1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * This file is part of UBIFS.
4 *
5 * Copyright (C) 2006-2008 Nokia Corporation.
6 *
7 * Authors: Artem Bityutskiy (���������������� ����������)
8 *          Adrian Hunter
9 */
10
11/*
12 * This file implements VFS file and inode operations for regular files, device
13 * nodes and symlinks as well as address space operations.
14 *
15 * UBIFS uses 2 page flags: @PG_private and @PG_checked. @PG_private is set if
16 * the page is dirty and is used for optimization purposes - dirty pages are
17 * not budgeted so the flag shows that 'ubifs_write_end()' should not release
18 * the budget for this page. The @PG_checked flag is set if full budgeting is
19 * required for the page e.g., when it corresponds to a file hole or it is
20 * beyond the file size. The budgeting is done in 'ubifs_write_begin()', because
21 * it is OK to fail in this function, and the budget is released in
22 * 'ubifs_write_end()'. So the @PG_private and @PG_checked flags carry
23 * information about how the page was budgeted, to make it possible to release
24 * the budget properly.
25 *
26 * A thing to keep in mind: inode @i_mutex is locked in most VFS operations we
27 * implement. However, this is not true for 'ubifs_writepage()', which may be
28 * called with @i_mutex unlocked. For example, when flusher thread is doing
29 * background write-back, it calls 'ubifs_writepage()' with unlocked @i_mutex.
30 * At "normal" work-paths the @i_mutex is locked in 'ubifs_writepage()', e.g.
31 * in the "sys_write -> alloc_pages -> direct reclaim path". So, in
32 * 'ubifs_writepage()' we are only guaranteed that the page is locked.
33 *
34 * Similarly, @i_mutex is not always locked in 'ubifs_read_folio()', e.g., the
35 * read-ahead path does not lock it ("sys_read -> generic_file_aio_read ->
36 * ondemand_readahead -> read_folio"). In case of readahead, @I_SYNC flag is not
37 * set as well. However, UBIFS disables readahead.
38 */
39
40#include "ubifs.h"
41#include <linux/mount.h>
42#include <linux/slab.h>
43#include <linux/migrate.h>
44
45static int read_block(struct inode *inode, void *addr, unsigned int block,
46		      struct ubifs_data_node *dn)
47{
48	struct ubifs_info *c = inode->i_sb->s_fs_info;
49	int err, len, out_len;
50	union ubifs_key key;
51	unsigned int dlen;
52
53	data_key_init(c, &key, inode->i_ino, block);
54	err = ubifs_tnc_lookup(c, &key, dn);
55	if (err) {
56		if (err == -ENOENT)
57			/* Not found, so it must be a hole */
58			memset(addr, 0, UBIFS_BLOCK_SIZE);
59		return err;
60	}
61
62	ubifs_assert(c, le64_to_cpu(dn->ch.sqnum) >
63		     ubifs_inode(inode)->creat_sqnum);
64	len = le32_to_cpu(dn->size);
65	if (len <= 0 || len > UBIFS_BLOCK_SIZE)
66		goto dump;
67
68	dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ;
69
70	if (IS_ENCRYPTED(inode)) {
71		err = ubifs_decrypt(inode, dn, &dlen, block);
72		if (err)
73			goto dump;
74	}
75
76	out_len = UBIFS_BLOCK_SIZE;
77	err = ubifs_decompress(c, &dn->data, dlen, addr, &out_len,
78			       le16_to_cpu(dn->compr_type));
79	if (err || len != out_len)
80		goto dump;
81
82	/*
83	 * Data length can be less than a full block, even for blocks that are
84	 * not the last in the file (e.g., as a result of making a hole and
85	 * appending data). Ensure that the remainder is zeroed out.
86	 */
87	if (len < UBIFS_BLOCK_SIZE)
88		memset(addr + len, 0, UBIFS_BLOCK_SIZE - len);
89
90	return 0;
91
92dump:
93	ubifs_err(c, "bad data node (block %u, inode %lu)",
94		  block, inode->i_ino);
95	ubifs_dump_node(c, dn, UBIFS_MAX_DATA_NODE_SZ);
96	return -EINVAL;
97}
98
99static int do_readpage(struct folio *folio)
100{
101	void *addr;
102	int err = 0, i;
103	unsigned int block, beyond;
104	struct ubifs_data_node *dn = NULL;
105	struct inode *inode = folio->mapping->host;
106	struct ubifs_info *c = inode->i_sb->s_fs_info;
107	loff_t i_size = i_size_read(inode);
108
109	dbg_gen("ino %lu, pg %lu, i_size %lld, flags %#lx",
110		inode->i_ino, folio->index, i_size, folio->flags);
111	ubifs_assert(c, !folio_test_checked(folio));
112	ubifs_assert(c, !folio->private);
113
114	addr = kmap_local_folio(folio, 0);
115
116	block = folio->index << UBIFS_BLOCKS_PER_PAGE_SHIFT;
117	beyond = (i_size + UBIFS_BLOCK_SIZE - 1) >> UBIFS_BLOCK_SHIFT;
118	if (block >= beyond) {
119		/* Reading beyond inode */
120		folio_set_checked(folio);
121		addr = folio_zero_tail(folio, 0, addr);
122		goto out;
123	}
124
125	dn = kmalloc(UBIFS_MAX_DATA_NODE_SZ, GFP_NOFS);
126	if (!dn) {
127		err = -ENOMEM;
128		goto out;
129	}
130
131	i = 0;
132	while (1) {
133		int ret;
134
135		if (block >= beyond) {
136			/* Reading beyond inode */
137			err = -ENOENT;
138			memset(addr, 0, UBIFS_BLOCK_SIZE);
139		} else {
140			ret = read_block(inode, addr, block, dn);
141			if (ret) {
142				err = ret;
143				if (err != -ENOENT)
144					break;
145			} else if (block + 1 == beyond) {
146				int dlen = le32_to_cpu(dn->size);
147				int ilen = i_size & (UBIFS_BLOCK_SIZE - 1);
148
149				if (ilen && ilen < dlen)
150					memset(addr + ilen, 0, dlen - ilen);
151			}
152		}
153		if (++i >= (UBIFS_BLOCKS_PER_PAGE << folio_order(folio)))
154			break;
155		block += 1;
156		addr += UBIFS_BLOCK_SIZE;
157		if (folio_test_highmem(folio) && (offset_in_page(addr) == 0)) {
158			kunmap_local(addr - UBIFS_BLOCK_SIZE);
159			addr = kmap_local_folio(folio, i * UBIFS_BLOCK_SIZE);
160		}
161	}
162
163	if (err) {
164		struct ubifs_info *c = inode->i_sb->s_fs_info;
165		if (err == -ENOENT) {
166			/* Not found, so it must be a hole */
167			folio_set_checked(folio);
168			dbg_gen("hole");
169			err = 0;
170		} else {
171			ubifs_err(c, "cannot read page %lu of inode %lu, error %d",
172				  folio->index, inode->i_ino, err);
173		}
174	}
175
176out:
177	kfree(dn);
178	if (!err)
179		folio_mark_uptodate(folio);
180	flush_dcache_folio(folio);
181	kunmap_local(addr);
182	return err;
183}
184
185/**
186 * release_new_page_budget - release budget of a new page.
187 * @c: UBIFS file-system description object
188 *
189 * This is a helper function which releases budget corresponding to the budget
190 * of one new page of data.
191 */
192static void release_new_page_budget(struct ubifs_info *c)
193{
194	struct ubifs_budget_req req = { .recalculate = 1, .new_page = 1 };
195
196	ubifs_release_budget(c, &req);
197}
198
199/**
200 * release_existing_page_budget - release budget of an existing page.
201 * @c: UBIFS file-system description object
202 *
203 * This is a helper function which releases budget corresponding to the budget
204 * of changing one page of data which already exists on the flash media.
