1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * This file is part of UBIFS.
4 *
5 * Copyright (C) 2006-2008 Nokia Corporation.
6 *
7 * Authors: Adrian Hunter
8 *          Artem Bityutskiy (���������������� ����������)
9 */
10
11/*
12 * This file implements garbage collection. The procedure for garbage collection
13 * is different depending on whether a LEB as an index LEB (contains index
14 * nodes) or not. For non-index LEBs, garbage collection finds a LEB which
15 * contains a lot of dirty space (obsolete nodes), and copies the non-obsolete
16 * nodes to the journal, at which point the garbage-collected LEB is free to be
17 * reused. For index LEBs, garbage collection marks the non-obsolete index nodes
18 * dirty in the TNC, and after the next commit, the garbage-collected LEB is
19 * to be reused. Garbage collection will cause the number of dirty index nodes
20 * to grow, however sufficient space is reserved for the index to ensure the
21 * commit will never run out of space.
22 *
23 * Notes about dead watermark. At current UBIFS implementation we assume that
24 * LEBs which have less than @c->dead_wm bytes of free + dirty space are full
25 * and not worth garbage-collecting. The dead watermark is one min. I/O unit
26 * size, or min. UBIFS node size, depending on what is greater. Indeed, UBIFS
27 * Garbage Collector has to synchronize the GC head's write buffer before
28 * returning, so this is about wasting one min. I/O unit. However, UBIFS GC can
29 * actually reclaim even very small pieces of dirty space by garbage collecting
30 * enough dirty LEBs, but we do not bother doing this at this implementation.
31 *
32 * Notes about dark watermark. The results of GC work depends on how big are
33 * the UBIFS nodes GC deals with. Large nodes make GC waste more space. Indeed,
34 * if GC move data from LEB A to LEB B and nodes in LEB A are large, GC would
35 * have to waste large pieces of free space at the end of LEB B, because nodes
36 * from LEB A would not fit. And the worst situation is when all nodes are of
37 * maximum size. So dark watermark is the amount of free + dirty space in LEB
38 * which are guaranteed to be reclaimable. If LEB has less space, the GC might
39 * be unable to reclaim it. So, LEBs with free + dirty greater than dark
40 * watermark are "good" LEBs from GC's point of view. The other LEBs are not so
41 * good, and GC takes extra care when moving them.
42 */
43
44#include <linux/slab.h>
45#include <linux/pagemap.h>
46#include <linux/list_sort.h>
47#include "ubifs.h"
48
49/*
50 * GC may need to move more than one LEB to make progress. The below constants
51 * define "soft" and "hard" limits on the number of LEBs the garbage collector
52 * may move.
53 */
54#define SOFT_LEBS_LIMIT 4
55#define HARD_LEBS_LIMIT 32
56
57/**
58 * switch_gc_head - switch the garbage collection journal head.
59 * @c: UBIFS file-system description object
60 *
61 * This function switch the GC head to the next LEB which is reserved in
62 * @c->gc_lnum. Returns %0 in case of success, %-EAGAIN if commit is required,
63 * and other negative error code in case of failures.
64 */
65static int switch_gc_head(struct ubifs_info *c)
66{
67	int err, gc_lnum = c->gc_lnum;
68	struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf;
69
70	ubifs_assert(c, gc_lnum != -1);
71	dbg_gc("switch GC head from LEB %d:%d to LEB %d (waste %d bytes)",
72	       wbuf->lnum, wbuf->offs + wbuf->used, gc_lnum,
73	       c->leb_size - wbuf->offs - wbuf->used);
74
75	err = ubifs_wbuf_sync_nolock(wbuf);
76	if (err)
77		return err;
78
79	/*
80	 * The GC write-buffer was synchronized, we may safely unmap
81	 * 'c->gc_lnum'.
82	 */
83	err = ubifs_leb_unmap(c, gc_lnum);
84	if (err)
85		return err;
86
87	err = ubifs_add_bud_to_log(c, GCHD, gc_lnum, 0);
88	if (err)
89		return err;
90
91	c->gc_lnum = -1;
92	err = ubifs_wbuf_seek_nolock(wbuf, gc_lnum, 0);
93	return err;
94}
95
96/**
97 * data_nodes_cmp - compare 2 data nodes.
98 * @priv: UBIFS file-system description object
99 * @a: first data node
100 * @b: second data node
101 *
102 * This function compares data nodes @a and @b. Returns %1 if @a has greater
103 * inode or block number, and %-1 otherwise.
