1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * This file is part of UBIFS.
4 *
5 * Copyright (C) 2006-2008 Nokia Corporation.
6 *
7 * Authors: Adrian Hunter
8 *          Artem Bityutskiy (���������������� ����������)
9 */
10
11/*
12 * This file implements commit-related functionality of the LEB properties
13 * subsystem.
14 */
15
16#include <linux/crc16.h>
17#include <linux/slab.h>
18#include <linux/random.h>
19#include "ubifs.h"
20
21static int dbg_populate_lsave(struct ubifs_info *c);
22
23/**
24 * first_dirty_cnode - find first dirty cnode.
25 * @c: UBIFS file-system description object
26 * @nnode: nnode at which to start
27 *
28 * This function returns the first dirty cnode or %NULL if there is not one.
29 */
30static struct ubifs_cnode *first_dirty_cnode(const struct ubifs_info *c, struct ubifs_nnode *nnode)
31{
32	ubifs_assert(c, nnode);
33	while (1) {
34		int i, cont = 0;
35
36		for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
37			struct ubifs_cnode *cnode;
38
39			cnode = nnode->nbranch[i].cnode;
40			if (cnode &&
41			    test_bit(DIRTY_CNODE, &cnode->flags)) {
42				if (cnode->level == 0)
43					return cnode;
44				nnode = (struct ubifs_nnode *)cnode;
45				cont = 1;
46				break;
47			}
48		}
49		if (!cont)
50			return (struct ubifs_cnode *)nnode;
51	}
52}
53
54/**
55 * next_dirty_cnode - find next dirty cnode.
56 * @c: UBIFS file-system description object
57 * @cnode: cnode from which to begin searching
58 *
59 * This function returns the next dirty cnode or %NULL if there is not one.
60 */
61static struct ubifs_cnode *next_dirty_cnode(const struct ubifs_info *c, struct ubifs_cnode *cnode)
62{
63	struct ubifs_nnode *nnode;
64	int i;
65
66	ubifs_assert(c, cnode);
67	nnode = cnode->parent;
68	if (!nnode)
69		return NULL;
70	for (i = cnode->iip + 1; i < UBIFS_LPT_FANOUT; i++) {
71		cnode = nnode->nbranch[i].cnode;
72		if (cnode && test_bit(DIRTY_CNODE, &cnode->flags)) {
73			if (cnode->level == 0)
74				return cnode; /* cnode is a pnode */
75			/* cnode is a nnode */
76			return first_dirty_cnode(c, (struct ubifs_nnode *)cnode);
77		}
78	}
79	return (struct ubifs_cnode *)nnode;
80}
81
82/**
83 * get_cnodes_to_commit - create list of dirty cnodes to commit.
84 * @c: UBIFS file-system description object
85 *
86 * This function returns the number of cnodes to commit.
87 */
88static int get_cnodes_to_commit(struct ubifs_info *c)
89{
90	struct ubifs_cnode *cnode, *cnext;
91	int cnt = 0;
92
93	if (!c->nroot)
94		return 0;
95
96	if (!test_bit(DIRTY_CNODE, &c->nroot->flags))
97		return 0;
98
99	c->lpt_cnext = first_dirty_cnode(c, c->nroot);
100	cnode = c->lpt_cnext;
101	if (!cnode)
102		return 0;
103	cnt += 1;
104	while (1) {
105		ubifs_assert(c, !test_bit(COW_CNODE, &cnode->flags));
106		__set_bit(COW_CNODE, &cnode->flags);
107		cnext = next_dirty_cnode(c, cnode);
108		if (!cnext) {
109			cnode->cnext = c->lpt_cnext;
110			break;
111		}
112		cnode->cnext = cnext;
113		cnode = cnext;
114		cnt += 1;
115	}
116	dbg_cmt("committing %d cnodes", cnt);
117	dbg_lp("committing %d cnodes", cnt);
118	ubifs_assert(c, cnt == c->dirty_nn_cnt + c->dirty_pn_cnt);
119	return cnt;
120}
121
122/**
123 * upd_ltab - update LPT LEB properties.
124 * @c: UBIFS file-system description object
125 * @lnum: LEB number
126 * @free: amount of free space
127 * @dirty: amount of dirty space to add
128 */
129static void upd_ltab(struct ubifs_info *c, int lnum, int free, int dirty)
130{
131	dbg_lp("LEB %d free %d dirty %d to %d +%d",
132	       lnum, c->ltab[lnum - c->lpt_first].free,
133	       c->ltab[lnum - c->lpt_first].dirty, free, dirty);
134	ubifs_assert(c, lnum >= c->lpt_first && lnum <= c->lpt_last);
135	c->ltab[lnum - c->lpt_first].free = free;
136	c->ltab[lnum - c->lpt_first].dirty += dirty;
137}
138
139/**
140 * alloc_lpt_leb - allocate an LPT LEB that is empty.
141 * @c: UBIFS file-system description object
142 * @lnum: LEB number is passed and returned here
143 *
144 * This function finds the next empty LEB in the ltab starting from @lnum. If a
145 * an empty LEB is found it is returned in @lnum and the function returns %0.
146 * Otherwise the function returns -ENOSPC.  Note however, that LPT is designed
147 * never to run out of space.
148 */
149static int alloc_lpt_leb(struct ubifs_info *c, int *lnum)
150{
151	int i, n;
152
153	n = *lnum - c->lpt_first + 1;
154	for (i = n; i < c->lpt_lebs; i++) {
155		if (c->ltab[i].tgc || c->ltab[i].cmt)
156			continue;
157		if (c->ltab[i].free == c->leb_size) {
158			c->ltab[i].cmt = 1;
159			*lnum = i + c->lpt_first;
160			return 0;
161		}
162	}
163
164	for (i = 0; i < n; i++) {
165		if (c->ltab[i].tgc || c->ltab[i].cmt)
166			continue;
167		if (c->ltab[i].free == c->leb_size) {
168			c->ltab[i].cmt = 1;
169			*lnum = i + c->lpt_first;
170			return 0;
171		}
172	}
173	return -ENOSPC;
174}
175
176/**
177 * layout_cnodes - layout cnodes for commit.
178 * @c: UBIFS file-system description object
179 *
180 * This function returns %0 on success and a negative error code on failure.
181 */
182static int layout_cnodes(struct ubifs_info *c)
183{
184	int lnum, offs, len, alen, done_lsave, done_ltab, err;
185	struct ubifs_cnode *cnode;
186
187	err = dbg_chk_lpt_sz(c, 0, 0);
188	if (err)
189		return err;
190	cnode = c->lpt_cnext;
191	if (!cnode)
192		return 0;
193	lnum = c->nhead_lnum;
194	offs = c->nhead_offs;
195	/* Try to place lsave and ltab nicely */
196	done_lsave = !c->big_lpt;
197	done_ltab = 0;
198	if (!done_lsave && offs + c->lsave_sz <= c->leb_size) {
199		done_lsave = 1;
200		c->lsave_lnum = lnum;
201		c->lsave_offs = offs;
202		offs += c->lsave_sz;
203		dbg_chk_lpt_sz(c, 1, c->lsave_sz);
204	}
205
206	if (offs + c->ltab_sz <= c->leb_size) {
207		done_ltab = 1;
208		c->ltab_lnum = lnum;
209		c->ltab_offs = offs;
210		offs += c->ltab_sz;
211		dbg_chk_lpt_sz(c, 1, c->ltab_sz);
212	}
213
214	do {
215		if (cnode->level) {
216			len = c->nnode_sz;
217			c->dirty_nn_cnt -= 1;
218		} else {
219			len = c->pnode_sz;
220			c->dirty_pn_cnt -= 1;
221		}
222		while (offs + len > c->leb_size) {
223			alen = ALIGN(offs, c->min_io_size);
224			upd_ltab(c, lnum, c->leb_size - alen, alen - offs);
225			dbg_chk_lpt_sz(c, 2, c->leb_size - offs);
226			err = alloc_lpt_leb(c, &lnum);
227			if (err)
228				goto no_space;
229			offs = 0;
230			ubifs_assert(c, lnum >= c->lpt_first &&
231				     lnum <= c->lpt_last);
232			/* Try to place lsave and ltab nicely */
233			if (!done_lsave) {
234				done_lsave = 1;
235				c->lsave_lnum = lnum;
236				c->lsave_offs = offs;
237				offs += c->lsave_sz;
238				dbg_chk_lpt_sz(c, 1, c->lsave_sz);
239				continue;
240			}
241			if (!done_ltab) {
242				done_ltab = 1;
243				c->ltab_lnum = lnum;
244				c->ltab_offs = offs;
245				offs += c->ltab_sz;
246				dbg_chk_lpt_sz(c, 1, c->ltab_sz);
247				continue;
248			}
249			break;
250		}
251		if (cnode->parent) {
252			cnode->parent->nbranch[cnode->iip].lnum = lnum;
253			cnode->parent->nbranch[cnode->iip].offs = offs;
254		} else {
255			c->lpt_lnum = lnum;
256			c->lpt_offs = offs;
257		}
258		offs += len;
259		dbg_chk_lpt_sz(c, 1, len);
260		cnode = cnode->cnext;
261	} while (cnode && cnode != c->lpt_cnext);
262
263	/* Make sure to place LPT's save table */
264	if (!done_lsave) {
265		if (offs + c->lsave_sz > c->leb_size) {
266			alen = ALIGN(offs, c->min_io_size);
267			upd_ltab(c, lnum, c->leb_size - alen, alen - offs);
268			dbg_chk_lpt_sz(c, 2, c->leb_size - offs);
269			err = alloc_lpt_leb(c, &lnum);
270			if (err)
271				goto no_space;
272			offs = 0;
273			ubifs_assert(c, lnum >= c->lpt_first &&
274				     lnum <= c->lpt_last);
275		}
276		done_lsave = 1;
277		c->lsave_lnum = lnum;
278		c->lsave_offs = offs;
279		offs += c->lsave_sz;
280		dbg_chk_lpt_sz(c, 1, c->lsave_sz);
281	}
282
283	/* Make sure to place LPT's own lprops table */
284	if (!done_ltab) {
285		if (offs + c->ltab_sz > c->leb_size) {
286			alen = ALIGN(offs, c->min_io_size);
287			upd_ltab(c, lnum, c->leb_size - alen, alen - offs);
288			dbg_chk_lpt_sz(c, 2, c->leb_size - offs);
289			err = alloc_lpt_leb(c, &lnum);
290			if (err)
291				goto no_space;
292			offs = 0;
293			ubifs_assert(c, lnum >= c->lpt_first &&
294				     lnum <= c->lpt_last);
295		}
296		c->ltab_lnum = lnum;
297		c->ltab_offs = offs;
298		offs += c->ltab_sz;
299		dbg_chk_lpt_sz(c, 1, c->ltab_sz);
300	}
301
302	alen = ALIGN(offs, c->min_io_size);
303	upd_ltab(c, lnum, c->leb_size - alen, alen - offs);
304	dbg_chk_lpt_sz(c, 4, alen - offs);
305	err = dbg_chk_lpt_sz(c, 3, alen);
306	if (err)
307		return err;
308	return 0;
309
310no_space:
311	ubifs_err(c, "LPT out of space at LEB %d:%d needing %d, done_ltab %d, done_lsave %d",
312		  lnum, offs, len, done_ltab, done_lsave);
313	ubifs_dump_lpt_info(c);
314	ubifs_dump_lpt_lebs(c);
315	dump_stack();
316	return err;
317}
318
319/**
320 * realloc_lpt_leb - allocate an LPT LEB that is empty.