205 */
206static void release_existing_page_budget(struct ubifs_info *c)
207{
208	struct ubifs_budget_req req = { .dd_growth = c->bi.page_budget};
209
210	ubifs_release_budget(c, &req);
211}
212
213static int write_begin_slow(struct address_space *mapping,
214			    loff_t pos, unsigned len, struct page **pagep)
215{
216	struct inode *inode = mapping->host;
217	struct ubifs_info *c = inode->i_sb->s_fs_info;
218	pgoff_t index = pos >> PAGE_SHIFT;
219	struct ubifs_budget_req req = { .new_page = 1 };
220	int err, appending = !!(pos + len > inode->i_size);
221	struct folio *folio;
222
223	dbg_gen("ino %lu, pos %llu, len %u, i_size %lld",
224		inode->i_ino, pos, len, inode->i_size);
225
226	/*
227	 * At the slow path we have to budget before locking the folio, because
228	 * budgeting may force write-back, which would wait on locked folios and
229	 * deadlock if we had the folio locked. At this point we do not know
230	 * anything about the folio, so assume that this is a new folio which is
231	 * written to a hole. This corresponds to largest budget. Later the
232	 * budget will be amended if this is not true.
233	 */
234	if (appending)
235		/* We are appending data, budget for inode change */
236		req.dirtied_ino = 1;
237
238	err = ubifs_budget_space(c, &req);
239	if (unlikely(err))
240		return err;
241
242	folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN,
243			mapping_gfp_mask(mapping));
244	if (IS_ERR(folio)) {
245		ubifs_release_budget(c, &req);
246		return PTR_ERR(folio);
247	}
248
249	if (!folio_test_uptodate(folio)) {
250		if (pos == folio_pos(folio) && len >= folio_size(folio))
251			folio_set_checked(folio);
252		else {
253			err = do_readpage(folio);
254			if (err) {
255				folio_unlock(folio);
256				folio_put(folio);
257				ubifs_release_budget(c, &req);
258				return err;
259			}
260		}
261	}
262
263	if (folio->private)
264		/*
265		 * The folio is dirty, which means it was budgeted twice:
266		 *   o first time the budget was allocated by the task which
267		 *     made the folio dirty and set the private field;
268		 *   o and then we budgeted for it for the second time at the
269		 *     very beginning of this function.
270		 *
271		 * So what we have to do is to release the folio budget we
272		 * allocated.
273		 */
274		release_new_page_budget(c);
275	else if (!folio_test_checked(folio))
276		/*
277		 * We are changing a folio which already exists on the media.
278		 * This means that changing the folio does not make the amount
279		 * of indexing information larger, and this part of the budget
280		 * which we have already acquired may be released.
281		 */
282		ubifs_convert_page_budget(c);
283
284	if (appending) {
285		struct ubifs_inode *ui = ubifs_inode(inode);
286
287		/*
288		 * 'ubifs_write_end()' is optimized from the fast-path part of
289		 * 'ubifs_write_begin()' and expects the @ui_mutex to be locked
290		 * if data is appended.
291		 */
292		mutex_lock(&ui->ui_mutex);
293		if (ui->dirty)
294			/*
295			 * The inode is dirty already, so we may free the
296			 * budget we allocated.
297			 */
298			ubifs_release_dirty_inode_budget(c, ui);
299	}
300
301	*pagep = &folio->page;
302	return 0;
303}
304
305/**
306 * allocate_budget - allocate budget for 'ubifs_write_begin()'.
307 * @c: UBIFS file-system description object
308 * @folio: folio to allocate budget for
309 * @ui: UBIFS inode object the page belongs to
310 * @appending: non-zero if the page is appended
311 *
312 * This is a helper function for 'ubifs_write_begin()' which allocates budget
313 * for the operation. The budget is allocated differently depending on whether
314 * this is appending, whether the page is dirty or not, and so on. This
315 * function leaves the @ui->ui_mutex locked in case of appending.
316 *
317 * Returns: %0 in case of success and %-ENOSPC in case of failure.
318 */
319static int allocate_budget(struct ubifs_info *c, struct folio *folio,
320			   struct ubifs_inode *ui, int appending)
321{
322	struct ubifs_budget_req req = { .fast = 1 };
323
324	if (folio->private) {
325		if (!appending)
326			/*
327			 * The folio is dirty and we are not appending, which
328			 * means no budget is needed at all.
329			 */
330			return 0;
331
332		mutex_lock(&ui->ui_mutex);
333		if (ui->dirty)
334			/*
335			 * The page is dirty and we are appending, so the inode
336			 * has to be marked as dirty. However, it is already
337			 * dirty, so we do not need any budget. We may return,
338			 * but @ui->ui_mutex hast to be left locked because we
339			 * should prevent write-back from flushing the inode
340			 * and freeing the budget. The lock will be released in
341			 * 'ubifs_write_end()'.
342			 */
343			return 0;
344
345		/*
346		 * The page is dirty, we are appending, the inode is clean, so
347		 * we need to budget the inode change.
348		 */
349		req.dirtied_ino = 1;
350	} else {
351		if (folio_test_checked(folio))
352			/*
353			 * The page corresponds to a hole and does not
354			 * exist on the media. So changing it makes
355			 * the amount of indexing information
356			 * larger, and we have to budget for a new
357			 * page.
358			 */
359			req.new_page = 1;
360		else
361			/*
362			 * Not a hole, the change will not add any new
363			 * indexing information, budget for page
364			 * change.
365			 */
366			req.dirtied_page = 1;
367
368		if (appending) {
369			mutex_lock(&ui->ui_mutex);
370			if (!ui->dirty)
371				/*
372				 * The inode is clean but we will have to mark
373				 * it as dirty because we are appending. This
374				 * needs a budget.
375				 */
376				req.dirtied_ino = 1;
377		}
378	}
379
380	return ubifs_budget_space(c, &req);
381}
382
383/*
384 * This function is called when a page of data is going to be written. Since
385 * the page of data will not necessarily go to the flash straight away, UBIFS
386 * has to reserve space on the media for it, which is done by means of
387 * budgeting.
388 *
389 * This is the hot-path of the file-system and we are trying to optimize it as
390 * much as possible. For this reasons it is split on 2 parts - slow and fast.
391 *
392 * There many budgeting cases:
393 *     o a new page is appended - we have to budget for a new page and for
394 *       changing the inode; however, if the inode is already dirty, there is
395 *       no need to budget for it;
396 *     o an existing clean page is changed - we have budget for it; if the page
397 *       does not exist on the media (a hole), we have to budget for a new
398 *       page; otherwise, we may budget for changing an existing page; the
399 *       difference between these cases is that changing an existing page does
400 *       not introduce anything new to the FS indexing information, so it does
401 *       not grow, and smaller budget is acquired in this case;
402 *     o an existing dirty page is changed - no need to budget at all, because
403 *       the page budget has been acquired by earlier, when the page has been
404 *       marked dirty.
405 *
406 * UBIFS budgeting sub-system may force write-back if it thinks there is no
407 * space to reserve. This imposes some locking restrictions and makes it
408 * impossible to take into account the above cases, and makes it impossible to
409 * optimize budgeting.
410 *
411 * The solution for this is that the fast path of 'ubifs_write_begin()' assumes
412 * there is a plenty of flash space and the budget will be acquired quickly,
413 * without forcing write-back. The slow path does not make this assumption.