104 */
105static int data_nodes_cmp(void *priv, const struct list_head *a,
106			  const struct list_head *b)
107{
108	ino_t inuma, inumb;
109	struct ubifs_info *c = priv;
110	struct ubifs_scan_node *sa, *sb;
111
112	cond_resched();
113	if (a == b)
114		return 0;
115
116	sa = list_entry(a, struct ubifs_scan_node, list);
117	sb = list_entry(b, struct ubifs_scan_node, list);
118
119	ubifs_assert(c, key_type(c, &sa->key) == UBIFS_DATA_KEY);
120	ubifs_assert(c, key_type(c, &sb->key) == UBIFS_DATA_KEY);
121	ubifs_assert(c, sa->type == UBIFS_DATA_NODE);
122	ubifs_assert(c, sb->type == UBIFS_DATA_NODE);
123
124	inuma = key_inum(c, &sa->key);
125	inumb = key_inum(c, &sb->key);
126
127	if (inuma == inumb) {
128		unsigned int blka = key_block(c, &sa->key);
129		unsigned int blkb = key_block(c, &sb->key);
130
131		if (blka <= blkb)
132			return -1;
133	} else if (inuma <= inumb)
134		return -1;
135
136	return 1;
137}
138
139/*
140 * nondata_nodes_cmp - compare 2 non-data nodes.
141 * @priv: UBIFS file-system description object
142 * @a: first node
143 * @a: second node
144 *
145 * This function compares nodes @a and @b. It makes sure that inode nodes go
146 * first and sorted by length in descending order. Directory entry nodes go
147 * after inode nodes and are sorted in ascending hash valuer order.
148 */
149static int nondata_nodes_cmp(void *priv, const struct list_head *a,
150			     const struct list_head *b)
151{
152	ino_t inuma, inumb;
153	struct ubifs_info *c = priv;
154	struct ubifs_scan_node *sa, *sb;
155
156	cond_resched();
157	if (a == b)
158		return 0;
159
160	sa = list_entry(a, struct ubifs_scan_node, list);
161	sb = list_entry(b, struct ubifs_scan_node, list);
162
163	ubifs_assert(c, key_type(c, &sa->key) != UBIFS_DATA_KEY &&
164		     key_type(c, &sb->key) != UBIFS_DATA_KEY);
165	ubifs_assert(c, sa->type != UBIFS_DATA_NODE &&
166		     sb->type != UBIFS_DATA_NODE);
167
168	/* Inodes go before directory entries */
169	if (sa->type == UBIFS_INO_NODE) {
170		if (sb->type == UBIFS_INO_NODE)
171			return sb->len - sa->len;
172		return -1;
173	}
174	if (sb->type == UBIFS_INO_NODE)
175		return 1;
176
177	ubifs_assert(c, key_type(c, &sa->key) == UBIFS_DENT_KEY ||
178		     key_type(c, &sa->key) == UBIFS_XENT_KEY);
179	ubifs_assert(c, key_type(c, &sb->key) == UBIFS_DENT_KEY ||
180		     key_type(c, &sb->key) == UBIFS_XENT_KEY);
181	ubifs_assert(c, sa->type == UBIFS_DENT_NODE ||
182		     sa->type == UBIFS_XENT_NODE);
183	ubifs_assert(c, sb->type == UBIFS_DENT_NODE ||
184		     sb->type == UBIFS_XENT_NODE);
185
186	inuma = key_inum(c, &sa->key);
187	inumb = key_inum(c, &sb->key);
188
189	if (inuma == inumb) {
190		uint32_t hasha = key_hash(c, &sa->key);
191		uint32_t hashb = key_hash(c, &sb->key);
192
193		if (hasha <= hashb)
194			return -1;
195	} else if (inuma <= inumb)
196		return -1;
197
198	return 1;
199}
200
201/**
202 * sort_nodes - sort nodes for GC.
203 * @c: UBIFS file-system description object
204 * @sleb: describes nodes to sort and contains the result on exit
205 * @nondata: contains non-data nodes on exit
206 * @min: minimum node size is returned here
207 *
208 * This function sorts the list of inodes to garbage collect. First of all, it
209 * kills obsolete nodes and separates data and non-data nodes to the
210 * @sleb->nodes and @nondata lists correspondingly.
211 *
212 * Data nodes are then sorted in block number order - this is important for
213 * bulk-read; data nodes with lower inode number go before data nodes with
214 * higher inode number, and data nodes with lower block number go before data
215 * nodes with higher block number;
216 *
217 * Non-data nodes are sorted as follows.
218 *   o First go inode nodes - they are sorted in descending length order.
219 *   o Then go directory entry nodes - they are sorted in hash order, which
220 *     should supposedly optimize 'readdir()'. Direntry nodes with lower parent
221 *     inode number go before direntry nodes with higher parent inode number,
222 *     and direntry nodes with lower name hash values go before direntry nodes
223 *     with higher name hash values.
224 *
225 * This function returns zero in case of success and a negative error code in
226 * case of failure.
