_inode,
2063	.statfs        = ubifs_statfs,
2064	.dirty_inode   = ubifs_dirty_inode,
2065	.remount_fs    = ubifs_remount_fs,
2066	.show_options  = ubifs_show_options,
2067	.sync_fs       = ubifs_sync_fs,
2068};
2069
2070/**
2071 * open_ubi - parse UBI device name string and open the UBI device.
2072 * @name: UBI volume name
2073 * @mode: UBI volume open mode
2074 *
2075 * The primary method of mounting UBIFS is by specifying the UBI volume
2076 * character device node path. However, UBIFS may also be mounted without any
2077 * character device node using one of the following methods:
2078 *
2079 * o ubiX_Y    - mount UBI device number X, volume Y;
2080 * o ubiY      - mount UBI device number 0, volume Y;
2081 * o ubiX:NAME - mount UBI device X, volume with name NAME;
2082 * o ubi:NAME  - mount UBI device 0, volume with name NAME.
2083 *
2084 * Alternative '!' separator may be used instead of ':' (because some shells
2085 * like busybox may interpret ':' as an NFS host name separator). This function
2086 * returns UBI volume description object in case of success and a negative
2087 * error code in case of failure.
2088 */
2089static struct ubi_volume_desc *open_ubi(const char *name, int mode)
2090{
2091	struct ubi_volume_desc *ubi;
2092	int dev, vol;
2093	char *endptr;
2094
2095	if (!name || !*name)
2096		return ERR_PTR(-EINVAL);
2097
2098	/* First, try to open using the device node path method */
2099	ubi = ubi_open_volume_path(name, mode);
2100	if (!IS_ERR(ubi))
2101		return ubi;
2102
2103	/* Try the "nodev" method */
2104	if (name[0] != 'u' || name[1] != 'b' || name[2] != 'i')
2105		return ERR_PTR(-EINVAL);
2106
2107	/* ubi:NAME method */
2108	if ((name[3] == ':' || name[3] == '!') && name[4] != '\0')
2109		return ubi_open_volume_nm(0, name + 4, mode);
2110
2111	if (!isdigit(name[3]))
2112		return ERR_PTR(-EINVAL);
2113
2114	dev = simple_strtoul(name + 3, &endptr, 0);
2115
2116	/* ubiY method */
2117	if (*endptr == '\0')
2118		return ubi_open_volume(0, dev, mode);
2119
2120	/* ubiX_Y method */
2121	if (*endptr == '_' && isdigit(endptr[1])) {
2122		vol = simple_strtoul(endptr + 1, &endptr, 0);
2123		if (*endptr != '\0')
2124			return ERR_PTR(-EINVAL);
2125		return ubi_open_volume(dev, vol, mode);
2126	}
2127
2128	/* ubiX:NAME method */
2129	if ((*endptr == ':' || *endptr == '!') && endptr[1] != '\0')
2130		return ubi_open_volume_nm(dev, ++endptr, mode);
2131
2132	return ERR_PTR(-EINVAL);
2133}
2134
2135static struct ubifs_info *alloc_ubifs_info(struct ubi_volume_desc *ubi)
2136{
2137	struct ubifs_info *c;
2138
2139	c = kzalloc(sizeof(struct ubifs_info), GFP_KERNEL);
2140	if (c) {
2141		spin_lock_init(&c->cnt_lock);
2142		spin_lock_init(&c->cs_lock);
2143		spin_lock_init(&c->buds_lock);
2144		spin_lock_init(&c->space_lock);
2145		spin_lock_init(&c->orphan_lock);
2146		init_rwsem(&c->commit_sem);
2147		mutex_init(&c->lp_mutex);
2148		mutex_init(&c->tnc_mutex);
2149		mutex_init(&c->log_mutex);
2150		mutex_init(&c->umount_mutex);
2151		mutex_init(&c->bu_mutex);
2152		mutex_init(&c->write_reserve_mutex);
2153		init_waitqueue_head(&c->cmt_wq);
2154		init_waitqueue_head(&c->reserve_space_wq);
2155		atomic_set(&c->need_wait_space, 0);
2156		c->buds = RB_ROOT;
2157		c->old_idx = RB_ROOT;
2158		c->size_tree = RB_ROOT;
2159		c->orph_tree = RB_ROOT;
2160		INIT_LIST_HEAD(&c->infos_list);
2161		INIT_LIST_HEAD(&c->idx_gc);
2162		INIT_LIST_HEAD(&c->replay_list);
2163		INIT_LIST_HEAD(&c->replay_buds);
2164		INIT_LIST_HEAD(&c->uncat_list);
2165		INIT_LIST_HEAD(&c->empty_list);
2166		INIT_LIST_HEAD(&c->freeable_list);
2167		INIT_LIST_HEAD(&c->frdi_idx_list);
2168		INIT_LIST_HEAD(&c->unclean_leb_list);