414 */
415static int ubifs_write_begin(struct file *file, struct address_space *mapping,
416			     loff_t pos, unsigned len,
417			     struct page **pagep, void **fsdata)
418{
419	struct inode *inode = mapping->host;
420	struct ubifs_info *c = inode->i_sb->s_fs_info;
421	struct ubifs_inode *ui = ubifs_inode(inode);
422	pgoff_t index = pos >> PAGE_SHIFT;
423	int err, appending = !!(pos + len > inode->i_size);
424	int skipped_read = 0;
425	struct folio *folio;
426
427	ubifs_assert(c, ubifs_inode(inode)->ui_size == inode->i_size);
428	ubifs_assert(c, !c->ro_media && !c->ro_mount);
429
430	if (unlikely(c->ro_error))
431		return -EROFS;
432
433	/* Try out the fast-path part first */
434	folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN,
435			mapping_gfp_mask(mapping));
436	if (IS_ERR(folio))
437		return PTR_ERR(folio);
438
439	if (!folio_test_uptodate(folio)) {
440		/* The page is not loaded from the flash */
441		if (pos == folio_pos(folio) && len >= folio_size(folio)) {
442			/*
443			 * We change whole page so no need to load it. But we
444			 * do not know whether this page exists on the media or
445			 * not, so we assume the latter because it requires
446			 * larger budget. The assumption is that it is better
447			 * to budget a bit more than to read the page from the
448			 * media. Thus, we are setting the @PG_checked flag
449			 * here.
450			 */
451			folio_set_checked(folio);
452			skipped_read = 1;
453		} else {
454			err = do_readpage(folio);
455			if (err) {
456				folio_unlock(folio);
457				folio_put(folio);
458				return err;
459			}
460		}
461	}
462
463	err = allocate_budget(c, folio, ui, appending);
464	if (unlikely(err)) {
465		ubifs_assert(c, err == -ENOSPC);
466		/*
467		 * If we skipped reading the page because we were going to
468		 * write all of it, then it is not up to date.
469		 */
470		if (skipped_read)
471			folio_clear_checked(folio);
472		/*
473		 * Budgeting failed which means it would have to force
474		 * write-back but didn't, because we set the @fast flag in the
475		 * request. Write-back cannot be done now, while we have the
476		 * page locked, because it would deadlock. Unlock and free
477		 * everything and fall-back to slow-path.
478		 */
479		if (appending) {
480			ubifs_assert(c, mutex_is_locked(&ui->ui_mutex));
481			mutex_unlock(&ui->ui_mutex);
482		}
483		folio_unlock(folio);
484		folio_put(folio);
485
486		return write_begin_slow(mapping, pos, len, pagep);
487	}
488
489	/*
490	 * Whee, we acquired budgeting quickly - without involving
491	 * garbage-collection, committing or forcing write-back. We return
492	 * with @ui->ui_mutex locked if we are appending pages, and unlocked
493	 * otherwise. This is an optimization (slightly hacky though).
494	 */
495	*pagep = &folio->page;
496	return 0;
497}
498
499/**
500 * cancel_budget - cancel budget.
501 * @c: UBIFS file-system description object
502 * @folio: folio to cancel budget for
503 * @ui: UBIFS inode object the page belongs to
504 * @appending: non-zero if the page is appended
505 *
506 * This is a helper function for a page write operation. It unlocks the
507 * @ui->ui_mutex in case of appending.
508 */
509static void cancel_budget(struct ubifs_info *c, struct folio *folio,
510			  struct ubifs_inode *ui, int appending)
511{
512	if (appending) {
513		if (!ui->dirty)
514			ubifs_release_dirty_inode_budget(c, ui);
515		mutex_unlock(&ui->ui_mutex);
516	}
517	if (!folio->private) {
518		if (folio_test_checked(folio))
519			release_new_page_budget(c);
520		else
521			release_existing_page_budget(c);
522	}
523}
524
525static int ubifs_write_end(struct file *file, struct address_space *mapping,
526			   loff_t pos, unsigned len, unsigned copied,
527			   struct page *page, void *fsdata)
528{
529	struct folio *folio = page_folio(page);
530	struct inode *inode = mapping->host;
531	struct ubifs_inode *ui = ubifs_inode(inode);
532	struct ubifs_info *c = inode->i_sb->s_fs_info;
533	loff_t end_pos = pos + len;
534	int appending = !!(end_pos > inode->i_size);
535
536	dbg_gen("ino %lu, pos %llu, pg %lu, len %u, copied %d, i_size %lld",
537		inode->i_ino, pos, folio->index, len, copied, inode->i_size);
538
539	if (unlikely(copied < len && !folio_test_uptodate(folio))) {
540		/*
541		 * VFS copied less data to the folio than it intended and
542		 * declared in its '->write_begin()' call via the @len
543		 * argument. If the folio was not up-to-date,
544		 * the 'ubifs_write_begin()' function did
545		 * not load it from the media (for optimization reasons). This
546		 * means that part of the folio contains garbage. So read the
547		 * folio now.
548		 */
549		dbg_gen("copied %d instead of %d, read page and repeat",
550			copied, len);
551		cancel_budget(c, folio, ui, appending);
552		folio_clear_checked(folio);
553
554		/*
555		 * Return 0 to force VFS to repeat the whole operation, or the
556		 * error code if 'do_readpage()' fails.
557		 */
558		copied = do_readpage(folio);
559		goto out;
560	}
561
562	if (len == folio_size(folio))
563		folio_mark_uptodate(folio);
564
565	if (!folio->private) {
566		folio_attach_private(folio, (void *)1);
567		atomic_long_inc(&c->dirty_pg_cnt);
568		filemap_dirty_folio(mapping, folio);
569	}
570
571	if (appending) {
572		i_size_write(inode, end_pos);
573		ui->ui_size = end_pos;
574		/*
575		 * We do not set @I_DIRTY_PAGES (which means that
576		 * the inode has dirty pages), this was done in
577		 * filemap_dirty_folio().
578		 */
579		__mark_inode_dirty(inode, I_DIRTY_DATASYNC);
580		ubifs_assert(c, mutex_is_locked(&ui->ui_mutex));
581		mutex_unlock(&ui->ui_mutex);
582	}
583
584out:
585	folio_unlock(folio);
586	folio_put(folio);
587	return copied;
588}
589
590/**
591 * populate_page - copy data nodes into a page for bulk-read.
592 * @c: UBIFS file-system description object
593 * @folio: folio
594 * @bu: bulk-read information
595 * @n: next zbranch slot
596 *
597 * Returns: %0 on success and a negative error code on failure.