227 */
228static int sort_nodes(struct ubifs_info *c, struct ubifs_scan_leb *sleb,
229		      struct list_head *nondata, int *min)
230{
231	int err;
232	struct ubifs_scan_node *snod, *tmp;
233
234	*min = INT_MAX;
235
236	/* Separate data nodes and non-data nodes */
237	list_for_each_entry_safe(snod, tmp, &sleb->nodes, list) {
238		ubifs_assert(c, snod->type == UBIFS_INO_NODE  ||
239			     snod->type == UBIFS_DATA_NODE ||
240			     snod->type == UBIFS_DENT_NODE ||
241			     snod->type == UBIFS_XENT_NODE ||
242			     snod->type == UBIFS_TRUN_NODE ||
243			     snod->type == UBIFS_AUTH_NODE);
244
245		if (snod->type != UBIFS_INO_NODE  &&
246		    snod->type != UBIFS_DATA_NODE &&
247		    snod->type != UBIFS_DENT_NODE &&
248		    snod->type != UBIFS_XENT_NODE) {
249			/* Probably truncation node, zap it */
250			list_del(&snod->list);
251			kfree(snod);
252			continue;
253		}
254
255		ubifs_assert(c, key_type(c, &snod->key) == UBIFS_DATA_KEY ||
256			     key_type(c, &snod->key) == UBIFS_INO_KEY  ||
257			     key_type(c, &snod->key) == UBIFS_DENT_KEY ||
258			     key_type(c, &snod->key) == UBIFS_XENT_KEY);
259
260		err = ubifs_tnc_has_node(c, &snod->key, 0, sleb->lnum,
261					 snod->offs, 0);
262		if (err < 0)
263			return err;
264
265		if (!err) {
266			/* The node is obsolete, remove it from the list */
267			list_del(&snod->list);
268			kfree(snod);
269			continue;
270		}
271
272		if (snod->len < *min)
273			*min = snod->len;
274
275		if (key_type(c, &snod->key) != UBIFS_DATA_KEY)
276			list_move_tail(&snod->list, nondata);
277	}
278
279	/* Sort data and non-data nodes */
280	list_sort(c, &sleb->nodes, &data_nodes_cmp);
281	list_sort(c, nondata, &nondata_nodes_cmp);
282
283	err = dbg_check_data_nodes_order(c, &sleb->nodes);
284	if (err)
285		return err;
286	err = dbg_check_nondata_nodes_order(c, nondata);
287	if (err)
288		return err;
289	return 0;
290}
291
292/**
293 * move_node - move a node.
294 * @c: UBIFS file-system description object
295 * @sleb: describes the LEB to move nodes from
296 * @snod: the mode to move
297 * @wbuf: write-buffer to move node to
298 *
299 * This function moves node @snod to @wbuf, changes TNC correspondingly, and
300 * destroys @snod. Returns zero in case of success and a negative error code in
301 * case of failure.
302 */
303static int move_node(struct ubifs_info *c, struct ubifs_scan_leb *sleb,
304		     struct ubifs_scan_node *snod, struct ubifs_wbuf *wbuf)
305{
306	int err, new_lnum = wbuf->lnum, new_offs = wbuf->offs + wbuf->used;
307
308	cond_resched();
309	err = ubifs_wbuf_write_nolock(wbuf, snod->node, snod->len);
310	if (err)
311		return err;
312
313	err = ubifs_tnc_replace(c, &snod->key, sleb->lnum,
314				snod->offs, new_lnum, new_offs,
315				snod->len);
316	list_del(&snod->list);
317	kfree(snod);
318	return err;
319}
320
321/**
322 * move_nodes - move nodes.
323 * @c: UBIFS file-system description object
324 * @sleb: describes the LEB to move nodes from
325 *
326 * This function moves valid nodes from data LEB described by @sleb to the GC
327 * journal head. This function returns zero in case of success, %-EAGAIN if
328 * commit is required, and other negative error codes in case of other
329 * failures.
330 */
331static int move_nodes(struct ubifs_info *c, struct ubifs_scan_leb *sleb)
332{
333	int err, min;
334	LIST_HEAD(nondata);
335	struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf;
336
337	if (wbuf->lnum == -1) {
338		/*
339		 * The GC journal head is not set, because it is the first GC
340		 * invocation since mount.
341		 */
342		err = switch_gc_head(c);
343		if (err)
344			return err;
345	}
346
347	err = sort_nodes(c, sleb, &nondata, &min);
348	if (err)
349		goto out;
350
351	/* Write nodes to their new location. Use the first-fit strategy */
352	while (1) {
353		int avail, moved = 0;
354		struct ubifs_scan_node *snod, *tmp;
355
356		/* Move data nodes */
357		list_for_each_entry_safe(snod, tmp, &sleb->nodes, list) {
358			avail = c->leb_size - wbuf->offs - wbuf->used -
359					ubifs_auth_node_sz(c);
360			if  (snod->len > avail)
361				/*
362				 * Do not skip data nodes in order to optimize
363				 * bulk-read.