2169		INIT_LIST_HEAD(&c->old_buds);
2170		INIT_LIST_HEAD(&c->orph_list);
2171		INIT_LIST_HEAD(&c->orph_new);
2172		c->no_chk_data_crc = 1;
2173		c->assert_action = ASSACT_RO;
2174
2175		c->highest_inum = UBIFS_FIRST_INO;
2176		c->lhead_lnum = c->ltail_lnum = UBIFS_LOG_LNUM;
2177
2178		ubi_get_volume_info(ubi, &c->vi);
2179		ubi_get_device_info(c->vi.ubi_num, &c->di);
2180	}
2181	return c;
2182}
2183
2184static int ubifs_fill_super(struct super_block *sb, void *data, int silent)
2185{
2186	struct ubifs_info *c = sb->s_fs_info;
2187	struct inode *root;
2188	int err;
2189
2190	c->vfs_sb = sb;
2191	/* Re-open the UBI device in read-write mode */
2192	c->ubi = ubi_open_volume(c->vi.ubi_num, c->vi.vol_id, UBI_READWRITE);
2193	if (IS_ERR(c->ubi)) {
2194		err = PTR_ERR(c->ubi);
2195		goto out;
2196	}
2197
2198	err = ubifs_parse_options(c, data, 0);
2199	if (err)
2200		goto out_close;
2201
2202	/*
2203	 * UBIFS provides 'backing_dev_info' in order to disable read-ahead. For
2204	 * UBIFS, I/O is not deferred, it is done immediately in read_folio,
2205	 * which means the user would have to wait not just for their own I/O
2206	 * but the read-ahead I/O as well i.e. completely pointless.
2207	 *
2208	 * Read-ahead will be disabled because @sb->s_bdi->ra_pages is 0. Also
2209	 * @sb->s_bdi->capabilities are initialized to 0 so there won't be any
2210	 * writeback happening.
2211	 */
2212	err = super_setup_bdi_name(sb, "ubifs_%d_%d", c->vi.ubi_num,
2213				   c->vi.vol_id);
2214	if (err)
2215		goto out_close;
2216	sb->s_bdi->ra_pages = 0;
2217	sb->s_bdi->io_pages = 0;
2218
2219	sb->s_fs_info = c;
2220	sb->s_magic = UBIFS_SUPER_MAGIC;
2221	sb->s_blocksize = UBIFS_BLOCK_SIZE;
2222	sb->s_blocksize_bits = UBIFS_BLOCK_SHIFT;
2223	sb->s_maxbytes = c->max_inode_sz = key_max_inode_size(c);
2224	if (c->max_inode_sz > MAX_LFS_FILESIZE)
2225		sb->s_maxbytes = c->max_inode_sz = MAX_LFS_FILESIZE;
2226	sb->s_op = &ubifs_super_operations;
2227	sb->s_xattr = ubifs_xattr_handlers;
2228	fscrypt_set_ops(sb, &ubifs_crypt_operations);
2229
2230	mutex_lock(&c->umount_mutex);
2231	err = mount_ubifs(c);
2232	if (err) {
2233		ubifs_assert(c, err < 0);
2234		goto out_unlock;
2235	}
2236
2237	/* Read the root inode */
2238	root = ubifs_iget(sb, UBIFS_ROOT_INO);
2239	if (IS_ERR(root)) {
2240		err = PTR_ERR(root);
2241		goto out_umount;
2242	}
2243
2244	generic_set_sb_d_ops(sb);
2245	sb->s_root = d_make_root(root);
2246	if (!sb->s_root) {
2247		err = -ENOMEM;
2248		goto out_umount;
2249	}
2250
2251	super_set_uuid(sb, c->uuid, sizeof(c->uuid));
2252
2253	mutex_unlock(&c->umount_mutex);
2254	return 0;
2255
2256out_umount:
2257	ubifs_umount(c);
2258out_unlock:
2259	mutex_unlock(&c->umount_mutex);
2260out_close:
2261	ubifs_release_options(c);
2262	ubi_close_volume(c->ubi);
2263out:
2264	return err;
2265}
2266
2267static int sb_test(struct super_block *sb, void *data)
2268{
2269	struct ubifs_info *c1 = data;
2270	struct ubifs_info *c = sb->s_fs_info;
2271
2272	return c->vi.cdev == c1->vi.cdev;
2273}
2274
2275static int sb_set(struct super_block *sb, void *data)
2276{
2277	sb->s_fs_info = data;
2278	return set_anon_super(sb, NULL);
2279}
2280
2281static struct dentry *ubifs_mount(struct file_system_type *fs_type, int flags,
2282			const char *name, void *data)
2283{
2284	struct ubi_volume_desc *ubi;
2285	struct ubifs_info *c;
2286	struct super_block *sb;
2287	int err;
2288
2289	dbg_gen("name %s, flags %#x", name, flags);
2290
2291	/*
2292	 * Get UBI device number and volume ID. Mount it read-only so far
2293	 * because this might be a new mount point, and UBI allows only one
2294	 * read-write user at a time.