598 */
599static int populate_page(struct ubifs_info *c, struct folio *folio,
600			 struct bu_info *bu, int *n)
601{
602	int i = 0, nn = *n, offs = bu->zbranch[0].offs, hole = 0, read = 0;
603	struct inode *inode = folio->mapping->host;
604	loff_t i_size = i_size_read(inode);
605	unsigned int page_block;
606	void *addr, *zaddr;
607	pgoff_t end_index;
608
609	dbg_gen("ino %lu, pg %lu, i_size %lld, flags %#lx",
610		inode->i_ino, folio->index, i_size, folio->flags);
611
612	addr = zaddr = kmap_local_folio(folio, 0);
613
614	end_index = (i_size - 1) >> PAGE_SHIFT;
615	if (!i_size || folio->index > end_index) {
616		hole = 1;
617		addr = folio_zero_tail(folio, 0, addr);
618		goto out_hole;
619	}
620
621	page_block = folio->index << UBIFS_BLOCKS_PER_PAGE_SHIFT;
622	while (1) {
623		int err, len, out_len, dlen;
624
625		if (nn >= bu->cnt) {
626			hole = 1;
627			memset(addr, 0, UBIFS_BLOCK_SIZE);
628		} else if (key_block(c, &bu->zbranch[nn].key) == page_block) {
629			struct ubifs_data_node *dn;
630
631			dn = bu->buf + (bu->zbranch[nn].offs - offs);
632
633			ubifs_assert(c, le64_to_cpu(dn->ch.sqnum) >
634				     ubifs_inode(inode)->creat_sqnum);
635
636			len = le32_to_cpu(dn->size);
637			if (len <= 0 || len > UBIFS_BLOCK_SIZE)
638				goto out_err;
639
640			dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ;
641			out_len = UBIFS_BLOCK_SIZE;
642
643			if (IS_ENCRYPTED(inode)) {
644				err = ubifs_decrypt(inode, dn, &dlen, page_block);
645				if (err)
646					goto out_err;
647			}
648
649			err = ubifs_decompress(c, &dn->data, dlen, addr, &out_len,
650					       le16_to_cpu(dn->compr_type));
651			if (err || len != out_len)
652				goto out_err;
653
654			if (len < UBIFS_BLOCK_SIZE)
655				memset(addr + len, 0, UBIFS_BLOCK_SIZE - len);
656
657			nn += 1;
658			read = (i << UBIFS_BLOCK_SHIFT) + len;
659		} else if (key_block(c, &bu->zbranch[nn].key) < page_block) {
660			nn += 1;
661			continue;
662		} else {
663			hole = 1;
664			memset(addr, 0, UBIFS_BLOCK_SIZE);
665		}
666		if (++i >= UBIFS_BLOCKS_PER_PAGE)
667			break;
668		addr += UBIFS_BLOCK_SIZE;
669		page_block += 1;
670		if (folio_test_highmem(folio) && (offset_in_page(addr) == 0)) {
671			kunmap_local(addr - UBIFS_BLOCK_SIZE);
672			addr = kmap_local_folio(folio, i * UBIFS_BLOCK_SIZE);
673		}
674	}
675
676	if (end_index == folio->index) {
677		int len = i_size & (PAGE_SIZE - 1);
678
679		if (len && len < read)
680			memset(zaddr + len, 0, read - len);
681	}
682
683out_hole:
684	if (hole) {
685		folio_set_checked(folio);
686		dbg_gen("hole");
687	}
688
689	folio_mark_uptodate(folio);
690	flush_dcache_folio(folio);
691	kunmap_local(addr);
692	*n = nn;
693	return 0;
694
695out_err:
696	flush_dcache_folio(folio);
697	kunmap_local(addr);
698	ubifs_err(c, "bad data node (block %u, inode %lu)",
699		  page_block, inode->i_ino);
700	return -EINVAL;
701}
702
703/**
704 * ubifs_do_bulk_read - do bulk-read.
705 * @c: UBIFS file-system description object
706 * @bu: bulk-read information
707 * @folio1: first folio to read
708 *
709 * Returns: %1 if the bulk-read is done, otherwise %0 is returned.
710 */
711static int ubifs_do_bulk_read(struct ubifs_info *c, struct bu_info *bu,
712			      struct folio *folio1)
713{
714	pgoff_t offset = folio1->index, end_index;
715	struct address_space *mapping = folio1->mapping;
716	struct inode *inode = mapping->host;
717	struct ubifs_inode *ui = ubifs_inode(inode);
718	int err, page_idx, page_cnt, ret = 0, n = 0;
719	int allocate = bu->buf ? 0 : 1;
720	loff_t isize;
721	gfp_t ra_gfp_mask = readahead_gfp_mask(mapping) & ~__GFP_FS;
722
723	err = ubifs_tnc_get_bu_keys(c, bu);
724	if (err)
725		goto out_warn;
726
727	if (bu->eof) {
728		/* Turn off bulk-read at the end of the file */
729		ui->read_in_a_row = 1;
730		ui->bulk_read = 0;
731	}
732
733	page_cnt = bu->blk_cnt >> UBIFS_BLOCKS_PER_PAGE_SHIFT;
734	if (!page_cnt) {
735		/*
736		 * This happens when there are multiple blocks per page and the
737		 * blocks for the first page we are looking for, are not
738		 * together. If all the pages were like this, bulk-read would
739		 * reduce performance, so we turn it off for a while.
740		 */
741		goto out_bu_off;
742	}
743
744	if (bu->cnt) {
745		if (allocate) {
746			/*
747			 * Allocate bulk-read buffer depending on how many data
748			 * nodes we are going to read.
749			 */
750			bu->buf_len = bu->zbranch[bu->cnt - 1].offs +
751				      bu->zbranch[bu->cnt - 1].len -
752				      bu->zbranch[0].offs;
753			ubifs_assert(c, bu->buf_len > 0);
754			ubifs_assert(c, bu->buf_len <= c->leb_size);
755			bu->buf = kmalloc(bu->buf_len, GFP_NOFS | __GFP_NOWARN);
756			if (!bu->buf)
757				goto out_bu_off;
758		}
759
760		err = ubifs_tnc_bulk_read(c, bu);
761		if (err)
762			goto out_warn;
763	}
764
765	err = populate_page(c, folio1, bu, &n);
766	if (err)
767		goto out_warn;
768
769	folio_unlock(folio1);
770	ret = 1;
771
772	isize = i_size_read(inode);
773	if (isize == 0)
774		goto out_free;
775	end_index = ((isize - 1) >> PAGE_SHIFT);
776
777	for (page_idx = 1; page_idx < page_cnt; page_idx++) {
778		pgoff_t page_offset = offset + page_idx;
779		struct folio *folio;
780
781		if (page_offset > end_index)
782			break;
783		folio = __filemap_get_folio(mapping, page_offset,
784				 FGP_LOCK|FGP_ACCESSED|FGP_CREAT|FGP_NOWAIT,
785				 ra_gfp_mask);
786		if (IS_ERR(folio))
787			break;
788		if (!folio_test_uptodate(folio))
789			err = populate_page(c, folio, bu, &n);
790		folio_unlock(folio);
791		folio_put(folio);
792		if (err)
793			break;
794	}
795
796	ui->last_page_read = offset + page_idx - 1;
797
798out_free:
799	if (allocate)
800		kfree(bu->buf);
801	return ret;
802
803out_warn:
804	ubifs_warn(c, "ignoring error %d and skipping bulk-read", err);
805	goto out_free;
806
807out_bu_off:
808	ui->read_in_a_row = ui->bulk_read = 0;
809	goto out_free;
810}
811
812/**
813 * ubifs_bulk_read - determine whether to bulk-read and, if so, do it.
814 * @folio: folio from which to start bulk-read.
815 *
816 * Some flash media are capable of reading sequentially at faster rates. UBIFS
817 * bulk-read facility is designed to take advantage of that, by reading in one
818 * go consecutive data nodes that are also located consecutively in the same
819 * LEB.
820 *
821 * Returns: %1 if a bulk-read is done and %0 otherwise.
822 */
823static int ubifs_bulk_read(struct folio *folio)
824{
825	struct inode *inode = folio->mapping->host;
826	struct ubifs_info *c = inode->i_sb->s_fs_info;
827	struct ubifs_inode *ui = ubifs_inode(inode);
828	pgoff_t index = folio->index, last_page_read = ui->last_page_read;
829	struct bu_info *bu;
830	int err = 0, allocated = 0;
831
832	ui->last_page_read = index;
833	if (!c->bulk_read)
834		return 0;
835
836	/*
837	 * Bulk-read is protected by @ui->ui_mutex, but it is an optimization,
838	 * so don't bother if we cannot lock the mutex.
839	 */
840	if (!mutex_trylock(&ui->ui_mutex))
841		return 0;
842
843	if (index != last_page_read + 1) {
844		/* Turn off bulk-read if we stop reading sequentially */
845		ui->read_in_a_row = 1;
846		if (ui->bulk_read)
847			ui->bulk_read = 0;
848		goto out_unlock;
849	}
850
851	if (!ui->bulk_read) {
852		ui->read_in_a_row += 1;
853		if (ui->read_in_a_row < 3)
854			goto out_unlock;
855		/* Three reads in a row, so switch on bulk-read */
856		ui->bulk_read = 1;
857	}
858
859	/*
860	 * If possible, try to use pre-allocated bulk-read information, which
861	 * is protected by @c->bu_mutex.