321 * @c: UBIFS file-system description object
322 * @lnum: LEB number is passed and returned here
323 *
324 * This function duplicates exactly the results of the function alloc_lpt_leb.
325 * It is used during end commit to reallocate the same LEB numbers that were
326 * allocated by alloc_lpt_leb during start commit.
327 *
328 * This function finds the next LEB that was allocated by the alloc_lpt_leb
329 * function starting from @lnum. If a LEB is found it is returned in @lnum and
330 * the function returns %0. Otherwise the function returns -ENOSPC.
331 * Note however, that LPT is designed never to run out of space.
332 */
333static int realloc_lpt_leb(struct ubifs_info *c, int *lnum)
334{
335	int i, n;
336
337	n = *lnum - c->lpt_first + 1;
338	for (i = n; i < c->lpt_lebs; i++)
339		if (c->ltab[i].cmt) {
340			c->ltab[i].cmt = 0;
341			*lnum = i + c->lpt_first;
342			return 0;
343		}
344
345	for (i = 0; i < n; i++)
346		if (c->ltab[i].cmt) {
347			c->ltab[i].cmt = 0;
348			*lnum = i + c->lpt_first;
349			return 0;
350		}
351	return -ENOSPC;
352}
353
354/**
355 * write_cnodes - write cnodes for commit.
356 * @c: UBIFS file-system description object
357 *
358 * This function returns %0 on success and a negative error code on failure.
359 */
360static int write_cnodes(struct ubifs_info *c)
361{
362	int lnum, offs, len, from, err, wlen, alen, done_ltab, done_lsave;
363	struct ubifs_cnode *cnode;
364	void *buf = c->lpt_buf;
365
366	cnode = c->lpt_cnext;
367	if (!cnode)
368		return 0;
369	lnum = c->nhead_lnum;
370	offs = c->nhead_offs;
371	from = offs;
372	/* Ensure empty LEB is unmapped */
373	if (offs == 0) {
374		err = ubifs_leb_unmap(c, lnum);
375		if (err)
376			return err;
377	}
378	/* Try to place lsave and ltab nicely */
379	done_lsave = !c->big_lpt;
380	done_ltab = 0;
381	if (!done_lsave && offs + c->lsave_sz <= c->leb_size) {
382		done_lsave = 1;
383		ubifs_pack_lsave(c, buf + offs, c->lsave);
384		offs += c->lsave_sz;
385		dbg_chk_lpt_sz(c, 1, c->lsave_sz);
386	}
387
388	if (offs + c->ltab_sz <= c->leb_size) {
389		done_ltab = 1;
390		ubifs_pack_ltab(c, buf + offs, c->ltab_cmt);
391		offs += c->ltab_sz;
392		dbg_chk_lpt_sz(c, 1, c->ltab_sz);
393	}
394
395	/* Loop for each cnode */
396	do {
397		if (cnode->level)
398			len = c->nnode_sz;
399		else
400			len = c->pnode_sz;
401		while (offs + len > c->leb_size) {
402			wlen = offs - from;
403			if (wlen) {
404				alen = ALIGN(wlen, c->min_io_size);
405				memset(buf + offs, 0xff, alen - wlen);
406				err = ubifs_leb_write(c, lnum, buf + from, from,
407						       alen);
408				if (err)
409					return err;
410			}
411			dbg_chk_lpt_sz(c, 2, c->leb_size - offs);
412			err = realloc_lpt_leb(c, &lnum);
413			if (err)
414				goto no_space;
415			offs = from = 0;
416			ubifs_assert(c, lnum >= c->lpt_first &&
417				     lnum <= c->lpt_last);
418			err = ubifs_leb_unmap(c, lnum);
419			if (err)
420				return err;
421			/* Try to place lsave and ltab nicely */
422			if (!done_lsave) {
423				done_lsave = 1;
424				ubifs_pack_lsave(c, buf + offs, c->lsave);
425				offs += c->lsave_sz;
426				dbg_chk_lpt_sz(c, 1, c->lsave_sz);
427				continue;
428			}
429			if (!done_ltab) {
430				done_ltab = 1;
431				ubifs_pack_ltab(c, buf + offs, c->ltab_cmt);
432				offs += c->ltab_sz;
433				dbg_chk_lpt_sz(c, 1, c->ltab_sz);
434				continue;
435			}
436			break;
437		}
438		if (cnode->level)
439			ubifs_pack_nnode(c, buf + offs,
440					 (struct ubifs_nnode *)cnode);
441		else
442			ubifs_pack_pnode(c, buf + offs,
443					 (struct ubifs_pnode *)cnode);
444		/*
445		 * The reason for the barriers is the same as in case of TNC.
446		 * See comment in 'write_index()'. 'dirty_cow_nnode()' and
447		 * 'dirty_cow_pnode()' are the functions for which this is
448		 * important.
449		 */
450		clear_bit(DIRTY_CNODE, &cnode->flags);
451		smp_mb__before_atomic();
452		clear_bit(COW_CNODE, &cnode->flags);
453		smp_mb__after_atomic();
454		offs += len;
455		dbg_chk_lpt_sz(c, 1, len);
456		cnode = cnode->cnext;
457	} while (cnode && cnode != c->lpt_cnext);
458
459	/* Make sure to place LPT's save table */
460	if (!done_lsave) {
461		if (offs + c->lsave_sz > c->leb_size) {
462			wlen = offs - from;
463			alen = ALIGN(wlen, c->min_io_size);
464			memset(buf + offs, 0xff, alen - wlen);
465			err = ubifs_leb_write(c, lnum, buf + from, from, alen);
466			if (err)
467				return err;
468			dbg_chk_lpt_sz(c, 2, c->leb_size - offs);
469			err = realloc_lpt_leb(c, &lnum);
470			if (err)
471				goto no_space;
472			offs = from = 0;
473			ubifs_assert(c, lnum >= c->lpt_first &&
474				     lnum <= c->lpt_last);
475			err = ubifs_leb_unmap(c, lnum);
476			if (err)
477				return err;
478		}
479		done_lsave = 1;
480		ubifs_pack_lsave(c, buf + offs, c->lsave);
481		offs += c->lsave_sz;
482		dbg_chk_lpt_sz(c, 1, c->lsave_sz);
483	}
484
485	/* Make sure to place LPT's own lprops table */
486	if (!done_ltab) {
487		if (offs + c->ltab_sz > c->leb_size) {
488			wlen = offs - from;
489			alen = ALIGN(wlen, c->min_io_size);
490			memset(buf + offs, 0xff, alen - wlen);
491			err = ubifs_leb_write(c, lnum, buf + from, from, alen);
492			if (err)
493				return err;
494			dbg_chk_lpt_sz(c, 2, c->leb_size - offs);
495			err = realloc_lpt_leb(c, &lnum);
496			if (err)
497				goto no_space;
498			offs = from = 0;
499			ubifs_assert(c, lnum >= c->lpt_first &&
500				     lnum <= c->lpt_last);
501			err = ubifs_leb_unmap(c, lnum);
502			if (err)
503				return err;
504		}
505		ubifs_pack_ltab(c, buf + offs, c->ltab_cmt);
506		offs += c->ltab_sz;
507		dbg_chk_lpt_sz(c, 1, c->ltab_sz);
508	}
509
510	/* Write remaining data in buffer */
511	wlen = offs - from;
512	alen = ALIGN(wlen, c->min_io_size);
513	memset(buf + offs, 0xff, alen - wlen);
514	err = ubifs_leb_write(c, lnum, buf + from, from, alen);
515	if (err)
516		return err;
517
518	dbg_chk_lpt_sz(c, 4, alen - wlen);
519	err = dbg_chk_lpt_sz(c, 3, ALIGN(offs, c->min_io_size));
520	if (err)
521		return err;
522
523	c->nhead_lnum = lnum;
524	c->nhead_offs = ALIGN(offs, c->min_io_size);
525
526	dbg_lp("LPT root is at %d:%d", c->lpt_lnum, c->lpt_offs);
527	dbg_lp("LPT head is at %d:%d", c->nhead_lnum, c->nhead_offs);
528	dbg_lp("LPT ltab is at %d:%d", c->ltab_lnum, c->ltab_offs);
529	if (c->big_lpt)
530		dbg_lp("LPT lsave is at %d:%d", c->lsave_lnum, c->lsave_offs);
531
532	return 0;
533
534no_space:
535	ubifs_err(c, "LPT out of space mismatch at LEB %d:%d needing %d, done_ltab %d, done_lsave %d",
536		  lnum, offs, len, done_ltab, done_lsave);
537	ubifs_dump_lpt_info(c);
538	ubifs_dump_lpt_lebs(c);
539	dump_stack();
540	return err;
541}
542
543/**
544 * next_pnode_to_dirty - find next pnode to dirty.