2295	 */
2296	ubi = open_ubi(name, UBI_READONLY);
2297	if (IS_ERR(ubi)) {
2298		if (!(flags & SB_SILENT))
2299			pr_err("UBIFS error (pid: %d): cannot open \"%s\", error %d",
2300			       current->pid, name, (int)PTR_ERR(ubi));
2301		return ERR_CAST(ubi);
2302	}
2303
2304	c = alloc_ubifs_info(ubi);
2305	if (!c) {
2306		err = -ENOMEM;
2307		goto out_close;
2308	}
2309
2310	dbg_gen("opened ubi%d_%d", c->vi.ubi_num, c->vi.vol_id);
2311
2312	sb = sget(fs_type, sb_test, sb_set, flags, c);
2313	if (IS_ERR(sb)) {
2314		err = PTR_ERR(sb);
2315		kfree(c);
2316		goto out_close;
2317	}
2318
2319	if (sb->s_root) {
2320		struct ubifs_info *c1 = sb->s_fs_info;
2321		kfree(c);
2322		/* A new mount point for already mounted UBIFS */
2323		dbg_gen("this ubi volume is already mounted");
2324		if (!!(flags & SB_RDONLY) != c1->ro_mount) {
2325			err = -EBUSY;
2326			goto out_deact;
2327		}
2328	} else {
2329		err = ubifs_fill_super(sb, data, flags & SB_SILENT ? 1 : 0);
2330		if (err)
2331			goto out_deact;
2332		/* We do not support atime */
2333		sb->s_flags |= SB_ACTIVE;
2334		if (IS_ENABLED(CONFIG_UBIFS_ATIME_SUPPORT))
2335			ubifs_msg(c, "full atime support is enabled.");
2336		else
2337			sb->s_flags |= SB_NOATIME;
2338	}
2339
2340	/* 'fill_super()' opens ubi again so we must close it here */
2341	ubi_close_volume(ubi);
2342
2343	return dget(sb->s_root);
2344
2345out_deact:
2346	deactivate_locked_super(sb);
2347out_close:
2348	ubi_close_volume(ubi);
2349	return ERR_PTR(err);
2350}
2351
2352static void kill_ubifs_super(struct super_block *s)
2353{
2354	struct ubifs_info *c = s->s_fs_info;
2355	kill_anon_super(s);
2356	kfree(c);
2357}
2358
2359static struct file_system_type ubifs_fs_type = {
2360	.name    = "ubifs",
2361	.owner   = THIS_MODULE,
2362	.mount   = ubifs_mount,
2363	.kill_sb = kill_ubifs_super,
2364};
2365MODULE_ALIAS_FS("ubifs");
2366
2367/*
2368 * Inode slab cache constructor.
2369 */
2370static void inode_slab_ctor(void *obj)
2371{
2372	struct ubifs_inode *ui = obj;
2373	inode_init_once(&ui->vfs_inode);
2374}
2375
2376static int __init ubifs_init(void)
2377{
2378	int err = -ENOMEM;
2379
2380	BUILD_BUG_ON(sizeof(struct ubifs_ch) != 24);
2381
2382	/* Make sure node sizes are 8-byte aligned */
2383	BUILD_BUG_ON(UBIFS_CH_SZ        & 7);
2384	BUILD_BUG_ON(UBIFS_INO_NODE_SZ  & 7);
2385	BUILD_BUG_ON(UBIFS_DENT_NODE_SZ & 7);
2386	BUILD_BUG_ON(UBIFS_XENT_NODE_SZ & 7);
2387	BUILD_BUG_ON(UBIFS_DATA_NODE_SZ & 7);
2388	BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ & 7);
2389	BUILD_BUG_ON(UBIFS_SB_NODE_SZ   & 7);
2390	BUILD_BUG_ON(UBIFS_MST_NODE_SZ  & 7);
2391	BUILD_BUG_ON(UBIFS_REF_NODE_SZ  & 7);
2392	BUILD_BUG_ON(UBIFS_CS_NODE_SZ   & 7);
2393	BUILD_BUG_ON(UBIFS_ORPH_NODE_SZ & 7);
2394
2395	BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ & 7);
2396	BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ & 7);
2397	BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ & 7);
2398	BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ  & 7);
2399	BUILD_BUG_ON(UBIFS_MAX_NODE_SZ      & 7);
2400	BUILD_BUG_ON(MIN_WRITE_SZ           & 7);
2401
2402	/* Check min. node size */
2403	BUILD_BUG_ON(UBIFS_INO_NODE_SZ  < MIN_WRITE_SZ);
2404	BUILD_BUG_ON(UBIFS_DENT_NODE_SZ < MIN_WRITE_SZ);
2405	BUILD_BUG_ON(UBIFS_XENT_NODE_SZ < MIN_WRITE_SZ);
2406	BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ < MIN_WRITE_SZ);
2407
2408	BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
2409	BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
2410	BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ > UBIFS_MAX_NODE_SZ);
2411	BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ  > UBIFS_MAX_NODE_SZ);
2412
2413	/* Defined node sizes */
2414	BUILD_BUG_ON(UBIFS_SB_NODE_SZ  != 4096);
2415	BUILD_BUG_ON(UBIFS_MST_NODE_SZ != 512);
2416	BUILD_BUG_ON(UBIFS_INO_NODE_SZ != 160);
2417	BUILD_BUG_ON(UBIFS_REF_NODE_SZ != 64);
2418
2419	/*
2420	 * We use 2 bit wide bit-fields to store compression type, which should
2421	 * be amended if more compressors are added. The bit-fields are:
2422	 * @compr_type in 'struct ubifs_inode', @default_compr in
2423	 * 'struct ubifs_info' and @compr_type in 'struct ubifs_mount_opts'.