862	 */
863	if (mutex_trylock(&c->bu_mutex))
864		bu = &c->bu;
865	else {
866		bu = kmalloc(sizeof(struct bu_info), GFP_NOFS | __GFP_NOWARN);
867		if (!bu)
868			goto out_unlock;
869
870		bu->buf = NULL;
871		allocated = 1;
872	}
873
874	bu->buf_len = c->max_bu_buf_len;
875	data_key_init(c, &bu->key, inode->i_ino,
876		      folio->index << UBIFS_BLOCKS_PER_PAGE_SHIFT);
877	err = ubifs_do_bulk_read(c, bu, folio);
878
879	if (!allocated)
880		mutex_unlock(&c->bu_mutex);
881	else
882		kfree(bu);
883
884out_unlock:
885	mutex_unlock(&ui->ui_mutex);
886	return err;
887}
888
889static int ubifs_read_folio(struct file *file, struct folio *folio)
890{
891	if (ubifs_bulk_read(folio))
892		return 0;
893	do_readpage(folio);
894	folio_unlock(folio);
895	return 0;
896}
897
898static int do_writepage(struct folio *folio, size_t len)
899{
900	int err = 0, blen;
901	unsigned int block;
902	void *addr;
903	size_t offset = 0;
904	union ubifs_key key;
905	struct inode *inode = folio->mapping->host;
906	struct ubifs_info *c = inode->i_sb->s_fs_info;
907
908#ifdef UBIFS_DEBUG
909	struct ubifs_inode *ui = ubifs_inode(inode);
910	spin_lock(&ui->ui_lock);
911	ubifs_assert(c, folio->index <= ui->synced_i_size >> PAGE_SHIFT);
912	spin_unlock(&ui->ui_lock);
913#endif
914
915	folio_start_writeback(folio);
916
917	addr = kmap_local_folio(folio, offset);
918	block = folio->index << UBIFS_BLOCKS_PER_PAGE_SHIFT;
919	for (;;) {
920		blen = min_t(size_t, len, UBIFS_BLOCK_SIZE);
921		data_key_init(c, &key, inode->i_ino, block);
922		err = ubifs_jnl_write_data(c, inode, &key, addr, blen);
923		if (err)
924			break;
925		len -= blen;
926		if (!len)
927			break;
928		block += 1;
929		addr += blen;
930		if (folio_test_highmem(folio) && !offset_in_page(addr)) {
931			kunmap_local(addr - blen);
932			offset += PAGE_SIZE;
933			addr = kmap_local_folio(folio, offset);
934		}
935	}
936	kunmap_local(addr);
937	if (err) {
938		mapping_set_error(folio->mapping, err);
939		ubifs_err(c, "cannot write folio %lu of inode %lu, error %d",
940			  folio->index, inode->i_ino, err);
941		ubifs_ro_mode(c, err);
942	}
943
944	ubifs_assert(c, folio->private != NULL);
945	if (folio_test_checked(folio))
946		release_new_page_budget(c);
947	else
948		release_existing_page_budget(c);
949
950	atomic_long_dec(&c->dirty_pg_cnt);
951	folio_detach_private(folio);
952	folio_clear_checked(folio);
953
954	folio_unlock(folio);
955	folio_end_writeback(folio);
956	return err;
957}
958
959/*
960 * When writing-back dirty inodes, VFS first writes-back pages belonging to the
961 * inode, then the inode itself. For UBIFS this may cause a problem. Consider a
962 * situation when a we have an inode with size 0, then a megabyte of data is
963 * appended to the inode, then write-back starts and flushes some amount of the
964 * dirty pages, the journal becomes full, commit happens and finishes, and then
965 * an unclean reboot happens. When the file system is mounted next time, the
966 * inode size would still be 0, but there would be many pages which are beyond
967 * the inode size, they would be indexed and consume flash space. Because the
968 * journal has been committed, the replay would not be able to detect this
969 * situation and correct the inode size. This means UBIFS would have to scan
970 * whole index and correct all inode sizes, which is long an unacceptable.
971 *
972 * To prevent situations like this, UBIFS writes pages back only if they are
973 * within the last synchronized inode size, i.e. the size which has been
974 * written to the flash media last time. Otherwise, UBIFS forces inode
975 * write-back, thus making sure the on-flash inode contains current inode size,
976 * and then keeps writing pages back.
977 *
978 * Some locking issues explanation. 'ubifs_writepage()' first is called with
979 * the page locked, and it locks @ui_mutex. However, write-back does take inode
980 * @i_mutex, which means other VFS operations may be run on this inode at the
981 * same time. And the problematic one is truncation to smaller size, from where
982 * we have to call 'truncate_setsize()', which first changes @inode->i_size,
983 * then drops the truncated pages. And while dropping the pages, it takes the
984 * page lock. This means that 'do_truncation()' cannot call 'truncate_setsize()'
985 * with @ui_mutex locked, because it would deadlock with 'ubifs_writepage()'.
986 * This means that @inode->i_size is changed while @ui_mutex is unlocked.
987 *
988 * XXX(truncate): with the new truncate sequence this is not true anymore,
989 * and the calls to truncate_setsize can be move around freely.  They should
990 * be moved to the very end of the truncate sequence.
991 *
992 * But in 'ubifs_writepage()' we have to guarantee that we do not write beyond
993 * inode size. How do we do this if @inode->i_size may became smaller while we
994 * are in the middle of 'ubifs_writepage()'? The UBIFS solution is the
995 * @ui->ui_isize "shadow" field which UBIFS uses instead of @inode->i_size
996 * internally and updates it under @ui_mutex.
997 *
998 * Q: why we do not worry that if we race with truncation, we may end up with a
999 * situation when the inode is truncated while we are in the middle of
1000 * 'do_writepage()', so we do write beyond inode size?
1001 * A: If we are in the middle of 'do_writepage()', truncation would be locked
1002 * on the page lock and it would not write the truncated inode node to the
1003 * journal before we have finished.
1004 */
1005static int ubifs_writepage(struct folio *folio, struct writeback_control *wbc,
1006		void *data)
1007{
1008	struct inode *inode = folio->mapping->host;
1009	struct ubifs_info *c = inode->i_sb->s_fs_info;
1010	struct ubifs_inode *ui = ubifs_inode(inode);
1011	loff_t i_size =  i_size_read(inode), synced_i_size;
1012	int err, len = folio_size(folio);
1013
1014	dbg_gen("ino %lu, pg %lu, pg flags %#lx",
1015		inode->i_ino, folio->index, folio->flags);
1016	ubifs_assert(c, folio->private != NULL);
1017
1018	/* Is the folio fully outside @i_size? (truncate in progress) */
1019	if (folio_pos(folio) >= i_size) {
1020		err = 0;
1021		goto out_unlock;
1022	}
1023
1024	spin_lock(&ui->ui_lock);
1025	synced_i_size = ui->synced_i_size;
1026	spin_unlock(&ui->ui_lock);
1027
1028	/* Is the folio fully inside i_size? */
1029	if (folio_pos(folio) + len <= i_size) {
1030		if (folio_pos(folio) >= synced_i_size) {
1031			err = inode->i_sb->s_op->write_inode(inode, NULL);
1032			if (err)
1033				goto out_redirty;
1034			/*
1035			 * The inode has been written, but the write-buffer has
1036			 * not been synchronized, so in case of an unclean
1037			 * reboot we may end up with some pages beyond inode
1038			 * size, but they would be in the journal (because
1039			 * commit flushes write buffers) and recovery would deal
1040			 * with this.
1041			 */
1042		}
1043		return do_writepage(folio, len);
1044	}
1045
1046	/*
1047	 * The folio straddles @i_size. It must be zeroed out on each and every
1048	 * writepage invocation because it may be mmapped. "A file is mapped
1049	 * in multiples of the page size. For a file that is not a multiple of
1050	 * the page size, the remaining memory is zeroed when mapped, and
1051	 * writes to that region are not written out to the file."