545 * @c: UBIFS file-system description object
546 * @pnode: pnode
547 *
548 * This function returns the next pnode to dirty or %NULL if there are no more
549 * pnodes.  Note that pnodes that have never been written (lnum == 0) are
550 * skipped.
551 */
552static struct ubifs_pnode *next_pnode_to_dirty(struct ubifs_info *c,
553					       struct ubifs_pnode *pnode)
554{
555	struct ubifs_nnode *nnode;
556	int iip;
557
558	/* Try to go right */
559	nnode = pnode->parent;
560	for (iip = pnode->iip + 1; iip < UBIFS_LPT_FANOUT; iip++) {
561		if (nnode->nbranch[iip].lnum)
562			return ubifs_get_pnode(c, nnode, iip);
563	}
564
565	/* Go up while can't go right */
566	do {
567		iip = nnode->iip + 1;
568		nnode = nnode->parent;
569		if (!nnode)
570			return NULL;
571		for (; iip < UBIFS_LPT_FANOUT; iip++) {
572			if (nnode->nbranch[iip].lnum)
573				break;
574		}
575	} while (iip >= UBIFS_LPT_FANOUT);
576
577	/* Go right */
578	nnode = ubifs_get_nnode(c, nnode, iip);
579	if (IS_ERR(nnode))
580		return (void *)nnode;
581
582	/* Go down to level 1 */
583	while (nnode->level > 1) {
584		for (iip = 0; iip < UBIFS_LPT_FANOUT; iip++) {
585			if (nnode->nbranch[iip].lnum)
586				break;
587		}
588		if (iip >= UBIFS_LPT_FANOUT) {
589			/*
590			 * Should not happen, but we need to keep going
591			 * if it does.
592			 */
593			iip = 0;
594		}
595		nnode = ubifs_get_nnode(c, nnode, iip);
596		if (IS_ERR(nnode))
597			return (void *)nnode;
598	}
599
600	for (iip = 0; iip < UBIFS_LPT_FANOUT; iip++)
601		if (nnode->nbranch[iip].lnum)
602			break;
603	if (iip >= UBIFS_LPT_FANOUT)
604		/* Should not happen, but we need to keep going if it does */
605		iip = 0;
606	return ubifs_get_pnode(c, nnode, iip);
607}
608
609/**
610 * add_pnode_dirt - add dirty space to LPT LEB properties.
611 * @c: UBIFS file-system description object
612 * @pnode: pnode for which to add dirt
613 */
614static void add_pnode_dirt(struct ubifs_info *c, struct ubifs_pnode *pnode)
615{
616	ubifs_add_lpt_dirt(c, pnode->parent->nbranch[pnode->iip].lnum,
617			   c->pnode_sz);
618}
619
620/**
621 * do_make_pnode_dirty - mark a pnode dirty.
622 * @c: UBIFS file-system description object
623 * @pnode: pnode to mark dirty
624 */
625static void do_make_pnode_dirty(struct ubifs_info *c, struct ubifs_pnode *pnode)
626{
627	/* Assumes cnext list is empty i.e. not called during commit */
628	if (!test_and_set_bit(DIRTY_CNODE, &pnode->flags)) {
629		struct ubifs_nnode *nnode;
630
631		c->dirty_pn_cnt += 1;
632		add_pnode_dirt(c, pnode);
633		/* Mark parent and ancestors dirty too */
634		nnode = pnode->parent;
635		while (nnode) {
636			if (!test_and_set_bit(DIRTY_CNODE, &nnode->flags)) {
637				c->dirty_nn_cnt += 1;
638				ubifs_add_nnode_dirt(c, nnode);
639				nnode = nnode->parent;
640			} else
641				break;
642		}
643	}
644}
645
646/**
647 * make_tree_dirty - mark the entire LEB properties tree dirty.
648 * @c: UBIFS file-system description object
649 *
650 * This function is used by the "small" LPT model to cause the entire LEB
651 * properties tree to be written.  The "small" LPT model does not use LPT
652 * garbage collection because it is more efficient to write the entire tree
653 * (because it is small).
654 *
655 * This function returns %0 on success and a negative error code on failure.
656 */
657static int make_tree_dirty(struct ubifs_info *c)
658{
659	struct ubifs_pnode *pnode;
660
661	pnode = ubifs_pnode_lookup(c, 0);
662	if (IS_ERR(pnode))
663		return PTR_ERR(pnode);
664
665	while (pnode) {
666		do_make_pnode_dirty(c, pnode);
667		pnode = next_pnode_to_dirty(c, pnode);
668		if (IS_ERR(pnode))
669			return PTR_ERR(pnode);
670	}
671	return 0;
672}
673
674/**
675 * need_write_all - determine if the LPT area is running out of free space.
676 * @c: UBIFS file-system description object
677 *
678 * This function returns %1 if the LPT area is running out of free space and %0
679 * if it is not.
680 */
681static int need_write_all(struct ubifs_info *c)
682{
683	long long free = 0;
684	int i;
685
686	for (i = 0; i < c->lpt_lebs; i++) {
687		if (i + c->lpt_first == c->nhead_lnum)
688			free += c->leb_size - c->nhead_offs;
689		else if (c->ltab[i].free == c->leb_size)
690			free += c->leb_size;
691		else if (c->ltab[i].free + c->ltab[i].dirty == c->leb_size)
692			free += c->leb_size;
693	}
694	/* Less than twice the size left */
695	if (free <= c->lpt_sz * 2)
696		return 1;
697	return 0;
698}
699
700/**
701 * lpt_tgc_start - start trivial garbage collection of LPT LEBs.
702 * @c: UBIFS file-system description object
703 *
704 * LPT trivial garbage collection is where a LPT LEB contains only dirty and
705 * free space and so may be reused as soon as the next commit is completed.
706 * This function is called during start commit to mark LPT LEBs for trivial GC.
707 */
708static void lpt_tgc_start(struct ubifs_info *c)
709{
710	int i;
711
712	for (i = 0; i < c->lpt_lebs; i++) {
713		if (i + c->lpt_first == c->nhead_lnum)
714			continue;
715		if (c->ltab[i].dirty > 0 &&
716		    c->ltab[i].free + c->ltab[i].dirty == c->leb_size) {
717			c->ltab[i].tgc = 1;
718			c->ltab[i].free = c->leb_size;
719			c->ltab[i].dirty = 0;
720			dbg_lp("LEB %d", i + c->lpt_first);
721		}
722	}
723}
724
725/**
726 * lpt_tgc_end - end trivial garbage collection of LPT LEBs.
727 * @c: UBIFS file-system description object
728 *
729 * LPT trivial garbage collection is where a LPT LEB contains only dirty and
730 * free space and so may be reused as soon as the next commit is completed.
731 * This function is called after the commit is completed (master node has been
732 * written) and un-maps LPT LEBs that were marked for trivial GC.
733 */
734static int lpt_tgc_end(struct ubifs_info *c)
735{
736	int i, err;
737
738	for (i = 0; i < c->lpt_lebs; i++)
739		if (c->ltab[i].tgc) {
740			err = ubifs_leb_unmap(c, i + c->lpt_first);
741			if (err)
742				return err;
743			c->ltab[i].tgc = 0;
744			dbg_lp("LEB %d", i + c->lpt_first);
745		}
746	return 0;
747}
748
749/**
750 * populate_lsave - fill the lsave array with important LEB numbers.
751 * @c: the UBIFS file-system description object
752 *
753 * This function is only called for the "big" model. It records a small number
754 * of LEB numbers of important LEBs.  Important LEBs are ones that are (from
755 * most important to least important): empty, freeable, freeable index, dirty
756 * index, dirty or free. Upon mount, we read this list of LEB numbers and bring
757 * their pnodes into memory.  That will stop us from having to scan the LPT
758 * straight away. For the "small" model we assume that scanning the LPT is no
759 * big deal.