364				 */
365				break;
366
367			err = ubifs_shash_update(c, c->jheads[GCHD].log_hash,
368						 snod->node, snod->len);
369			if (err)
370				goto out;
371
372			err = move_node(c, sleb, snod, wbuf);
373			if (err)
374				goto out;
375			moved = 1;
376		}
377
378		/* Move non-data nodes */
379		list_for_each_entry_safe(snod, tmp, &nondata, list) {
380			avail = c->leb_size - wbuf->offs - wbuf->used -
381					ubifs_auth_node_sz(c);
382			if (avail < min)
383				break;
384
385			if  (snod->len > avail) {
386				/*
387				 * Keep going only if this is an inode with
388				 * some data. Otherwise stop and switch the GC
389				 * head. IOW, we assume that data-less inode
390				 * nodes and direntry nodes are roughly of the
391				 * same size.
392				 */
393				if (key_type(c, &snod->key) == UBIFS_DENT_KEY ||
394				    snod->len == UBIFS_INO_NODE_SZ)
395					break;
396				continue;
397			}
398
399			err = ubifs_shash_update(c, c->jheads[GCHD].log_hash,
400						 snod->node, snod->len);
401			if (err)
402				goto out;
403
404			err = move_node(c, sleb, snod, wbuf);
405			if (err)
406				goto out;
407			moved = 1;
408		}
409
410		if (ubifs_authenticated(c) && moved) {
411			struct ubifs_auth_node *auth;
412
413			auth = kmalloc(ubifs_auth_node_sz(c), GFP_NOFS);
414			if (!auth) {
415				err = -ENOMEM;
416				goto out;
417			}
418
419			err = ubifs_prepare_auth_node(c, auth,
420						c->jheads[GCHD].log_hash);
421			if (err) {
422				kfree(auth);
423				goto out;
424			}
425
426			err = ubifs_wbuf_write_nolock(wbuf, auth,
427						      ubifs_auth_node_sz(c));
428			if (err) {
429				kfree(auth);
430				goto out;
431			}
432
433			ubifs_add_dirt(c, wbuf->lnum, ubifs_auth_node_sz(c));
434		}
435
436		if (list_empty(&sleb->nodes) && list_empty(&nondata))
437			break;
438
439		/*
440		 * Waste the rest of the space in the LEB and switch to the
441		 * next LEB.
442		 */
443		err = switch_gc_head(c);
444		if (err)
445			goto out;
446	}
447
448	return 0;
449
450out:
451	list_splice_tail(&nondata, &sleb->nodes);
452	return err;
453}
454
455/**
456 * gc_sync_wbufs - sync write-buffers for GC.
457 * @c: UBIFS file-system description object
458 *
459 * We must guarantee that obsoleting nodes are on flash. Unfortunately they may
460 * be in a write-buffer instead. That is, a node could be written to a
461 * write-buffer, obsoleting another node in a LEB that is GC'd. If that LEB is
462 * erased before the write-buffer is sync'd and then there is an unclean
463 * unmount, then an existing node is lost. To avoid this, we sync all
464 * write-buffers.
465 *
466 * This function returns %0 on success or a negative error code on failure.
467 */
468static int gc_sync_wbufs(struct ubifs_info *c)
469{
470	int err, i;
471
472	for (i = 0; i < c->jhead_cnt; i++) {
473		if (i == GCHD)
474			continue;
475		err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
476		if (err)
477			return err;
478	}
479	return 0;
480}
481
482/**
483 * ubifs_garbage_collect_leb - garbage-collect a logical eraseblock.
484 * @c: UBIFS file-system description object
485 * @lp: describes the LEB to garbage collect
486 *
487 * This function garbage-collects an LEB and returns one of the @LEB_FREED,
488 * @LEB_RETAINED, etc positive codes in case of success, %-EAGAIN if commit is
489 * required, and other negative error codes in case of failures.
490 */
491int ubifs_garbage_collect_leb(struct ubifs_info *c, struct ubifs_lprops *lp)
492{
493	struct ubifs_scan_leb *sleb;
494	struct ubifs_scan_node *snod;
495	struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf;
496	int err = 0, lnum = lp->lnum;
497
498	ubifs_assert(c, c->gc_lnum != -1 || wbuf->offs + wbuf->used == 0 ||
499		     c->need_recovery);
500	ubifs_assert(c, c->gc_lnum != lnum);
501	ubifs_assert(c, wbuf->lnum != lnum);
502
503	if (lp->free + lp->dirty == c->leb_size) {
504		/* Special case - a free LEB  */
505		dbg_gc("LEB %d is free, return it", lp->lnum);
506		ubifs_assert(c, !(lp->flags & LPROPS_INDEX));
507
508		if (lp->free != c->leb_size) {
509			/*
510			 * Write buffers must be sync'd before unmapping
511			 * freeable LEBs, because one of them may contain data
512			 * which obsoletes something in 'lp->lnum'.