1052	 */
1053	len = i_size - folio_pos(folio);
1054	folio_zero_segment(folio, len, folio_size(folio));
1055
1056	if (i_size > synced_i_size) {
1057		err = inode->i_sb->s_op->write_inode(inode, NULL);
1058		if (err)
1059			goto out_redirty;
1060	}
1061
1062	return do_writepage(folio, len);
1063out_redirty:
1064	/*
1065	 * folio_redirty_for_writepage() won't call ubifs_dirty_inode() because
1066	 * it passes I_DIRTY_PAGES flag while calling __mark_inode_dirty(), so
1067	 * there is no need to do space budget for dirty inode.
1068	 */
1069	folio_redirty_for_writepage(wbc, folio);
1070out_unlock:
1071	folio_unlock(folio);
1072	return err;
1073}
1074
1075static int ubifs_writepages(struct address_space *mapping,
1076		struct writeback_control *wbc)
1077{
1078	return write_cache_pages(mapping, wbc, ubifs_writepage, NULL);
1079}
1080
1081/**
1082 * do_attr_changes - change inode attributes.
1083 * @inode: inode to change attributes for
1084 * @attr: describes attributes to change
1085 */
1086static void do_attr_changes(struct inode *inode, const struct iattr *attr)
1087{
1088	if (attr->ia_valid & ATTR_UID)
1089		inode->i_uid = attr->ia_uid;
1090	if (attr->ia_valid & ATTR_GID)
1091		inode->i_gid = attr->ia_gid;
1092	if (attr->ia_valid & ATTR_ATIME)
1093		inode_set_atime_to_ts(inode, attr->ia_atime);
1094	if (attr->ia_valid & ATTR_MTIME)
1095		inode_set_mtime_to_ts(inode, attr->ia_mtime);
1096	if (attr->ia_valid & ATTR_CTIME)
1097		inode_set_ctime_to_ts(inode, attr->ia_ctime);
1098	if (attr->ia_valid & ATTR_MODE) {
1099		umode_t mode = attr->ia_mode;
1100
1101		if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID))
1102			mode &= ~S_ISGID;
1103		inode->i_mode = mode;
1104	}
1105}
1106
1107/**
1108 * do_truncation - truncate an inode.
1109 * @c: UBIFS file-system description object
1110 * @inode: inode to truncate
1111 * @attr: inode attribute changes description
1112 *
1113 * This function implements VFS '->setattr()' call when the inode is truncated
1114 * to a smaller size.
1115 *
1116 * Returns: %0 in case of success and a negative error code
1117 * in case of failure.
1118 */
1119static int do_truncation(struct ubifs_info *c, struct inode *inode,
1120			 const struct iattr *attr)
1121{
1122	int err;
1123	struct ubifs_budget_req req;
1124	loff_t old_size = inode->i_size, new_size = attr->ia_size;
1125	int offset = new_size & (UBIFS_BLOCK_SIZE - 1), budgeted = 1;
1126	struct ubifs_inode *ui = ubifs_inode(inode);
1127
1128	dbg_gen("ino %lu, size %lld -> %lld", inode->i_ino, old_size, new_size);
1129	memset(&req, 0, sizeof(struct ubifs_budget_req));
1130
1131	/*
1132	 * If this is truncation to a smaller size, and we do not truncate on a
1133	 * block boundary, budget for changing one data block, because the last
1134	 * block will be re-written.
1135	 */
1136	if (new_size & (UBIFS_BLOCK_SIZE - 1))
1137		req.dirtied_page = 1;
1138
1139	req.dirtied_ino = 1;
1140	/* A funny way to budget for truncation node */
1141	req.dirtied_ino_d = UBIFS_TRUN_NODE_SZ;
1142	err = ubifs_budget_space(c, &req);
1143	if (err) {
1144		/*
1145		 * Treat truncations to zero as deletion and always allow them,
1146		 * just like we do for '->unlink()'.
1147		 */
1148		if (new_size || err != -ENOSPC)
1149			return err;
1150		budgeted = 0;
1151	}
1152
1153	truncate_setsize(inode, new_size);
1154
1155	if (offset) {
1156		pgoff_t index = new_size >> PAGE_SHIFT;
1157		struct folio *folio;
1158
1159		folio = filemap_lock_folio(inode->i_mapping, index);
1160		if (!IS_ERR(folio)) {
1161			if (folio_test_dirty(folio)) {
1162				/*
1163				 * 'ubifs_jnl_truncate()' will try to truncate
1164				 * the last data node, but it contains
1165				 * out-of-date data because the page is dirty.
1166				 * Write the page now, so that
1167				 * 'ubifs_jnl_truncate()' will see an already
1168				 * truncated (and up to date) data node.
1169				 */
1170				ubifs_assert(c, folio->private != NULL);
1171
1172				folio_clear_dirty_for_io(folio);
1173				if (UBIFS_BLOCKS_PER_PAGE_SHIFT)
1174					offset = offset_in_folio(folio,
1175							new_size);
1176				err = do_writepage(folio, offset);
1177				folio_put(folio);
1178				if (err)
1179					goto out_budg;
1180				/*
1181				 * We could now tell 'ubifs_jnl_truncate()' not
1182				 * to read the last block.
1183				 */
1184			} else {
1185				/*
1186				 * We could 'kmap()' the page and pass the data
1187				 * to 'ubifs_jnl_truncate()' to save it from
1188				 * having to read it.
1189				 */
1190				folio_unlock(folio);
1191				folio_put(folio);
1192			}
1193		}
1194	}
1195
1196	mutex_lock(&ui->ui_mutex);
1197	ui->ui_size = inode->i_size;
1198	/* Truncation changes inode [mc]time */
1199	inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
1200	/* Other attributes may be changed at the same time as well */
1201	do_attr_changes(inode, attr);
1202	err = ubifs_jnl_truncate(c, inode, old_size, new_size);
1203	mutex_unlock(&ui->ui_mutex);
1204
1205out_budg:
1206	if (budgeted)
1207		ubifs_release_budget(c, &req);
1208	else {
1209		c->bi.nospace = c->bi.nospace_rp = 0;
1210		smp_wmb();
1211	}
1212	return err;
1213}
1214
1215/**
1216 * do_setattr - change inode attributes.
1217 * @c: UBIFS file-system description object
1218 * @inode: inode to change attributes for
1219 * @attr: inode attribute changes description
1220 *
1221 * This function implements VFS '->setattr()' call for all cases except
1222 * truncations to smaller size.
1223 *
1224 * Returns: %0 in case of success and a negative
1225 * error code in case of failure.
1226 */
1227static int do_setattr(struct ubifs_info *c, struct inode *inode,
1228		      const struct iattr *attr)
1229{
1230	int err, release;
1231	loff_t new_size = attr->ia_size;
1232	struct ubifs_inode *ui = ubifs_inode(inode);
1233	struct ubifs_budget_req req = { .dirtied_ino = 1,
1234				.dirtied_ino_d = ALIGN(ui->data_len, 8) };
1235
1236	err = ubifs_budget_space(c, &req);
1237	if (err)
1238		return err;
1239
1240	if (attr->ia_valid & ATTR_SIZE) {
1241		dbg_gen("size %lld -> %lld", inode->i_size, new_size);
1242		truncate_setsize(inode, new_size);
1243	}
1244
1245	mutex_lock(&ui->ui_mutex);
1246	if (attr->ia_valid & ATTR_SIZE) {
1247		/* Truncation changes inode [mc]time */
1248		inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
1249		/* 'truncate_setsize()' changed @i_size, update @ui_size */
1250		ui->ui_size = inode->i_size;
1251	}
1252
1253	do_attr_changes(inode, attr);
1254
1255	release = ui->dirty;
1256	if (attr->ia_valid & ATTR_SIZE)
1257		/*
1258		 * Inode length changed, so we have to make sure
1259		 * @I_DIRTY_DATASYNC is set.