760 */
761static void populate_lsave(struct ubifs_info *c)
762{
763	struct ubifs_lprops *lprops;
764	struct ubifs_lpt_heap *heap;
765	int i, cnt = 0;
766
767	ubifs_assert(c, c->big_lpt);
768	if (!(c->lpt_drty_flgs & LSAVE_DIRTY)) {
769		c->lpt_drty_flgs |= LSAVE_DIRTY;
770		ubifs_add_lpt_dirt(c, c->lsave_lnum, c->lsave_sz);
771	}
772
773	if (dbg_populate_lsave(c))
774		return;
775
776	list_for_each_entry(lprops, &c->empty_list, list) {
777		c->lsave[cnt++] = lprops->lnum;
778		if (cnt >= c->lsave_cnt)
779			return;
780	}
781	list_for_each_entry(lprops, &c->freeable_list, list) {
782		c->lsave[cnt++] = lprops->lnum;
783		if (cnt >= c->lsave_cnt)
784			return;
785	}
786	list_for_each_entry(lprops, &c->frdi_idx_list, list) {
787		c->lsave[cnt++] = lprops->lnum;
788		if (cnt >= c->lsave_cnt)
789			return;
790	}
791	heap = &c->lpt_heap[LPROPS_DIRTY_IDX - 1];
792	for (i = 0; i < heap->cnt; i++) {
793		c->lsave[cnt++] = heap->arr[i]->lnum;
794		if (cnt >= c->lsave_cnt)
795			return;
796	}
797	heap = &c->lpt_heap[LPROPS_DIRTY - 1];
798	for (i = 0; i < heap->cnt; i++) {
799		c->lsave[cnt++] = heap->arr[i]->lnum;
800		if (cnt >= c->lsave_cnt)
801			return;
802	}
803	heap = &c->lpt_heap[LPROPS_FREE - 1];
804	for (i = 0; i < heap->cnt; i++) {
805		c->lsave[cnt++] = heap->arr[i]->lnum;
806		if (cnt >= c->lsave_cnt)
807			return;
808	}
809	/* Fill it up completely */
810	while (cnt < c->lsave_cnt)
811		c->lsave[cnt++] = c->main_first;
812}
813
814/**
815 * nnode_lookup - lookup a nnode in the LPT.
816 * @c: UBIFS file-system description object
817 * @i: nnode number
818 *
819 * This function returns a pointer to the nnode on success or a negative
820 * error code on failure.
821 */
822static struct ubifs_nnode *nnode_lookup(struct ubifs_info *c, int i)
823{
824	int err, iip;
825	struct ubifs_nnode *nnode;
826
827	if (!c->nroot) {
828		err = ubifs_read_nnode(c, NULL, 0);
829		if (err)
830			return ERR_PTR(err);
831	}
832	nnode = c->nroot;
833	while (1) {
834		iip = i & (UBIFS_LPT_FANOUT - 1);
835		i >>= UBIFS_LPT_FANOUT_SHIFT;
836		if (!i)
837			break;
838		nnode = ubifs_get_nnode(c, nnode, iip);
839		if (IS_ERR(nnode))
840			return nnode;
841	}
842	return nnode;
843}
844
845/**
846 * make_nnode_dirty - find a nnode and, if found, make it dirty.
847 * @c: UBIFS file-system description object
848 * @node_num: nnode number of nnode to make dirty
849 * @lnum: LEB number where nnode was written
850 * @offs: offset where nnode was written
851 *
852 * This function is used by LPT garbage collection.  LPT garbage collection is
853 * used only for the "big" LPT model (c->big_lpt == 1).  Garbage collection
854 * simply involves marking all the nodes in the LEB being garbage-collected as
855 * dirty.  The dirty nodes are written next commit, after which the LEB is free
856 * to be reused.
857 *
858 * This function returns %0 on success and a negative error code on failure.
859 */
860static int make_nnode_dirty(struct ubifs_info *c, int node_num, int lnum,
861			    int offs)
862{
863	struct ubifs_nnode *nnode;
864
865	nnode = nnode_lookup(c, node_num);
866	if (IS_ERR(nnode))
867		return PTR_ERR(nnode);
868	if (nnode->parent) {
869		struct ubifs_nbranch *branch;
870
871		branch = &nnode->parent->nbranch[nnode->iip];
872		if (branch->lnum != lnum || branch->offs != offs)
873			return 0; /* nnode is obsolete */
874	} else if (c->lpt_lnum != lnum || c->lpt_offs != offs)
875			return 0; /* nnode is obsolete */
876	/* Assumes cnext list is empty i.e. not called during commit */
877	if (!test_and_set_bit(DIRTY_CNODE, &nnode->flags)) {
878		c->dirty_nn_cnt += 1;
879		ubifs_add_nnode_dirt(c, nnode);
880		/* Mark parent and ancestors dirty too */
881		nnode = nnode->parent;
882		while (nnode) {
883			if (!test_and_set_bit(DIRTY_CNODE, &nnode->flags)) {
884				c->dirty_nn_cnt += 1;
885				ubifs_add_nnode_dirt(c, nnode);
886				nnode = nnode->parent;
887			} else
888				break;
889		}
890	}
891	return 0;
892}
893
894/**
895 * make_pnode_dirty - find a pnode and, if found, make it dirty.
896 * @c: UBIFS file-system description object
897 * @node_num: pnode number of pnode to make dirty
898 * @lnum: LEB number where pnode was written
899 * @offs: offset where pnode was written
900 *
901 * This function is used by LPT garbage collection.  LPT garbage collection is
902 * used only for the "big" LPT model (c->big_lpt == 1).  Garbage collection
903 * simply involves marking all the nodes in the LEB being garbage-collected as
904 * dirty.  The dirty nodes are written next commit, after which the LEB is free
905 * to be reused.
906 *
907 * This function returns %0 on success and a negative error code on failure.
908 */
909static int make_pnode_dirty(struct ubifs_info *c, int node_num, int lnum,
910			    int offs)
911{
912	struct ubifs_pnode *pnode;
913	struct ubifs_nbranch *branch;
914
915	pnode = ubifs_pnode_lookup(c, node_num);
916	if (IS_ERR(pnode))
917		return PTR_ERR(pnode);
918	branch = &pnode->parent->nbranch[pnode->iip];
919	if (branch->lnum != lnum || branch->offs != offs)
920		return 0;
921	do_make_pnode_dirty(c, pnode);
922	return 0;
923}
924
925/**
926 * make_ltab_dirty - make ltab node dirty.
927 * @c: UBIFS file-system description object
928 * @lnum: LEB number where ltab was written
929 * @offs: offset where ltab was written
930 *
931 * This function is used by LPT garbage collection.  LPT garbage collection is
932 * used only for the "big" LPT model (c->big_lpt == 1).  Garbage collection
933 * simply involves marking all the nodes in the LEB being garbage-collected as
934 * dirty.  The dirty nodes are written next commit, after which the LEB is free
935 * to be reused.
936 *
937 * This function returns %0 on success and a negative error code on failure.
938 */
939static int make_ltab_dirty(struct ubifs_info *c, int lnum, int offs)
940{
941	if (lnum != c->ltab_lnum || offs != c->ltab_offs)
942		return 0; /* This ltab node is obsolete */
943	if (!(c->lpt_drty_flgs & LTAB_DIRTY)) {
944		c->lpt_drty_flgs |= LTAB_DIRTY;
945		ubifs_add_lpt_dirt(c, c->ltab_lnum, c->ltab_sz);
946	}
947	return 0;
948}
949
950/**
951 * make_lsave_dirty - make lsave node dirty.
952 * @c: UBIFS file-system description object
953 * @lnum: LEB number where lsave was written
954 * @offs: offset where lsave was written
955 *
956 * This function is used by LPT garbage collection.  LPT garbage collection is
957 * used only for the "big" LPT model (c->big_lpt == 1).  Garbage collection
958 * simply involves marking all the nodes in the LEB being garbage-collected as
959 * dirty.  The dirty nodes are written next commit, after which the LEB is free
960 * to be reused.
961 *
962 * This function returns %0 on success and a negative error code on failure.
963 */
964static int make_lsave_dirty(struct ubifs_info *c, int lnum, int offs)
965{
966	if (lnum != c->lsave_lnum || offs != c->lsave_offs)
967		return 0; /* This lsave node is obsolete */
968	if (!(c->lpt_drty_flgs & LSAVE_DIRTY)) {
969		c->lpt_drty_flgs |= LSAVE_DIRTY;
970		ubifs_add_lpt_dirt(c, c->lsave_lnum, c->lsave_sz);
971	}
972	return 0;
973}
974
975/**
976 * make_node_dirty - make node dirty.
977 * @c: UBIFS file-system description object
978 * @node_type: LPT node type
979 * @node_num: node number
980 * @lnum: LEB number where node was written
981 * @offs: offset where node was written
982 *
983 * This function is used by LPT garbage collection.  LPT garbage collection is
984 * used only for the "big" LPT model (c->big_lpt == 1).  Garbage collection
985 * simply involves marking all the nodes in the LEB being garbage-collected as
986 * dirty.  The dirty nodes are written next commit, after which the LEB is free
987 * to be reused.
988 *
989 * This function returns %0 on success and a negative error code on failure.