513			 */
514			err = gc_sync_wbufs(c);
515			if (err)
516				return err;
517			err = ubifs_change_one_lp(c, lp->lnum, c->leb_size,
518						  0, 0, 0, 0);
519			if (err)
520				return err;
521		}
522		err = ubifs_leb_unmap(c, lp->lnum);
523		if (err)
524			return err;
525
526		if (c->gc_lnum == -1) {
527			c->gc_lnum = lnum;
528			return LEB_RETAINED;
529		}
530
531		return LEB_FREED;
532	}
533
534	/*
535	 * We scan the entire LEB even though we only really need to scan up to
536	 * (c->leb_size - lp->free).
537	 */
538	sleb = ubifs_scan(c, lnum, 0, c->sbuf, 0);
539	if (IS_ERR(sleb))
540		return PTR_ERR(sleb);
541
542	ubifs_assert(c, !list_empty(&sleb->nodes));
543	snod = list_entry(sleb->nodes.next, struct ubifs_scan_node, list);
544
545	if (snod->type == UBIFS_IDX_NODE) {
546		struct ubifs_gced_idx_leb *idx_gc;
547
548		dbg_gc("indexing LEB %d (free %d, dirty %d)",
549		       lnum, lp->free, lp->dirty);
550		list_for_each_entry(snod, &sleb->nodes, list) {
551			struct ubifs_idx_node *idx = snod->node;
552			int level = le16_to_cpu(idx->level);
553
554			ubifs_assert(c, snod->type == UBIFS_IDX_NODE);
555			key_read(c, ubifs_idx_key(c, idx), &snod->key);
556			err = ubifs_dirty_idx_node(c, &snod->key, level, lnum,
557						   snod->offs);
558			if (err)
559				goto out;
560		}
561
562		idx_gc = kmalloc(sizeof(struct ubifs_gced_idx_leb), GFP_NOFS);
563		if (!idx_gc) {
564			err = -ENOMEM;
565			goto out;
566		}
567
568		idx_gc->lnum = lnum;
569		idx_gc->unmap = 0;
570		list_add(&idx_gc->list, &c->idx_gc);
571
572		/*
573		 * Don't release the LEB until after the next commit, because
574		 * it may contain data which is needed for recovery. So
575		 * although we freed this LEB, it will become usable only after
576		 * the commit.
577		 */
578		err = ubifs_change_one_lp(c, lnum, c->leb_size, 0, 0,
579					  LPROPS_INDEX, 1);
580		if (err)
581			goto out;
582		err = LEB_FREED_IDX;
583	} else {
584		dbg_gc("data LEB %d (free %d, dirty %d)",
585		       lnum, lp->free, lp->dirty);
586
587		err = move_nodes(c, sleb);
588		if (err)
589			goto out_inc_seq;
590
591		err = gc_sync_wbufs(c);
592		if (err)
593			goto out_inc_seq;
594
595		err = ubifs_change_one_lp(c, lnum, c->leb_size, 0, 0, 0, 0);
596		if (err)
597			goto out_inc_seq;
598
599		/* Allow for races with TNC */
600		c->gced_lnum = lnum;
601		smp_wmb();
602		c->gc_seq += 1;
603		smp_wmb();
604
605		if (c->gc_lnum == -1) {
606			c->gc_lnum = lnum;
607			err = LEB_RETAINED;
608		} else {
609			err = ubifs_wbuf_sync_nolock(wbuf);
610			if (err)
611				goto out;
612
613			err = ubifs_leb_unmap(c, lnum);
614			if (err)
615				goto out;
616
617			err = LEB_FREED;
618		}
619	}
620
621out:
622	ubifs_scan_destroy(sleb);
623	return err;
624
625out_inc_seq:
626	/* We may have moved at least some nodes so allow for races with TNC */
627	c->gced_lnum = lnum;
628	smp_wmb();
629	c->gc_seq += 1;
630	smp_wmb();
631	goto out;
632}
633
634/**
635 * ubifs_garbage_collect - UBIFS garbage collector.
636 * @c: UBIFS file-system description object
637 * @anyway: do GC even if there are free LEBs
638 *
639 * This function does out-of-place garbage collection. The return codes are:
640 *   o positive LEB number if the LEB has been freed and may be used;
641 *   o %-EAGAIN if the caller has to run commit;
642 *   o %-ENOSPC if GC failed to make any progress;
643 *   o other negative error codes in case of other errors.