2424	 */
2425	BUILD_BUG_ON(UBIFS_COMPR_TYPES_CNT > 4);
2426
2427	/*
2428	 * We require that PAGE_SIZE is greater-than-or-equal-to
2429	 * UBIFS_BLOCK_SIZE. It is assumed that both are powers of 2.
2430	 */
2431	if (PAGE_SIZE < UBIFS_BLOCK_SIZE) {
2432		pr_err("UBIFS error (pid %d): VFS page cache size is %u bytes, but UBIFS requires at least 4096 bytes",
2433		       current->pid, (unsigned int)PAGE_SIZE);
2434		return -EINVAL;
2435	}
2436
2437	ubifs_inode_slab = kmem_cache_create("ubifs_inode_slab",
2438				sizeof(struct ubifs_inode), 0,
2439				SLAB_RECLAIM_ACCOUNT | SLAB_ACCOUNT,
2440				&inode_slab_ctor);
2441	if (!ubifs_inode_slab)
2442		return -ENOMEM;
2443
2444	ubifs_shrinker_info = shrinker_alloc(0, "ubifs-slab");
2445	if (!ubifs_shrinker_info)
2446		goto out_slab;
2447
2448	ubifs_shrinker_info->count_objects = ubifs_shrink_count;
2449	ubifs_shrinker_info->scan_objects = ubifs_shrink_scan;
2450
2451	shrinker_register(ubifs_shrinker_info);
2452
2453	err = ubifs_compressors_init();
2454	if (err)
2455		goto out_shrinker;
2456
2457	dbg_debugfs_init();
2458
2459	err = ubifs_sysfs_init();
2460	if (err)
2461		goto out_dbg;
2462
2463	err = register_filesystem(&ubifs_fs_type);
2464	if (err) {
2465		pr_err("UBIFS error (pid %d): cannot register file system, error %d",
2466		       current->pid, err);
2467		goto out_sysfs;
2468	}
2469	return 0;
2470
2471out_sysfs:
2472	ubifs_sysfs_exit();
2473out_dbg:
2474	dbg_debugfs_exit();
2475	ubifs_compressors_exit();
2476out_shrinker:
2477	shrinker_free(ubifs_shrinker_info);
2478out_slab:
2479	kmem_cache_destroy(ubifs_inode_slab);
2480	return err;
2481}
2482/* late_initcall to let compressors initialize first */
2483late_initcall(ubifs_init);
2484
2485static void __exit ubifs_exit(void)
2486{
2487	WARN_ON(!list_empty(&ubifs_infos));
2488	WARN_ON(atomic_long_read(&ubifs_clean_zn_cnt) != 0);
2489
2490	dbg_debugfs_exit();
2491	ubifs_sysfs_exit();
2492	ubifs_compressors_exit();
2493	shrinker_free(ubifs_shrinker_info);
2494
2495	/*
2496	 * Make sure all delayed rcu free inodes are flushed before we
2497	 * destroy cache.
2498	 */
2499	rcu_barrier();
2500	kmem_cache_destroy(ubifs_inode_slab);
2501	unregister_filesystem(&ubifs_fs_type);
2502}
2503module_exit(ubifs_exit);
2504
2505MODULE_LICENSE("GPL");
2506MODULE_VERSION(__stringify(UBIFS_VERSION));
2507MODULE_AUTHOR("Artem Bityutskiy, Adrian Hunter");
2508MODULE_DESCRIPTION("UBIFS - UBI File System");
2509