990 */
991static int make_node_dirty(struct ubifs_info *c, int node_type, int node_num,
992			   int lnum, int offs)
993{
994	switch (node_type) {
995	case UBIFS_LPT_NNODE:
996		return make_nnode_dirty(c, node_num, lnum, offs);
997	case UBIFS_LPT_PNODE:
998		return make_pnode_dirty(c, node_num, lnum, offs);
999	case UBIFS_LPT_LTAB:
1000		return make_ltab_dirty(c, lnum, offs);
1001	case UBIFS_LPT_LSAVE:
1002		return make_lsave_dirty(c, lnum, offs);
1003	}
1004	return -EINVAL;
1005}
1006
1007/**
1008 * get_lpt_node_len - return the length of a node based on its type.
1009 * @c: UBIFS file-system description object
1010 * @node_type: LPT node type
1011 */
1012static int get_lpt_node_len(const struct ubifs_info *c, int node_type)
1013{
1014	switch (node_type) {
1015	case UBIFS_LPT_NNODE:
1016		return c->nnode_sz;
1017	case UBIFS_LPT_PNODE:
1018		return c->pnode_sz;
1019	case UBIFS_LPT_LTAB:
1020		return c->ltab_sz;
1021	case UBIFS_LPT_LSAVE:
1022		return c->lsave_sz;
1023	}
1024	return 0;
1025}
1026
1027/**
1028 * get_pad_len - return the length of padding in a buffer.
1029 * @c: UBIFS file-system description object
1030 * @buf: buffer
1031 * @len: length of buffer
1032 */
1033static int get_pad_len(const struct ubifs_info *c, uint8_t *buf, int len)
1034{
1035	int offs, pad_len;
1036
1037	if (c->min_io_size == 1)
1038		return 0;
1039	offs = c->leb_size - len;
1040	pad_len = ALIGN(offs, c->min_io_size) - offs;
1041	return pad_len;
1042}
1043
1044/**
1045 * get_lpt_node_type - return type (and node number) of a node in a buffer.
1046 * @c: UBIFS file-system description object
1047 * @buf: buffer
1048 * @node_num: node number is returned here
1049 */
1050static int get_lpt_node_type(const struct ubifs_info *c, uint8_t *buf,
1051			     int *node_num)
1052{
1053	uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
1054	int pos = 0, node_type;
1055
1056	node_type = ubifs_unpack_bits(c, &addr, &pos, UBIFS_LPT_TYPE_BITS);
1057	*node_num = ubifs_unpack_bits(c, &addr, &pos, c->pcnt_bits);
1058	return node_type;
1059}
1060
1061/**
1062 * is_a_node - determine if a buffer contains a node.
1063 * @c: UBIFS file-system description object
1064 * @buf: buffer
1065 * @len: length of buffer
1066 *
1067 * This function returns %1 if the buffer contains a node or %0 if it does not.
1068 */
1069static int is_a_node(const struct ubifs_info *c, uint8_t *buf, int len)
1070{
1071	uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
1072	int pos = 0, node_type, node_len;
1073	uint16_t crc, calc_crc;
1074
1075	if (len < UBIFS_LPT_CRC_BYTES + (UBIFS_LPT_TYPE_BITS + 7) / 8)
1076		return 0;
1077	node_type = ubifs_unpack_bits(c, &addr, &pos, UBIFS_LPT_TYPE_BITS);
1078	if (node_type == UBIFS_LPT_NOT_A_NODE)
1079		return 0;
1080	node_len = get_lpt_node_len(c, node_type);
1081	if (!node_len || node_len > len)
1082		return 0;
1083	pos = 0;
1084	addr = buf;
1085	crc = ubifs_unpack_bits(c, &addr, &pos, UBIFS_LPT_CRC_BITS);
1086	calc_crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES,
1087			 node_len - UBIFS_LPT_CRC_BYTES);
1088	if (crc != calc_crc)
1089		return 0;
1090	return 1;
1091}
1092
1093/**
1094 * lpt_gc_lnum - garbage collect a LPT LEB.
1095 * @c: UBIFS file-system description object
1096 * @lnum: LEB number to garbage collect
1097 *
1098 * LPT garbage collection is used only for the "big" LPT model
1099 * (c->big_lpt == 1).  Garbage collection simply involves marking all the nodes
1100 * in the LEB being garbage-collected as dirty.  The dirty nodes are written
1101 * next commit, after which the LEB is free to be reused.
1102 *
1103 * This function returns %0 on success and a negative error code on failure.
1104 */
1105static int lpt_gc_lnum(struct ubifs_info *c, int lnum)
1106{
1107	int err, len = c->leb_size, node_type, node_num, node_len, offs;
1108	void *buf = c->lpt_buf;
1109
1110	dbg_lp("LEB %d", lnum);
1111
1112	err = ubifs_leb_read(c, lnum, buf, 0, c->leb_size, 1);
1113	if (err)
1114		return err;
1115
1116	while (1) {
1117		if (!is_a_node(c, buf, len)) {
1118			int pad_len;
1119
1120			pad_len = get_pad_len(c, buf, len);
1121			if (pad_len) {
1122				buf += pad_len;
1123				len -= pad_len;
1124				continue;
1125			}
1126			return 0;
1127		}
1128		node_type = get_lpt_node_type(c, buf, &node_num);
1129		node_len = get_lpt_node_len(c, node_type);
1130		offs = c->leb_size - len;
1131		ubifs_assert(c, node_len != 0);
1132		mutex_lock(&c->lp_mutex);
1133		err = make_node_dirty(c, node_type, node_num, lnum, offs);
1134		mutex_unlock(&c->lp_mutex);
1135		if (err)
1136			return err;
1137		buf += node_len;
1138		len -= node_len;
1139	}
1140	return 0;
1141}
1142
1143/**
1144 * lpt_gc - LPT garbage collection.
1145 * @c: UBIFS file-system description object
1146 *
1147 * Select a LPT LEB for LPT garbage collection and call 'lpt_gc_lnum()'.
1148 * Returns %0 on success and a negative error code on failure.
1149 */
1150static int lpt_gc(struct ubifs_info *c)
1151{
1152	int i, lnum = -1, dirty = 0;
1153
1154	mutex_lock(&c->lp_mutex);
1155	for (i = 0; i < c->lpt_lebs; i++) {
1156		ubifs_assert(c, !c->ltab[i].tgc);
1157		if (i + c->lpt_first == c->nhead_lnum ||
1158		    c->ltab[i].free + c->ltab[i].dirty == c->leb_size)
1159			continue;
1160		if (c->ltab[i].dirty > dirty) {
1161			dirty = c->ltab[i].dirty;
1162			lnum = i + c->lpt_first;
1163		}
1164	}
1165	mutex_unlock(&c->lp_mutex);
1166	if (lnum == -1)
1167		return -ENOSPC;
1168	return lpt_gc_lnum(c, lnum);
1169}
1170
1171/**
1172 * ubifs_lpt_start_commit - UBIFS commit starts.
1173 * @c: the UBIFS file-system description object
1174 *
1175 * This function has to be called when UBIFS starts the commit operation.
1176 * This function "freezes" all currently dirty LEB properties and does not
1177 * change them anymore. Further changes are saved and tracked separately
1178 * because they are not part of this commit. This function returns zero in case
1179 * of success and a negative error code in case of failure.
1180 */
1181int ubifs_lpt_start_commit(struct ubifs_info *c)
1182{
1183	int err, cnt;
1184
1185	dbg_lp("");
1186
1187	mutex_lock(&c->lp_mutex);
1188	err = dbg_chk_lpt_free_spc(c);
1189	if (err)
1190		goto out;
1191	err = dbg_check_ltab(c);
1192	if (err)
1193		goto out;
1194
1195	if (c->check_lpt_free) {
1196		/*
1197		 * We ensure there is enough free space in
1198		 * ubifs_lpt_post_commit() by marking nodes dirty. That
1199		 * information is lost when we unmount, so we also need
1200		 * to check free space once after mounting also.
1201		 */
1202		c->check_lpt_free = 0;
1203		while (need_write_all(c)) {
1204			mutex_unlock(&c->lp_mutex);
1205			err = lpt_gc(c);
1206			if (err)
1207				return err;
1208			mutex_lock(&c->lp_mutex);
1209		}
1210	}
1211
1212	lpt_tgc_start(c);
1213
1214	if (!c->dirty_pn_cnt) {
1215		dbg_cmt("no cnodes to commit");
1216		err = 0;
1217		goto out;
1218	}
1219
1220	if (!c->big_lpt && need_write_all(c)) {
1221		/* If needed, write everything */
1222		err = make_tree_dirty(c);
1223		if (err)
1224			goto out;
1225		lpt_tgc_start(c);
1226	}
1227
1228	if (c->big_lpt)
1229		populate_lsave(c);
1230
1231	cnt = get_cnodes_to_commit(c);
1232	ubifs_assert(c, cnt != 0);
1233
1234	err = layout_cnodes(c);
1235	if (err)
1236		goto out;
1237
1238	err = ubifs_lpt_calc_hash(c, c->mst_node->hash_lpt);
1239	if (err)
1240		goto out;
1241
1242	/* Copy the LPT's own lprops for end commit to write */
1243	memcpy(c->ltab_cmt, c->ltab,
1244	       sizeof(struct ubifs_lpt_lprops) * c->lpt_lebs);
1245	c->lpt_drty_flgs &= ~(LTAB_DIRTY | LSAVE_DIRTY);
1246
1247out:
1248	mutex_unlock(&c->lp_mutex);
1249	return err;
1250}
1251
1252/**
1253 * free_obsolete_cnodes - free obsolete cnodes for commit end.