644 *
645 * Garbage collector writes data to the journal when GC'ing data LEBs, and just
646 * marking indexing nodes dirty when GC'ing indexing LEBs. Thus, at some point
647 * commit may be required. But commit cannot be run from inside GC, because the
648 * caller might be holding the commit lock, so %-EAGAIN is returned instead;
649 * And this error code means that the caller has to run commit, and re-run GC
650 * if there is still no free space.
651 *
652 * There are many reasons why this function may return %-EAGAIN:
653 * o the log is full and there is no space to write an LEB reference for
654 *   @c->gc_lnum;
655 * o the journal is too large and exceeds size limitations;
656 * o GC moved indexing LEBs, but they can be used only after the commit;
657 * o the shrinker fails to find clean znodes to free and requests the commit;
658 * o etc.
659 *
660 * Note, if the file-system is close to be full, this function may return
661 * %-EAGAIN infinitely, so the caller has to limit amount of re-invocations of
662 * the function. E.g., this happens if the limits on the journal size are too
663 * tough and GC writes too much to the journal before an LEB is freed. This
664 * might also mean that the journal is too large, and the TNC becomes to big,
665 * so that the shrinker is constantly called, finds not clean znodes to free,
666 * and requests commit. Well, this may also happen if the journal is all right,
667 * but another kernel process consumes too much memory. Anyway, infinite
668 * %-EAGAIN may happen, but in some extreme/misconfiguration cases.
669 */
670int ubifs_garbage_collect(struct ubifs_info *c, int anyway)
671{
672	int i, err, ret, min_space = c->dead_wm;
673	struct ubifs_lprops lp;
674	struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf;
675
676	ubifs_assert_cmt_locked(c);
677	ubifs_assert(c, !c->ro_media && !c->ro_mount);
678
679	if (ubifs_gc_should_commit(c))
680		return -EAGAIN;
681
682	mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
683
684	if (c->ro_error) {
685		ret = -EROFS;
686		goto out_unlock;
687	}
688
689	/* We expect the write-buffer to be empty on entry */
690	ubifs_assert(c, !wbuf->used);
691
692	for (i = 0; ; i++) {
693		int space_before, space_after;
694
695		/* Maybe continue after find and break before find */
696		lp.lnum = -1;
697
698		cond_resched();
699
700		/* Give the commit an opportunity to run */
701		if (ubifs_gc_should_commit(c)) {
702			ret = -EAGAIN;
703			break;
704		}
705
706		if (i > SOFT_LEBS_LIMIT && !list_empty(&c->idx_gc)) {
707			/*
708			 * We've done enough iterations. Indexing LEBs were
709			 * moved and will be available after the commit.
710			 */
711			dbg_gc("soft limit, some index LEBs GC'ed, -EAGAIN");
712			ubifs_commit_required(c);
713			ret = -EAGAIN;
714			break;
715		}
716
717		if (i > HARD_LEBS_LIMIT) {
718			/*
719			 * We've moved too many LEBs and have not made
720			 * progress, give up.
721			 */
722			dbg_gc("hard limit, -ENOSPC");
723			ret = -ENOSPC;
724			break;
725		}
726
727		/*
728		 * Empty and freeable LEBs can turn up while we waited for
729		 * the wbuf lock, or while we have been running GC. In that
730		 * case, we should just return one of those instead of
731		 * continuing to GC dirty LEBs. Hence we request
732		 * 'ubifs_find_dirty_leb()' to return an empty LEB if it can.
733		 */
734		ret = ubifs_find_dirty_leb(c, &lp, min_space, anyway ? 0 : 1);
735		if (ret) {
736			if (ret == -ENOSPC)
737				dbg_gc("no more dirty LEBs");
738			break;
739		}
740
741		dbg_gc("found LEB %d: free %d, dirty %d, sum %d (min. space %d)",
742		       lp.lnum, lp.free, lp.dirty, lp.free + lp.dirty,
743		       min_space);
744
745		space_before = c->leb_size - wbuf->offs - wbuf->used;
746		if (wbuf->lnum == -1)
747			space_before = 0;
748
749		ret = ubifs_garbage_collect_leb(c, &lp);
750		if (ret < 0) {
751			if (ret == -EAGAIN) {
752				/*
753				 * This is not error, so we have to return the
754				 * LEB to lprops. But if 'ubifs_return_leb()'
755				 * fails, its failure code is propagated to the
756				 * caller instead of the original '-EAGAIN'.
757				 */
758				err = ubifs_return_leb(c, lp.lnum);
759				if (err) {
760					ret = err;
761					/*
762					 * An LEB may always be "taken",
763					 * so setting ubifs to read-only,
764					 * and then executing sync wbuf will
765					 * return -EROFS and enter the "out"
766					 * error branch.