1260		 */
1261		 __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
1262	else
1263		mark_inode_dirty_sync(inode);
1264	mutex_unlock(&ui->ui_mutex);
1265
1266	if (release)
1267		ubifs_release_budget(c, &req);
1268	if (IS_SYNC(inode))
1269		err = inode->i_sb->s_op->write_inode(inode, NULL);
1270	return err;
1271}
1272
1273int ubifs_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
1274		  struct iattr *attr)
1275{
1276	int err;
1277	struct inode *inode = d_inode(dentry);
1278	struct ubifs_info *c = inode->i_sb->s_fs_info;
1279
1280	dbg_gen("ino %lu, mode %#x, ia_valid %#x",
1281		inode->i_ino, inode->i_mode, attr->ia_valid);
1282	err = setattr_prepare(&nop_mnt_idmap, dentry, attr);
1283	if (err)
1284		return err;
1285
1286	err = dbg_check_synced_i_size(c, inode);
1287	if (err)
1288		return err;
1289
1290	err = fscrypt_prepare_setattr(dentry, attr);
1291	if (err)
1292		return err;
1293
1294	if ((attr->ia_valid & ATTR_SIZE) && attr->ia_size < inode->i_size)
1295		/* Truncation to a smaller size */
1296		err = do_truncation(c, inode, attr);
1297	else
1298		err = do_setattr(c, inode, attr);
1299
1300	return err;
1301}
1302
1303static void ubifs_invalidate_folio(struct folio *folio, size_t offset,
1304				 size_t length)
1305{
1306	struct inode *inode = folio->mapping->host;
1307	struct ubifs_info *c = inode->i_sb->s_fs_info;
1308
1309	ubifs_assert(c, folio_test_private(folio));
1310	if (offset || length < folio_size(folio))
1311		/* Partial folio remains dirty */
1312		return;
1313
1314	if (folio_test_checked(folio))
1315		release_new_page_budget(c);
1316	else
1317		release_existing_page_budget(c);
1318
1319	atomic_long_dec(&c->dirty_pg_cnt);
1320	folio_detach_private(folio);
1321	folio_clear_checked(folio);
1322}
1323
1324int ubifs_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1325{
1326	struct inode *inode = file->f_mapping->host;
1327	struct ubifs_info *c = inode->i_sb->s_fs_info;
1328	int err;
1329
1330	dbg_gen("syncing inode %lu", inode->i_ino);
1331
1332	if (c->ro_mount)
1333		/*
1334		 * For some really strange reasons VFS does not filter out
1335		 * 'fsync()' for R/O mounted file-systems as per 2.6.39.
1336		 */
1337		return 0;
1338
1339	err = file_write_and_wait_range(file, start, end);
1340	if (err)
1341		return err;
1342	inode_lock(inode);
1343
1344	/* Synchronize the inode unless this is a 'datasync()' call. */
1345	if (!datasync || (inode->i_state & I_DIRTY_DATASYNC)) {
1346		err = inode->i_sb->s_op->write_inode(inode, NULL);
1347		if (err)
1348			goto out;
1349	}
1350
1351	/*
1352	 * Nodes related to this inode may still sit in a write-buffer. Flush
1353	 * them.
1354	 */
1355	err = ubifs_sync_wbufs_by_inode(c, inode);
1356out:
1357	inode_unlock(inode);
1358	return err;
1359}
1360
1361/**
1362 * mctime_update_needed - check if mtime or ctime update is needed.
1363 * @inode: the inode to do the check for
1364 * @now: current time
1365 *
1366 * This helper function checks if the inode mtime/ctime should be updated or
1367 * not. If current values of the time-stamps are within the UBIFS inode time
1368 * granularity, they are not updated. This is an optimization.
1369 *
1370 * Returns: %1 if time update is needed, %0 if not
1371 */
1372static inline int mctime_update_needed(const struct inode *inode,
1373				       const struct timespec64 *now)
1374{
1375	struct timespec64 ctime = inode_get_ctime(inode);
1376	struct timespec64 mtime = inode_get_mtime(inode);
1377
1378	if (!timespec64_equal(&mtime, now) || !timespec64_equal(&ctime, now))
1379		return 1;
1380	return 0;
1381}
1382
1383/**
1384 * ubifs_update_time - update time of inode.
1385 * @inode: inode to update
1386 * @flags: time updating control flag determines updating
1387 *	    which time fields of @inode
1388 *
1389 * This function updates time of the inode.
1390 *
1391 * Returns: %0 for success or a negative error code otherwise.
1392 */
1393int ubifs_update_time(struct inode *inode, int flags)
1394{
1395	struct ubifs_inode *ui = ubifs_inode(inode);
1396	struct ubifs_info *c = inode->i_sb->s_fs_info;
1397	struct ubifs_budget_req req = { .dirtied_ino = 1,
1398			.dirtied_ino_d = ALIGN(ui->data_len, 8) };
1399	int err, release;
1400
1401	if (!IS_ENABLED(CONFIG_UBIFS_ATIME_SUPPORT)) {
1402		generic_update_time(inode, flags);
1403		return 0;
1404	}
1405
1406	err = ubifs_budget_space(c, &req);
1407	if (err)
1408		return err;
1409
1410	mutex_lock(&ui->ui_mutex);
1411	inode_update_timestamps(inode, flags);
1412	release = ui->dirty;
1413	__mark_inode_dirty(inode, I_DIRTY_SYNC);
1414	mutex_unlock(&ui->ui_mutex);
1415	if (release)
1416		ubifs_release_budget(c, &req);
1417	return 0;
1418}
1419
1420/**
1421 * update_mctime - update mtime and ctime of an inode.
1422 * @inode: inode to update
1423 *
1424 * This function updates mtime and ctime of the inode if it is not equivalent to
1425 * current time.
1426 *
1427 * Returns: %0 in case of success and a negative error code in
1428 * case of failure.
1429 */
1430static int update_mctime(struct inode *inode)
1431{
1432	struct timespec64 now = current_time(inode);
1433	struct ubifs_inode *ui = ubifs_inode(inode);
1434	struct ubifs_info *c = inode->i_sb->s_fs_info;
1435
1436	if (mctime_update_needed(inode, &now)) {
1437		int err, release;
1438		struct ubifs_budget_req req = { .dirtied_ino = 1,
1439				.dirtied_ino_d = ALIGN(ui->data_len, 8) };
1440
1441		err = ubifs_budget_space(c, &req);
1442		if (err)
1443			return err;
1444
1445		mutex_lock(&ui->ui_mutex);
1446		inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
1447		release = ui->dirty;
1448		mark_inode_dirty_sync(inode);
1449		mutex_unlock(&ui->ui_mutex);
1450		if (release)
1451			ubifs_release_budget(c, &req);
1452	}
1453
1454	return 0;
1455}
1456
1457static ssize_t ubifs_write_iter(struct kiocb *iocb, struct iov_iter *from)
1458{
1459	int err = update_mctime(file_inode(iocb->ki_filp));
1460	if (err)
1461		return err;
1462
1463	return generic_file_write_iter(iocb, from);
1464}
1465
1466static bool ubifs_dirty_folio(struct address_space *mapping,
1467		struct folio *folio)
1468{
1469	bool ret;
1470	struct ubifs_info *c = mapping->host->i_sb->s_fs_info;
1471
1472	ret = filemap_dirty_folio(mapping, folio);
1473	/*
1474	 * An attempt to dirty a page without budgeting for it - should not
1475	 * happen.
1476	 */
1477	ubifs_assert(c, ret == false);
1478	return ret;
1479}
1480
1481static bool ubifs_release_folio(struct folio *folio, gfp_t unused_gfp_flags)
1482{
1483	struct inode *inode = folio->mapping->host;
1484	struct ubifs_info *c = inode->i_sb->s_fs_info;
1485
1486	if (folio_test_writeback(folio))
1487		return false;
1488
1489	/*
1490	 * Page is private but not dirty, weird? There is one condition
1491	 * making it happened. ubifs_writepage skipped the page because
1492	 * page index beyonds isize (for example. truncated by other
1493	 * process named A), then the page is invalidated by fadvise64
1494	 * syscall before being truncated by process A.