1254 * @c: UBIFS file-system description object
1255 */
1256static void free_obsolete_cnodes(struct ubifs_info *c)
1257{
1258	struct ubifs_cnode *cnode, *cnext;
1259
1260	cnext = c->lpt_cnext;
1261	if (!cnext)
1262		return;
1263	do {
1264		cnode = cnext;
1265		cnext = cnode->cnext;
1266		if (test_bit(OBSOLETE_CNODE, &cnode->flags))
1267			kfree(cnode);
1268		else
1269			cnode->cnext = NULL;
1270	} while (cnext != c->lpt_cnext);
1271	c->lpt_cnext = NULL;
1272}
1273
1274/**
1275 * ubifs_lpt_end_commit - finish the commit operation.
1276 * @c: the UBIFS file-system description object
1277 *
1278 * This function has to be called when the commit operation finishes. It
1279 * flushes the changes which were "frozen" by 'ubifs_lprops_start_commit()' to
1280 * the media. Returns zero in case of success and a negative error code in case
1281 * of failure.
1282 */
1283int ubifs_lpt_end_commit(struct ubifs_info *c)
1284{
1285	int err;
1286
1287	dbg_lp("");
1288
1289	if (!c->lpt_cnext)
1290		return 0;
1291
1292	err = write_cnodes(c);
1293	if (err)
1294		return err;
1295
1296	mutex_lock(&c->lp_mutex);
1297	free_obsolete_cnodes(c);
1298	mutex_unlock(&c->lp_mutex);
1299
1300	return 0;
1301}
1302
1303/**
1304 * ubifs_lpt_post_commit - post commit LPT trivial GC and LPT GC.
1305 * @c: UBIFS file-system description object
1306 *
1307 * LPT trivial GC is completed after a commit. Also LPT GC is done after a
1308 * commit for the "big" LPT model.
1309 */
1310int ubifs_lpt_post_commit(struct ubifs_info *c)
1311{
1312	int err;
1313
1314	mutex_lock(&c->lp_mutex);
1315	err = lpt_tgc_end(c);
1316	if (err)
1317		goto out;
1318	if (c->big_lpt)
1319		while (need_write_all(c)) {
1320			mutex_unlock(&c->lp_mutex);
1321			err = lpt_gc(c);
1322			if (err)
1323				return err;
1324			mutex_lock(&c->lp_mutex);
1325		}
1326out:
1327	mutex_unlock(&c->lp_mutex);
1328	return err;
1329}
1330
1331/**
1332 * first_nnode - find the first nnode in memory.
1333 * @c: UBIFS file-system description object
1334 * @hght: height of tree where nnode found is returned here
1335 *
1336 * This function returns a pointer to the nnode found or %NULL if no nnode is
1337 * found. This function is a helper to 'ubifs_lpt_free()'.
1338 */
1339static struct ubifs_nnode *first_nnode(struct ubifs_info *c, int *hght)
1340{
1341	struct ubifs_nnode *nnode;
1342	int h, i, found;
1343
1344	nnode = c->nroot;
1345	*hght = 0;
1346	if (!nnode)
1347		return NULL;
1348	for (h = 1; h < c->lpt_hght; h++) {
1349		found = 0;
1350		for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1351			if (nnode->nbranch[i].nnode) {
1352				found = 1;
1353				nnode = nnode->nbranch[i].nnode;
1354				*hght = h;
1355				break;
1356			}
1357		}
1358		if (!found)
1359			break;
1360	}
1361	return nnode;
1362}
1363
1364/**
1365 * next_nnode - find the next nnode in memory.
1366 * @c: UBIFS file-system description object
1367 * @nnode: nnode from which to start.
1368 * @hght: height of tree where nnode is, is passed and returned here
1369 *
1370 * This function returns a pointer to the nnode found or %NULL if no nnode is
1371 * found. This function is a helper to 'ubifs_lpt_free()'.
1372 */
1373static struct ubifs_nnode *next_nnode(struct ubifs_info *c,
1374				      struct ubifs_nnode *nnode, int *hght)
1375{
1376	struct ubifs_nnode *parent;
1377	int iip, h, i, found;
1378
1379	parent = nnode->parent;
1380	if (!parent)
1381		return NULL;
1382	if (nnode->iip == UBIFS_LPT_FANOUT - 1) {
1383		*hght -= 1;
1384		return parent;
1385	}
1386	for (iip = nnode->iip + 1; iip < UBIFS_LPT_FANOUT; iip++) {
1387		nnode = parent->nbranch[iip].nnode;
1388		if (nnode)
1389			break;
1390	}
1391	if (!nnode) {
1392		*hght -= 1;
1393		return parent;
1394	}
1395	for (h = *hght + 1; h < c->lpt_hght; h++) {
1396		found = 0;
1397		for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1398			if (nnode->nbranch[i].nnode) {
1399				found = 1;
1400				nnode = nnode->nbranch[i].nnode;
1401				*hght = h;
1402				break;
1403			}
1404		}
1405		if (!found)
1406			break;
1407	}
1408	return nnode;
1409}
1410
1411/**
1412 * ubifs_lpt_free - free resources owned by the LPT.
1413 * @c: UBIFS file-system description object
1414 * @wr_only: free only resources used for writing
1415 */
1416void ubifs_lpt_free(struct ubifs_info *c, int wr_only)
1417{
1418	struct ubifs_nnode *nnode;
1419	int i, hght;
1420
1421	/* Free write-only things first */
1422
1423	free_obsolete_cnodes(c); /* Leftover from a failed commit */
1424
1425	vfree(c->ltab_cmt);
1426	c->ltab_cmt = NULL;
1427	vfree(c->lpt_buf);
1428	c->lpt_buf = NULL;
1429	kfree(c->lsave);
1430	c->lsave = NULL;
1431
1432	if (wr_only)
1433		return;
1434
1435	/* Now free the rest */
1436
1437	nnode = first_nnode(c, &hght);
1438	while (nnode) {
1439		for (i = 0; i < UBIFS_LPT_FANOUT; i++)
1440			kfree(nnode->nbranch[i].nnode);
1441		nnode = next_nnode(c, nnode, &hght);
1442	}
1443	for (i = 0; i < LPROPS_HEAP_CNT; i++)
1444		kfree(c->lpt_heap[i].arr);
1445	kfree(c->dirty_idx.arr);
1446	kfree(c->nroot);
1447	vfree(c->ltab);
1448	kfree(c->lpt_nod_buf);
1449}
1450
1451/*
1452 * Everything below is related to debugging.
1453 */
1454
1455/**
1456 * dbg_is_all_ff - determine if a buffer contains only 0xFF bytes.
1457 * @buf: buffer
1458 * @len: buffer length
1459 */
1460static int dbg_is_all_ff(uint8_t *buf, int len)
1461{
1462	int i;
1463
1464	for (i = 0; i < len; i++)
1465		if (buf[i] != 0xff)
1466			return 0;
1467	return 1;
1468}
1469
1470/**
1471 * dbg_is_nnode_dirty - determine if a nnode is dirty.
1472 * @c: the UBIFS file-system description object
1473 * @lnum: LEB number where nnode was written
1474 * @offs: offset where nnode was written
1475 */
1476static int dbg_is_nnode_dirty(struct ubifs_info *c, int lnum, int offs)
1477{
1478	struct ubifs_nnode *nnode;
1479	int hght;
1480
1481	/* Entire tree is in memory so first_nnode / next_nnode are OK */
1482	nnode = first_nnode(c, &hght);
1483	for (; nnode; nnode = next_nnode(c, nnode, &hght)) {
1484		struct ubifs_nbranch *branch;
1485
1486		cond_resched();
1487		if (nnode->parent) {
1488			branch = &nnode->parent->nbranch[nnode->iip];
1489			if (branch->lnum != lnum || branch->offs != offs)
1490				continue;
1491			if (test_bit(DIRTY_CNODE, &nnode->flags))
1492				return 1;
1493			return 0;
1494		} else {
1495			if (c->lpt_lnum != lnum || c->lpt_offs != offs)
1496				continue;
1497			if (test_bit(DIRTY_CNODE, &nnode->flags))
1498				return 1;
1499			return 0;
1500		}
1501	}
1502	return 1;
1503}
1504
1505/**
1506 * dbg_is_pnode_dirty - determine if a pnode is dirty.
1507 * @c: the UBIFS file-system description object
1508 * @lnum: LEB number where pnode was written
1509 * @offs: offset where pnode was written
1510 */
1511static int dbg_is_pnode_dirty(struct ubifs_info *c, int lnum, int offs)
1512{
1513	int i, cnt;
1514
1515	cnt = DIV_ROUND_UP(c->main_lebs, UBIFS_LPT_FANOUT);
1516	for (i = 0; i < cnt; i++) {
1517		struct ubifs_pnode *pnode;
1518		struct ubifs_nbranch *branch;
1519
1520		cond_resched();
1521		pnode = ubifs_pnode_lookup(c, i);
1522		if (IS_ERR(pnode))
1523			return PTR_ERR(pnode);
1524		branch = &pnode->parent->nbranch[pnode->iip];
1525		if (branch->lnum != lnum || branch->offs != offs)
1526			continue;
1527		if (test_bit(DIRTY_CNODE, &pnode->flags))
1528			return 1;
1529		return 0;
1530	}
1531	return 1;
1532}
1533
1534/**
1535 * dbg_is_ltab_dirty - determine if a ltab node is dirty.