767					 */
768					ubifs_ro_mode(c, ret);
769				}
770				/*  Maybe double return LEB if goto out */
771				lp.lnum = -1;
772				break;
773			}
774			goto out;
775		}
776
777		if (ret == LEB_FREED) {
778			/* An LEB has been freed and is ready for use */
779			dbg_gc("LEB %d freed, return", lp.lnum);
780			ret = lp.lnum;
781			break;
782		}
783
784		if (ret == LEB_FREED_IDX) {
785			/*
786			 * This was an indexing LEB and it cannot be
787			 * immediately used. And instead of requesting the
788			 * commit straight away, we try to garbage collect some
789			 * more.
790			 */
791			dbg_gc("indexing LEB %d freed, continue", lp.lnum);
792			continue;
793		}
794
795		ubifs_assert(c, ret == LEB_RETAINED);
796		space_after = c->leb_size - wbuf->offs - wbuf->used;
797		dbg_gc("LEB %d retained, freed %d bytes", lp.lnum,
798		       space_after - space_before);
799
800		if (space_after > space_before) {
801			/* GC makes progress, keep working */
802			min_space >>= 1;
803			if (min_space < c->dead_wm)
804				min_space = c->dead_wm;
805			continue;
806		}
807
808		dbg_gc("did not make progress");
809
810		/*
811		 * GC moved an LEB bud have not done any progress. This means
812		 * that the previous GC head LEB contained too few free space
813		 * and the LEB which was GC'ed contained only large nodes which
814		 * did not fit that space.
815		 *
816		 * We can do 2 things:
817		 * 1. pick another LEB in a hope it'll contain a small node
818		 *    which will fit the space we have at the end of current GC
819		 *    head LEB, but there is no guarantee, so we try this out
820		 *    unless we have already been working for too long;
821		 * 2. request an LEB with more dirty space, which will force
822		 *    'ubifs_find_dirty_leb()' to start scanning the lprops
823		 *    table, instead of just picking one from the heap
824		 *    (previously it already picked the dirtiest LEB).
825		 */
826		if (i < SOFT_LEBS_LIMIT) {
827			dbg_gc("try again");
828			continue;
829		}
830
831		min_space <<= 1;
832		if (min_space > c->dark_wm)
833			min_space = c->dark_wm;
834		dbg_gc("set min. space to %d", min_space);
835	}
836
837	if (ret == -ENOSPC && !list_empty(&c->idx_gc)) {
838		dbg_gc("no space, some index LEBs GC'ed, -EAGAIN");
839		ubifs_commit_required(c);
840		ret = -EAGAIN;
841	}
842
843	err = ubifs_wbuf_sync_nolock(wbuf);
844	if (!err)
845		err = ubifs_leb_unmap(c, c->gc_lnum);
846	if (err) {
847		ret = err;
848		goto out;
849	}
850out_unlock:
851	mutex_unlock(&wbuf->io_mutex);
852	return ret;
853
854out:
855	ubifs_assert(c, ret < 0);
856	ubifs_assert(c, ret != -ENOSPC && ret != -EAGAIN);
857	ubifs_wbuf_sync_nolock(wbuf);
858	ubifs_ro_mode(c, ret);
859	mutex_unlock(&wbuf->io_mutex);
860	if (lp.lnum != -1)
861		ubifs_return_leb(c, lp.lnum);
862	return ret;
863}
864
865/**
866 * ubifs_gc_start_commit - garbage collection at start of commit.
867 * @c: UBIFS file-system description object
868 *
869 * If a LEB has only dirty and free space, then we may safely unmap it and make
870 * it free.  Note, we cannot do this with indexing LEBs because dirty space may
871 * correspond index nodes that are required for recovery.  In that case, the
872 * LEB cannot be unmapped until after the next commit.
873 *
874 * This function returns %0 upon success and a negative error code upon failure.
875 */
876int ubifs_gc_start_commit(struct ubifs_info *c)
877{
878	struct ubifs_gced_idx_leb *idx_gc;
879	const struct ubifs_lprops *lp;
880	int err = 0, flags;
881
882	ubifs_get_lprops(c);
883
884	/*
885	 * Unmap (non-index) freeable LEBs. Note that recovery requires that all
886	 * wbufs are sync'd before this, which is done in 'do_commit()'.