1495	 */
1496	ubifs_assert(c, folio_test_private(folio));
1497	if (folio_test_checked(folio))
1498		release_new_page_budget(c);
1499	else
1500		release_existing_page_budget(c);
1501
1502	atomic_long_dec(&c->dirty_pg_cnt);
1503	folio_detach_private(folio);
1504	folio_clear_checked(folio);
1505	return true;
1506}
1507
1508/*
1509 * mmap()d file has taken write protection fault and is being made writable.
1510 * UBIFS must ensure page is budgeted for.
1511 */
1512static vm_fault_t ubifs_vm_page_mkwrite(struct vm_fault *vmf)
1513{
1514	struct folio *folio = page_folio(vmf->page);
1515	struct inode *inode = file_inode(vmf->vma->vm_file);
1516	struct ubifs_info *c = inode->i_sb->s_fs_info;
1517	struct timespec64 now = current_time(inode);
1518	struct ubifs_budget_req req = { .new_page = 1 };
1519	int err, update_time;
1520
1521	dbg_gen("ino %lu, pg %lu, i_size %lld",	inode->i_ino, folio->index,
1522		i_size_read(inode));
1523	ubifs_assert(c, !c->ro_media && !c->ro_mount);
1524
1525	if (unlikely(c->ro_error))
1526		return VM_FAULT_SIGBUS; /* -EROFS */
1527
1528	/*
1529	 * We have not locked @folio so far so we may budget for changing the
1530	 * folio. Note, we cannot do this after we locked the folio, because
1531	 * budgeting may cause write-back which would cause deadlock.
1532	 *
1533	 * At the moment we do not know whether the folio is dirty or not, so we
1534	 * assume that it is not and budget for a new folio. We could look at
1535	 * the @PG_private flag and figure this out, but we may race with write
1536	 * back and the folio state may change by the time we lock it, so this
1537	 * would need additional care. We do not bother with this at the
1538	 * moment, although it might be good idea to do. Instead, we allocate
1539	 * budget for a new folio and amend it later on if the folio was in fact
1540	 * dirty.
1541	 *
1542	 * The budgeting-related logic of this function is similar to what we
1543	 * do in 'ubifs_write_begin()' and 'ubifs_write_end()'. Glance there
1544	 * for more comments.
1545	 */
1546	update_time = mctime_update_needed(inode, &now);
1547	if (update_time)
1548		/*
1549		 * We have to change inode time stamp which requires extra
1550		 * budgeting.
1551		 */
1552		req.dirtied_ino = 1;
1553
1554	err = ubifs_budget_space(c, &req);
1555	if (unlikely(err)) {
1556		if (err == -ENOSPC)
1557			ubifs_warn(c, "out of space for mmapped file (inode number %lu)",
1558				   inode->i_ino);
1559		return VM_FAULT_SIGBUS;
1560	}
1561
1562	folio_lock(folio);
1563	if (unlikely(folio->mapping != inode->i_mapping ||
1564		     folio_pos(folio) >= i_size_read(inode))) {
1565		/* Folio got truncated out from underneath us */
1566		goto sigbus;
1567	}
1568
1569	if (folio->private)
1570		release_new_page_budget(c);
1571	else {
1572		if (!folio_test_checked(folio))
1573			ubifs_convert_page_budget(c);
1574		folio_attach_private(folio, (void *)1);
1575		atomic_long_inc(&c->dirty_pg_cnt);
1576		filemap_dirty_folio(folio->mapping, folio);
1577	}
1578
1579	if (update_time) {
1580		int release;
1581		struct ubifs_inode *ui = ubifs_inode(inode);
1582
1583		mutex_lock(&ui->ui_mutex);
1584		inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
1585		release = ui->dirty;
1586		mark_inode_dirty_sync(inode);
1587		mutex_unlock(&ui->ui_mutex);
1588		if (release)
1589			ubifs_release_dirty_inode_budget(c, ui);
1590	}
1591
1592	folio_wait_stable(folio);
1593	return VM_FAULT_LOCKED;
1594
1595sigbus:
1596	folio_unlock(folio);
1597	ubifs_release_budget(c, &req);
1598	return VM_FAULT_SIGBUS;
1599}
1600
1601static const struct vm_operations_struct ubifs_file_vm_ops = {
1602	.fault        = filemap_fault,
1603	.map_pages = filemap_map_pages,
1604	.page_mkwrite = ubifs_vm_page_mkwrite,
1605};
1606
1607static int ubifs_file_mmap(struct file *file, struct vm_area_struct *vma)
1608{
1609	int err;
1610
1611	err = generic_file_mmap(file, vma);
1612	if (err)
1613		return err;
1614	vma->vm_ops = &ubifs_file_vm_ops;
1615
1616	if (IS_ENABLED(CONFIG_UBIFS_ATIME_SUPPORT))
1617		file_accessed(file);
1618
1619	return 0;
1620}
1621
1622static const char *ubifs_get_link(struct dentry *dentry,
1623					    struct inode *inode,
1624					    struct delayed_call *done)
1625{
1626	struct ubifs_inode *ui = ubifs_inode(inode);
1627
1628	if (!IS_ENCRYPTED(inode))
1629		return ui->data;
1630
1631	if (!dentry)
1632		return ERR_PTR(-ECHILD);
1633
1634	return fscrypt_get_symlink(inode, ui->data, ui->data_len, done);
1635}
1636
1637static int ubifs_symlink_getattr(struct mnt_idmap *idmap,
1638				 const struct path *path, struct kstat *stat,
1639				 u32 request_mask, unsigned int query_flags)
1640{
1641	ubifs_getattr(idmap, path, stat, request_mask, query_flags);
1642
1643	if (IS_ENCRYPTED(d_inode(path->dentry)))
1644		return fscrypt_symlink_getattr(path, stat);
1645	return 0;
1646}
1647
1648const struct address_space_operations ubifs_file_address_operations = {
1649	.read_folio     = ubifs_read_folio,
1650	.writepages     = ubifs_writepages,
1651	.write_begin    = ubifs_write_begin,
1652	.write_end      = ubifs_write_end,
1653	.invalidate_folio = ubifs_invalidate_folio,
1654	.dirty_folio	= ubifs_dirty_folio,
1655	.migrate_folio	= filemap_migrate_folio,
1656	.release_folio	= ubifs_release_folio,
1657};
1658
1659const struct inode_operations ubifs_file_inode_operations = {
1660	.setattr     = ubifs_setattr,
1661	.getattr     = ubifs_getattr,
1662	.listxattr   = ubifs_listxattr,
1663	.update_time = ubifs_update_time,
1664	.fileattr_get = ubifs_fileattr_get,
1665	.fileattr_set = ubifs_fileattr_set,
1666};
1667
1668const struct inode_operations ubifs_symlink_inode_operations = {
1669	.get_link    = ubifs_get_link,
1670	.setattr     = ubifs_setattr,
1671	.getattr     = ubifs_symlink_getattr,
1672	.listxattr   = ubifs_listxattr,
1673	.update_time = ubifs_update_time,
1674};
1675
1676const struct file_operations ubifs_file_operations = {
1677	.llseek         = generic_file_llseek,
1678	.read_iter      = generic_file_read_iter,
1679	.write_iter     = ubifs_write_iter,
1680	.mmap           = ubifs_file_mmap,
1681	.fsync          = ubifs_fsync,
1682	.unlocked_ioctl = ubifs_ioctl,
1683	.splice_read	= filemap_splice_read,
1684	.splice_write	= iter_file_splice_write,
1685	.open		= fscrypt_file_open,
1686#ifdef CONFIG_COMPAT
1687	.compat_ioctl   = ubifs_compat_ioctl,
1688#endif
1689};
1690