1536 * @c: the UBIFS file-system description object
1537 * @lnum: LEB number where ltab node was written
1538 * @offs: offset where ltab node was written
1539 */
1540static int dbg_is_ltab_dirty(struct ubifs_info *c, int lnum, int offs)
1541{
1542	if (lnum != c->ltab_lnum || offs != c->ltab_offs)
1543		return 1;
1544	return (c->lpt_drty_flgs & LTAB_DIRTY) != 0;
1545}
1546
1547/**
1548 * dbg_is_lsave_dirty - determine if a lsave node is dirty.
1549 * @c: the UBIFS file-system description object
1550 * @lnum: LEB number where lsave node was written
1551 * @offs: offset where lsave node was written
1552 */
1553static int dbg_is_lsave_dirty(struct ubifs_info *c, int lnum, int offs)
1554{
1555	if (lnum != c->lsave_lnum || offs != c->lsave_offs)
1556		return 1;
1557	return (c->lpt_drty_flgs & LSAVE_DIRTY) != 0;
1558}
1559
1560/**
1561 * dbg_is_node_dirty - determine if a node is dirty.
1562 * @c: the UBIFS file-system description object
1563 * @node_type: node type
1564 * @lnum: LEB number where node was written
1565 * @offs: offset where node was written
1566 */
1567static int dbg_is_node_dirty(struct ubifs_info *c, int node_type, int lnum,
1568			     int offs)
1569{
1570	switch (node_type) {
1571	case UBIFS_LPT_NNODE:
1572		return dbg_is_nnode_dirty(c, lnum, offs);
1573	case UBIFS_LPT_PNODE:
1574		return dbg_is_pnode_dirty(c, lnum, offs);
1575	case UBIFS_LPT_LTAB:
1576		return dbg_is_ltab_dirty(c, lnum, offs);
1577	case UBIFS_LPT_LSAVE:
1578		return dbg_is_lsave_dirty(c, lnum, offs);
1579	}
1580	return 1;
1581}
1582
1583/**
1584 * dbg_check_ltab_lnum - check the ltab for a LPT LEB number.
1585 * @c: the UBIFS file-system description object
1586 * @lnum: LEB number where node was written
1587 *
1588 * This function returns %0 on success and a negative error code on failure.
1589 */
1590static int dbg_check_ltab_lnum(struct ubifs_info *c, int lnum)
1591{
1592	int err, len = c->leb_size, dirty = 0, node_type, node_num, node_len;
1593	int ret;
1594	void *buf, *p;
1595
1596	if (!dbg_is_chk_lprops(c))
1597		return 0;
1598
1599	buf = p = __vmalloc(c->leb_size, GFP_NOFS);
1600	if (!buf) {
1601		ubifs_err(c, "cannot allocate memory for ltab checking");
1602		return 0;
1603	}
1604
1605	dbg_lp("LEB %d", lnum);
1606
1607	err = ubifs_leb_read(c, lnum, buf, 0, c->leb_size, 1);
1608	if (err)
1609		goto out;
1610
1611	while (1) {
1612		if (!is_a_node(c, p, len)) {
1613			int i, pad_len;
1614
1615			pad_len = get_pad_len(c, p, len);
1616			if (pad_len) {
1617				p += pad_len;
1618				len -= pad_len;
1619				dirty += pad_len;
1620				continue;
1621			}
1622			if (!dbg_is_all_ff(p, len)) {
1623				ubifs_err(c, "invalid empty space in LEB %d at %d",
1624					  lnum, c->leb_size - len);
1625				err = -EINVAL;
1626			}
1627			i = lnum - c->lpt_first;
1628			if (len != c->ltab[i].free) {
1629				ubifs_err(c, "invalid free space in LEB %d (free %d, expected %d)",
1630					  lnum, len, c->ltab[i].free);
1631				err = -EINVAL;
1632			}
1633			if (dirty != c->ltab[i].dirty) {
1634				ubifs_err(c, "invalid dirty space in LEB %d (dirty %d, expected %d)",
1635					  lnum, dirty, c->ltab[i].dirty);
1636				err = -EINVAL;
1637			}
1638			goto out;
1639		}
1640		node_type = get_lpt_node_type(c, p, &node_num);
1641		node_len = get_lpt_node_len(c, node_type);
1642		ret = dbg_is_node_dirty(c, node_type, lnum, c->leb_size - len);
1643		if (ret == 1)
1644			dirty += node_len;
1645		p += node_len;
1646		len -= node_len;
1647	}
1648
1649out:
1650	vfree(buf);
1651	return err;
1652}
1653
1654/**
1655 * dbg_check_ltab - check the free and dirty space in the ltab.
1656 * @c: the UBIFS file-system description object
1657 *
1658 * This function returns %0 on success and a negative error code on failure.
1659 */
1660int dbg_check_ltab(struct ubifs_info *c)
1661{
1662	int lnum, err, i, cnt;
1663
1664	if (!dbg_is_chk_lprops(c))
1665		return 0;
1666
1667	/* Bring the entire tree into memory */
1668	cnt = DIV_ROUND_UP(c->main_lebs, UBIFS_LPT_FANOUT);
1669	for (i = 0; i < cnt; i++) {
1670		struct ubifs_pnode *pnode;
1671
1672		pnode = ubifs_pnode_lookup(c, i);
1673		if (IS_ERR(pnode))
1674			return PTR_ERR(pnode);
1675		cond_resched();
1676	}
1677
1678	/* Check nodes */
1679	err = dbg_check_lpt_nodes(c, (struct ubifs_cnode *)c->nroot, 0, 0);
1680	if (err)
1681		return err;
1682
1683	/* Check each LEB */
1684	for (lnum = c->lpt_first; lnum <= c->lpt_last; lnum++) {
1685		err = dbg_check_ltab_lnum(c, lnum);
1686		if (err) {
1687			ubifs_err(c, "failed at LEB %d", lnum);
1688			return err;
1689		}
1690	}
1691
1692	dbg_lp("succeeded");
1693	return 0;
1694}
1695
1696/**
1697 * dbg_chk_lpt_free_spc - check LPT free space is enough to write entire LPT.
1698 * @c: the UBIFS file-system description object
1699 *
1700 * This function returns %0 on success and a negative error code on failure.
1701 */
1702int dbg_chk_lpt_free_spc(struct ubifs_info *c)
1703{
1704	long long free = 0;
1705	int i;
1706
1707	if (!dbg_is_chk_lprops(c))
1708		return 0;
1709
1710	for (i = 0; i < c->lpt_lebs; i++) {
1711		if (c->ltab[i].tgc || c->ltab[i].cmt)
1712			continue;
1713		if (i + c->lpt_first == c->nhead_lnum)
1714			free += c->leb_size - c->nhead_offs;
1715		else if (c->ltab[i].free == c->leb_size)
1716			free += c->leb_size;
1717	}
1718	if (free < c->lpt_sz) {
1719		ubifs_err(c, "LPT space error: free %lld lpt_sz %lld",
1720			  free, c->lpt_sz);
1721		ubifs_dump_lpt_info(c);
1722		ubifs_dump_lpt_lebs(c);
1723		dump_stack();
1724		return -EINVAL;
1725	}
1726	return 0;
1727}
1728
1729/**
1730 * dbg_chk_lpt_sz - check LPT does not write more than LPT size.
1731 * @c: the UBIFS file-system description object
1732 * @action: what to do
1733 * @len: length written
1734 *
1735 * This function returns %0 on success and a negative error code on failure.
1736 * The @action argument may be one of:
1737 *   o %0 - LPT debugging checking starts, initialize debugging variables;
1738 *   o %1 - wrote an LPT node, increase LPT size by @len bytes;
1739 *   o %2 - switched to a different LEB and wasted @len bytes;
1740 *   o %3 - check that we've written the right number of bytes.