887	 */
888	while (1) {
889		lp = ubifs_fast_find_freeable(c);
890		if (!lp)
891			break;
892		ubifs_assert(c, !(lp->flags & LPROPS_TAKEN));
893		ubifs_assert(c, !(lp->flags & LPROPS_INDEX));
894		err = ubifs_leb_unmap(c, lp->lnum);
895		if (err)
896			goto out;
897		lp = ubifs_change_lp(c, lp, c->leb_size, 0, lp->flags, 0);
898		if (IS_ERR(lp)) {
899			err = PTR_ERR(lp);
900			goto out;
901		}
902		ubifs_assert(c, !(lp->flags & LPROPS_TAKEN));
903		ubifs_assert(c, !(lp->flags & LPROPS_INDEX));
904	}
905
906	/* Mark GC'd index LEBs OK to unmap after this commit finishes */
907	list_for_each_entry(idx_gc, &c->idx_gc, list)
908		idx_gc->unmap = 1;
909
910	/* Record index freeable LEBs for unmapping after commit */
911	while (1) {
912		lp = ubifs_fast_find_frdi_idx(c);
913		if (IS_ERR(lp)) {
914			err = PTR_ERR(lp);
915			goto out;
916		}
917		if (!lp)
918			break;
919		idx_gc = kmalloc(sizeof(struct ubifs_gced_idx_leb), GFP_NOFS);
920		if (!idx_gc) {
921			err = -ENOMEM;
922			goto out;
923		}
924		ubifs_assert(c, !(lp->flags & LPROPS_TAKEN));
925		ubifs_assert(c, lp->flags & LPROPS_INDEX);
926		/* Don't release the LEB until after the next commit */
927		flags = (lp->flags | LPROPS_TAKEN) ^ LPROPS_INDEX;
928		lp = ubifs_change_lp(c, lp, c->leb_size, 0, flags, 1);
929		if (IS_ERR(lp)) {
930			err = PTR_ERR(lp);
931			kfree(idx_gc);
932			goto out;
933		}
934		ubifs_assert(c, lp->flags & LPROPS_TAKEN);
935		ubifs_assert(c, !(lp->flags & LPROPS_INDEX));
936		idx_gc->lnum = lp->lnum;
937		idx_gc->unmap = 1;
938		list_add(&idx_gc->list, &c->idx_gc);
939	}
940out:
941	ubifs_release_lprops(c);
942	return err;
943}
944
945/**
946 * ubifs_gc_end_commit - garbage collection at end of commit.
947 * @c: UBIFS file-system description object
948 *
949 * This function completes out-of-place garbage collection of index LEBs.
950 */
951int ubifs_gc_end_commit(struct ubifs_info *c)
952{
953	struct ubifs_gced_idx_leb *idx_gc, *tmp;
954	struct ubifs_wbuf *wbuf;
955	int err = 0;
956
957	wbuf = &c->jheads[GCHD].wbuf;
958	mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
959	list_for_each_entry_safe(idx_gc, tmp, &c->idx_gc, list)
960		if (idx_gc->unmap) {
961			dbg_gc("LEB %d", idx_gc->lnum);
962			err = ubifs_leb_unmap(c, idx_gc->lnum);
963			if (err)
964				goto out;
965			err = ubifs_change_one_lp(c, idx_gc->lnum, LPROPS_NC,
966					  LPROPS_NC, 0, LPROPS_TAKEN, -1);
967			if (err)
968				goto out;
969			list_del(&idx_gc->list);
970			kfree(idx_gc);
971		}
972out:
973	mutex_unlock(&wbuf->io_mutex);
974	return err;
975}
976
977/**
978 * ubifs_destroy_idx_gc - destroy idx_gc list.
979 * @c: UBIFS file-system description object
980 *
981 * This function destroys the @c->idx_gc list. It is called when unmounting
982 * so locks are not needed. Returns zero in case of success and a negative
983 * error code in case of failure.
984 */
985void ubifs_destroy_idx_gc(struct ubifs_info *c)
986{
987	while (!list_empty(&c->idx_gc)) {
988		struct ubifs_gced_idx_leb *idx_gc;
989
990		idx_gc = list_entry(c->idx_gc.next, struct ubifs_gced_idx_leb,
991				    list);
992		c->idx_gc_cnt -= 1;
993		list_del(&idx_gc->list);
994		kfree(idx_gc);
995	}
996}
997
998/**
999 * ubifs_get_idx_gc_leb - get a LEB from GC'd index LEB list.
1000 * @c: UBIFS file-system description object
1001 *
1002 * Called during start commit so locks are not needed.
1003 */
1004int ubifs_get_idx_gc_leb(struct ubifs_info *c)
1005{
1006	struct ubifs_gced_idx_leb *idx_gc;
1007	int lnum;
1008
1009	if (list_empty(&c->idx_gc))
1010		return -ENOSPC;
1011	idx_gc = list_entry(c->idx_gc.next, struct ubifs_gced_idx_leb, list);
1012	lnum = idx_gc->lnum;
1013	/* c->idx_gc_cnt is updated by the caller when lprops are updated */
1014	list_del(&idx_gc->list);
1015	kfree(idx_gc);
1016	return lnum;
1017}
1018