1741 *   o %4 - wasted @len bytes;
1742 */
1743int dbg_chk_lpt_sz(struct ubifs_info *c, int action, int len)
1744{
1745	struct ubifs_debug_info *d = c->dbg;
1746	long long chk_lpt_sz, lpt_sz;
1747	int err = 0;
1748
1749	if (!dbg_is_chk_lprops(c))
1750		return 0;
1751
1752	switch (action) {
1753	case 0:
1754		d->chk_lpt_sz = 0;
1755		d->chk_lpt_sz2 = 0;
1756		d->chk_lpt_lebs = 0;
1757		d->chk_lpt_wastage = 0;
1758		if (c->dirty_pn_cnt > c->pnode_cnt) {
1759			ubifs_err(c, "dirty pnodes %d exceed max %d",
1760				  c->dirty_pn_cnt, c->pnode_cnt);
1761			err = -EINVAL;
1762		}
1763		if (c->dirty_nn_cnt > c->nnode_cnt) {
1764			ubifs_err(c, "dirty nnodes %d exceed max %d",
1765				  c->dirty_nn_cnt, c->nnode_cnt);
1766			err = -EINVAL;
1767		}
1768		return err;
1769	case 1:
1770		d->chk_lpt_sz += len;
1771		return 0;
1772	case 2:
1773		d->chk_lpt_sz += len;
1774		d->chk_lpt_wastage += len;
1775		d->chk_lpt_lebs += 1;
1776		return 0;
1777	case 3:
1778		chk_lpt_sz = c->leb_size;
1779		chk_lpt_sz *= d->chk_lpt_lebs;
1780		chk_lpt_sz += len - c->nhead_offs;
1781		if (d->chk_lpt_sz != chk_lpt_sz) {
1782			ubifs_err(c, "LPT wrote %lld but space used was %lld",
1783				  d->chk_lpt_sz, chk_lpt_sz);
1784			err = -EINVAL;
1785		}
1786		if (d->chk_lpt_sz > c->lpt_sz) {
1787			ubifs_err(c, "LPT wrote %lld but lpt_sz is %lld",
1788				  d->chk_lpt_sz, c->lpt_sz);
1789			err = -EINVAL;
1790		}
1791		if (d->chk_lpt_sz2 && d->chk_lpt_sz != d->chk_lpt_sz2) {
1792			ubifs_err(c, "LPT layout size %lld but wrote %lld",
1793				  d->chk_lpt_sz, d->chk_lpt_sz2);
1794			err = -EINVAL;
1795		}
1796		if (d->chk_lpt_sz2 && d->new_nhead_offs != len) {
1797			ubifs_err(c, "LPT new nhead offs: expected %d was %d",
1798				  d->new_nhead_offs, len);
1799			err = -EINVAL;
1800		}
1801		lpt_sz = (long long)c->pnode_cnt * c->pnode_sz;
1802		lpt_sz += (long long)c->nnode_cnt * c->nnode_sz;
1803		lpt_sz += c->ltab_sz;
1804		if (c->big_lpt)
1805			lpt_sz += c->lsave_sz;
1806		if (d->chk_lpt_sz - d->chk_lpt_wastage > lpt_sz) {
1807			ubifs_err(c, "LPT chk_lpt_sz %lld + waste %lld exceeds %lld",
1808				  d->chk_lpt_sz, d->chk_lpt_wastage, lpt_sz);
1809			err = -EINVAL;
1810		}
1811		if (err) {
1812			ubifs_dump_lpt_info(c);
1813			ubifs_dump_lpt_lebs(c);
1814			dump_stack();
1815		}
1816		d->chk_lpt_sz2 = d->chk_lpt_sz;
1817		d->chk_lpt_sz = 0;
1818		d->chk_lpt_wastage = 0;
1819		d->chk_lpt_lebs = 0;
1820		d->new_nhead_offs = len;
1821		return err;
1822	case 4:
1823		d->chk_lpt_sz += len;
1824		d->chk_lpt_wastage += len;
1825		return 0;
1826	default:
1827		return -EINVAL;
1828	}
1829}
1830
1831/**
1832 * dump_lpt_leb - dump an LPT LEB.
1833 * @c: UBIFS file-system description object
1834 * @lnum: LEB number to dump
1835 *
1836 * This function dumps an LEB from LPT area. Nodes in this area are very
1837 * different to nodes in the main area (e.g., they do not have common headers,
1838 * they do not have 8-byte alignments, etc), so we have a separate function to
1839 * dump LPT area LEBs. Note, LPT has to be locked by the caller.
1840 */
1841static void dump_lpt_leb(const struct ubifs_info *c, int lnum)
1842{
1843	int err, len = c->leb_size, node_type, node_num, node_len, offs;
1844	void *buf, *p;
1845
1846	pr_err("(pid %d) start dumping LEB %d\n", current->pid, lnum);
1847	buf = p = __vmalloc(c->leb_size, GFP_NOFS);
1848	if (!buf) {
1849		ubifs_err(c, "cannot allocate memory to dump LPT");
1850		return;
1851	}
1852
1853	err = ubifs_leb_read(c, lnum, buf, 0, c->leb_size, 1);
1854	if (err)
1855		goto out;
1856
1857	while (1) {
1858		offs = c->leb_size - len;
1859		if (!is_a_node(c, p, len)) {
1860			int pad_len;
1861
1862			pad_len = get_pad_len(c, p, len);
1863			if (pad_len) {
1864				pr_err("LEB %d:%d, pad %d bytes\n",
1865				       lnum, offs, pad_len);
1866				p += pad_len;
1867				len -= pad_len;
1868				continue;
1869			}
1870			if (len)
1871				pr_err("LEB %d:%d, free %d bytes\n",
1872				       lnum, offs, len);
1873			break;
1874		}
1875
1876		node_type = get_lpt_node_type(c, p, &node_num);
1877		switch (node_type) {
1878		case UBIFS_LPT_PNODE:
1879		{
1880			node_len = c->pnode_sz;
1881			if (c->big_lpt)
1882				pr_err("LEB %d:%d, pnode num %d\n",
1883				       lnum, offs, node_num);
1884			else
1885				pr_err("LEB %d:%d, pnode\n", lnum, offs);
1886			break;
1887		}
1888		case UBIFS_LPT_NNODE:
1889		{
1890			int i;
1891			struct ubifs_nnode nnode;
1892
1893			node_len = c->nnode_sz;
1894			if (c->big_lpt)
1895				pr_err("LEB %d:%d, nnode num %d, ",
1896				       lnum, offs, node_num);
1897			else
1898				pr_err("LEB %d:%d, nnode, ",
1899				       lnum, offs);
1900			err = ubifs_unpack_nnode(c, p, &nnode);
1901			if (err) {
1902				pr_err("failed to unpack_node, error %d\n",
1903				       err);
1904				break;
1905			}
1906			for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1907				pr_cont("%d:%d", nnode.nbranch[i].lnum,
1908				       nnode.nbranch[i].offs);
1909				if (i != UBIFS_LPT_FANOUT - 1)
1910					pr_cont(", ");
1911			}
1912			pr_cont("\n");
1913			break;
1914		}
1915		case UBIFS_LPT_LTAB:
1916			node_len = c->ltab_sz;
1917			pr_err("LEB %d:%d, ltab\n", lnum, offs);
1918			break;
1919		case UBIFS_LPT_LSAVE:
1920			node_len = c->lsave_sz;
1921			pr_err("LEB %d:%d, lsave len\n", lnum, offs);
1922			break;
1923		default:
1924			ubifs_err(c, "LPT node type %d not recognized", node_type);
1925			goto out;
1926		}
1927
1928		p += node_len;
1929		len -= node_len;
1930	}
1931
1932	pr_err("(pid %d) finish dumping LEB %d\n", current->pid, lnum);
1933out:
1934	vfree(buf);
1935	return;
1936}
1937
1938/**
1939 * ubifs_dump_lpt_lebs - dump LPT lebs.
1940 * @c: UBIFS file-system description object
1941 *
1942 * This function dumps all LPT LEBs. The caller has to make sure the LPT is
1943 * locked.
1944 */
1945void ubifs_dump_lpt_lebs(const struct ubifs_info *c)
1946{
1947	int i;
1948
1949	pr_err("(pid %d) start dumping all LPT LEBs\n", current->pid);
1950	for (i = 0; i < c->lpt_lebs; i++)
1951		dump_lpt_leb(c, i + c->lpt_first);
1952	pr_err("(pid %d) finish dumping all LPT LEBs\n", current->pid);
1953}
1954
1955/**
1956 * dbg_populate_lsave - debugging version of 'populate_lsave()'
1957 * @c: UBIFS file-system description object
1958 *
1959 * This is a debugging version for 'populate_lsave()' which populates lsave
1960 * with random LEBs instead of useful LEBs, which is good for test coverage.
1961 * Returns zero if lsave has not been populated (this debugging feature is
1962 * disabled) an non-zero if lsave has been populated.
1963 */
1964static int dbg_populate_lsave(struct ubifs_info *c)
1965{
1966	struct ubifs_lprops *lprops;
1967	struct ubifs_lpt_heap *heap;
1968	int i;
1969
1970	if (!dbg_is_chk_gen(c))
1971		return 0;
1972	if (get_random_u32_below(4))
1973		return 0;
1974
1975	for (i = 0; i < c->lsave_cnt; i++)
1976		c->lsave[i] = c->main_first;
1977
1978	list_for_each_entry(lprops, &c->empty_list, list)
1979		c->lsave[get_random_u32_below(c->lsave_cnt)] = lprops->lnum;
1980	list_for_each_entry(lprops, &c->freeable_list, list)
1981		c->lsave[get_random_u32_below(c->lsave_cnt)] = lprops->lnum;
1982	list_for_each_entry(lprops, &c->frdi_idx_list, list)
1983		c->lsave[get_random_u32_below(c->lsave_cnt)] = lprops->lnum;
1984
1985	heap = &c->lpt_heap[LPROPS_DIRTY_IDX - 1];
1986	for (i = 0; i < heap->cnt; i++)
1987		c->lsave[get_random_u32_below(c->lsave_cnt)] = heap->arr[i]->lnum;
1988	heap = &c->lpt_heap[LPROPS_DIRTY - 1];
1989	for (i = 0; i < heap->cnt; i++)
1990		c->lsave[get_random_u32_below(c->lsave_cnt)] = heap->arr[i]->lnum;
1991	heap = &c->lpt_heap[LPROPS_FREE - 1];
1992	for (i = 0; i < heap->cnt; i++)
1993		c->lsave[get_random_u32_below(c->lsave_cnt)] = heap->arr[i]->lnum;
1994
1995	return 1;
1996}
1997